Pascal-v¥U refesrence manual

Johan ¥W. Stevenson

¢ bated Mey 29, 1979 >

Wiskundig Seminarium,
Vrije Universteit,
De Boelelzan 1081,

Amsterdam.

1. Introcuction

This document refers to the 180 standsrc propossl for Peascal,
ISC/TCO7/5C5-N4b2 [13, dated february 1979. Pasczl-VU complies with the
requiremznts of this proposal as much as possible. The standard re-~

guires &an accompanying document describing the implementation-defined
and implementation—qgependent features, the resction on errcors and the
extensicns to standard Pascal. These four items will be treated in the
rest of this document, each in & separate chapter. The other chapters
describe the deviations from the proposed stendard and the List of op-
ticns recognized by the compiler.

The Pascal-vU compiler produces code for an EM1 machine as defined
in [23. It is up to the implementor of the EM1T machine whether errors
Llike integer overflow, undefined operand and range bound error are
recognized or not. Therefore it depends an the EN1 machine implementa-
tion whether these errors are recognized in Pascal programs or not. For
these errors the reaction of all known implementations is given.

There does not (yet) exist a hardware EM1 machine. Therefore, EM]
programs must bhe interpreted, or transla-ed inte instructions for & tar—
get machine. The following implementaticns currently exist:

1. an interpreter running on & PDP-11 (using UNIX-6). Normally the
interpreter performs some tests to detect undefined integers, in-
teger overflow, range errors, etc. However, one of the cptions of
the interpreter 1is to skip these tests. We will refer to these

. modes of operation as 'test on! and 'test off'.

2. & translator into PDP-11 instructions {(using UNIX-6).

2. Implementation-defined features

For each implementation~devined feature mentioned in the IS0 stan—
dard we give the section number, the guotation from that section and the
fefinition. First we guote the definition of implementation-defined:

Those parts of the language which may ciffer Dbetween proces-
sors, but which will be defined for any particular processor.

180 6.4.2.2 The predefined integer constant mexint, whose value shall
be dimplementation-defined, shall define the subset of the integers
availsble in any implementation over which the integer operations are
defined.

The representation of integers in EM1 is & 14~bit word using two's
complement arithmetic. Thus always:

maxint = 32767

Because the number —22748 may be usecd to indicate ‘undefined!, the
range of available integers depends on the EM1 implementation:

1. test on: -32747..+32767.
test off: -32768..+32767.

2. ~32768..%32787.

IS0 6.4.2.2 The values of type real shall be an implementatiorn=-defined
subset of the real numbers as specified by 46.1.5.

The format of reals is not defined in EM1. It is only definea that
& real number occupias & bytes (%2 bits) of storage. For each im-
plementation of EM1 the following constants must be defined:

epbase: the base for the exponent part

epprec: the precision of the fraction

epemin: the minimum exponent

epemax : the maximum exponent
These constants must be chosen so that zero and all numbers with
exponent e in the range

epemin <= e <= epemax
and fraction—-parts of the form
f=fip™l+ e v f P
where
fi = 0,...,ephase~] and fq <> G
are possible values for reals. ALl other values of type resl are

considered illegal. {(See U313 for more information about these con—
stants) .

For the known EM71 implementations these constants are:

1. epbase = 2

epprec 24
epemin = -127
epemax = +127

2. ddem dutiz

IS0 6.4.2.2 The values of type char shall be an implementation-defined
set of charascters.

The 7-bits ASCIL character set is used, where LF (10} denotes the
end-of-Lline marker.

ISD 6.4.3.4 The largest and smallest values permitied in the base-type
of a set—-type shall be implementation-definea.

A véLur v iz permitted if
0 <= ord(v) <= 255.

This restriction is posed by the Pascal compiler, not by the EW1
machine, which is able to support sets of 65536 bits easily. The
compiler allocates as many bits for set-type varisbles as -are
necessary to store all possible values of the host-type of the
base-type of the set, rounded up to the nearest muttiple of 16 (if
8 bits are sufficient then only & bits are used if part of & packed
structure) . So, the variable s, declared by

var s: set of '0F..79";

will contain 128 bits, not 10 or 16. If the host—type of the
base-type 1is integer, then the number of bits aepends on the i-
option. The programmer may specify how many bits to allocate for
these sets. The defsult is 16, the meximum is 256. The effective
number of bits is rounded up to the next multiple of 16, or up to 8
if the number of bits is less, or equal to 8.
Hacn
IS0 6.6.6.4 1f the parameter of ord(x} is of <type cthar, the result
shall be implementation-defined.

" The result of ord(x) for x of type char will be conform the ASCII
character set: '

0 <= ord(x) <= 127
IS0 6.7.2.2 The result of 7 DIV j for 3 < 0 and for § < 0 shall be
implementation-defined.
The Pascal DIV operator is translated into an EMT DIV instruction.

Because EM1 is defined by an interpreter written in Pascal, there
is & cycle. The current EMI-implementations, all for & PDP-11, use

the PDP DIV dinstruction to implement the EM1 DIV instruction. The
Pascal Processcr Handbook defines the D1V instruction such that the
remainder 1s of thgfsign as the dividend. Therefore:

Smlaing
14 D1y 5 = 2 14 M0D 5 = 4
14 DIV -5 = -3 14 MOb -5 = -1
-14 DIV 5 = -2 -14 90D 5 = -4
-14 DIV -5 = 3 =14 MOD -5 = 1

IS0 6.9.4 The default field-width values for integer, Boolean and
real types shall be implementation—defined.

The defaults are:

integer 6
Boolean 5
real 13
IS0 6.9.4 The number of digits written in an exponent part of & real

shall be imptementation-defined._
The number of digits in the exponent part is defined as
ceil{log10(logiC(2 ** cpemax)))

For the current implementations this evaluates to 2.

3. Implementation—dependent features

For each implementaticn—dependent feature menticnea in the 150
standerd araft, we give the section number, the guotation from that sec-
tion and the way this feature is treated by the Pescal-VU system. First
we quote the definition of fimplementation-dependent':

Those garts of the language which may differ betwsen proces—
sors, and for which there need not be a definition for ¢ par—
ticular processor.

180 6.6.1 The full set of directives permitted a&after & procedure~
heading shall be implementation-dependent.

Except for the required directive *forward® the Pastal-vU compiler
recognizes only one directive: Textern'. This directive tells the
compiler that the procedure block of this procedure will not be
present in the current program. The code for the body of this pro-
cedure must be included &t a later stage of the compilation pro-
cess.

This feature allows one to build Llibraries containing often
used routines. These routines do not have to be included in all
the programs using them. Maintainance is much simpler if there 1is
only one Llibrary module to be changed instead of many Pascsl pro-
Ggrams.

‘ Ancther advantage is that these Library modules may be written
in a different language, for instance C(or the ENT assembly
language. This is useful if you want to use some weird EM1 in-
structions not generated by the Pascal compiler. Examples are the
system call routines and some floating point conversion routines.
Another motive could be the optimization of some time-critical pro-
gram parts. '

The use of external routines, however, is dengerous. The com-
piler narmally checks for the correct number and type of parameters
when a procedure is called and for the result type of functions,
If an external routine is called these checks are not sufficient,
because the compiler can not check whether the procecure heading of
the external routine as given in the Pascal program matches the ac-
tual routine implementstion. It should be the Lloaders task to
‘check this. However, the current Lloaders a&re not that smart.
Another solution is to check at runtime, at Lleast the number of
words for parameters. Some EMi-implementstions check this:

1. test on: the number of woras passed as parameters is
checked, but this will not catch all fsulty cases.
test off: not checked.

2. not checked.

180 6.6.2 The full set of directives permitted after & function—
heacing shall be implementation~dependent.

The same &s for procedures.

i30 6.6.5.7 The effect of using standard procedures as procegural
parezmeters shall be implementation-depengent.
It is not allowed to use standard procedures as procedural parame-
ters.,

ISO 6.6.5.72 If an activation of the procedure put{f) is not seperated
dynamically from & previous activation of get{f) or reset{f) by an ac-
tivation of rewrite(f), the effect shall be implementation—-dependent.

put{f) is only allouwed when the file is opened for writing by
call to rewrite(f). get(f) is only allowed when the file is opened
for reading for writing by & call to reset(f). Therefore appending
to ap existing file using the standard IC routines only is rather
clumsy.

o

IS0 6.6.6.1 The effect of using standard functions as functional param-
eters shall be imolementation-dependent.

It is not allowed to use standard functions as functional parame-
ters. You can obtain the same result with negligible loss of per-
formance by declaring some user routines like:

function sine(x:reall:real;
hegin)

sine:=sin{x)
end;

IS0 6.7.2.1 The order of evaluation of the operands of a binary opera-
tor shall be implementation-dependent.

The left-hand operand of & binéry operator is almost always
evaluated before the right-hand side. Some peculiar evaluations
exist for the following cases:

1. the term
factort / factor2

where factor1 and factor2 are both of type integer is evaluat-
ed in the following steps:

- evaluate factor! into an integer result
~ evaluate factor?2 into an integer result
~ convert factorl to real

- convert factorz to real

~ divide

. the expression

set] <= set?

where setl and szt2 are compatible set types is evaluated 1in
the following steps:

- evaluate set?

- evaluate setl

- compute setl+seti

- test set? and setd+sett for equality

This is the only case where the right-hend side 1is computed
first.

(&

. the expression
setl >= set?

where setl and set2 are competible set types is evaluated in
the following steps:

- eveluate setl

- evaluate set?2

- ¢compute setl+setd

- test set1 and setl+setZ for equality

I5G 6.7.2.3 Whether & Boolean expression 1is completely or partially
evaluated if its value can be determined by partial evaluation shall be
implementetion—dependent.

Boolean expressions are always evaluated completely, sc the program
part’

if (p<>nil) and (p~.value<>0) then
is probably incorrect.

150 6.7.3 The order of evaluation and binding of the actual-
perameters for functions shall be “implementation-cependent.

The order of evalustion ang binding is frem leéft to right.
IS0 6.8.2.2 If the selection of the variable in an assignment-statement
involves the indexing of an array or the de—-referencing of a pointer,
the decision whether these actions precede or follow the evaluation of
the expression shall be implementation—depenuent.

The expression is evaluated first.

IS0 6.8.2.3 The order of eveluation end binding of the actusl=-
paremeters for procecures shall be implementetion-dependent.

The same as for functions.

150 6.10 The effect of an explicit use of reset or rewrite on the
standard files input and output shall be implementation-dependent.

is & noocp. reset (input) is eq
t

ivalen ite]
also the chapter on ceviations from stan

u i
he stsndard.

where set? and set? are compatible set fypes is evaluated in
the following steps:

- evaluate set?

- evaluate setl

- compute setl+set

- test set? and setZtseti for equality

This is the only case whers the right-hand side is computed
first.

Z. the expression
set] >= setd

where setl and set? are compatible set types is evaluated in
the following steps:

- evsluate set]
- evaluate set?

- compute setl+set?
- test set? and setl+setZ for equality

IS0 6.7.2.3 UWhether & Boolean expression is completely. or partially
evaluated if its value can be determinec by partial evaluation shall be
implementation-dependent. '

Boolean expressions are always evaluated completely, so the program
part

if (p<onil) and (p”.value<>0) then
is probably incorrect.

180 6.7.3 The order of evaluation and binding of the &ctual-
parameters for functions shall be "implementation—gependent.

The order of evaluation and binding is from left to right.
IS0 6.8.2.2 If the selection of the variable in &n sssignment-statement
involves the dindexing of an array or the de-referencing of a pointer,
the decision whether these actions precede or follow the evaluation of
the expressicn shall be implementation-depencent.

The expression is evalusted first.

IS0 6.8.2.3 The order of eveluation &nd binding of the actual-
parameters for proceaures shall be implementation—depenaent.

The same as for functions.

IS¢ 6.10 The effect of an explicit use of reset or rewrite on the
standard files input and output shall be implementaticn—dependent.

4. Error handling

nguished. In the
the compiler. The
ted by the other
of the third class

There are three classes of errors to bhe dist
first <class are the error messages gener
second cLass consists of the occasicnel errors
programs involved in the compilation process.
are the errors as defined in the standard by:
An error is & violation by & program of the r i
this standerd such that detection normally
of the grogram.

guirements of
ires execution

4.1. Compiler errors

The error messages (and the Listing) are not generated by the com—
piler itself. The compiler only detects errcrs ano writes the errors in
condensed form on an intermediate fite. Each errer in condensed form
consists of:

-~ an optional error messages parameter (identifier or number).
- an error number

= & line number

- a column number.

In all cases where the compiler detects an error which does not have in-
fluence on the code produced by the compiler or on the syntax decisions,
a warning messages is given. If only warnings are generated, compila~
tion proceeds and probably resulis in & correctly ceompiled program.

The intermediate file is read by the dinterface program pc [43,
which produces the error messages. It uses an other file, the error
message file, indexed by the error number to Tind an error script Lline.
whenever this error script line contains the character '%Z', the error
messages parameter is substituted. Ffor regetive errcr numbers the so
constructed message is prepenced kith ‘Warning: ‘.

Sometimes the compiler produces several errors for the same Tile
position (line number, column number). Gnly the first of these messages
is given, because the others are probably directly caused by the first
one. IF the first one is & werning while one of its successors for that
position is a fatal message, then the warning is promoted to & fatal
one. However, purameterized messages are always given.

The error messages and Listing come in three flavours, selected by
flags given to pc [4]: -

default:no Listing, cne line per error giving the Line number and the
error messages.

~e: for each erroneous Line o listing of that line end its prede-
CESSOr . The next Line contains one or more cheracters '™
pinpointing tc the places where an error is detected. For

¥

eac

error on that Linz @ message fcllows.
'-e', except that all source Llines &re Listed,

=E3: sane r
e program 1S perfect.

s
even 1T

jad]

fo
th

-

4.2. Other errors detected at compilation fime

Twe mein categeries: file system groblems and table overflow.
Problems with the file system may be caused by protection (you may not
reaa or create fTiles) or by space problems (no space left on device; out
of incdes; too many processes). Teble overflow problems are often
caused by peculiar source programs: very long procedures or functions, &
Lot of strings.

Extensive treatment of these errors is outside the scope of this
mancal .

4.3, Runtime errors

Errors detected at runtime cause &n error message to be generated
on the diagnostic output stream (UNIX file descriptor 2). The message
consists of the name of the program followed by a message desecribing the
error, possibly followed by the source line number. Unless the l-option
is turned off, the compiler generates code to keep track of which source
line causes -which EM1 instructions to be generated. It depends on the
EM1-implementation whether these LIN instructions are skipped or execut-
ed:

1. LIN instructions are always executed. The old Line number is saved
and restored whenever a procedure or function is called. ALL error
messages contain this line number, except when the L-option was
turned off. -

2. same as shove, but line numbers are not saved when procedures and
functions are called.

fFor esch error mentioned in the standsrd we give the section number, the
guotation from that section and the way it is processed by the Pascal-vu
system.

180 6.4.3.3 An error should be causea if & reference 1s made to a field
of & variant other than the current variant.

This error is not detected. Sometimes this feature 1is used (o
achieve easy type conversion. Howsver, using record variants this
way is dangerous, error proné and not portable.

IS0 6.4.6 An error shoule be ceused iT an expression £ of type T2
must be assignment—compatible with type T1, while T1 and T2 are compati-

4. Error handling

Therz are three classes of errors to be distinguished. in the
first class are the error messeges generatea 0y the compiler. The
secong class consists of the occasicnel errors yensrsted by tThe other
programs involved in the compilation process. Errors of the third class

are the errors as defined in the standard by:

An error is & violation by & program of the reguirements of
this standard such that detection normally reguires execution
ot the program. '

4.1. Compiler errors

The error messages (and the Listing) are not generated by the com—
piler itself. The compiler only detects errors and writes the errors in
condensed form on an intermediate file. Each error in condensea form
consists of:

- an optional error messages parameter (identifier or number).
- an error number

- & Lline number

- & column number.

In all cases where the compiler detects an error which does not have in-
fluence on the code produced by the compiler or on the syntax decisions,
a warning messages is given. If only warnings are generated, compila-
tion proteeds and probably results in a correctly compiled program.

The intermediate file is read by the dnterface program pc [41,
which produces the error messages. It uses an other file, the error
message file, indexed by the error number to find an error script tine,
whenaver this error script line contains the character 'Z', the error
messages parameter is substituted. For negative error numbers the 3o
constructed message is prepended With ‘Warning: '.

Sometimes the compiler produces several errors for the same file
position (line number, column number). Only the first of these messages
is given, because the others are probably directly caused by the first
one. IF the first one is & warning while one of its successors for that
gosition is a fatal message, then tne warning is promoted tc a fatal
one. WHouwever, parameterized messages are always given.

The error messages and Llisting come in three fleavours, selected by
flags given to pc [47:

defaultino Llisting, cne Line per error giving the Line number and the
Error messages.

-e: for each erroneous Line a listing of that line end its prede-
CESSOT. The next Line contains one or more characters '™!
pinpointing tc the places where an errcr s detected. For

each error on that Line & message Tollous.

that all source Llines &are Listed,

~-E same as for '~e', except
s perfect.

even if the program i

4.2. Other errors detected at coapilation time

Two main categoriss: file system groblems and table overflow.
Problems with the file system may be caused by protection (you may not
reaa or create Tiles) or by space problems (no space teft on device; out
of inodes; ©toco many processes). Table overflow problems are often
caused by peculiar source programs: very long procedures or functions, &
Lot of strings.

Extensive treatment of these errors is outside the scope of this
manual . g

4.3. Runtime errors

Errors detected at runtime cazuse an error message to be generated
on the diagnostic output stream (UNIX file descriptor 2). The message
consists of the name of the program followed by a message describing the
errcr, possibly followed by the source Line number. Unléss the l-option
is turned off, the compiler generates code to keep track of which source
line causes - which EM1 dinstructions to be generated. It depends on the
Efi1-implementation whether these LIN instructions are skipped or execut-
ed:

1. LIN instructions are always executed. The old line number is saved
and restored whenever & procedure or function is called. ALl error
messages contain this line number, except when the L-opticn was
turned off. =

2. same as sbove, but line numbers are not saved when procecures and
functions are callied.

For each error mentioned in the standard we give the section number, the
quotation from that section and the way it is processed by the Pascal-VU
system.)

150 6.4.,3.3 An error should be caused if a reference 1s made to a field
of & variant other than the current variant.

"This error is not detected. Sometimes this feature dis wused to
achieve easy type conversion. However, using record variants this
way s dangerous, error proné and not portable.

IS0 6.4.56 An error shoule be caused if an expression E of type T2
must be assigrment-compatible with type T1, while T1 and T2 are compati-

blte ordinal-types and the value of E is not in the closed interval
specified by T1.

The compiler distinguishes between array-index expressions and the
other places where assignment-compatibilizy 1s reguired.

Array -subscripting is done using the EM} array instructions.
These imstructions have three arguments: the array base adaress,
the index and the address of the array descriptor. An array
descriptor describes one dimension by three values: the element
size, the Lower bound on the index and the number of elements minus
one. It depends on the EM1-implementation whether these bounds are
checked:

i. test on: checked
test off: not checked

2. not checked.
The other places whers assignment-compatibility is required are:

- assignment
- value parameters
~ procedures read and readln

For these places the compiler generates an EM1 range check instruc-
tion, except when the r—option is turned off, or when the range of
values of T2 is enclosed in the range of T1. 1f the expression
consists of a single variable and if that veriable is of & subrange
type, then the subrange type itself is taken as T2, not the host-
type of that subrange. Therefore, a reange instruction is only gen-
erated if T1 is & subrange type and if the expression 1is & con-
stant, an expression with two or more operands, or & single vari-
abte with & type not enclosed in Ti. If a constent 1is assigned,
then the EM? optimizer remcves the range check instruction, except
when the value is out of bounds.

It depends on the EM1-implementation whether the range c¢heck
instruction is executed or skipped:

1. test on: checked
test off: skipped

2. skipped
IS0 6.4.5 An errcr should be caused if an expression E of type T2
must be assignment—compatible with type T1, while T1 and T2 are compati-
ble set-types and any of the members of the set expression E is not in
the closed interval specified by the base-type of the typs T1.
This error is nct detected.

186 6.5.4 An error should be caused if the pointer valus is NIL or
ndefined at the Time it is de-referenced.

The EMT definition does not specify the binary representation of
pointer wvalues, so that it is not pessible to choose an otherwise
illegal binary representzation for the pointer value NIL. Rather
arbitrary the compiler wuses the integer value zero to represent
Nil. For atl current implementations this does not cause problems.

The EM1 cdefinition does specify the size of pointer cbjects: 2
bytes. However, when the v-option is turned on, the compilter pro-
duces code for one of the planned successors of EMT, a machine with
32 bits pointer values. In this case NIL is represented by 32 zero
bits.

It depends on the EM]-implementation whether de-referencing of
& pointer with value NIL causes an error:

1. tesi on: for every de-reference the pointer value is checked
te be legal. The value NIL is &lways illegal. Objects ad-
dressed by means of @ NIL pointer always cause an error, ex-
cept when they are part of some extraordinary sizea structure.
teczt off: de-referencing for the purposs of fetching will not
cause an errcr to ocecur. nowever, if the peinter value is
useag for a store operation, & segmentetion vioclation probably
results. (Note: this is only true if the interpreter is exe-
cuted with coinciding address spaces and protected text part.
The dnterpreter must therefore be loaded with the '-n' option
of the UNIX loader [51).

2. de-referencing for & fetch operation will not cause an error.
A store operation prchably causes an error if the '-n' flag is
specified to pc {41 or Lla [51 while loading your program.

Some implementations of EM1T initialize all memory cells for neuly
created variables with & constant likely to ceuse an error if that
varisble is not initialized with a value of its own type before
use. For each implementation we give whether memory cells are ini-
tiatized, with which value, and whether this value causes an error
if de-referenced.

Pl

1. each memory word is initialized with the bit representation
10000000000060C0, representing -3276¢ 1in 2's complement nota—
tion. For most small and medium sized programs this wvalue
will czuse & segmentation viclation.

2. no initialization. Yhenever a pointer is de-referenced,
without being properly initielized, & 'segmentation violation'
or & 'bus error' zke possible.

=

ISC 6.6.5.2 An error should be caused if eof(f) does not yield {rue
prior to execution of put(f).

This error is detected indirectly. Execution of put(f) will cause
an error if f s not opened for writing by using rewrite(f).
Rewrite(f) causes sof(f) to yield trus. ALl standard procedures
allowed for files opened Tor writing, including put(f), do not

couse sof(f) to yield false.

IS0 6.6.5.2 An error should be caused if eof(f) does not yield false
prior to execution of get{f}.

This error is detected.
180 6.6.5.2 An error should be caused 1f the current file position of &
file ds altered while the buffer wvarisble f° is an actual variable
parameter, or &n element of the record-varisble-list of & with-
statement, or both.

This error is not detected.

IS0 6.6.5.3 An errcr should be caused if the value of the pointer
parameter of dispose is NIL or undefined.

The same comments apply as for de-referencing NIL or wundefined
pointers.

IS0 6.6.5.3 An error should be caused if a varisble that 1is -currently
either an actual variable parameter, or an element of the record-
variable-list of a with-statement, or both, 1is referred to by the
pointer parameter of dispose.
This error is not detected.

IS0 6.6.5.3 An error should be caused if & referenced-varigble created
using the second form of new is used &s an operand in an expression, or
the variable 1in an assignment-statement or as an sctuzl-parameter.

This error is not detected.

IS0 6.6.6.2 £An error should be caused if x not greater than zero in
ln(x).

This error is detected.
IS0 6.6.6.2 An error should be caused if x is negative in sgri(x).

This error is detected.

IS0 6.6.6.2 An error should be caused if trunc(x) is not & value of
type integer.

This error is detected.

IS0 6.6.6.2 An error should be caused if round(x) is not & value of
type integer.

This error is cetected.
IS0 6.6.6.2 An error shoula be caused if chr(x) does not exist.

Except when the r-cption is turned off, the compiler generates an

check instruction. The effe nis instruction depends

Eé?~impiementation &3 degcribza b

IS0 6.6.6.2 An error should be caused 1T succ(x}) coes not exist.
Same comments as for chri{x).

iS50 &.56.6.2 An error should be ceused if pred(x) does not exist.
Same comments as Tor chrix).

156 6.7.1 An error should be caused if any variable or function used
as an operand in an expression has an undefined value at the time of its
USE .

betection of undefined opesrands is only possible if there is at
least one bit representation which is not allowed as legal value.
The set of legal values depends on the type of the operand. To
detect undefined operands, all newly created variables must be as-
signed a value illega! for ithe type of the creatze variable. Tre
compiler dtself does not generate code to initialize newly created
variebles. Instead, the compiler generates code to atlocate some
new memory cells. It is up to the EMI-implementation to initialize
these memory cells. However, the EM1 machine does not know the
types of the variables for which memory cells are allocated.
Therefore, the bast an EMl-implementation can do is to initialize
with a wvalue which ds Uikely to be iltegal for the most common
types of operands.

For all current EMl1-implementations we will describe whether
memory cells are initialized, which value is used o initialize,
for each operand type whether that value is illegal, and for &ll
cperations on &ll operand types whether that value is oetected as
undefined.

1. test on: new memory words are initialized with -32768. As-
signment of that value s aluays allowed. Errors may occur
whenever undefined operands are used in operations.
integer: -32768 s illegal. ALL arithmetic operations (except
Unary +) cause an error. Relatiopal operations do not, except
for. IN when the left operang is undefined. Printing of =32762
using write is allowad.
real: the bit representation of @ real, caused by initializing
the constituent memory words with -32768, is illegal. ALL ar-
ithmetic and reletional operaticns (except unary +) cause an
error. Printing cesuses &n error,
char: the value -327468 1is illegal. For objects of type 'packed
arrayfl of char' half the characters will have the value
chr(0), which is legsl, and the others will have the wvalue
chr(128), outside the wvalid #SCI1 range. The retational
cperators, houwever, do not Cause an error.

Becolean: the value ~32768 s . illegal. For objects of typse
‘packed arrayll of buoclean® half the boolesns will have the
valus false, while the others have the value v, where oraly) =
128, naturally illegal. However, the Boolean &nd relational

operations Go not cause an error.
set: undefined cperends of type set
from properly initialized ones. Tn

can not be distinguished

g se

tions, therefore, can never cause an
i
1

t ano relationel opera-
rror. However, 1if one
ter, then spuricus char-

appear.

forgets to initialize & set of cha

2
s
€
C
acters Like /', '27, '0', ' ' and i

a
0
test off: new memory cells ere initisbized with -32768. The
only cases where this value causes an error are when an unaoe-
fined operand of type real is used in an arithmetic or rela~
tional operation (except unary +) or when an undefined real is

used &s an argument to cne of the standard functions.

2. Newly created memory cells are not initialized anc therefore
they have & random value.

150 6.7.1 An error should be caused if the wvalue of &an expression
which s the member of a set is cutside the implementation-definea Lim-
its.

This error is detected.

IS0 6.7.2.2 An error should be caused if j is zero in i DIV j.

It depends on the EMl-implementation whether this error is detect-
ed:

1. test on: detected.
test off: not detecteaq.

-

2. not dstected.
180 6.7.2.2 An error should be caused if the result of & binary opera=
tion on integer operands is not in the range —-maxint..+tmaxint.
The reaction depends on the EMi-implementation:
7. test on: error detected if
{result >= 32748) or (result < -32763).
Note that if the result is -32768 the use of this value in
further operations may cause an error,
test off: not detected.
2. not detected.

IS0 6.8.3.5 An error should be caused if none of the case~constants is
egual to the current value of the selector.

This error is detected.

IS0 6.8.3.9 An error should be caused if the control-varisble is as-
signed to by the repeated statement or altered by any procedure or func—

tion activated by the repeated stztement.

This error is not detected.

is0 - 6.9.2 An error should be caused if the sequence of charscters
rezd looking for an integer coes not form & signed-integer as specifisd
in é6.1.5.

This error is detected.
ise 6.9.2 An error should be caused if the sequence of characters
read Looking for & reat does not form a signed-number as specified in
Bl s D

Tnis error is detected.

%~ Extensions to the standard

1. The compiler is zble to compile moaules, not forming complete pro-
grams, but consisting of procedures end functions which can be used
te form Libraries. The syntax of these modules is

e
ny

module = [constant~definiticn-partl
Ctype=-definition-part]
Cprocedure~and-function-declaration-partl

The compiler accepts & progrem or & moaule:
unit = program | module

It is only allowed to declare variables local to the proceoaures and
functions. ALl wvariables outside these procedures and functions
must be imported and exported by paremeters, even the files input
and output. By giving the correct procedure/function heading fol-
Lowed by the directive 'extern' you may use procedures and func-
tions declared in otirer units.

2. The Pascal-VU compiler recognizes an edditional statement, the
assertion. Assertions can be used as an aid in debugging and docu-
mentation. The syntax is:

assertion = ASSERT Boolean—expression
An assertion is a simple-statement, so

simple-statement = [assignment~statement |
procedure-statement |
goto-statement |
assertion

]

An. assertion causes an error if the Bootean-expression is false.
That is its only purpose. It does not change any of the variables,

sk at least it shoule not. Therefore, do not use functions with
side-effects 1in the Boolean—expression. If the a-option is turned
of f, then assertions are skipped by the compiler. ASSERT is not &
wora-symbol (keyword) and may be used as identifier. However, as-
signment to a variable and calling of & procedure with that name
will be impossible.

. Three additional standard procedures are available:

halt: a call of this procedure is eguivalent to jumping to the
end of your program. It is always the last statement exe-
cuted.

relezse:

mark: for most applications it is sufficient tc use the heap &s
second stack. Mark and release are suitea for this Kind
of use, more suited than dispose. mark{p), with p of

type pointer, stores the current value of the hesppointer
in p. releass(p), with p dinittalized by & call of

mark(p), restores the heappointer to its old value. atl
the heap objects, createac by calis of new betusen the
call of mark and the call of release, are removed andg the
space they used can be rezllocated. MNever use.mark and

release together with dispose!

If the c-option is turned cn, then some special features sre avail-
able to facilitate an interface with the UNIX envirconment. First
of all, the compiler allows you to use & aifferent type of string
constants. These string constants are delimited by double quotes
('"*), To put a double quecte into these strings, you must repeat
the double guots, Llike the single guote in normal string constants.
These special siring constants are terminated by & zero byte
(chr(0)). The type of these constants is & pointer to & packed ar~
ray of characters, with lower bound 1 and unknown upper bound.
Secondly, the compiler predefines & new type idencifier 'string'
denoting this just described string type.

The only thing you can do with these features 1is declaration
of constants and wvariables of type 'string'. String cbjects may
rot be allocated on the heap and string pcinters may not be de-
referenced. 5till these strings are very useful in combination
with external routines.

The character ' ' may be used 1in forming identifier, except a&s
first character.

The comment delimiters '{' and *)}' mey be nested.

Comments delimited by F(x' and **)? are recognized as well, but may
not be nested.

6. Deviations from the stundard

There is one serious defect in the stencard proposal {(and in the
language =5 described by Jensen and Wirth). This defect causes all im-
plementors of Pascal on machines with & time-sharing envircnment to de-
viate from the standard. The defect is that interactive é put is impos~—
sible. ftore precisely: it is not cossible tc prompt & user that the

“program is running and requires input, beczuse the file window input”
must be initiazlized with the first character of input before any other
statement czn be executed. This is caused by the reguirement of tne

stangard that the file input, if mentioned in the program neading, must
pe initialized by the statement reset(input).

The solution we adopted is to replece this reguirement by:
The file input, if mentioned in the program heading, is opened such
that:

- the statement resst(input) is not required to start reading,
- the file window input”™ is initialized with & blank,
- the function eoln(input) yields true.

Moreover, the statement reset(input) is equivalent to get(input) as
stated before.

This solution offers several advanteges:

- Interactive dnput is possible with & minimal change to the
language.
-~ Most standarc programs wiltl work without any modificatien. Only if
programs skip leading spaces, problems may occur.
- If programs conforming to the standard must be modified, then this
modification is trivial: add the statement get{input).
~ Programs created on the Pascal-VU system can be ports easily to
other installations. They will work without any mcaification, if
an empty Line is prepended to the input. Modificaticn is probably
trivisl: removal of the statement get{input).
- The first character of the input file can be obteinea in three dif~
ferent ways:
get {input),
rezdln(input) and
reset (input) .

We present two examples demonstrating why the alternatives for initisl-
izing the window input™ are useful. The first of these alternatives,
get(input), is probably best for portability reaesons. However, & call
of readlnCinput) makes reeding of all lines similar, &s i3 demonstrated
by the following program:

orogram add(input,output);

{This program edds integers’

var stop:boolean;
',totaL:integer;

begin total:=0; stop:=fals
repeat

[0

g

write(next number: 2

‘7
readiln;
iT ecf then
STop:iTirue
else
begin

total :=totel+i
end
until stop;
writeln{*these numbers add to ',total: 1)
ena .

Transporting this program to &
ficult. Initializing the fil
programs Like:

standard Pascal system is more dif-
window by reset{input) meay be usad in

program append {input ,secondin output);
{This program concatenates two filest
var secondinstext;

procedure copy(var fi:ztext);
var c:char;
begin
reset(fi);
while not eof(fi) do
begin
while not eoln(fi) do
begin
read(fi,c);
write(c)
end;
readln(fi);
writeln
end
end;

begin {main¥ -
copy{input);
copy {secondim

end.

7. Lompiler opiions

cempiler may be controlled by wuwsing "{3....3"
jon consists of & Llower case Letter folloued by
r. Options are separsted by coummas. The Tfol-

Some options of the
or Y(%Z_....%)". Each op
+, — or &n wsigneg numb
lowing options exist:

t
€

a H/- this option switches assertions on ana off. If this option s
on, then code is included to test these asserticns &t runtime.
pefault +.

¢ +/- this option, if on, allows you to uss (C-type string constents
surrounced by double guotes. #Moreover, & new type identifier
'string' is predefined. Default —.

i <pum> with this flag the setsize for & set of integers can be manipu-
lated. The number must be the number of bits per set, The de-
fault value is 18, just fitting in one word on the PDP and a Lot
of other minis.

i shy= if + then code is inserted to keep track of twhe source linc
number . When this fleg is switched on and off, an incorrect
Line number may appear if the error occurs in & part of your
program for which this flag is off. These seme line numbers are
used for the profile, flow and count options of the EM1 inter-
preter eml L[61. Default +.

ro+/- if + then code is inserted to check subrange variables against
Lower and upper subrange limits. Default +.

s +/= if + then the compiler witl hunt for places 1in your program
where non~standard fesatures are used, and for each place found
it will generate a warning. Default -.

t +/- if + then each time & procedure is entered, the routine 'procen-
try' is called. The compiler checks this flag just before the
first symbol that follows the first ‘begin' of the body of the
procedure. Also, when the procedure exits, then the procedure
‘procexit’ is called if the t flag is on just before the last
tend® of the procedure bedy. Both ‘procentry' and ‘procexit!
have « packed array of 3 characters &s & parameler. Default
procedures are present in Library LibP L73. Default -.

v +/=° if + then 32 bit adcresses are produced for an EMi machine with
256 dets segments of 64k bytes each. Default -.

Thres of these flags (¢,i and v) are only effective when they &appear be=
fore the 'program' symbol. The others may be switched on and eff.

Instead of including the optiens in your Pascal program, you may
also set them by giving a flag argument with the same syntax to pec [41.
Pc passes this flog to the compiler by using the intermeciate file which
is alsc used, in reverse direction, for the error messages in condensed
form., Cptions given tc pc override tne options in your program. This
feature is very useful for debugging. Without chenging eny character in

yOUr program you may, for instance, include code for procedurs/function
tracing.

Another very powerful debugsing too! is the knowledge tnat inac-
cessable stavements and useless tests are removed by tne EMT optimizer.
For instance, & stetement like:

if debug then
writeipn(*initizalizaticn done’);
is completely removed by the optimizer when cebug s & constant with
valus false. the first Line ds removea if dgebug is ¢ constant with
value true. Of course, 1T debug is a veriable nothing can be removed.

One of the disadventages of Pascal, ths lack of preinitializena da~
ta, can be diminished by making use of the possibilities of the EMT op~
timizer. For instance, initiagliziny an array of reserved words is some-
times - optimized dinto 3 EMT instructions. To maximize this effect you
must initialize variables as much as possible in order of declaration
and array entries in order of increasing index.

8. References

il

150 standard proposal ISG/TCY7/SC5~N462, dated february 1979. The
same propasal, in slightly mocified form, can be found in:
A.ti.Adayman e.a., "A dreft descripiion of Pascsl", Softweare, prac-
t

ice and experience, may 1979.
A.S.Tanenbaum, J.W.Stevenson, J.M.van Staveren, "Des
experimental machine architecture for use of b
languages', Informatika rapport IR-27. {To appear).
W.S.Brown, S.I.Feldman, "Envircnment parameters end basic functions
for floating-point computation™, Bell Laboratories CSTR #72.
UMIX manual pel{ld.
UNIX manual La(Id.
UMIX manual em] (D),
UNIX manual LibP{VII).

ipticn of an

CF
Lock structured

