
The EM Interpreter

Eddo de Groot
Leo van den Berge

Dick Grune

Faculteit Wiskunde en Informatica
Vrije Universiteit, Amsterdam

ABSTRACT

This document describes the implementation and usage of a new interpreter for the EM
machine language. This interpreter implements the full EM machine and can be helpful to
people writing new front-ends. Moreover, it can be used as a thorough testing and debugging
tool by anyone familiar with the EM language.

A list of all warnings is given in appendix A; appendix B is a simple tutorial.

1. INTRODUCTION.

This document describes an EM interpreter which does extensive checking. The interpreter exists in two
versions: the normal version with full checking and debugging facilities, and a fast stripped version that does
interpretation only. This document assumes that the full version is used.

First the virtual EM machine embodied by the interpreter (called int) is described, followed by some remarks on
performance. The second section gives some specific implementation decisions. Section three explains the
usage of the built-in debugging tool.

Appendix A gives an overview of the various warnings int gives, with possible causes and solutions. Appendix
B is a simple tutorial on the use of int. A separate manual page exists.

The document assumes a good understanding of what EM is and what the assembly code looks like [1].
Notions like ’procedure descriptor’, ’mini’, ’shortie’ etc. are not explained. In the sequel, any word in this font
refers to the name of a variable, constant, function or whatever, used in the source code under the same name.

To avoid confusion: int interprets EM machine language (e.out files), not the assembly language (.e files) and
not the compact code (.k files).

1.1. The virtual EM machine.

The memory layout of the virtual EM machine represented by the interpreter differs in details from the
description in [1]. Virtual memory is split up into two separate spaces: one space containing the instructions, the
other all the data, including stack and heap (D-space). The procedure descriptors are preprocessed and stored in
a separate array, proctab[]. Both spaces start off at address 0. This is possible because pointers in the two dif-
ferent spaces are distinguishable by context (and shadow-bytes: see 2.6).

1.1.1. Instruction Space

Figure 1 shows the I-space, together with the position of some important EM registers.

NEXT --> |________________| <-- DB \
| | |
| | | T
| | <-- PC |
| Program | | e
| | |
| Text | | x
| | |
| | | t

0 --> |________________| <--(PB) /

Fig 1. Virtual instruction space (I-space).

The I-space is just big enough to contain all the instructions. The size needed for the program text
(NTEXT) is found from the header-bytes of the loadfile. Legal values for the program counter (PC) consist of
all addresses in the range from 0 through NTEXT − 1. If the PC is made to point to an illegal address, a trap will
occur.

1.1.2. The Procedure Table

The NProc constant indicates how many procedure descriptors there are in the proctab array. Elements of
this array contain for each procedure: the number of locals, the entry point and the entry point of the textually
following procedure. This is used in testing the restriction that the program counter may not wander from pro-
cedure to procedure.

1.1.3. The Data Space

Figure 2 shows the layout of the data space, which closely conforms to the EM Manual.

maxaddr(psize) --> | | <-- ML \

| | | S
| Locals | | t
| & | | a
| RSBs | | c
| | | k
|________________| <-- SP /
. .
. .
. Unused .
. .
. .
. .
. .
. .
. Unused .
. .
. .
|________________| <-- HP
| | \
| Heap | |
|________________| <-- HB |
| | | D
| Arguments | |
| Environ | | a
| _ _ _ _ | |
| | | t
| | |
| | | a
Global data	

0 --> |________________| <--(EB) /

Fig 2. Virtual dataspace (D-space).

D-space begins at address 0, and ends at the largest address representable by the pointer size (psize) being
used; for a 2-byte pointer size this maximum address is

((2 ˆ 16 − 1) / word size * word size) − 1

for a 4-byte pointer size it is

((2 ˆ 31 − 1) / word size * word size) − 1

(not 2 ˆ 32, to allow illegal pointers to be implemented in the future). The funny rounding construction is
required to make ML+1 expressible as the initialisation value of LB and SP.

D-space is split into two partitions: Data and Stack (indicated by the brackets). The Data partition holds
the global data area (GDA) and the heap. Its initial size is given by the loadfile constant SZDATA. Some space
is added to it, because arguments and environment are stored here also. This total size is static while interpret-
ing. However, as the heap may grow during execution (e.g. caused by dynamic allocation) this results in a vari-
able size for the Data partition. Initially, the size for the Data partition is the sum of the space needed by the
GDA (including the space needed for arguments and environment) and the initial heapspace. The lowest legal
Data address is 0; the highest HP − 1.

The Stack partition holds the stack. It begins at the highest available D-space address, and grows towards the
low addresses, so the Stack partition is of variable size too. The lowest legal Stack address is the stackpointer
(SP), the highest is the memory limit (ML).

1.2. Physical lay-out

Each partition is mapped onto a piece of physical memory with the same name: text (fig. 1), stack and
data (fig. 2). These are the storage structures which int uses to physically store the contents of the virtual EM
spaces. Figure 2 thus shows the mapping of D-space onto two different physical parts: stack and data. The I-
space is represented by one physical part: text.

Each time more space is needed, the actual partition is reallocated, with the new size being computed with the
formula:

new size = 1.5 × (old size + extra)

extra is the number of bytes exceeding the old size. One can prove that using this method, there is a linear rela-
tionship between allocation time and needed partition size.

A virtual D-space starting at address 0 is in correspondence with the definition in [1], p. 3−6. The main
reason for having D-space start at address 0, is that it induces a one-one correspondence between the heap − and
GDA addresses on the virtual machine (and hence the definition) on one hand, and the offset within the data
partition on the other. This implies that no extra calculation is needed to perform load and storage operations.

Some calculation however cannot be avoided, because the stack part of the D-space grows downwards by EM
definition. The first address of the virtual stack (ML, the maximum address for the given psize) is mapped onto
the beginning of the stack partition. When the stack grows (i.e. EM addresses get lower), the offset within the
stack partition gets higher. By taking offset ML − A in the stack partition, one obtains the physical address
corresponding to some virtual EM (stack) address A.

1.3. Speed.

From several test results with both versions of the interpreter, the following may be concluded. The speed
of the interpreter depends strongly on the type of program being interpreted. If plain CPU arithmetic is per-
formed, the interpreter is relatively slow (1000 × the cc version). When stack manipulation is at hand, the inter-
preter is quite fast (100 × the cc version).

Most programs however will not be this extreme, so an interpretation time of somewhere between 300 and 500
times direct execution for a normal program is to be expected.

The fast version runs in about 60% of the time of the full version, at the expense of a considerably lower func-
tionality. Tallying costs about 10%.

2. IMPLEMENTATION DETAILS.

The pertinent issues are addressed below, in arbitrary order.

2.1. Stack manipulation and start-up

It is not at all easy to start the EM machine with the stack in a reasonable and consistent state. One reason
is the anomalous value of the ML register and another is the absence of a proper RSB. It may be argued that the
initial stack does not have to be in a consistent state, since the first instruction proper is only executed after argc,
argv and environ have been stacked (which takes care of the empty stack) and the initial procedure has been
called (which creates a RSB). We would, however, like to preform the stacking of these values and the calling
of the initial procedure using the normal stack and call routines, which again require the stack to be in an accept-
able state.

2.1.1. The anomalous value of the ML register

All registers in the EM machine point to word boundaries, and all of them, except ML, address the even-
numbered byte at the boundary. The exception has a good reason: the even numbered byte at the ML boundary
does not exist. This problem is not particular to EM but is inherent in the number system: the number of N-digit
numbers can itself not be expressed in an N-digit number, and the number of addresses in an N-bit machine will
itself not fit in an N-bit address. The problem is solved in the interpreter by having ML point to the highest
word boundary that has bytes on either side; this makes ML+1 expressible.

2.1.2. The absence of an initial Return Status Block

When the stack is empty, there is no legal value for AB, since there are no actuals; LB can be set naturally
to ML+1. This is all right when the interpreter starts with a call of the initial routine which stores the value of
LB in the first RSB, but causes problems when finally this call returns. We want this call to return completely
before stopping the interpreter, to check the integrity of the last RSB; restoring information from it will, how-
ever, cause illegal values to be stored in LB and AB (ML+1 and ML+1+rsbsize, resp.). On top of this, the initial
(illegal) Procedure Identifier of the running procedure will be restored; then, upon restoring the likewise illegal
PC will cause a check to see if it still is inside the running procedure. After a few attempts at writing special
cases, we have decided that it is possible, but not worth the effort; the final (= initial) RSB will not be unstacked.

2.2. Floating point numbers.

The interpreter is capable of working with 4- and 8-byte floating point (FP) numbers. In C-terms, this
corresponds to objects of type float and double respectively. Both types fit in a C-double so the obvious way to
manipulate these entities internally is in doubles. Pushing a 8-byte FP, all bytes of the C-double are pushed.
Pushing a 4-byte FP causes the 4 bytes representing the smallest fraction to be discarded.

In EM, floats can be obtained in two different ways: via conversion of another type, or via initialization in
the loadfile. Initialized floats are represented in the loadfile by an ASCII string in the syntax of a Pascal real
(signed UnsignedReal). I.e. a float looks like:

[Sign] Digit+ [. Digit+] [Exp [Sign] Digit+] (G1)

followed by a null byte. Here Sign = {+, −}; Digit = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; Exp = {e, E}; [Anything]
means that Anything is optional; and a + means one or more times. To accommodate some loose code genera-
tors, the actual grammar accepted is:

[Sign] Digit∗ [. Digit∗] [Exp [Sign] Digit+] (G2)

followed by a null byte. Here ∗ means zero or more times. A floating denotation which is in G2 but not in G1
draws a warning, one that is not even in G2 causes a fatal error.

A string, representing a float which does not fit in a double causes a warning to be given. In that case, the
returned value will be the double 0.0.

Floating point arithmetic is handled by some simple routines, checking for over/underflow, and returning
appropriate values in case of an ignored error.

Since not all C compilers provide floating point operations, there is a compile time flag NOFLOAT,
which, if defined, suppresses the use of all fp operations in the interpreter. The resulting interpreter will still
load EM files with floats in the global data area (and ignore them) but will give a fatal error upon attempt to exe-
cute a floating point instruction; consequently code involving floating point operations can be run as long as the
actual instructions are avoided.

2.3. Pointers.

The following sub-sections both deal with problems concerning pointers. First, something is said about
pointer arithmetic in general. Then, the null-pointer problem is dealt with.

2.3.1. Pointer arithmetic.

Strictly speaking, pointer arithmetic is defined only within a fragment. From the explanation of the term
fragment however (as given in [1], page 3), it is not quite clear what a fragment should look like from an
interpreter’s point of view. For this reason we introduced the term segment, bordering the various areas within
which pointer arithmetic is allowed. Every stack-frame is a segment, and so are the global data area (GDA) and
the heap area. Thus, the number of segments varies over time, and at some point in time is given by the number
of currently active stack-frames (#CAL + #CAI − #RET − #RTT) plus 2 (gda, heap). Pointers in the area
between heap and stack (which is inaccessible by definition), are assumed to be in the heap segment.

The interpreter, while building a new stack-frame (i.e. segment), stores the value of the last ActualBase in
a pointer-array (AB_list[]). When a pointer (say P) is available for arithmetic, the number of the segment
where it points (say S

P
), is determined first. Next, the arithmetic is performed, followed by a check on the

number of the segment where the resulting pointer R points (say S
R
). Now, if S

P
!= S

R
, a warning is given:

Pointer arithmetic yields pointer to bad segment.
It may also be clear now, why the illegal area between heap and stack was joined with the heap segment. When
calculating a new heap pointer (HP), one will obtain intermediate results being pointers in this area just before it
is made legal. We do not want error messages all of the time, just because someone is allocating space in the
heap.

A similar treatment is given to the pointers in the SBS instruction; they have to point into the same fragment for
subtraction to be meaningful.

The length of the AB_list[] is initially 100, and it is reallocated in the same way the dynamically growing parti-
tions are (see 1.1).

2.3.2. Null pointer.

Because the EM language lacks an instruction for loading a null pointer, most programs solve this prob-
lem by loading a pointer-sized integer of value zero, and using this as a null pointer (this is also proposed in [1]).
Int allows this, and will not complain. A warning is given however, when an attempt is made to add something
to a null pointer (i.e. the pointer-sized integer zero).

Since many programming languages use a pointer to location 0 as an illegal value, it is desirable to detect its
use. The big problem is though that 0 is a perfectly legal EM address; address 0 holds the current line number in
the source file. It may be freely read but is written only by means of the LIN instruction. This allows us to
declare the area consisting of the line number and the file name pointer to be read-only memory. Thus a store
will be caught (and result in a warning) but a read will succeed (and yield the EM information stored there).

2.4. Function Return Area (FRA).

The Function Return Area (FRA[]) has a default size of 8 bytes; this default can be overridden through
the use of the −r-option, but cannot be made smaller than the size of two pointers, in accordance with the
remark on page 5 of [1]. The global variable FRASize keeps track of how many bytes were stored in the FRA,
the last time a RET instruction was executed. The LFR instruction only works when its argument is equal to
this size. If not, the FRA contents are loaded anyhow, but one of the following warnings is given: Returned
function result too large (FRASize > LFR size) or Returned function result too small (FRASize < LFR size).

Note that a C-program, falling through the end of its code without doing a proper return or exit(), will generate
this warning.

The only instructions that do not disturb the contents of the FRA are GTO, BRA, ASP and RET. This is
expressed in the program by setting FRA_def to "undefined" in any instruction except these four. We realize
this is a useless action most of the time, but a more efficient solution does not seem to be at hand. If a result is
loaded when FRA_def is "undefined", the warning: Returned function result may be garbled is generated.

Note that the FRA needs a shadow-FRA in order to store the shadow information when performing a LFR
instruction.

2.5. Environment interaction.

The EM machine represented by int can communicate with the environment in three different ways. A
first possibility is by means of (UNIX) interrupts; the second by executing (relatively) high level system calls
(called monitor calls). A third means of interaction, especially interesting for the debugging programmer, is via
internal variables set on the command line. The former two techniques, and the way they are implemented will
be described in this section. The latter has been allotted a separate section (3).

2.5.1. Traps and interrupts.

Simple user programs will generally not mess around with UNIX-signals. In interpreting these programs,
the default actions will be taken when a signal is received by the program: it gives a message and stops running.

There are programs however, which try to handle certain signals themselves. In C, this is achieved by the sys-
tem call signal(sig_no, catch), which calls the handling routine catch(), as soon as signal sig_no occurs. EM
does not provide this call; instead, the sigtrp() monitor call is available for mapping UNIX signals onto EM
traps. This implies that a signal() call in a C-program must be translated by the EM library routine to a sigtrp()
call in EM.

The interpreter keeps an administration of the mapping of UNIX-signals onto EM traps in the array
sig_map[NSIG]. Initially, the signals all have their default values. Now assume a sigtrp() occurs, telling to map
signal sig_no onto trap trap_no. This results in:

1. setting the relevant array element sig_map[sig_no] to trap_no (after saving the old value),

2. catching the next to come sig_no signal with the handling routine HndlEMSig (by a plain UNIX signal()
of course), and

3. returning the saved map-value on the stack so the user can know the previous trap value onto which
sig_no was mapped.

On an incoming signal, the handling routine for signal sig_no arms the correct EM trap by calling the routine
arm_trap() with argument sig_map[sig_no]. At the end of the EM instruction the proper call of trap() is done.
Trap() on its turn examines the value of the HaltOnTrap variable; if it is set, the interpreter will stop with a mes-
sage. In the normal case of controlled trap handling this bit is not on and the interpreter examines the value of
the TrapPI variable, which contains the procedure identifier of the EM trap handling routine. It then initiates a
call to this routine and performs a longjmp() to the main loop to bypass all further processing of the instruction
that caused the trap. TrapPI should be set properly by the library routines, through the SIG instruction.

In short:

1. A UNIX interrupt is caught by the interpreter.

2. A handling routine is called which generates the corresponding EM trap (according to the mapping).

3. The trap handler calls the corresponding EM routine which emulates a UNIX interrupt for the benefit of
the interpreted program.

When considering UNIX signals, it is important to notice that some of them are real signals, i.e., messages
coming from outside the program, like DEL and QUIT, but some are actually program-caused synchronous
traps, like Illegal Instruction. The latter, if they happen, are incurred by the interpreter itself and consequently
are of no concern to the interpreted program: it cannot catch them. The present code assumes that the UNIX
signals between SIGILL (4) and SIGSYS (12) are really traps; do_sigtrp() will fail on them.

To avoid losing the last line(s) of output files, the interpreter should always do a proper close-down, even in the
presence of signals. To this end, all non-ignored genuine signals are initially caught by the interpreter, through
the routine HndlIntSig, which gives a message and preforms a proper close-down. Synchronous trap can only
be caused by the interpreter itself; they are never caught, and consequently the UNIX default action prevails.
Generally they cause a core dump. Signals requested by the interpreted program are caught by the routine
HndlEMSig, as explained above.

2.5.2. Monitor calls.

For the convenience of the programmer, as many monitor calls as possible have been implemented. The
list of monitor calls given in [1] pages 20/21, has been implemented completely, except for ptrace(), profil() and
mpxcall(). The semantics of ptrace() and profil() from an interpreted program is unclear; the data structure
passed to mpxcall() is non-trivial and the system call has low portability and applicability. For these calls, on
invocation a warning is generated, and the arguments which were meant for the call are popped properly, so the
program can continue without the stack being messed up. The errorcode 5 (IOERROR) is pushed onto the stack

(twice), in order to fake an unsuccessful monitor call. No other − more meaningful − errorcode is available in
the errno-list.

Now for the implemented monitor calls. The returned value is zero for a successful call. When something goes
wrong, the value of the external errno variable is pushed, thus enabling the user to find out what the reason of
failure was. The implementation of the majority of the monitor calls is straightforward. Those working with a
special format buffer, (e.g. ioctl(), time() and stat() variants), need some extra attention. This is due to the fact
that working with varying word/pointer size combinations may cause alignment problems.

The data structure returned by the UNIX system call results from C code that has been translated with the regu-
lar C compiler, which, on the VAX, happens to be a 4-4 compiler. The data structure expected by the inter-
preted program conforms to the translation by ack of the pertinent include file. Depending on the exact call of
ack, sizes and alignment may differ.

An example is in order. The EM MON 18 instruction in the interpreted program leads to a UNIX stat() system
call by the interpreter. This call fills the given struct with stat information, the contents and alignments of which
are determined by the version of UNIX and the used C compiler, resp. The interpreter, like any program wish-
ing to do system calls that fill structs, has to be translated by a C compiler that uses the appropriate struct
definition and alignments, so that it can use, e.g., stab.st_mtime and expect to obtain the right field. This struct
cannot be copied directly to the EM memory to fulfill the MON instruction. First, the struct may contain
extraneous, system-dependent fields, pertaining, e.g., to symbolic links, sockets, etc. Second, it may contain
holes, due to alignment requirements. The EM program runs on an EM machine, knows nothing about these
requirements and expects UNIX Version 7 fields, with offsets as determined by the em22, em24 or em44 com-
piler, resp. To do the conversion, the interpreter has a built-in table of the offsets of all the fields in the structs
that are filled by the MON instruction. The appropriate fields from the result of the UNIX stat() are copied one
by one to the appropriate positions in the EM memory to be filled by MON 18.

The ioctl() call (MON 54) poses additional problems. Not only does it have a second argument which is a
pointer to a struct, the type of which is dynamically determined, but its first argument is an opcode that varies
considerably between the versions of UNIX. To solve the first problem, the interpreter examines the opcode
(request) and treats the second argument accordingly. The second problem can be solved by translating the
UNIX Version 7 ioctl() request codes to their proper values on the various systems. This is, however, not
always useful, since some EM run-time systems use the local request codes. There is a compile-time flag,
V7IOCTL, which, if defined, will restrict the ioctl() call to the version 7 request codes and emulate them on the
local system; otherwise the request codes of the local system will be used (as far as implemented).

Minor problems also showed up with the implementation of execve() and fork(). Execve() expects three
pointers on the stack. The first points to the name of the program to be executed, the second and third are the
beginnings of the argv and envp pointer arrays respectively. We cannot pass these pointers to the system call
however, because the EM addresses to which they point do not correspond with UNIX addresses. Moreover, (it
is not very likely to happen but) what if someone constructs a program holding the contents for one of these
pointers in the stack? The stack is implemented upside down, so passing the pointer to execve() causes trouble
for this reason too. The only solution was to copy the pointer contents completely to fresh UNIX memory, con-
structing vectors which can be passed to the system call. Any impending memory fault while making these
copies results in failure of the system call, with errno set to EFAULT.

The implementation of the fork() call faced us with problems concerning IO-channels. Checking mes-
sages (as well as logging) must be divided over different files. Otherwise, these messages will coincide. This
problem was solved by post-fixing the default message file int.mess (as well as the logging file int.log) with an
automatically leveled number for every new forked process. Children of the original process do their diagnos-
tics in files with postfix 1,2,3 etc. Second generation processes are assigned files numbered 11, 12, 21 etc.
When 6 generations of processes exist at one moment, the seventh will get the same message file as the sixth, for
the length of the filename will become too long.

Some of the monitor calls receive pointers (addresses) from to program, to be passed to the kernel; exam-
ples are the struct stat for stat(), the area to be filled for read(), etc. If the address is wrong, the kernel does not
generate a trap, but rather the system call returns with failure, while errno is set to EFAULT. This is imple-
mented by consistent checking of all pointers in the MON instruction.

2.6. Internal arithmetic.

Doing arithmetic on signed integers, the smallest negative integer (minsint) is considered a legal value.
This is in contradiction with the EM Manual [1], page 14, which proposes using minsint for uninitialized
integers. The shadow bytes already check for uninitialized integers however, so we do not need this special

illegal value. Although the EM Manual provides two traps, for undefined integers and floats, undefined objects
occur so frequently (e.g. in block copying partially initialized areas) that the interpreter just gives a warning.

Except for arithmetic on unsigneds, all arithmetic checks for overflow. The value that is pushed on the stack
after an overflow occurs depends on the UNIX behavior with regard to that particular calculation. If UNIX
would not accept the calculation (e.g. division by zero), a zero is pushed as a convention. Illegal computations
which UNIX does accept in silence (e.g. one’s complement of minsint), simply push the UNIX-result after giv-
ing a trap message.

2.7. Shadow bytes implementation.

A great deal of run-time checking is performed by the interpreter (except if used in the fast version). This
section gives all details about the shadow bytes. In order to keep track of information about the contents of D-
space (stack and global data area), there is one shadow-byte for each byte in these spaces. Each bit in a
shadow-byte represents some piece of information about the contents of its corresponding ’sun-byte’. All bits
off indicates an undefined sun-byte. One or more bits on always guarantees a well-defined sun-byte. The bits
have the following meaning:

d bit 0: indicates that the sun-byte is (a part of) an integer.

d bit 1: the sun-byte is a part of a floating point number.

d bit 2: the sun-byte is a part of a pointer in dataspace.

d bit 3: the sun-byte is a part of a pointer in the instruction space. According to [1] (paragraph 6.4), there are
two types pointers which must be distinguishable. Conversion between these two types is impossible.
The shadow-bytes make the distinction here.

d bit 4: protection bit. Indicates that the sun-byte is part of a protected piece of memory. There is a protected
area in the stack, the Return Status Block. The EM machine language has no possibility to declare
protected memory, as is possible in EM assembly (the ROM instruction). The protection bit is, how-
ever, set for the line number and filename pointer area near location 0, to aid in catching references to
location 0.

d bit 5/6/7:free for later use.

The shadow bytes are managed by the routines declared in shadow.h. The warnings originating from checking
these shadow-bytes during run-time are various. A list of them is given in appendix A, together with sugges-
tions (primarily for the C-programmer) where to look for the trouble maker(s).

A point to notice is, that once a warning is generated, it may be repeated thousands of times. Since repetitive
warnings carry little information, but consume much file space, the interpreter keeps track of the number of
times a given warning has been produced from a given line in a given file. The warning message will be printed
only if the corresponding counter is a power of four (starting at 1). In this way, a logarithmic back-off in warn-
ing generation is established.

It might be argued that the counter should be kept for each (warning, PC value) pair rather than for each (warn-
ing, file position) pair. Suppose, however, that two instruction in a given line would cause the same message
regularly; this would produce two intertwined streams of identical messages, with their counters jumping up and
down. This does not seem desirable.

2.8. Return Status Block (RSB)

According to the description in [1], at least the return address and the base address of the previous RSB
have to be pushed when performing a call. Besides these two pointers, other information can be stored in the
RSB also. The interpreter pushes the following items:

− a pointer to the current filename,

− the current line number (always four bytes),

− the Local Base,

− the return address (Program Counter),

− the current procedure identifier

− the RSB code, which distinguishes between initial start-up, normal call, returnable trap and non-returnable
trap (a word-size integer).

Consequently, the size of the RSB varies, depending on word size and pointer size; its value is available as
rsbsize. When the RSB is removed from the stack (by a RET or RTT) the RSB code is under the Stack Pointer

for immediate checking. It is not clear what should be done if RSB code and return instruction do not match; at
present we give a message and continue, for what it is worth.

The reason for pushing filename and line number is that some front-ends tend to forget the LIN and FIL
instructions after returning from a function. This may result in error messages in wrong source files and/or line
numbers.

The procedure identifier is kept and restored to check that the PC will not move out of the running pro-
cedure. The PI is an index in the proctab, which tells the limits in the text segment of the running procedure.

If the Return Status Block is generated as a result of a trap, more is stacked. Before stacking the normal
RSB, the trap function pushes the following items:

− the contents of the entire Function Return Area,

− the number of bytes significant in the above (a word-size integer),

− a word-size flag indicating if the contents of the FRA are valid,

− the trap number (a word-size integer).

The latter is followed directly by the RSB, and consequently acts as the only parameter to the trap handler.

2.9. Operand access.

The EM Manual mentions two ways to access the operands of an instruction. It should be noticed that the
operand in EM is often not the direct operand of the operation; the operand of the ADI instruction, e.g., is the
width of the integers to be added, not one of the integers themselves. The various operand types are described in
[1]. Each opcode in the text segment identifies an instruction with a particular operand type; these relations are
described in computer-readable format in a file in the EM tree, ip_spec.t.

The interpreter uses the third method. Several other approaches can be designed, with increasing
efficiency and equally increasing complexity. They are briefly treated below.

2.9.1. The Dispatch Table, Method 1.

When the interpreter starts, it reads the ip_spec.t file and constructs from it a dispatch table. This table (of
which there are actually three, for primary, secondary and tertiary opcodes) has 256 entries, each describing an
instruction with indications on how to decode the operand. For each instruction executed, the interpreter finds
the entry in the dispatch table, finds information there on how to access the operand, constructs the operand and
calls the appropriate routine with the operand as calculated. There is one routine for each instruction, which is
called with the ready-made operand. Method 1 is easy to program but requires constant interpretation of the
dispatch table.

2.9.2. Intelligent Routines, Method 2.

For each opcode there is a separate routine, and since an opcode uniquely defines the instruction and the
operand format, the routine knows how to get the operand; this knowledge is built into the routine. Preferably
the heading of the routine is generated automatically from the ip_spec.t file. Operand decoding is immediate,
and no dispatch table is needed. Generation of the 469 required routines is, however, far from simple. Either a
generated array of routine names or a generated switch statement is used to map the opcode onto the correct rou-
tine. The switch approach has the advantage that parameters can be passed to the routines.

2.9.3. Intelligent Calls, Method 3.

The call in the switch statement does full operand construction, and the resulting operand is passed to the
routine. This reduces the number of routines to 133, the number of EM instructions. Generation of the switch
statement from ip_spec.t is more complicated, but the routine space is much cleaner. This does not give any
speed-up since the same actions are still required; they are just performed in a different place.

2.9.4. Static Evaluation.

It can be observed that the evaluation of the operand of a given instruction in the text segment will always
give the same result. It is therefore possible to preprocess the text segment, decomposing the instructions into
structs which contain the address, the instruction code and the operand. No operand decoding will be necessary
at run-time: all operands have been precalculated. This will probably give a considerable speed-up. Jumps,
especially GTO jumps, will, however, require more attention.

2.10. Disassembly.

A disassembly facility is available, which gives a readable but not letter-perfect disassembly of the EM
object. The procedure structure is indicated by placing the indication P[n] at the entry point of each procedure,
where n is the procedure identifier. The number of locals is given in a comment.

The disassembler was generated by the software in the directory switch and then further processed by hand.

3. THE LOGGING MACHINE.

Since messages and warnings provided by int include source code file names and line numbers, they alone
often suffice to identify the error. If, however, the necessity arises, much more extensive debugging information
can be obtained by activating the the Logging Machine. This Logging Machine, which monitors all actions of
the EM machine, is the subject of this chapter.

3.1. Implementation.

When inspecting the source code of int, many lines in the following format will show up:

LOG(("@<letter><digit> message", args));

or

LOG((" <letter><digit> message", args));

The double parentheses are needed, because LOG() is declared as a define, and has a printf-like argument struc-
ture.

The <letter> classifies the log message and corresponds to an entry in the logmask, which holds a thres-
hold for each class of messages. The following classes exist:

d A−Z the flow of instructions:
A: array
B: branch
C: convert
F: floating point arithmetic
I: integer arithmetic
L: load
M: miscellaneous
P: procedure call
R: pointer arithmetic
S: store
T: compare
U: unsigned arithmetic
X: logical
Y: sets
Z: increment/decrement/zero

d d stack dumping.
d g gda & heap manipulation.
d s stack manipulation.
d r reading the loadfile.
d q floating point calculations during reading the loadfile.
d x the instruction count, contents and file position.
d m monitor calls.
d p procedure calls and returns.
d t traps.
d w warnings.

When the interpreter reaches a LOG(()) statement it scans its first argument; if letter occurs in the logmask, and
if digit is lower or equal to the threshold in the logmask, the message is given. Depending on the first character,
the message will be preceded by a position indication (with the @) or will be printed as is (with the space). The
letter is determines the message class and the digit is used to distinguish various levels of logging, with a lower
digit indicating a more important message. We will call the <letter><digit> combination the id of the logging.

In general, the lower the digit following the letter, the more important the message. E.g. m5 reports about
unsuccessful monitor calls only, m9 also reports about successful monitors (which are obviously less interest-
ing). New logging messages can be added to the source code on relevant places.

Reasonable settings for the logmask are:

A−Z9d4twx9 advised setting when trouble shooting (default).
A−Zx9 shows the flow of instructions & global information.
pm9 shows the procedure & monitor calls.

tw9 shows warning & trap information.

An EM interpreter without a Logging Machine can be obtained by undefining the macro CHECKING in
the file checking.h.

3.2. Controlling the Logging machine.

The actions of the Logging Machine are controlled by a set of internal variables (one of which is the log
mask). These variables can be set through assignments on the command line, as explained int the manual page
int.1, q.v. Since there are a great many logging statements in the program, of which only a few will be executed
in any call of the interpreter, it is important to be able to decide quickly if a given id has to be checked at all. To
this end all logging statements are guarded (in the #define) by a test for the boolean variable logging. This vari-
able will only be set if the command line assignments show the potential need for logging (must_log) and the
instruction count (inr) is at least equal to log_start (which derives from the parameter LOG).

The log mask can be set by the assignment

"LOGMASK=logstring"

which sets the current logmask to logstring. A logstring has the following form:

[[letter | letter − letter]+ digit]+

E.g. LOGMASK=A−D8x9R7c0hi4 will print all messages belonging to loggings with ids:
A0..A8,B0..B8,C0..C8,D0..D8,x0..x9,R0..R7,c0,h0..h4,i0..i4 .

The logging variable STOP can be used to prevent run-away logging past the point where the user expects
an error to occur. STOP=nr will stop the interpreter after instruction number nr.

To simplify the use of the logging machine, a number of abbreviations have been defined. E.g., AT=nr
can be thought of as an abbreviation of LOG=nr−1 STOP=nr+1; this causes three stack dumps, one before the
suspect instruction, one on it and one after it; then the interpreter stops.

Logging results will appear in a special logging file (default: int.log).

3.3. Dumps.

There are three routines available to examine the memory contents:

std_all() dumps the contents of the stack (d1 or d2 must be in the logmask).
gdad_all() dumps the contents of the gda (+1 must be in the logmask).
hpd_all() dumps the contents of the heap (*1 must be in the logmask).

These routines can be used everywhere in the program to examine the contents of memory. The internal vari-
ables allow the gda and heap to be dumped only once (according to the corresponding internal variable). The
stack is dumped after each instruction if the log mask contains d1 or d2; d2 gives a full formatted dump, d1 pro-
duces a listing of the Return Status Blocks only. An attempt is made to format the stack correctly, based on the
shadow bytes, which identify the Return Status Block.

Remember to set the correct id in the LOGMASK, and to give LOG the correct value. If dumping is needed
before the first instruction, then LOG must be set to 0.

The dumps of the global data area and the heap are controlled internally by the id-s +1 and *1 resp.; the
corresponding logmask entries are set automatically by setting the GDA and HEAP variables.

3.4. Forking.

As mentioned earlier, a call to fork(), causes an image of the current program to start running. To prevent
a messy logfile, the child process gets its own logfile (and message file, tally file, etc.). These logfiles are dis-
tinguished from the parent logfile by the a postfix, e.g., logfile_1 for the first child, logfile_2 for the second child,
logfile_1_2 for the second child of the first child, etc.
Note: the implementation of this feature is shaky; it works for the log file but should also work for other files and
for the names of the logging variables.

APPENDIX A

List of Warnings.

The shadow-byte administration makes it possible to check for a wide range of errors during run-time.
We have tried to make the diagnostics self-explanatory and especially useful for the C-programmer. The warn-
ings are printed in the message file, together with source file and line number. The complete list of warnings is
presented here, followed by an explanation of what might be wrong. Often, these explanations implicitly
assume that the program being interpreted, was originally written in C (and not Pascal, Basic etc.).

Reading the load file

1. Floating point instructions flag in header ignored

2. No float initialisation in this version
The interpreter was compiled with the NOFLOAT option; code involving floating point operations can
be run as long as the actual instructions are avoided.

4. Extra-test flag in header ignored
The interpreter already tests anything conceivable.

5. Maximum line number in header was 0
This number could be used to allocate tables for tallying; these tables are, however, expanded as
needed, so the number is immaterial.

7. Bad float initialisation
The loadfile contains a floating point denotation which does not satisfy the syntax (see 2.6). Examining
the loadfile (with od −c) might show the syntax error. Probably there is a bug in the front-end, creating
floats with a bad syntax.

System calls

11. IOCTL − bad or unimplemented request
The second parameter to the ioctl() request (the operation code) is invalid or not implemented; since
there are many different opcodes on the various UNIX systems, it is difficult to tell which. The system
call fails.

14. MPXCALL − not (yet) implemented

15. PROFIL − not (yet) implemented

16. PTRACE − not (yet) implemented
The monitor calls mpxcall(), profil() and ptrace() have not been implemented. The monitor call fails.

21. Inaccessible memory in system call
Bad pointers passed to system calls do not cause a memory fault (which in UNIX would happen to the
kernel), but cause the system call to fail with the UNIX variable errno set to 14 (EFAULT). It seems
likely that the program is at fault, but there is also a good possibility that a library routine made unwar-
ranted assumptions about word size and pointer size.

23. READ − buffer resides in unallocated memory

24. READ − buffer across global data area and heap
When the buffer passed to the read() system call is situated (completely or partially) in unallocated
memory (beyond HP) or begins in the global data area and ends in the heap, the appropriate warning is
given. The buffer is not written.

25. WRITE − buffer resides in unallocated memory

26. WRITE − buffer across global data area and heap

27. WRITE − (part of) global buffer is undefined

28. WRITE − (part of) local buffer is undefined
The first two are equivalent to the READ-errors above. Writing out a buffer usually makes no sense
when the contents are undefined, so one of the latter two warnings will be generated in this case. A glo-
bal buffer resides in the data partition; a local buffer resides in the stack partition. This corresponds to
global and local variables in a C-program. In the first two cases the WRITE is not performed, in the
latter two cases it is.

Traps and signals

31. SIGTRP − bad signo argument
The sigtrp() monitor call allows sig_no arguments in the range [1..17] (UNIX Version 7 signals); the
actual argument is out of range.

32. SIGTRP − signo argument is a synchronous trap
The signal is one that can only be caused synchronously by the running program on UNIX; it cannot
occur to an interpreted program.

33. SIGTRP − bad trapno argument
The sigtrp() monitor call allows trap_no arguments between 0 and 252, and the special values −2 and
−3; the actual argument is not one of these.

36. Heap overflow due to command line limitation

37. Stack overflow due to command line limitation
The maximum sizes of the heap and the stack can be limited by options on the command line. If
overflow occurs due to such limitations, the corresponding trap is taken, preceded by one of the above
warnings. If the memory of the interpreter itself is exhausted, a fatal error follows.

Run-time type checking

41. Local character expected

42. Global character expected

43. Local integer expected

44. Global integer expected

45. Local float expected

46. Global float expected

47. Local data pointer expected

48. Global data pointer expected

49. Local instruction pointer expected

50. Global instruction pointer expected
In general, a type violation has taken place when one of these warnings is given. The float- and
instruction pointer warnings are rare and will usually be easy traceable. Integer/character expected
will normally occur when unsigned arithmetic is performed on datapointers or when memory contain-
ing objects other than integers is copied bytewise. Often, this warning is followed by a warning data-
pointer expected. This is due to our decision of transforming pointers to (unsigned) integers after
doing unsigned arithmetic on them. When such a transformed integer is dereferenced (as if it were a
pointer) or, in general, when it is treated as a pointer, this results in a warning. The present library
implementation of malloc() causes such a sequence of errors.

These messages are always followed by a tentative description of what is found in memory at the offending
place.

61. Actual memory is undefined

62. Actual memory contains an integer

63. Actual memory contains a float

64. Actual memory contains a data pointer

65. Actual memory contains an instruction pointer

66. Actual memory contains mixed information
If the contents of the area was undefined, check the source code for an uninitialized variable of the
mentioned type. Officially, the use of an undefined value should result in a EIUND or EFUND trap but
the occurrence is so common that a warning is more appropriate. The contents of memory are
described as mixed if the data consists of pieces of different types. This happens, e.g., when caller and
callee do not agree on the types and lengths of the parameters.

Protection

71. Destroying contents of ROM (at or near loc 0)
The program stores a value in Read-Only Memory; the only ROM in the present implementation is the
area near location 0. The warning probably results from storing under a NULL pointer. This is only a
warning, the store operation is executed normally. Reads from location 0 are not detected.

72. Destroying contents of Return Status Block
The Return Status Block is the stack area containing the return address, the dynamic link, etc. This
may or may not be an error. The current implementation of setjmp()/longjmp() may be responsible for
it. If the program does not use setjmp(), there is something very wrong (e.g. argument for ASP too
large). Note that there are some library routines (such as alarm()) which use setjmp().

81. Logical operation using undefined operand(s)

82. Comparing undefined operand(s)
The logical operations AND, XOR, IOR, COM and the compare operation CMS do their jobs bytewise.
If one of the bytes is found to be undefined, the corresponding warning is given, and the operation is
stopped immediately. The stack is adjusted so interpretation may continue.
It is hard to say what went wrong. Possibly, the argument of the instruction at hand (which indicates
the size of the objects to be compared), was too large.

Bad operands

91. Shift over negative distance

92. Shift over too large distance
Shift instructions yield undefined results if the shift distance is negative or larger than the object size.

93. Pointer arithmetic yields pointer to bad segment
When doing pointer arithmetic (ADP, ADS), the operand and result pointer must be in the same seg-
ment (see sec. 4). E.g. loading the address of the first local and adding 20 to it will certainly give this
warning.

94. Subtracting pointers to different segments
Pointers may be subtracted only if they point into the same segment.

96. Pointer arithmetic with NULL pointer
By definition it is illegal to do arithmetic with null pointers. Integers with the size of a pointer and the
value zero are recognized as NULL pointers. A well-known C-trick to compute the offset of some field
in a struct is converting the null-pointer to the type of the struct and simply taking the address of the
field. This trick will −when translated and interpreted− generate this warning because it results in arith-
metic with the NULL pointer.

Return area

101. Returned function result too large

102. Returned function result too small
This warning is generated when the size of the expected return value is not equal to the size actually
returned.
An interpreted program may have fallen through the end of the code without explicitly doing an exit()
or return(). The start-up routine (crt0()) however always expects to get some value returned by the pro-
gram proper.
Another (less probable) possibility of course is that the code contains a subroutine or function call that
does not return properly (e.g. it returns a short instead of a long).

103. Returned function result may be garbled
This warning will be generated, when the contents of the FRA are fetched after some instruction is exe-
cuted which can mess up the area. Compiler-generated loadfiles should not generate this message.

Return Status Block

111. RET did not find a Return Status Block

112. Used RET to return from a trap
The RET instruction found a garbled Return Status Block, or on that resulted from a trap.

115. RTT did not find a Return Status Block

116. RTT on empty stack

117. Used RTT to return from a call

118. Used RTT to return from a non-returnable trap
The RTT (Return from Trap) instruction found a Return Status block that was not created properly by a
trap.

121. Stack Pointer too large in RET

122. Stack Pointer too small in RET

125. Stack Pointer too large in RTT

126. Stack Pointer too small in RTT
According to the EM Manual (4.2), "the value of SP just after the return value has been popped must be
the same as the value of SP just before executing the first instruction of the invocation." If the Stack
Pointer is too large, some dynamically allocated item or some temporary result may have been left
behind on the stack. If the Stack Pointer is too small, some locals have been unstacked. Since the
interpreter has enough information in the Return Status Block, it recovers correctly from these errors.

Traps

Some traps have ambiguous or non-obvious causes. As far as possible, these are preceded by a warning,
explaining the circumstances of the trap.

131. Trap ESTACK: DCH on bad LB

132. Trap ESTACK: LPB on bad LB

133. Trap ESTACK: SP retracted over Return Status Block

134. Trap ESTACK: SP moved into data area

135. Trap ESTACK: SP set to non-word-boundary

136. Trap ESTACK: LB set out of stack

137. Trap ESTACK: LB set to non-word-boundary

138. Trap ESTACK: LB set to position where there is no RSB

141. Trap EHEAP: HP retracted into Global Data Area

142. Trap EHEAP: HP pushed into stack

143. Trap EHEAP: HP set to non-word-boundary

151. Trap EILLINS: unknown opcode

152. Trap EILLINS: conversion with unacceptable size for this machine

153. Trap EILLINS: FIL with non-existing address

154. Trap EILLINS: LFR with too large size

155. Trap EILLINS: RET with too large size

156. Trap EILLINS: instruction argument of class c does not fit a word

157. Trap EILLINS: instruction on double word on machine with word size 4

158. Trap EILLINS: local offset too large

159. Trap EILLINS: instruction argument of class g not in GDA

160. Trap EILLINS: fragment offset too large

161. Trap EILLINS: counter in lexical instruction out of range

162. Trap EILLINS: non-existent procedure identifier

163. Trap EILLINS: illegal register number

172. Trap EBADPC: jump out of text segment

173. Trap EBADPC: jump out of procedure fragment

181. Trap EBADGTO: GTO does not restore an existing RSB

182. Trap EBADGTO: GTO descriptor on the stack

191. Trap caused by TRP instruction

APPENDIX B

How to use the interpreter

The interpreter is not normally used for the debugging of programs under construction. Its primary appli-
cation is as a verification tool for almost completed programs. Although the proper operation of the interpreter
is obviously a black art, this chapter tries to provide some guidelines.

For the sake of the argument, the source language is assumed to be C, but most hints apply equally well to other
languages supported by ACK.

Initial measures

Start with a test case of trivial size; to be on the safe side, reckon with a time dilatation factor of about
500, i.e., a second grows into 10 minutes. (The interpreter takes 0.5 msec to do one EM instruction on a Sun
3/50). Fortunately many trivial test cases are much shorter than one second.

Compile the program into an e.out, the EM machine version of a a.out, by calling em22 (for 2-byte
integers and 2-byte pointers), em24 (for 2 and 4) or em44 (for 4 and 4) as seems appropriate; if in doubt, use
em44. These compilers can be found in the ACK bin directory, and should be used instead of acc (or normal
UNIX† cc). Alternatively, acc −memNN can be used instead of emNN.

If a C program consists of more than one file, as it usually does, there is a small problem. The acc and cc com-
pilers generate .o files, whereas the emNN compilers generate .m files as object files. A simple technique to
avoid the problem is to call

em44 *.c

if possible. If not, the following hack on the Makefile generally works.

− Make sure the Makefile is reasonably clean and complete: all calls to the compiler are through $(CC),
CFLAGS is used properly and all dependencies are specified.

− Add the following lines to the Makefile (possibly permanently):

.SUFFIXES: .o

.c.o:
$(CC) −c $(CFLAGS) $<

− Set CC to em44 − .c (for example). Make sure CFLAGS includes the −O option; this yields a speed-up of
about 15 %.

− Change all .o to .m (or .k if the −O option is not used).

− If necessary, change a.out to e.out.

With these changes, make will produce an EM object; esize can be used to verify that it is indeed an EM
object and obtain some statistics. Then call the interpreter:

int <EM-object-file> [parameters]

where the parameters are the normal parameters of the program. This should work exactly like the original pro-
gram, though slower. It reads from the terminal if the original does, it opens and closes files like the original
and it accepts interrupts.

Interpreting the results

Now there are several possibilities.

It does all this. Great! This means the program does not do very uncouth things. Now read the file
int.mess to see if any messages were generated. If there are none, the program did not really run (perhaps the
original cc a.out got called instead?) Normally there is at least a termination message like

(Message): program exits with status 0 at "awa.p", line 64, INR = 4124

This says that the program terminated through an exit(0) on line 64 of the file awa.p after 4124 EM instructions.
If this is the only message it is time to move to a bigger test case.
333333333333333333
† UNIX is a Registered Trademark of AT&T Bell Laboratories.

On the other hand, the program may come to a grinding halt with an error message. All messages (errors
and warnings) have a format in which the sequence

"<file name>", line <ln#>

occurs, which is the same sequence many compilers produce for their error messages. Consequently, the
int.mess file can be processed as any compiler message output.

One such message can be

(Fatal error) a.em: trap "Addressing non existent memory" not caught at "a.c", line 2, INR = 16

produced by the abysmal program

main() {
(int)200000 = 1;

}

Often the effects are more subtle, however. The program

main() {
int *a, b = 777;

b = *a;
}

produces the following five warnings (in far less than a second):

(Warning 47, #1): Local data pointer expected at "t.c", line 4, INR = 17
(Warning 61, cont.): Actual memory is undefined at "t.c", line 4, INR = 17
(Warning 102, #1): Returned function result too small at "<unknown>", line 0, INR = 21
(Warning 43, #1): Local integer expected at "exit.c", line 11, INR = 34
(Warning 61, cont.): Actual memory is undefined at "exit.c", line 11, INR = 34

The one about the function result looks the most frightening, but is the most easily solved: main is a function
returning an int, so the start-up routine expects a (four-byte) integer but gets an empty (zero-byte) return area.

Note: The experts are divided about this. The traditional school holds that main is an int function and its result is
the return code; this leaves them with two ways of supplying a return code: one as the parameter of exit() and
one as the result of main. The modern school (Berkeley 4.2 etc.) claims that return codes are supplied
exclusively by exit(), and they have an exit(0) in the start-up routine, just after the call to main(); leaving main()
through the bottom implies successful termination.

We shall satisfy both groups by

main() {
int *a, b = 777;

b = *a;
exit(0);

}

This results in

(Warning 47, #1): Local data pointer expected at "t.c", line 4, INR = 17
(Warning 61, cont.): Actual memory is undefined at "t.c", line 4, INR = 17
(Message): program exits with status 0 at "exit.c", line 11, INR = 33

which is pretty clear as it stands.

Using stack dumps

Let’s, for the sake of argument and to avoid the fierce realism of 10000-line programs, assume that the
above still does not give enough information. Since the error occurred in EM instruction number 17, we should
like to see more information around that moment. Call the interpreter again, now with the shell variable AT set
at 17:

int AT=17 t.em

(The interpreter has a number of internal variables that can be set by assignments on the command line, like
with make.) This gives a file called int.log containing the stack dump of 150 lines presented at the end of this
chapter.

Since dumping is a subfacility of logging in the interpreter, the formats of the lines are the same. If a line
starts with an @, it will contain a file-name/line-number indication; the next two characters are the subject and
the log level. Then comes the information, preceded by a space. The text contains three stack dumps, one before
the offending instruction, one at it, and one after it; then the interpreter stops. All kinds of other dumps can be
obtained, but this is default.

For each instruction we have, in order:

− an @x9 line, giving the position in the program,

− the messages, warnings and errors from the instruction as it is being executed,

− dump(s), as requested.

The first two lines mean that at line 4 in file t.c the interpreter performed its 16-th instruction, with the
Program Counter at 30 pointing at opcode 180 in the text segment; the instruction was an LOL (LOad Local)
with the operand −4 derived from the opcode. It copies the local at offset −4 to the top of the stack. The effect
can be seen from the subsequent stack dump, where the undefined word at addresses 2147483568 to ...571 (the
variable a) has been copied to the top of the stack at 2147483560 (copying undefined values does not generate a
warning). Since we used the em44 compiler, all pointers and ints in our dump are 4 bytes long. So a variable at
address X in reality extends from address X to X+3.
Note that this is not the offending instruction; this stack dump represents the situation just before the error.

The stack consists of a sequence of frames, each containing data followed by a Return Status Block result-
ing from a call; the last frame ends in top-of-stack. The first frame represents the stack when the program starts,
through a call to the start-up routine. This routine prepares the second stack frame with the actual parameters to
main(): argc at 2147483596, argv at 2147483600 and environ at 2147483604.

The RSB line shows that the call to main() was made from procedure 0 which has 0 locals, with PC at 16, an LB
of 2147483608 and file name and line number still unknown. The code in the RSB tells how this RSB was
made; possible values are STP (start-up), CAL, RTT (returnable trap) and NRT (non-returnable trap).

The next frame shows the local variable(s) of main(); there are two of them, the pointer a at 2147483568,
which is undefined, and variable b at 2147483564, which has the value 777. Then comes a copy of a, just made
by the LOL instruction, at 2147483560. The following line shows that the Function Return Area (which does
not reside at the end of the stack, but just happens to be printed here) has size 0 and is presently undefined. The
stack dump ends by showing that the Actuals Base is at 2147483596 (pointing at argc), the Locals Base at
2147483572 (pointing just above the local a), the Stack Pointer at 2147483560 (pointing at the undefined
pointer), the line count is 4 and the file name is "t.c".

(Notice that there is one more stack frame than one would probably expect, the one above the start-up routine.)

The Function Return Area could have a size larger than 0 and still be undefined, for example when an instruc-
tion that does not preserve the contents of the FRA has just been executed; likewise the FRA could have size 0
and be defined nevertheless, for example just after a RET 0 instruction.

All this has set the scene for the distaster which is about to strike in the next instruction. This is indeed a
LOI (LOad Indirect) of size 4, opcode 169; it causes the message

warning: Local data pointer expected [stack.c: 242]

and its continuation

warning cont.: Actual memory is undefined

(detected in the interpreter file stack.c at line 242; this can be useful for sorting out dubious semantics). We see
that the effect, as shown in the third frame of this stack dump (at instruction number 17) is somewhat unex-
pected: the LOI has fetched the value 4 and stacked it. The reason is that, unfortunately, undefinedness is not
transitive in the interpreter. When an undefined value is used in an operation (other than copying) a warning is
given, but thereafter the value is treated as if it were zero. So, after the warning a normal null pointer remains,
which is then used to pick up the value at location 0. This is the place where the EM machine stores its current
line number, which is presently 4.

The third stack dump shows the final effect: the value 4 has been unstacked and copied to variable b at

2147483564 through an STL (STore Local) instruction.

Since this form of logging dumps the stack only, the log file is relatively small as dumps go. Neverthe-
less, a useful excerpt can be obtained with the command

grep ’d1’ int.log

This extracts the Return Status Block lines from the log, thus producing three traces of calls, one for each
instruction in the log:

d1 >> RSB: code = STP, PI = uninit, PC = 0, LB = 2147483644, LIN = 0, FIL = NULL
d1 >> RSB: code = CAL, PI = (0,0), PC = 16, LB = 2147483608, LIN = 0, FIL = NULL
d1 >> AB = 2147483596, LB = 2147483572, SP = 2147483560, HP = 848, LIN = 4, FIL = "t.c"
d1 >> RSB: code = STP, PI = uninit, PC = 0, LB = 2147483644, LIN = 0, FIL = NULL
d1 >> RSB: code = CAL, PI = (0,0), PC = 16, LB = 2147483608, LIN = 0, FIL = NULL
d1 >> AB = 2147483596, LB = 2147483572, SP = 2147483560, HP = 848, LIN = 4, FIL = "t.c"
d1 >> RSB: code = STP, PI = uninit, PC = 0, LB = 2147483644, LIN = 0, FIL = NULL
d1 >> RSB: code = CAL, PI = (0,0), PC = 16, LB = 2147483608, LIN = 0, FIL = NULL
d1 >> AB = 2147483596, LB = 2147483572, SP = 2147483564, HP = 848, LIN = 4, FIL = "t.c"

Theoretically, the pertinent trace is the middle one, but in practice all three are equal. In the present case there
isn’t much to trace, but in real programs the trace can be useful.

Errors in libraries

Since libraries are generally compiled with suppression of line number and file name information, the line
number and file name in the interpreter will not be updated when it enters a library routine. Consequently, all
messages generated by interpreting library routines will seem to originate from the line of the call. This is espe-
cially true for the routine malloc(), which, from the nature of its business, often contains dubitable code.

A usual message is:

(Warning 43, #1): Local integer expected at "buff.c", line 18, INR = 266
(Warning 64, cont.): Actual memory contains a data pointer at "buff.c", line 18, INR = 266

and indeed at line 18 of the file buff.c we find:

buff = malloc(buff_size = BFSIZE);

This problem can be avoided by using a specially compiled version of the library that contains the correct LIN
and FIL instructions, or, less elegantly, by including the source code of the library routines in the program; in
the latter case, one has to be sure to have them all.

Unavoidable messages
Some messages produced by the logging are almost unavoidable; sometimes the writer of a library routine is
forced to take liberties with the semantics of EM.

Examples from C include the memory allocation routines. For efficiency reasons, one bit of an pointer in the
administration is used as a flag; setting, clearing and reading this bit requires bitwise operations on pointers,
which gives the above messages. Realloc causes a problem in that it may have to copy the originally allocated
area to a different place; this area may contain uninitialised bytes.

@x9 "t.c", line 4, INR = 16, PC = 30 OPCODE = 180
@L6 "t.c", line 4, INR = 16, DoLOLm(-4)
d2
d2 . . STACK_DUMP[4/4] . . INR = 16 . . STACK_DUMP . .
d2 --
d2 ADDRESS BYTE ITEM VALUE SHADOW
d2 2147483643 0 (Dp)
d2 2147483642 0 (Dp)
d2 2147483641 0 (Dp)
d2 2147483640 40 [40] (Dp)
d2 2147483639 0 (Dp)
d2 2147483638 0 (Dp)
d2 2147483637 3 (Dp)
d2 2147483636 64 [832] (Dp)
d2 2147483635 0 (In)
d2 2147483634 0 (In)
d2 2147483633 0 (In)
d2 2147483632 1 [1] (In)
d1 >> RSB: code = STP, PI = uninit, PC = 0, LB = 2147483644, LIN = 0, FIL = NULL
d2
d2 ADDRESS BYTE ITEM VALUE SHADOW
d2 2147483607 0 (Dp)
d2 2147483606 0 (Dp)
d2 2147483605 0 (Dp)
d2 2147483604 40 [40] (Dp)
d2 2147483603 0 (Dp)
d2 2147483602 0 (Dp)
d2 2147483601 3 (Dp)
d2 2147483600 64 [832] (Dp)
d2 2147483599 0 (In)
d2 2147483598 0 (In)
d2 2147483597 0 (In)
d2 2147483596 1 [1] (In)
d1 >> RSB: code = CAL, PI = (0,0), PC = 16, LB = 2147483608, LIN = 0, FIL = NULL
d2
d2 ADDRESS BYTE ITEM VALUE SHADOW
d2 2147483571 undef
d2 | | | | | |
d2 2147483568 undef (1 word)
d2 2147483567 0 (In)
d2 2147483566 0 (In)
d2 2147483565 3 (In)
d2 2147483564 9 [777] (In)
d2 2147483563 undef
d2 | | | | | |
d2 2147483560 undef (1 word)
d2 FRA: size = 0, undefined
d1 >> AB = 2147483596, LB = 2147483572, SP = 2147483560, HP = 848, \

LIN = 4, FIL = "t.c"
d2 --
d2

@x9 "t.c", line 4, INR = 17, PC = 31 OPCODE = 169
@w1 "t.c", line 4, INR = 17, warning: Local data pointer expected [stack.c: 242]
@w1 "t.c", line 4, INR = 17, warning cont.: Actual memory is undefined
@L6 "t.c", line 4, INR = 17, DoLOIm(4)
d2
d2 . . STACK_DUMP[4/4] . . INR = 17 . . STACK_DUMP . .
d2 --

d2 ADDRESS BYTE ITEM VALUE SHADOW
d2 2147483643 0 (Dp)
d2 2147483642 0 (Dp)
d2 2147483641 0 (Dp)
d2 2147483640 40 [40] (Dp)
d2 2147483639 0 (Dp)
d2 2147483638 0 (Dp)
d2 2147483637 3 (Dp)
d2 2147483636 64 [832] (Dp)
d2 2147483635 0 (In)
d2 2147483634 0 (In)
d2 2147483633 0 (In)
d2 2147483632 1 [1] (In)
d1 >> RSB: code = STP, PI = uninit, PC = 0, LB = 2147483644, LIN = 0, FIL = NULL
d2
d2 ADDRESS BYTE ITEM VALUE SHADOW
d2 2147483607 0 (Dp)
d2 2147483606 0 (Dp)
d2 2147483605 0 (Dp)
d2 2147483604 40 [40] (Dp)
d2 2147483603 0 (Dp)
d2 2147483602 0 (Dp)
d2 2147483601 3 (Dp)
d2 2147483600 64 [832] (Dp)
d2 2147483599 0 (In)
d2 2147483598 0 (In)
d2 2147483597 0 (In)
d2 2147483596 1 [1] (In)
d1 >> RSB: code = CAL, PI = (0,0), PC = 16, LB = 2147483608, LIN = 0, FIL = NULL
d2
d2 ADDRESS BYTE ITEM VALUE SHADOW
d2 2147483571 undef
d2 | | | | | |
d2 2147483568 undef (1 word)
d2 2147483567 0 (In)
d2 2147483566 0 (In)
d2 2147483565 3 (In)
d2 2147483564 9 [777] (In)
d2 2147483563 0 (In)
d2 2147483562 0 (In)
d2 2147483561 0 (In)
d2 2147483560 4 [4] (In)
d2 FRA: size = 0, undefined
d1 >> AB = 2147483596, LB = 2147483572, SP = 2147483560, HP = 848, \

LIN = 4, FIL = "t.c"
d2 --
d2

@x9 "t.c", line 4, INR = 18, PC = 32 OPCODE = 229
@S6 "t.c", line 4, INR = 18, DoSTLm(-8)
d2
d2 . . STACK_DUMP[4/4] . . INR = 18 . . STACK_DUMP . .
d2 --
d2 ADDRESS BYTE ITEM VALUE SHADOW
d2 2147483643 0 (Dp)
d2 2147483642 0 (Dp)
d2 2147483641 0 (Dp)
d2 2147483640 40 [40] (Dp)
d2 2147483639 0 (Dp)
d2 2147483638 0 (Dp)

d2 2147483637 3 (Dp)
d2 2147483636 64 [832] (Dp)
d2 2147483635 0 (In)
d2 2147483634 0 (In)
d2 2147483633 0 (In)
d2 2147483632 1 [1] (In)
d1 >> RSB: code = STP, PI = uninit, PC = 0, LB = 2147483644, LIN = 0, FIL = NULL
d2
d2 ADDRESS BYTE ITEM VALUE SHADOW
d2 2147483607 0 (Dp)
d2 2147483606 0 (Dp)
d2 2147483605 0 (Dp)
d2 2147483604 40 [40] (Dp)
d2 2147483603 0 (Dp)
d2 2147483602 0 (Dp)
d2 2147483601 3 (Dp)
d2 2147483600 64 [832] (Dp)
d2 2147483599 0 (In)
d2 2147483598 0 (In)
d2 2147483597 0 (In)
d2 2147483596 1 [1] (In)
d1 >> RSB: code = CAL, PI = (0,0), PC = 16, LB = 2147483608, LIN = 0, FIL = NULL
d2
d2 ADDRESS BYTE ITEM VALUE SHADOW
d2 2147483571 undef
d2 | | | | | |
d2 2147483568 undef (1 word)
d2 2147483567 0 (In)
d2 2147483566 0 (In)
d2 2147483565 0 (In)
d2 2147483564 4 [4] (In)
d2 FRA: size = 0, undefined
d1 >> AB = 2147483596, LB = 2147483572, SP = 2147483564, HP = 848, \

LIN = 4, FIL = "t.c"
d2 --
d2

BIBLIOGRAPHY

[1] A.S. Tanenbaum, H. van Staveren, E.G. Keizer and J.W. Stevenson. Description of a Machine Architecture
for use with Block Structured Languages. VU Informatica Rapport IR-81, august 1983.

[2] E.G. Keizer. Ack description file reference manual.

[3] K. Jensen and N. Wirth. PASCAL, User Manual and Report. Springer Verlag.

[4] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-Hall, 1978.

[5] D.M. Ritchie. C Reference Manual.

[6] Amsterdam Compiler Kit, reference manual.

[7] Unix Programmer’s Manual, 4.1BSD. UCB, August 1983.

