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Abstract

EM is afamily of intermediate languages designed for producing portable compilers.
A program called front end translates source programs to EM. Another program, back end,
translates EM to the assembly language of the target machine. Alternatively, the EM program
can be assembled to a highly efficient binary format for interpretation. This document describes
the EM languages in detail.
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1. INTRODUCTION

EM isafamily of intermediate languages designed for producing portable compilers. The general strategy is
for a program called front end to translate the source program to EM. Another program, back end trandates
EM to target assembly language. Alternatively, the EM code can be assembled to a binary form and interpreted.
These considerations led to the following goals:

1 The design should alow trandation to, or interpretation on, a wide range of
existing machines. Design decisions should be delayed as far as possible and
the implications of these decisions should be localized as much as possible.
The current microcomputer technology offers 8, 16 and 32 bit machines with
various sizes of address space. EM should be flexible enough to be useful on
most of these machines. The differences between the members of the EM
family should only concern the wordsize and address space size.

2 The architecture should ease the task of code generation for high level
languages such as Pascal, C, Ada, Algol 68, BCPL.

3 Theinstruction set used by the interpreter should be compact, to reduce the
amount of memory needed for program storage, and to reduce the time need-
ed to transmit programs over communication lines.

4 It should be designed with microprogrammed implementations in mind; in
particular, the use of many short fields within instruction opcodes should be
avoided, because their extraction by the microprogram or conversion to other
instruction formats isinefficient.

The basic architecture is based on the concept of a stack. The stack is used for procedure return addresses,
actual parameters, local variables, and arithmetic operations. There are several built-in object types, for exam-
ple, signed and unsigned integers, floating point numbers, pointers and sets of bits. There are instructions to
push and pop objects to and from the stack. The push and pop instructions are not typed. They only care about
the size of the objects. For each built-in type there are reverse Polish type instructions that pop one or more ob-
jects from the top of the stack, perform an operation, and push the result back onto the stack. For al types ex-
cept pointers, these instructions have the object size as argument.

There are no visible general registers used for arithmetic operands etc. Thisisin contrast to most third gen-
eration computers, which usually have 8 or 16 general registers. The decision not to have a group of general re-
gisters was fully intentional, and follows W.L. Van der Poel’s dictum that a machine should have 0, 1, or an
infinite number of any feature. General registers have two primary uses: to hold intermediate results of compli-
cated expressions, e.g.

((a*b + c*d)/e + f*g/h) * i
and to hold local variables.

Various studies have shown that the average expression has fewer than two operands, making the former use
of registers of doubtful value. The present trend toward structured programs consisting of many small pro-
cedures greatly reduces the value of registers to hold local variables because the large number of procedure calls
implies alarge overhead in saving and restoring the registers at every call.

Although there are no general purpose registers, there are a few internal registers with specific functions as
follows:

PC — Program Counter  Pointer to next instruction
LB - Loca Base Points to base of the local variables
in the current procedure.
SP - Stack Pointer Points to the highest occupied word on the stack.

HP -  Heap Pointer Points to the top of the heap area.



Furthermore, reverse Polish code is much easier to generate than multi-register machine code, especialy if
highly efficient code is desired. When trandating to assembly language the back end can make good use of the
target machine's registers. An EM machine can achieve high performance by keeping part of the stack in high
speed storage (a cache or microprogram scratchpad memory) rather than in primary memory.

Again according to van der Poel’s dictum, al EM instructions have zero or one argument. We believe that
instructions needing two arguments can be split into two simpler ones. The simpler ones can probably be used
in other circumstances aswell. Moreover, these two instructions together often have a shorter encoding than the
singleinstruction before.

This document describes EM at three different levels: the abstract level, the assembly language level and the
machine language level.

The most important level is that of the abstract EM architecture. This level deals with the basic design is-
sues. Only the functional capabilities of instructions are relevant, not their format or encoding. Most chapters
of this document refer to the abstract level and it is explicitly stated whenever another level is described.

The assembly language is intended for the compiler writer. It presents a more or less orthogonal instruction
set and provides symbolic names for data. Moreover, it facilitates the linking of separately compiled *modules’
into a single program by providing several pseudoinstructions.

The machine language is designed for interpretation with a compact program text and easy decoding. The
binary representation of the machine language instruction set is far from orthogonal. Freguent instructions have
a short opcode. The encoding is fully byte oriented. These bytes do not contain small bit fields, because bit
fields would slow down decoding considerably.

A common use for EM is for producing portable (cross) compilers. When used this way, the compilers pro-
duce EM assembly language as their output. To run the compiled program on the target machine, the back end,
translates the EM assembly language to the target machine's assembly language. When this approach is used,
the format of the EM machine language instructions is irrelevant. On the other hand, when writing an inter-
preter for EM machine language programs, the interpreter must deal with the machine language and not with the
symbolic assembly language.

As mentioned above, the current microcomputer technology offers 8, 16 and 32 bhit machines with address
spaces ranging from 216 10 2%2 bytes. Having one size of pointers and integers restricts the usefulness of the
language. We decided to have a different language for each combination of word and pointer size. All
languages offer the same instruction set and differ only in memory alignment restrictions and the implicit size
assumed in severa instructions. The languages differ dightly for the different size combinations. For example:
the size of any object on the stack and alignment restrictions. The wordsize is restricted to powers of 2 and the
pointer size must be a multiple of the wordsize. Almost all programs handling EM will be parametrized with
word and pointer size.



2. MEMORY

The EM machine has two distinct address spaces, one for instructions and one for data. The data spaceis di-
vided up into 8-hit bytes. The smallest addressable unit is a byte. Bytes are numbered consecutively from O to
some maximum. All sizesin EM are expressed in bytes.

Some EM instructions can transfer objects containing several bytes to and/or from memory. The size of all
objects larger than a word must be a multiple of the wordsize. The size of al objects smaller than a word must
be a divisor of the wordsize. For example: if the wordsize is 2 bytes, objects of the sizes 1, 2, 4, 6,... are a-
lowed. The address of such an object is the lowest address of all bytes it contains. For objects smaller than the
wordsize, the address must be a multiple of the object size. For all other objects the address must be a multiple
of the wordsize. For example, if an instruction transfers a 4-byte object to memory at location m and the word-
sizeis 2, mmust be amultiple of 2 and the bytes at locations m, m+1,m+ 2 and m+ 3 are overwritten.

The size of amost all objectsin EM isan integral number of words. Only two operations are allowed on ob-
jects whose size is a divisor of the wordsize: push it onto the stack and pop it from the stack. The addressing of
these objects in memory is aways indirect. If such a small object is pushed onto the stack it is assumed to be a
small integer and stored in the least significant part of aword. The rest of the word is cleared to zero, although
EM provides away to sign-extend a small integer. Popping a small object from the stack removes a word from
the stack, stores the least significant byte(s) of thisword in memory and discards the rest of the word.

The format of pointers into both address spaces is explicitly undefined. The size of a pointer, however, is
fixed for amember of EM, so that the compiler writer knows how much storage to allocate for a pointer.

A minor problem is raised by the undefined pointer format. Some languages, notably Pascal, require a spe-
cial, otherwise illegal, pointer value to represent the nil pointer. The current Pascal-VU compiler uses the in-
teger value O as nil pointer. This value is also used by many C programs as a normally impossible address. A
better solution would be to have a special instruction loading an illegal pointer value, but it is hard to imagine an
implementation for which the current solution is inadequate, especially because the first word in the EM data
spaceis specia and probably not the target of any pointer.

The next two chapters describe the EM memory in more detail. One describes the instruction address space,
the other the data address space.

A design goal of EM has been to allow its implementation on a wide range of existing machines, as well as
allowing a new one to be built in hardware. To this extent we have tried to minimize the demands of EM on the
memory structure of the target machine. Therefore, apart from the logical partitioning, EM memory is divided
into fragments'. A fragment consists of consecutive machine words and has a base address and a size. Pointer
arithmetic is only defined within afragment. The only exception to this rule is comparison with the null pointer.
All fragments must be word aligned.



3. INSTRUCTION ADDRESS SPACE

The instruction space of the EM machine contains the code for procedures. Tables necessary for the execu-
tion of this code, for example, procedure descriptor tables, may also be present. The instruction space does not
change during the execution of a program, so that it may be protected. No further restrictions to the instruction
address space are necessary for the abstract and assembly language level.

Each procedure has a single entry point: the first instruction. A special type of pointer identifies a procedure.
Pointers into the instruction address space have the same size as pointers into data space and can, for example,
contain the address of the first instruction or an index in a procedure descriptor table.

There isa single EM program counter, PC, pointing to the next instruction to be executed. The procedure
pointed to by PC is called the 'current’ procedure. A procedure may call another procedure using the CAL or
CAl instruction. The calling procedure remains 'active’ and is resumed whenever the called procedure returns.
Note that a procedure has several " active’ invocations when called recursively.

Each procedure must return properly. It is not allowed to fall through to the code of the next procedure.
There are several ways to exit from a procedure:

- the RET instruction, which returns to the calling procedure.

- the RTT instruction, which exits a trap handling routine and resumes the trapping instruction (see
next chapter).

- the GTO instruction, which is used for non-local goto’s. It can remove several frames from the stack
and transfer control to an active procedure. (see dso MES 11 in paragraph 11.1.4.4)

All branch instructions can transfer control to any label within the same procedure. Branch instructions can
never jJump out of a procedure.

Several language implementations use a so called procedure instance identifier, a combination of a pro-
cedure identifier and the LB of a stack frame, also called static link.

The program text for each procedure, as well as any tables, are fragments and can be allocated anywhere in
the instruction address space.



4. DATA ADDRESS SPACE

The data address space is divided into three parts, called "areas’, each with its own addressing method: glo-
bal data area, local data area (including the stack), and heap data area. These data areas must be part of the
same address space because all datais accessed by the same type of pointers.

Space for global datais reserved using several pseudoinstructions in the assembly language, as described in
the next paragraph and chapter 11. The size of the global data area isfixed per program.

Global datais addressed absolutely in the machine language. Many instructions are available to address glo-
bal data. They all have an absolute address as argument. Examples are LOE, LAE and STE.

Part of the global data area is initialized by the compiler, the rest is not initialized at all or isinitialized with
avalue, typicaly —32768 or 0. Part of the initialized global data may be made read-only if the implementation
supports protection.

The local data area is used as a stack, which grows from high to low addresses and contains some data for
each active procedure invocation, called a’frame’'. The size of the local data area varies dynamically during ex-
ecution. Below the current procedure frame resides the operand stack. The stack pointer SP always points to
the bottom of the local data area. Local data is addressed by offsetting from the local base pointer LB. LB al-
ways points to the frame of the current procedure. Only the words of the current frame and the parameters can
be addressed directly. Variables in other active procedures are addressed by following the chain of statically en-
closing procedures using the LXL or LXA instruction. The variables in dynamically enclosing procedures can
be addressed with the use of the DCH instruction.

Many instructions have offsets to LB as argument, for instance LOL, LAL and STL. The arguments of
these instructions range from —1 to some (negative) minimum for the access of local storage and from 0 to some
(positive) maximum for parameter access.

The procedure call instructions CAL and CAI each create a new frame on the stack. Each procedure has an
assembly-time parameter specifying the number of bytes needed for local storage. This storage is allocated each
time the procedure is called and must be a multiple of the wordsize. Each procedure, therefore, starts with a
stack with the local variables already allocated. The return instructions RET and RTT remove aframe. The ac-
tual parameters must be removed by the calling procedure.

RET may copy some words from the stack of the returning procedure to an unnamed 'function return area’ .
This area is available for 'READ-ONCE’ access using the LFR instruction. The result of a LFR is only defined
if the size used to fetch isidentical to the size used in the last return. The instruction ASP, used to remove the
parameters from the stack, the branch instruction BRA and the non-local goto instruction GTO are the only ones
that leave the contents of the 'function return area’ intact. All other instructions are allowed to destroy the func-
tion return area. Thus parameters can be popped before fetching the function result. The maximum size of all
function return areas is implementation dependent, but should allow procedure instance identifiers and all imple-
mented objects of type integer, unsigned, float and pointer to be returned. In most implementations the max-
imum size of the function return area is twice the pointer size, because we want to be able to handle ' procedure
instance identifiers’ which consist of a procedure identifier and the LB of aframe belonging to that procedure.

The heap data area grows upwards, to higher numbered addresses. It isinitially empty. The initial value of
the heap pointer HP marks the low end. The heap pointer may be manipulated by the LOR and STR instruc-
tions. The heap can only be addressed indirectly, by pointers derived from previous values of HP.

4.1 Global data area

The initial size of the global data area is determined at assembly time. Global data is alocated by several
pseudoinstructions in the EM assembly language. Each pseudoinstruction allocates one or more bytes. The
bytes allocated for a single pseudo form a’block’. A block differs from a fragment, because, under certain con-
ditions, several blocks are alocated in asingle fragment. This guarantees that the bytes of these blocks are con-
secutive.

Global data is addressed absolutely in binary machine language. Most compilers, however, cannot assign
absolute addresses to their global variables, especialy not if the language allows programs to be composed of
several separately compiled modules. The assembly language therefore allows the compiler to name the first



address of a global data block with an alphanumeric label. Moreover, the only way to address such a named
global data block in the assembly language is by using its name. It is the task of the assembler/loader to
trandlate these labels into absolute addresses. These labels may also be used in CON and ROM pseudoinstruc-
tionsto initialize pointers.

The pseudoinstruction CON allocates initialized data. ROM acts like CON but indicates that the initialized
data will not change during execution of the program. The pseudoinstruction BSS allocates a block of uninitial-
ized or identically initialized data. The pseudoinstruction HOL is similar to BSS, but it aters the meaning of
subsequent absolute addressing in the assembly language.

Another type of global data is a small block, called the ABS block, with an implementation defined size.
Storage in this type of block can only be addressed absolutely in assembly language. The first word has address
0 and is used to maintain the source line number. Specia instructions LIN and LNI are provided to update this
counter. A pointer at location 4 points to a string containing the current source file name. The instruction FIL
can be used to update the pointer.

All numeric arguments of the instructions that address the global data area refer to locations in the ABS
block unless they are preceded by at least one HOL pseudo in the same module, in which case they refer to the
storage area allocated by the last HOL pseudoinstruction. Thus LOE 0 loads the zeroth word of the most recent
HOL, unless no HOL has appeared in the current file so far, in which case it loads the zeroth word of the ABS
fragment.

The global data areais highly fragmented. The ABS block and each HOL and BSS block are separate frag-
ments. The way fragments are formed from CON and ROM blocks is more complex. The assemblers group
several blocks into a single fragment. A fragment only contains blocks of the same type: CON or ROM. It is
guaranteed that the bytes allocated for two consecutive CON pseudos are allocated consecutively in a single
fragment, unless these CON pseudos are separated in the assembly language program by a data label definition
or one or more of the following pseudos:

ROM, BSS, HOL and END

An analogous rule holds for ROM pseudos.

4.2 Local dataarea

The local data area consists of a sequence of frames, one for each active procedure. Below the frame of the
current procedure resides the expression stack. Frames are generated by procedure calls and are removed by
procedure returns. A procedure frame consists of six 'zones':

The return status block

The local variables and compiler temporaries
The register save block

The dynamic local generators

The operand stack.

The parameters of a procedure one level deeper

S~ WNE

A sample frame is shown in Figure 1.

Before a procedure call is performed the actual parameters are pushed onto the stack of the calling pro-
cedure. The exact details are compiler dependent. EM allows procedures to be called with a variable number of
parameters. The implementation of the C-language almost forces its runtime system to push the parameters in
reverse order, that is, the first positional parameter last. Most compilers use the C calling convention to be com-
patible. The parameters of a procedure belong to the frame of the calling procedure. Note that the evaluation of
the actual parameters may imply the calling of procedures. The parameters can be accessed with certain instruc-
tions using offsets of 0 and greater. The first byte of the last parameter pushed has offset 0. Note that the
parameter at offset O has a special use in the instructions following the static chain (LXL and LXA). Thesein-



structions assume that this parameter contains the LB of the statically enclosing procedure. Procedures that do
not have a dynamically enclosing procedure do not need a static link at offset 0.

Two instructions are available to perform procedure calls, CAL and CAl. Severa tasks are performed by
these call instructions.

First, a part of the status of the calling procedure is saved on the stack in the return status block. This block
should contain the return address of the calling procedure, its LB and other implementation dependent data. The
size of this block is fixed for any given implementation because the lexical instructions LPB, LXL and LXA
must be able to obtain the base addresses of the procedure parameters and local variables. An alternative solu-
tion can be used on machines with a highly segmented address space. The stack frames need not be contiguous
then and the first status save area can contain the parameter base AB, which has the value of SP just after the
last parameter has been pushed.

Second, the LB is changed to point to the first word above the local variables. The new LB is a copy of the
SP after the return status block has been pushed.

Third, the amount of local storage needed by the procedure is reserved. The parameters and local storage
are accessed by the same instructions. Negative offsets are used for access to local variables. The highest byte,
that is the byte nearest to LB, has to be accessed with offset —1. The pseudoinstruction specifying the entry
point of a procedure, has an argument that specifies the amount of local storage needed. The local variables al-
located by the CAl or CAL instructions are the only ones that can be accessed with a fixed negative offset. The
initial value of the allocated words is not defined, but implementations that check for undefined values will prob-
ably initialize them with a special "undefined’ pattern, typically —32768.

Fourth, any EM implementation is allowed to reserve a variable size block beneath the local variables. This
block could, for example, be used to save a variable number of registers.

Finally, the address of the entry point of the called procedure is loaded into the Program Counter.

The ASP instruction can be used to alocate further (dynamic) local storage. The base address of such
storage must be obtained with a LOR SP instruction. This same instruction ASP may also be used to remove
some words from the stack.

Thereisaversion of ASP, called ASS, which fetches the number of bytes to allocate from the stack. It can
be used to alocate space for local objects whose size is unknown at compile time, so called ' dynamic local gen-
erators'.

Contral is returned to the calling procedure with a RET instruction. Any return value is then copied to the
"function return area’. The frame created by the call is deallocated and the status of the calling procedure is re-
stored. The value of SP just after the return value has been popped must be the same as the value of SP just be-
fore executing the first instruction of thisinvocation. This means that when a RET is executed the operand stack
can only contain the return value and all dynamically generated locals must be deallocated. Violating this res-
triction might result in hard to detect errors. The calling procedure has to remove the parameters from the stack.
This can be done with the aforementioned ASP instruction.

Each procedure frame is a separate fragment. Because any fragment may be placed anywhere in memory,
procedure frames need not be contiguous.
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Figure 1. A sample procedure frame and parameters.

4.3 Heap dataarea

The heap area starts empty, with HP pointing to the low end of it. HP always contains a word address. A
copy of HP can always be obtained with the LOR instruction. A new value may be stored in the heap pointer
using the STR instruction. If the new value is greater than the old one, then the heap grows. If it is smaller,
then the heap shrinks. HP may never point below its original value. All words between the current HP and the
original HP are allocated to the heap. The heap may not grow into a part of memory that is already allocated.
When thisis attempted, the STR instruction will cause atrap to occur. Inthiscase, HP retainsits old value.



The only way to address the heap is indirectly. Whenever an object is allocated by increasing HP, then the
old HP value must be saved and can be used later to address the allocated object. If, in the meantime, HP is de-
creased so that the object is no longer part of the heap, then an attempt to access the object is not allowed.
Furthermore, if the heap pointer is increased again to above the object address, then access to the old object

gives undefined results.

The heap is a single fragment. All bytes have consecutive addresses. No limits are imposed on the size of
the heap as long asiit fits in the available data address space.



5. MAPPING OF EM DATA MEMORY ONTO TARGET MACHINE MEMORY

The EM architecture is designed to be implemented on many existing and future machines. EM memory is
highly fragmented to make adaptation to various memory architectures possible. Format and encoding of
pointersis explicitly undefined.

This chapter gives solutions to some of the anticipated problems. First, we describe a possible memory lay-
out for machines with 64K bytes of address space. Here we use a member of the EM family with 2-byte word
and pointer size. The most straightforward layout is shown in figure 2.

65534 —> |- |
| 700
| /717 uninplemented nmenory ////1]
|70

Y B e |
I I
| | <- LB
| stack and | ocal area
I I
I R R T | <- SP
| 700
| /7111111 inaccessible ///1/1/111]]
| 700t
I R R T | <- HP
I I
| heap area |
I I
I I
HB —> |------mmmmmm e - - |
I I
| gl obal data area
I I
EB —> |-----mmmme - |
I I
| program t ext | <= PC
I I
| ( and tables ) |
I I
I I
PB —> |----mmmmmi i - |

| Frrr bbb
| 7701117177 undefined [//1111111]
| Frrr bbb

Figure 2. Memory layout showing typical register
positions during execution of an EM program.

The base registers for the various memory pieces can be stored in target machine registers or memory.

PB : programbase pointsto the base of the instruction address space.
EB : externa base  pointsto the base of the data address space.
HB : heap base points to the base of the heap area.

ML : memory limit  marks the high end of the addressable data space.

The stack grows from high EM addresses to low EM addresses, and the heap the other way. The memory
between SP and HP is not accessible, but may be allocated later to the stack or the heap if needed. The local
data area is allocated starting at the high end of memory.



Because EM address 0 is not mapped onto target address 0, a problem arises when pointers are used. If a
program pushed a constant, say 6, onto the stack, and then tried to indirect through it, the wrong word would be
fetched, because EM address 6 is mapped onto target address EB+6 and not target address 6 itself. This particu-
lar problem is solved by explicitly declaring the format of a pointer to be undefined, so that using a constant as a
pointer iscompletely illegal. However, the general problem of mapping pointers still exists.

There are two possible solutions. In the first solution, EM pointers are represented in the target machine as
true EM addresses, for example, a pointer to EM address 6 redlly is stored as a 6 in the target machine. This
solution implies that every time a pointer is fetched EB must be added before referencing the target machine's
memory. If the target machine has powerful indexing facilities, EB can be kept in atarget machine register, and
the relocation can indeed be done on every reference to the data address space at a modest cost in speed.

The other solution consists of having EM pointers refer to the true target machine address. Thus the instruc-
tion LAE 6 (Load Address of External 6) would push the value of EB+6 onto the stack. When this approach is
chosen, back ends must know how to offset from EB, to translate al instructions that manipulate EM addresses.
However, the problem is not completely solved, because a front end may have to initialize a pointer in CON or
ROM datato point to aglobal address. This pointer must also be relocated by the back end or the interpreter.

Although the EM stack grows from high to low EM addresses, some machines have hardware PUSH and
POP instructions that require the stack to grow upwards. If reasons of efficiency demand the use of these in-
structions, then EM can be implemented with the memory layout upside down, as shown in figure 3. Thisis
possible because the pointer format is explicitly undefined. The first element of a word array will have a lower
physical address than the second element.

I I I I
| EB=60 | [ - |
I I I I I
R REEEEEEEEEEE | R EEEEEEEEEEEE |
105 | 45 | 44 | 104 214 | 41 | 40 | 215
R EEEEEEEEEEEE | R EEEEEEEEEEEE |
103 | 43 | 42 | 102 212 | 43 | 42 | 213
R EEEEEEEEEELEEE | R REEEEEEEEEEE |
101 | 41 | 40 | 100 210 | 45 | 44 | 211
R R | | oo |
I I I I I
| v | [ EB=255 |
I I I I
Type A Type B

Figure 3. Two possible memory implementations.
Numbers within the boxes are EM addresses.
The other numbers are physical addresses.

So, we have two different EM memory implementations:
A — stack downwards

B - stack upwards

For each of these two possibilities we give the trandation of the EM instructions to push the third byte of a
global data block starting at EM address 40 onto the stack and to load the word at address 40. All translations
assume a word and pointer size of two bytes. The target machine used is a PDP-11 augmented with push and
pop instructions. Registers 'rQ’" and 'r1’ are used and suffer from sign extension for byte transfers. Push $40
means push the constant 40, not word 40.

The trandation of the EM instructions depends on the pointer representation used. For each of the two solu-
tions explained above the trandation is given.



First, the trangdlation for the two implementations using EM addresses as pointer representation:

EM type A type B
LAE 40 push $40 push $40
ADP 3 pop r0O pop 0
add $3,0 add  $3,r0
push r0 push rO
LOl 1 pop r0O pop 0
- neg r0
clr ri clr ri
bisb  eb(r0),r1 bisb  eb(r0),r1
push rl push rl
LOE 40 push €b+40 push eb-41

The trandation for the two implementations, if the target machine address is used as pointer representation,
is:

EM type A type B

LAE 40 push $eb+40 push $eb-40

ADP 3 pop rO pop rO
add  $3,r0 sub  $3,r0
push r0 push r0

LO 1 pop 0 pop 0
clr rl clr rl
bisb  (r0),r1 bisb  (r0),r1
push rl push rl

LOE 40 push €eb+40 push eb-41

The trandation presented above is not intended to be optimal. Most machines can handle these simple cases
in one or two instructions. It demonstrates, however, the flexibility of the EM design.

There are severa possibilities to implement EM on machines with address spaces larger than 64k bytes. For
EM with two byte pointers one could allocate instruction and data space each in a separate 64k piece of
memory. EM pointers still have to fit in two bytes, but the base registers PB and EB may be loaded in hardware
registers wider than 16 bits, if available. EM implementations can also make efficient use of a machine with
separate instruction and data space.

EM with 32 bit pointers allows one to make use of machines with large address spaces. In a virtual, seg-
mented memory system one could use a separate segment for each fragment.



6. TYPE REPRESENTATIONS

The representations used for typed objects are not precisely specified by EM. Sometimes we only specify
that a typed object occupies a certain amount of space and state no further restrictions. If one wants to have a
different representation of the value of an object on the stack one has to use a convert instruction in most cases.
We do specify some relations between the representations of types. This alows some intermixed use of opera-
tors for different types on the same object(s). For example, the instruction ZER pushes signed and unsigned in-
tegers with the value zero and empty sets. ZER has as only argument the size of the object.

The representation of floating point numbers is a good example, it allows widely varying implementations.
The only ways to create floating point numbers are via initialization and via conversions from integer numbers.
Only by using conversions to integers and comparing two floating point numbers with each other, can these
numbers be converted to human readable output. Implementations may use base 10, base 2 or any other base for
exponents, and have freedom in choosing the range of exponent and mantissa.

Other types are more precisely described. In the following paragraphs a description will be given of the res-
trictions imposed on the representation of the types used. A number n used in these paragraphs indicates the
size of the object in bits.

6.1 Unsigned integers

The range of unsigned integersis0.. 2"-1. A binary representation is assumed. The order of the bits within
an object is knowingly left unspecified. Discussing bit order within each 8-bit byte is academic, so the only real
freedom of this specification liesin the byte order. Wereally do not care whether an implementation of a 4-byte
integer has its bytes in a particular order of significance. This of course means that some sequences of instruc-
tions have unpredictable effects. For example:

LOC258;STLO;LALO;LOI1 (wordsize>=2)

The value on the stack after executing this sequence can be anything, but will most likely be 1 or 2.

Conversion between unsigned integers of different sizes have to be done with explicit convert instructions.
One cannot simply pad an unsigned integer with zero's at either end and expect a correct result.

We assume existence of at least single word unsigned arithmetic in any implementation.

6.2 Signed Integers

The range of signed integersis -2t 2”_1—1, in other words the range of signed integers of n bits using
two's complement arithmetic. The representation is the same as for unsigned integers except the range 1
2"-1 is mapped on the range -2"1 —1. In other words, the most significant bit is used as sign bit. The con-
vert instructions between signed and unsigned integers of the same size can be used to catch errors.

The value —2"% is used for undefined signed integers. EM implementations should trap when this value is
used in an operation on signed integers. The instruction mask, accessed with SIM and LIM — see chapter 9 —
can be used to disable such traps.

We assume existence of at least single word signed arithmetic in any implementation.

6.3 Floating point values

Floating point values must have a signed mantissa and a signed exponent. Although no base is specified,
base 2 is the normal choice, because the FEF instruction pushes the exponent in base 2.

The implementation of floating point arithmetic is optional. The compilers currently in use have runtime
parameters for the size of the floating point values they should use. Common choices are 4 and/or 8 bytes.

6.4 Pointers

EM has two kinds of pointers: for instruction and for data space. Each kind can only be used for its own
space, conversion between these two subtypes is impossible. We assume that pointers have a range from 0 up-
wards. Any implementation may have holes in the pointer range between fragments. One can of course not ex-
pect to be able to address two megabyte of memory using a 2-byte pointer. Normally, a 2-byte pointer allows up



to 65536 bytes of addressable memory.
Pointer representation has one restriction. The pointer with the same representation as the integer zero of the
same size should be invalid. Some languages and/or runtime systems represent the nil pointer as zero.

6.5 Bit sets

All bit sets of size n are subsets of the set { i |i>=0, i<n }. A bit set contains a bit for each element showing
its presence or absence. Bit sets are subdivided into words. The word with the lowest EM address governs the
subset { i |i>=0, i<m }, where m is the number of bitsin aword. The next higher words each govern the next
higher m set elements. The relation between a set with size of aword and an unsigned integer word is that the
value of the unsigned integer is the summation of the 2! wherei isin the set.

Example: a 2-word bit set (wordsize 2) containing the elements 1, 6, 8, 15, 18, 21, 27 and 28 is composed of
two integers, e.g. at addresses 40 and 42. The word at 40 contains the value 33090 (or —32446), the word at 42
contains the value 6180.



7. DESCRIPTORS

Several instructions use descriptors, notably the range check instruction, the array instructions, the goto in-
struction and the case jump instructions. Descriptors reside in data space. They may be constructed at run time,
but more often they are fixed and allocated in ROM data.

All instructions using descriptors, except GTO, have as argument the size of the integers in the descriptor.
All implementations have to alow integers of the size of a word in descriptors. All integers popped from the
stack and used for indexing or comparing must have the same size as the integers in the descriptor.

7.1 Range check descriptors
Range check descriptors consist of two integers:
1. lower bound signed
2. upper bound signed

The range check instruction checks an integer on the stack against these bounds and causes atrap if the value is
outside the interval. The value itself is neither changed nor removed from the stack.

7.2 Array descriptors

Each array descriptor describes a single dimension. For multi-dimensional arrays, several array instructions
are needed to access asingle element. Array descriptors contain the following three integers:

1. lower bound signed
2. upper bound — lower bound  unsigned
3. number of bytes per element  unsigned

The array instructions LAR, SAR and AAR have the pointer to the start of the descriptor as operand on the
stack.

The element A[l] isfetched as follows:
1. Stack the addressof A (e.g., using LAE or LAL)
2. Stack the value of | (n-byte integer)
3. Stack the pointer to the descriptor (e.g., using LAE)
4. LARN (nisthesize of theintegersin the descriptor and I)

All array instructions first pop the address of the descriptor and the index. If the index is not within the bounds
specified, a trap occurs. If ok, (I — lower bound) is multiplied by the number of bytes per element (the third
word). Theresult is added to the address of A and replaces A on the stack.

At this point LAR, SAR and AAR diverge. AAR isfinished. LAR pops the address and fetches the data
item, the size being specified by the descriptor. The usual restrictions for memory access must be obeyed. SAR
pops the address and stores the data item now exposed.

7.3 Non-local goto descriptors

The GTO instruction provides away of returning directly to any active procedure invocation. The argument
of the instruction is the address of a descriptor containing three pointers:

1. valueof PC after thejump



2. vaue of SP after the jump
3. value of LB after the jump

GTO replaces the loads PC, SP and LB from the descriptor, thereby jumping to a procedure and removing zero
or more frames from the stack. The LB, SP and PC in the descriptor must belong to a dynamically enclosing
procedure, because some EM implementations will need to backtrack through the dynamic chain and use the im-
plementation dependent data in frames to restore registers etc.

7.4 Casedescriptors

The case jump instructions CSA and CSB both provide multiway branches selected by a case index. Both
fetch two operands from the stack: first a pointer to the low address of the case descriptor and then the case in-
dex. CSA uses the case index as index in the descriptor table, but CSB searches the table for an occurrence of
the case index. Therefore, the descriptors for CSA and CSB, as shown in figure 4, are different. All pointersin
the table must be addresses of instructions in the procedure executing the case instruction.

CSA sdects the new PC by indexing. If the index, a signed integer, is greater than or equal to the lower
bound and less than or equal to the upper bound, then fetch the new PC from the list of instruction pointers by
indexing with index-lower. The table does not contain the value of the upper bound, but the value of upper-
lower as an unsigned integer. The default instruction pointer is used when the index is out of bounds. If the
resulting PC is O, then trap.

CSB selects the new PC by searching. The table is searched for an entry with index value equal to the case
index. That entry or, if none is found, the default entry contains the new PC. When the resulting PC is 0, atrap
is performed.

The choice of which case instruction to use for each source language case statement is up to the front end. If
the range of the index value isdense, i.e

(highest value — lowest value) / number of cases

isless than some threshold, then CSA isthe obvious choice. If the range is sparse, CSB is better.
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8. ENVIRONMENT INTERACTIONS

EM programs can interact with their environment in three ways. Two, starting/stopping and monitor calls,
are dealt with in this chapter. The remaining way to interact, interrupts, will be treated together with traps in
chapter 9.

8.1 Program starting and stopping

EM user programs start with a call to a procedure called _m a i n. The assembler and backends look for
the definition of a procedure with this name in their input. The call passes three parameters to the procedure.
The parameters are similar to the parameters supplied by the UNIX operating system to C programs. These
parameters are often called argc, argv and envp. Argc is the parameter nearest to LB and is a wordsized in-
teger. The other two are pointers to the first element of an array of string pointers.

The argv array contains argc strings, the first of which contains the program call name. The other stringsin the
argv array are the program parameters.

The envp array contains strings in the form "name=string", where 'name’ is the name of an environment
variable and string its value. The envp isterminated by a zero pointer.

An EM user program stopsif the program returns from the first invocation of _m_a i _n. The contents of the
function return area are used to procure a wordsized program return code. EM programs also stop when traps
and interrupts occur that are not caught and when the exit monitor call is executed.

8.2 Input/Output and other monitor calls

EM differs from most conventional machines in that it has high level i/o instructions. Typical instructions
are OPEN FILE and READ FROM FILE instead of low level instructions such as setting and clearing bits in
device registers. By providing such high level i/o primitives, the task of implementing EM on various non EM
machines is made considerably easier.

1/O isinitiated by the MON instruction, which expects an iocode on top of the stack. Often there are also
parameters which are pushed on the stack in reverse order, that is: last parameter first. Some i/o functions also
provide results, which are returned on the stack. In the list of monitor calls we use several types of parameters
and resullts, these types consist of integers and unsigneds of varying sizes, but never smaller than the wordsize,
and the two pointer types.

The names of the types used are;

int an integer of wordsize

int2 an integer whose size is the maximum of the wordsize and 2 bytes
int4 an integer whose size is the maximum of the wordsize and 4 bytes
intp an integer with the size of a pointer

uns2 an unsigned integer whose size is the maximum of the wordsize and 2
unsp an unsigned integer with the size of a pointer

ptr apointer into data space

The table below lists the i/o codes with their results and parameters. Thislist is similar to the system calls of the
UNIX Version 7 operating system.
To execute amonitor call, proceed as follows:

a) Stack the parameters, in reverse order, last parameter first.
b) Push the monitor call number (iocode) onto the stack.

UNIX isaTrademark of Bell Laboratories.



c¢) Execute the MON instruction.

An error code is present on the top of the stack after execution of most monitor cals. If this error code is zero,
the call performed the action requested and the results are available on top of the stack. Non-zero error codes
indicate a failure, in this case no results are available and the error code has been pushed twice. This construc-
tion enables programs to test for failure with a single instruction ( TEQ or TNE ) and till find out the cause of

the failure. Theresult name’€ isreserved for the error code.

List of monitor calls.

nr

N -

10
12
14
15
16
18
19

20
21

22
23
24
25
26

27
28

29
30

33

35
36

name
Exit
Fork
Read
Write
Open

Close
Wait

Creat
Link
Unlink
Chdir
Mknod
Chmod
Chown
Stat

Lseek

Getpid
Mount

Umount
Setuid
Getuid
Stime
Ptrace

Alarm
Fstat

Pause
Utime

Access
Nice

Ftime

Sync

parameters results
status:int
e flag,pid:int
fildes:int;buf:ptr;nbytes:unsp
eint;rbytes:unsp
fildes:int;buf:ptr;nbytes:unsp
eint;wbytes:unsp
string:ptr;flag:int
efildesint
fildes:int eint
eint;status,pid:int2

string: ptr;mode:int

efildesint
stringd,string2:ptr

eint
string:ptr eint
string:ptr eint
string:ptr;mode,addr:int2

eint
string: ptr;mode:int2

eint
string:ptr;owner,group:int2

eint
string, statbuf:ptr

eint

fildes:int;off:int4;whence:int
eiint;oldoff:int4

pid:int2
special , string:ptr;rwflag:int

eint
special:ptr eint
userid:int2 eint

e uid,r_uid:int2
timeint4 eint
request:int;pid:int2;addr:ptr;data:int

evaueint
seconds:uns2 previous.uns2
fildes:int;statbuf: ptr

eint
string,timep:ptr

eint
string: ptr;mode:int

eint
incr:int
bufp:ptr eint

function

Terminate this process
Spawn new process

Read from file
Write on afile

Open file for read and/or write
Close afile

Wait for child

Create anew file

Link to afile

Remove directory entry
Change default directory
Make a specid file

Change mode of file

Change owner/group of afile

Get file status

Move read/write pointer
Get process identification

Mount file system
Unmount file system
Set user ID

Get user ID

Set time and date

Process trace
Schedule signal

Get file status
Stop until signal

Set file times

Determine file accessibility
Set program priority

Get date and time

Update filesystem



37

41

42
43
a4

46
47
48

51
53
54

56
59

60
61

Kill
Dup

Pipe
Times
Profil

Setgid
Getgid
Sigtrp

Acct
Lock
loctl

Mpxcall
Exece

Umask
Chroot

pid:int2;sig:int

eint
fildes,newfildes:int

efildesint

ew_desr_desint
buffer:ptr
buff:ptr;bufsiz,offset,scale:intp
gid:int2 eint

e gid,r_gidint
trapno,signo:int

eprevtrap:int
file:ptr eint
flag:int eint
fildes,request:int;argp:ptr

eint

cmd:int;vec:ptr eint
name,argv,envp:ptr

eint
mask:int2 oldmask:int2
string:ptr eint

Send signal to a process

Duplicate afile descriptor
Create apipe
Get process times

Execution time profile
Set group ID
Get group ID

See below
Turn accounting on or off
Lock aprocess

Control device
Multiplexed file handling

Execute afile
Set file creation mode mask
Change root directory

Codes 0, 11, 13, 17, 31, 32, 38, 39, 40, 45, 49, 50, 52, 55, 57, 58, 62, and 63 are not used.

All monitor calls, except fork and sigtrp are the same as the UNIX version 7 system calls.

The sigtrp entry maps UNIX signals onto EM interrupts. Normally, trapno is in the range 0 to 252. In that
case it requests that signal signo will cause trap trapno to occur. When given trap number -2, default signal

handling is reset, and when given trap number -3, the signal isignored.

the other process.

The flag returned by fork is 1 in the child process and 0 in the parent. The pid returned is the process-id of



9. TRAPSAND INTERRUPTS

EM provides a means for the user program to catch all traps generated by the program itself, the hardware,
or external conditions. This mechanism uses five instructions: LIM, SIM, SIG, TRP and RTT. This section of
the manua may be omitted on the first reading since it presupposes knowledge of the EM instruction set.

The action taken when atrap occurs is determined by the value of an internal EM trap register. This register
contains a pointer to a procedure. Initially the pointer used is zero and al traps halt the program with, hopefully,
a useful message to the outside world. The SIG instruction can be used to alter the trap register, it pops a pro-
cedure pointer from the stack into the trap register. When a trap occurs after storing a nonzero value in the trap
register, the procedure pointed to by the trap register is caled with the trap number as the only parameter (see
below). SIG returns the previous value of the trap register on the stack. Two consecutive SIGs are a no-op.
When a trap occurs, the trap register is reset to itsinitial condition, to prevent recursive traps from hanging the
machine up, e.g. stack overflow in the stack overflow handling procedure.

The runtime systems for some languages need to ignore some EM traps. EM offers a feature called the ig-
nore mask. It contains one bit for each of the lowest 16 trap numbers. The bits are numbered 0 to 15, with the
least significant bit having number 0. If a certain bit is 1 the corresponding trap never occurs and processing
simply continues. The actions performed by the offending instruction are described by the Pascal program in
appendix A.

If the bit is 0, traps are not ignored. The instructions LIM and SIM allow copying and replacement of the ignore
mask.

The TRP instruction generates a trap, the trap number being found on the stack. Thisis, among other things,
useful for library procedures and runtime systems. It can also be used by alow level trap procedure to pass the
trap to a higher level one (see example below).

The RTT instruction returns from the trap procedure and continues after the trap. In the list below al traps
marked with an asterisk ("*") are considered to be fatal and it is explicitly undefined what happens when restart-
ing after the trap.

The way atrap procedure is called is completely compatible with normal calling conventions. The only way
atrap procedure differs from normal procedures is the return. It hasto use RTT instead of RET. This is neces-
sary because the complete runtime status is saved on the stack before calling the procedure and all this status has
to bereloaded. Error numbers are in the range 0 to 252. The trap numbers are divided into three categories:

0- 63 EM machine errors, e.g. illegal instruction.
0-15 maskable
16-63  not maskable
64-127  Reserved for use by compilers, run time systems, etc.
128-252  Available for user programs.

EM machine errors are numbered as follows:

0 EARRAY Array bound error
1 ERANGE Range bound error
2 ESET Set bound error
3 EIOVFL Integer overflow
4 EFOVFL Floating overflow
5 EFUNFL Floating underflow
6 EIDIVZ Divide by 0
7 EFDIVZ Divide by 0.0
8 EIUND Undefined integer
9 EFUND Undefined float
10 ECONV Conversion error
16* ESTACK Stack overflow
17 EHEAP Heap overflow
18* EILLINS Illegal instruction

19* EODDZ Illegal size argument



20 ECASE Case error

21*  EMEMFLT  Addressing non existent memory
22*  EBADPTR Bad pointer used

23* EBADPC Program counter out of range

24 EBADLAE Bad argument of LAE

25 EBADMON  Bad monitor call

26 EBADLIN Argument of LIN too high

27 EBADGTO  GTO descriptor error

As an example, suppose a subprocedure has to be written to do a numeric calculation. When an overflow
occurs the computation has to be stopped and the higher level procedure must be resumed. This can be pro-
grammed as follows using the mechanism described above:

mes 2,2,2 ; Set sizes
ersave

bss2,0,0 ; Room to save previous value of trap procedure
msave

bss2,0,0 ; Room to save previous value of trap mask

pro $calcule,0 ; entry point

IxI 0 ; fill in non-local goto descriptor with LB

ste jmpbuf+4

lor 1 ; and SP

ste jmpbuf+2

lim ; get current ignore mask

ste msave ; saveit

lim

loc 16 ; bit for EFOVFL

ior 2 ; et in mask

sim ; ignore EFOVFL from now on

Ipi $catch ; load procedure identifier

sig ; catch wil get al traps now

ste ersave ; save previous trap procedure identifier

; perform calculation now, possibly generating overflow

1 ; label jumped to by catch procedure

loe ersave ; get old trap procedure

sig ; refer al following trap to old procedure

asp 2 ; remove result of sig

loe msave ; restore previous mask

sim ; done now

; load result of calculation

ret 2 ; return result
jmpbuf

con *1,0,0

end



Example of catch procedure

pro $catch,0 ; Local procedure that must catch the overflow trap
lol 2 ; Load trap number
loc 4 ; check for overflow
bne*1 ; if other trap, call higher trap procedure
gto jmpbuf ; return to procedure calcule
1 ; other trap has occurred
loe ersave ; previous trap procedure
sig ; other procedure will get the traps now
asp 2 ; remove the result of sig
lol 2 ; stack trap number
trp ; call other trap procedure
rtt ; if other procedure returns, do the same

end



10. EM MACHINE LANGUAGE

The EM machine language is designed to make program text compact and to make decoding easy. Compact
program text has many advantages. programs execute faster, programs occupy less primary and secondary
storage and loading programs into satellite processors is faster. The decoding of EM machine language is so
simple, that it is feasible to use interpreters as long as EM hardware machines are not available. This chapter is
irrelevant when back ends are used to produce executabl e target machine code.

10.1 Instruction encoding

A design goal of EM isto make the program text as compact as possible. Decoding must be easy, however.
The encoding is fully byte oriented, without any small bit fields. There are 256 primary opcodes, two of which
are an escape to two groups of 256 secondary opcodes each.

EM instructions without arguments have a single opcode assigned, possibly escaped:

The encoding for instructions with an argument is more complex. Several instructions have an address from the
global data area as argument. Other instructions have different opcodes for positive and negative arguments.

There is always an opcode that takes the next two bytes as argument, high byte first:

| opcode | hi byt e | | obyte [
|- - |- |

or
|- EEEEEREERREEEE EEREESRREEEEEE EEREEEEEEEEEEE |
| escape | opcode | hi byt e [ | obyt e |

For most instructions some argument values predominate. The most frequent combinations of instruction and
argument will be encoded in asingle byte, caled amini:

| opcode+ar gument| (mni)

The number of minisis restricted, because only 254 primary opcodes are available. Many instructions have the
bulk of their arguments fall in the range 0 to 255. Instructions that address global data have their arguments dis-
tributed over a wider range, but small values of the high byte are common. For all these cases there is another
encoding that combines the instruction and the high byte of the argument into a single opcode. These opcodes
are called shorties. Shorties may be escaped.



Escaped shorties are useless if the norma encoding has a primary opcode. Note that for some instruction-
argument combinations severa different encodings are available. It is the task of the assembler to select the
shortest of these. The savings by these mini and shortie opcodes are considerable, about 55%.

Further improvements are possible: the arguments of many instructions are a multiple of the wordsize.
Some do also not allow zero as an argument. If these arguments are divided by the wordsize and, when zero is
not alowed, then decremented by 1, more of them can be encoded as shortie or mini. The arguments of some
other instructions rarely or never assume the value O, but start at 1. The value 1 isthen encoded as 0, 2 as 1 and
so on.

Assigning opcodes to instructions by the assembler is completely table driven. For details see appendix B.

10.2 Procedure descriptors

The procedure identifiers used in the interpreter are indices into a table of procedure descriptors. Each
descriptor contains:

1. thenumber of bytesto be reserved for locals at each invocation.
Thisis apointer-sized integer.

2. the start address of the procedure

10.3 Load format

The EM machine language load format defines the interface between the EM assembler/loader and the EM
machine itself. A load file consists of a header, the program text to be executed, a description of the global data
area and the procedure descriptor table, in this order. All integers in the load file are presented with the least
significant byte first.

The header has two parts: the first half (eight 16-bit integers) aids in selecting the correct EM machine or in-

terpreter. Some EM machines, for instance, may have hardware floating point instructions.
The header entries are as follows (bit 0 is rightmost):

1. magic number (07255)

2:  flag bits with the following meaning:
bit0  TEST,; test for integer overflow etc.
bitl  PROFILE; for each source line: count the number of memory cycles executed.
bit2  FLOW; for each source line: set a bit in a bit map table if instructions on that line are execut-

ed.

bit3  COUNT; for each source line: increment a counter if that line is entered.
bit4 REALS,; setif aprogram uses floating point instructions.
bit5 EXTRA; more tests during compiler debugging.
number of unresolved references.
version number; used to detect obsolete EM load files.
wordsize ; the number of bytesin each machine word.
pointer size ; the number of bytes available for addressing.



7. unused

8. unused
The second part of the header (eight entries, of pointer size bytes each) describes the load file itself:
NTEXT; the program text size in bytes.
NDATA; the number of load-file descriptors (see below).
NPROC; the number of entries in the procedure descriptor table.
ENTRY'; procedure number of the procedure to start with.
NLINE; the maximum source line number.
SZDATA,; the address of the lowest uninitialized data byte.
unused
unused

NPT WNE

The program text consists of NTEXT bytes. NTEXT is aways a multiple of the wordsize. The first byte of
the program text is the first byte of the instruction address space, i.e. it has address 0. Pointers into the program
text are found in the procedure descriptor table where relocation is simple and in the global data area. The ini-
tialization of the global data area allows easy relocation of pointers into both address spaces.

The global data area is described by the NDATA descriptors. Each descriptor describes a number of con-

secutive words (of wordsize) and consists of a sequence of bytes. While reading the descriptors from the load
file, one can initialize the global data area from low to high addresses. The size of the initialized data area is
given by SZDATA, this number can be used to check the initialization.
The header of each descriptor consists of a byte, describing the type, and a count. The number of bytes used for
this (unsigned) count depends on the type of the descriptor and is either a pointer-sized integer or one byte. The
meaning of the count depends on the descriptor type. At load time an interpreter can perform any conversion
deemed necessary, such as reordering bytesin integers and pointers and adding base addresses to pointers.

In the following pictures we show a graphical notation of the initializers. The leftmost rectangle represents
the leading byte.

Fields marked with

contain a pointer-sized integer used as a count
contain a one-byte integer used as a count
contain a one-byte integer

contain awordsized integer

contain adata or instruction pointer

contain anull terminated ASCII string

wWoT s O3S

| 0] n repeat last initialization n tines

| 2] m| muninitialized words

| 2 m| b | b|...] b minitialized bytes



type 1.
type 2

type 3:
type 4.

3| m| w [ ... minitialized wordsized integers
/ pointer \
41 m| p [ ... minitialized data pointers
/ pointer \
5] m| p [ ... minitialized instruction pointers

6| m| b| b|...|] b] initialized integer of size m

7| m| b| b|...] b initialized unsigned of size m

8| m| S | initialized float of size m

If the last initialization initialized k bytes starting at address a, do the same initialization again n times,
starting at a+k, a+2*k, .... atn*k. Thisisthe only descriptor whose starting byte is followed by an in-
teger with the size of a pointer, in all other descriptors the first byte is followed by a one-byte count.
This descriptor must be preceded by a descriptor of another type.

Reserve m words, not explicitly initialized (BSS and HOL).

The m bytes following the descriptor header are initializers for the next m bytes of the global data
area. misdivisible by the wordsize.

The m words following the header are initializers for the next m words of the global data area.

The m data address space pointers following the header are initializers for the next m data pointersin
the global data area. Interpreters that represent EM pointers by target machine addresses must relo-
cate al data pointers.



type 5:

type 6:

type 7.

type 8:

The m instruction address space pointers following the header are initializers for the next m instruc-
tion pointers in the global data area. Interpreters that represent EM instruction pointers by target
machine addresses must rel ocate these pointers.

The m bytes following the header form a signed integer number with a size of m bytes, which isan in-
itializer for the next m bytes of the global data area. m is governed by the same restrictions as for
transfer of objects to/from memory.

The m bytes following the header form an unsigned integer number with a size of m bytes, which isan
initializer for the next m bytes of the global data area. m is governed by the same restrictions as for
transfer of objects to/from memory.

The header isfollowed by an ASCII string, null terminated, to initialize, in global data, a floating point
number with a size of m bytes. m is governed by the same restrictions as for transfer of objects
to/from memory. The ASCII string contains the notation of areal as used in the Pascal language.

The NPROC procedure descriptors on the load file consist of an instruction space address (of pointer size)
and an integer (of pointer size) specifying the number of bytes for locals.



11. EM ASSEMBLY LANGUAGE

We use two representations for assembly language programs, one is in ASCII and the other is the compact
assembly language. The latter needs less space than the first for the same program and therefore allows faster
processing. Our only program accepting ASCII assembly language converts it to the compact form. All other
programs expect compact assembly input. The first part of the chapter describes the ASCII assembly language
and its semantics. The second part describes the syntax of the compact assembly language. The last part lists
the EM instructions with the type of arguments allowed and an indication of the function. Appendix A gives a
detailed description of the effect of all instructions in the form of a Pascal program.

11.1 ASCII assembly language

An assembly language program consists of a series of lines, each line may be blank, contain one
(pseudo)instruction or contain one label. Input to the assembler isin lower case. Upper case is used in this do-
cument merely to distinguish keywords from the surrounding prose. Comment is allowed at the end of each line
and starts with a semicolon ";". This kind of comment does not exist in the compact form.

Labels must be placed all by themselves on a line and start in column 1. There are two kinds of labels, in-
struction and data labels. Instruction labels are unsigned positive integers. The scope of an instruction label is
its procedure.

The pseudoinstructions CON, ROM and BSS may be preceded by a line containing a 1-8 character data la-
bel, the first character of which is aletter, period or underscore. The period may only be followed by digits, the
others may be followed by letters, digits and underscores. The use of the character "." followed by a constant,
which must be in the range 1 to 32767 (e.g. ".40") is recommended for compiler generated programs. These la-
bels are considered as a special case and handled more efficiently in compact assembly language (see below).
Note that a data label on its own or two consecutive |abels are not allowed.

Each statement may contain an instruction mnemonic or pseudoinstruction. These must begin in column 2
or later (not column 1) and must be followed by a space, tab, semicolon or LF. Everything on the line following
asemicolon is taken as a comment.

Each input file contains one module. A module may contain many procedures, which may be nested. A pro-
cedure consists of a PRO statement, a (possibly empty) collection of instructions and pseudoinstructions and
finaly an END statement. Pseudoinstructions are also allowed between procedures. They do not belong to a
specific procedure.

All constantsin EM are interpreted in the decimal base. The ASCII assembly language accepts constant ex-
pressions wherever constants are allowed. The operators recognized are: +, —, *, % and / with the usual pre-
cedence order. Use of the parentheses ( and ) to alter the precedence order is allowed.

11.1.1 Instruction arguments

Unlike many other assembly languages, the EM assembly language requires all arguments of normal and
pseudoinstructions to be either a constant or an identifier, but not a combination of these two. There is one ex-
ception to this rule: when a data label is used for initialization or as an instruction argument, expressions of the
form 'label+constant’ and 'label-constant’ are allowed. This makes it possible to address, for example, the third
word of aten word BSS block directly. Thus LOE LABEL+4 is permitted and so is CON LABEL+3. The
resulting address is must be in the same fragment as the label. It is not allowed to add or subtract from instruc-
tion labels or procedure identifiers, which certainly is not a severe restriction and greatly aids optimization.

Instruction arguments can be constants, data |abels, data labels offsetted by a constant, instruction labels and
procedure identifiers. The range of integers allowed depends on the instruction. Most instructions alow only
integers (signed or unsigned) that fit in a word. Arguments used as offsets to pointers should fit in a pointer-
sized integer. Finally, arguments to LDC should fit in a double-word integer.

Several instructions have two possible forms: with an explicit argument and with an implicit argument on
top of the stack. The size of the implicit argument is the wordsize. The implicit argument is always popped be-
fore all other operands. For example: 'CMI 4" specifies that two four-byte signed integers on top of the stack
are to be compared. 'CMI’ without an argument expects a wordsized integer on top of the stack that specifies
the size of the integers to be compared. Thus the following two sequences are equivalent:



LDL -10 LDL -10

LDL -14 LDL -14
LOC 4

CMI 4 CMI

ZEQ *1 ZEQ  *1

Section 11.1.6 shows the arguments allowed for each instruction.
11.1.2 Pseudoinstruction arguments

Pseudoinstruction arguments can be divided in two classes: Initializers and others. The following initializers
are allowed: signed integer constants, unsigned integer constants, floating-point constants, strings, data labels,
data |abels offsetted by a constant, instruction labels and procedure identifiers.

Constant initializersin BSS, HOL, CON and ROM pseudoinstructions can be followed by aletter |, U or F.
This indicator specifies the type of the initializer: Integer, Unsigned or Float. If no indicator is present | is as-
sumed. The size of the initializer is the wordsize unless the indicator is followed by an integer specifying the
initializer's size. This integer is governed by the same restrictions as for transfer of objects to/from memory.
As in instruction arguments, initializers include expressions of the form: "LABEL+offset" and
"LABEL —offset". The offset must be an unsigned decimal constant. The'IUF indicators cannot be used in the
offsets.

Data |labels are referred to by their name.

Strings are surrounded by double quotes (). Semicolon’s in string do not indicate the start of comment. In
the ASCII representation the escape character \ (backslash) alters the meaning of subsequent character(s). This
feature allows inclusion of zeroes, graphic characters and the double quote in the string. The following escape
sequences exist:

newline NL(LF) \n
horizontal tab HT \t
backspace BS \b
carriagereturn  CR \r
form feed FF \f
backslash \ \\
double quote " \"
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits specifying the value of the desired
character. If the character following a backslash is not one of those specified, the backslash isignored. Exam-
ple: CON "hello\012\0". Each string element initializes a single byte. The ASCII character set is used to map
characters onto values.

Instruction labels are referred to as * 1, *2, etc. in both branch instructions and as initializers.

The notation $procname means the identifier for the procedure with the specified name. This identifier has
the size of a pointer.

11.1.3 Notation

First, the notation used for the arguments, classes of instructions and pseudoinstructions.

<cst> =  integer constant (current range —2**31..2**31-1)
<dlb> = datalabel
<arg> = <cst> or <dlb> or <dlb>+<cst> or <dlb>-<cst>
<con> = integer constant, unsigned constant, floating-point constant
<str> =  string constant (surrounded by double quotes),
<ilb> = instruction label
"** followed by an integer in the range 0..32767.
<pro> = procedure number ('$ followed by a procedure name)
<val> =  <arg>, <con>, <pro> or <ilb>.



<par> = <va>or<str>
<.L>F =  zeroor moreof <...>
<..>+ = oneor moreof <...>

[...] optional ...

11.1.4 Pseudoinstructions

11.1.4.1 Sorage declaration

Initialized global datais allocated by the pseudoinstruction CON, which needs at least one argument. Each
argument is used to alocate and initialize a number of consecutive bytes in data memory. The number of bytes
to be allocated and the alignment depend on the type of the argument. For each argument, an integral number of
words, determined by the argument type, is allocated and initialized.

The pseudoinstruction ROM is the same as CON, except that it guarantees that the initialized words will not
change during the execution of the program. This information allows optimizers to do certain calculations such
as array indexing and subrange checking at compile time instead of at run time.

The pseudoinstruction BSS allocates uninitialized global data or large blocks of data initialized by the same
value. The first argument to this pseudo is the number of bytes required, which must be a multiple of the word-
size. The other arguments specify the value used for initialization and whether the initialization is only for con-
venience or a strict necessity. The pseudoinstruction HOL is similar to BSS in that it requests an (un)initialized
global data block. Addressing of aHOL block, however, is quasi absolute. The first byte is addressed by 0, the
second byte by 1 etc. in assembly language. The assembler/loader adds the base address of the HOL block to
these numbers to obtain the absolute address in the machine language.

The scope of a HOL block starts at the HOL pseudo and ends at the next HOL pseudo or at the end of a
module whatever comes first. Each instruction falls in the scope of at most one HOL block, the current HOL
block. It isnot allowed to have more than one HOL block per procedure.

The alignment restrictions are enforced by the pseudoinstructions. All initializers are aligned on a multiple
of their size or the wordsize whichever is smaller. Strings form an exception, they are to be seen as a sequence
of initializers each for one byte, i.e. strings are not padded with zero bytes. Switching to another type of frag-
ment or placing a label forces word-alignment. There are three types of fragments in global data space: CON,
ROM and BSS/HOL.

BSS <cst1>,<val>,<cst2>
Reserve <cst1> bytes. <val> isthe value used to initialize the area. <cst1> must be a multiple of the
size of <val>. <cst2>is0if theinitialization isnot strictly necessary, 1if itis.

HOL <cst1>,<val>,<cst2>
Idem, but all following absolute global data references will refer to this block. Only one HOL is al-
lowed per procedure, it hasto be placed before the first instruction.

CON <val>+
Assemble global data words initialized with the <val> constants.

ROM <val>+
Idem, but the initialized data will never be changed by the program.

11.1.4.2 Partitioning

Two pseudoinstructions partition the input into procedures:

PRO <pro>[,<cst>]
Start of procedure. <pro> is the procedure name. <cst> is the number of bytes for locals. The
number of bytes for locals must be specified in the PRO or END pseudoinstruction. When specified in
both, they must be identical.



END [<cst>]
End of Procedure. <cst> is the number of bytes for locals. The number of bytes for locals must be
specified in either the PRO or END pseudoinstruction or both.

11.1.4.3 Visibility

Names of data and procedures in an EM module can either be internal or external. External names are
known outside the module and are used to link several pieces of a program. Internal names are not known out-
side the modules they are used in. Other modules will not 'see’ an internal name.

To reduce the number of passes needed, it must be known at the first occurrence whether a name is internal
or external. If the first occurrence of a name isin a definition, the name is considered to be internal. If the first
occurrence of aname is areference, the name is considered to be external. If the first occurrence isin one of the
following pseudoinstructions, the effect of the pseudo has precedence.

EXA <dlb>
External name. <dlb> is known, possibly defined, outside this module. Note that <dlb> may be
defined in the same module.

EXP <pro>
External procedure identifier. Note that <pro> may be defined in the same module.

INA <dlb>
Internal name. <dlb> isinternal to this module and must be defined in this module.

INP <pro>
Internal procedure. <pro> isinterna to this module and must be defined in this module.

11.1.4.4 Miscellaneous

Two other pseudoinstructions provide miscellaneous features:

EXC <cst1>,<cst2>
Two blocks of instructions preceding this one are interchanged before being processed. <cst1> gives
the number of lines of the first block. <cst2> gives the number of lines of the second one. Blank and
pure comment lines do not count. Thisinstruction is obsolete. Its useis strongly discouraged.

MES <cst>[,<par>]*
A special type of comment. Used by compilers to communicate with the optimizer, assembler, etc. as
follows:
MESO
An error has occurred, stop further processing.
MES 1
Suppress optimization.
MES 2,<cst1>,<cst2>
Use wordsize <cst1> and pointer size <cst2>.
MES 3,<cst1>,<cst2>,<cst3>,<cst4>
Indicates that alocal variable is never referenced indirectly. Used to indicate that a register may
be used for a specific variable. <cst1> is offset in bytes from AB if positive and offset from LB if
negative. <cst2> gives the size of the variable. <cst3> indicates the class of the variable. The
following values are currently recognized:
0 Thevariable can be used for anything.
1 Thevariableis used as aloopindex.
2 Thevariableisused as a pointer.
3 Thevariableisused as afloating point number.
<cst4> gives the priority of the variable, higher numbers indicate better candidates.
MES 4,<cst>,<str>
Number of source linesin file <str> (for profiler).



MES5
Floating point used.
MES 6,<val>*
Comment. Used to provide comments in compact assembly language.

Reserved.
MES 8,<pro>[,<dlb>]...
Library module. Indicates that the module may only be loaded if it isuseful, that is, if it can satis-
fy any unresolved references during the loading process. May not be preceded by any other pseu-
do, except MES's.
MES 9,<cst>
Guarantees that no more than <cst> bytes of parameters are accessed, either directly or indirectly.
MES 10,<cst>[,<par>]*
This message number is reserved for the global optimizer. It inserts these messages in its output
as hints to backends. <cst> indicates the type of hint.
MES 11
Procedures containing this message are possible destinations of non-local goto’'s with the GTO
instruction. Some backends keep locals in registers, the locals in this procedure should not be
kept in registers and all registers containing locals of other procedures should be saved upon en-
try to this procedure.

Each backend is free to skip irrelevant MES pseudos.

11.2 The Compact Assembly Language

The assembler accepts input in a highly encoded form. This form is intended to reduce the amount of file
transport between the front ends, optimizers and back ends, and also reduces the amount of storage required for
storing libraries. Libraries are stored as archived compact assembly language, not machine language.

When beginning to read the input, the assembler isin neutral state, and expects either a label or an instruc-
tion (including the pseudoinstructions). The meaning of the next byte(s) when in neutral state is as follows,
where bl, b2 etc. represent the succeeding bytes.

0 Reserved for future use
1-129 Machine instructions, see Appendix A, alphabetical list
130-149 Reserved for future use
150-161 BSS,CON,END,EXA,EXC,EXP,HOL,INA,INP,MES,PRO,ROM
162-179 Reserved for future pseudoinstructions
180-239 Instruction labels 0 — 59 (180 islocal label O etc.)
240-244 See the Common Table below
245-255 Not used

After alabel, the assembler is back in neutral state; it can immediately accept another label or an instruction in
the next byte. No linefeeds are used to separate lines.

If an opcode expects no arguments, the assembler is back in neutral state after reading the one byte contain-
ing the instruction number. If it has one or more arguments (only pseudos have more than 1), the arguments fol-
low directly, encoded as follows:

0-239 Offsets from -120to 119
240-255  Seethe Common Table below

Absence of an optional argument isindicated by a special byte.



Common Table for Neutral State and Arguments

class bytes description
<ilb> 240 bl Instruction label b1l (Not used for branches)
<ilb> 241  blhb2 16 bit instruction label (256*b2 + bl)
<dlb> 242 bl Global label .0-.255, with bl being the label
<dlb> 243 blb2 Global label .0-.32767

with 256* b2+b1 being the label
<dlb> 244 <string> Globa symbol not of the form .nnn
<cst> 245 blb2 16 bit constant
<cst> 246 blb2b3b4 32 hit constant
<cst> 247 bl.. b8 64 bit constant
<arg> 248  <dlb><cst> Global label + (possibly negative) constant
<pro> 249  <string> Procedure name (not including $)
<str> 250  <string> String used in CON or ROM (no quotes-no escapes)
<con> 251  <cst><string> Integer constant, size <cst> bytes

<con> 252  <cst><string> Unsigned constant, size <cst> bytes
<con> 253  <cst><string> Floating constant, size <cst> bytes
254 unused
<end> 255 Delimiter for argument lists or
indicates absence of optional argument

The bytes specifying the value of a 16, 32 or 64 bit constant are presented in two's complement notation,
with the least sdignificant byte first. For example: the value of a 32 bit constant is
((s4* 256+b3)* 256+b2)* 256+b1, where s4 is b4-256 if b4 is greater than 128 else 4 takes the value of b4. A
<string> consists of a <cst> immediately followed by a sequence of bytes with length <cst>.

The pseudoinstructions fall into several categories, depending on their arguments:

Group 1 - EXC, BSS, HOL have a known number of arguments
Group 2 - EXA, EXP, INA, INP have a string as argument

Group 3 - CON, MES, ROM have avariable number of various things
Group 4 — END, PRO have atrailing optional argument.

Groups 1 and 2 use the encoding described above. Group 3 also uses the encoding listed above, with an <end>
byte after the last argument to indicate the end of the list. Group 4 uses an <end> byte if the trailing argument is
not present.

Example ASCII Example compact
(LOC =69, BRA =18 here):

2 182

1 181

LOC 10 69 130

LOC -10 69 110

LOC 300 69245441

BRA *19 18139

300 241441

3 2423

CON 4,9,%2%foo 151 124129 240 2 249 123 102 111 111 255

CON .35 151 242 35 255



11.3 Assembly language instruction list

For each instruction in the list the range of argument values in the assembly language is given. The column
headed assem contains the mnemonics defined in 11.1.3. The following column specifies restrictions of the ar-
gument value. Addresses have to obey the restrictions mentioned in chapter 2. The classes of arguments are in-

dicated by letters:

assem constraints
c cst fitsword
d cst fits double word
I cst
g ag >=0
f cst
n cst >=0
s cst >0, word multiple
z cst >=0, zero or word multiple
o cst >0, word multiple or fraction
w cst >0, word multiple
p pro
b ilb >=0
r cst 0,1,2

rationale

constant
constant

local offset
global offset
fragment offset
counter

object size
object size
object size
object size *
pro identifier
label number
register number
no argument

The * at the rationale for w indicates that the argument can either be given as argument or on top of the
stack. If the argument is omitted, the argument is fetched from the stack; it is assumed to be a wordsized un-
signed integer. Instructions that check for undefined integer or floating-point values and underflow or overflow

are indicated below by (*).

GROUP1-LOAD

LOCc: Load constant (i.e. push one word onto the stack)

LDCd: Load double constant ( push two words)

LOL |: Load word at |-th local (1<0) or parameter (I>=0)

LOEg: Load external word g

LILI: Load word pointed to by I-th local or parameter

LOFf: Load offsetted (top of stack + f yield address)

LAL|: Load address of local or parameter

LAEQ: Load address of external

LXL n: Load lexical (address of LB n static levels back)

LXAn: Load lexical (address of AB n static levels back)

LOlo: Load indirect o bytes (address is popped from the stack)
LOSw: Load indirect, w-byte integer on top of stack gives object size
LDL |: Load double local or parameter (two consecutive words are stacked)
LDEg: Load double external (two consecutive externals are stacked)
LDFf: Load double offsetted (top of stack + f yield address)

LPlIp: Load procedure identifier



GROUP 2 - STORE

STLI: Store local or parameter

STEgQ: Store external

SIL |: Store into word pointed to by I-th local or parameter

STFf: Store offsetted

STlo: Store indirect o bytes (pop address, then data)

STSw: Store indirect, w-byte integer on top of stack gives object size
SDL | : Store double local or parameter

SDEg: Store double external

SDFf: Store doubl e offsetted

GROUP 3 - INTEGER ARITHMETIC

ADIw:  Addition (*)

SBIl w : Subtraction (*)

MLI w ; Multiplication (*)

DVIw: Division (*)

RMI w : Remainder (*)

NGI w : Negate (two’s complement) (*)
SLIw: Shift left (*)

SRI w: Shift right (*)

GROUP 4 - UNSIGNED ARITHMETIC

ADU w : Addition
SBU w : Subtraction
MLU w : Multiplication
DVUw : Division
RMU w : Remainder
SLUw: Shift left
SRU w : Shift right

GROUP 5 - FLOATING POINT ARITHMETIC

ADFw : Floating add (*)

SBFw : Floating subtract (*)

MLFw : Floating multiply (*)

DVFw: Floating divide (*)

NGF w : Floating negate (*)

FIFw: Floating multiply and split integer and fraction part (*)
FEF w : Split floating number in exponent and fraction part (*)

GROUP 6 - POINTER ARITHMETIC
ADPf : Add f to pointer on top of stack

ADSw : Add w-byte value and pointer
SBSw : Subtract pointers in same fragment and push diff as size w integer



GROUP 7 - INCREMENT/DECREMENT/ZERO

INC -: Increment word on top of stack by 1 (*)
INL I : Increment local or parameter (*)

INEg: Increment external (*)

DEC -: Decrement word on top of stack by 1 (*)
DEL | : Decrement local or parameter (*)

DEE g: Decrement external (*)

ZRL | : Zero local or parameter

ZREgQ: Zero externd

ZRFw : Load afloating zero of sizew

ZER W : Load w zero bytes

GROUP 8 - CONVERT (stack:source, source size, dest. size (top))

Cll -: Convert integer to integer (*)
CuUl - Convert unsigned to integer (*)
CFl - Convert floating to integer (*)
CIF-: Convert integer to floating (*)
CUF - Convert unsigned to floating (*)
CFF-: Convert floating to floating (*)
ClU -: Convert integer to unsigned
CuU - Convert unsigned to unsigned
CFU - Convert floating to unsigned

GROUP 9 - LOGICAL

AND w : Boolean and on two groups of w bytes
IORw : Boolean inclusive or on two groups of w bytes
XORw : Boolean exclusive or on two groups of w bytes

COM w:  Complement (on€'s complement of top w bytes)
ROL w : Rotate left a group of w bytes
RORw : Rotate right a group of w bytes

GROUP 10 - SETS

INN w : Bit test on w byte set (bit number on top of stack)
SET w: Create singleton w byte set with bit n on (n istop of stack)

GROUP 11 - ARRAY
LARw : Load array element, descriptor contains integers of sizew

SARwW : Store array element
AAR W : Load address of array element



GROUP 12 - COMPARE

CMI w: Compare w byte integers, Push negative, zero, positive for <, = or >
CMFw : Compare w bytereas

CMUw:  Comparew byte unsigneds

CMSw : Compare w byte values, can only be used for bit for bit equality test
CMP - Compare pointers

TLT - Trueif less, i.e. iff top of stack <0

TLE-: Trueif less or equd, i.e. iff top of stack <=0
TEQ-: Trueif equal, i.e. iff top of stack =0

TNE -: True if not equal, i.e. iff top of stack non zero
TGE -: True if greater or equal, i.e. iff top of stack >=0
TGT - True if greater, i.e. iff top of stack >0

GROUP 13 - BRANCH
BRADb: Branch unconditionally to label b

BLTb: Branch less (pop 2 words, branch if top > second)
BLED: Branch less or equal

BEQb: Branch equal

BNEDb: Branch not equal

BGEb: Branch greater or equal

BGTb: Branch greater

ZLThb: Branch less than zero (pop 1 word, branch negative)
ZLED: Branch less or equal to zero

ZEQb: Branch equal zero

ZNEDb: Branch not zero

ZGEb: Branch greater or equal zero

ZGTb: Branch greater than zero

GROUP 14 - PROCEDURE CALL

CAIl - Call procedure (procedure identifier on stack)
CAL p: Call procedure (with identifier p)
LFRs: Load function result

RET z: Return (function result consists of top z bytes)



GROUP 15 - MISCELLANEOUS

ASPf:

ASSw :
BLM z:
BLSw :
CSA w:
CSBw:
DCH -:

DUPs:

DUSw :
EXGw:

FILg:

GTOg:

LIM -
LINN:
LNI -
LORT :
LPB -

MON - :
NOP - :
RCK w :

RTT -
SIG-:
SIM -
STRr :
TRP -

Adjust the stack pointer by f

Adjust the stack pointer by w-byte integer

Block move z bytes; first pop destination addr, then source addr
Block move, sizeisin w-byte integer on top of stack
Case jump; address of jump table at top of stack

Table lookup jump; address of jump table at top of stack
Follow dynamic chain, convert LB to LB of caller
Duplicate top s bytes

Duplicate top w bytes

Exchange top w bytes

File name (external 4 :=g)

Non-local goto, descriptor at g

Load 16 bit ignore mask

Line number (external 0:=n)

Line number increment

Load register (0=LB, 1=SP, 2=HP)

Convert local base to argument base

Monitor call

No operation

Range check; trap on error

Return from trap

Trap errors to proc identifier on top of stack, —2 resets default
Store 16 bit ignore mask

Store register (0=LB, 1=SP, 2=HP)

Cause trap to occur (Error number on stack)



A. EM INTERPRETER

{ This is an interpreter for EM It serves as the official machine
definition. This interpreter nust run on a nachi ne which supports
arithnmetic with words and nenory of fsets.

Certain aspects of the definition are over specified. |In particular:

1.

The representation of an address on the stack need not be the
nunerical value of the nenory |ocation

The state of the stack is not defined after a trap has aborted
an instruction in the mddle. For exanple, it is officially un-
defined whether the second operand of an ADD instruction has
been popped or not if the first one is undefined ( -32768 or
unsi gned 32768).

The nmenory layout is inplenentation dependent. Only the nost
basi ¢ checks are perfornmed whenever nenory is accessed

The representation of an integer or set on the stack is not fixed
in bit order.

The fornmat and existence of the procedure descriptors depends on
the i npl enentati on.

The result of the conpare operators CM etc. are -1, 0 and 1
here, but other negative and positive values will do and they
need not be the sanme each tine.

The shift count for SHL, SHR, ROL and ROR nust be in the range 0
to object size in bits - 1. The effect of a count not in this
range i s undefi ned.



{$i 256} {$d+}
program ent abl es, prog, i nput, out put);

| abel 8888, 9999;

const
t15
t15ml
t16
tileml
t31m

wsi ze
asi ze
fsize
maxret =

si gnbi t
negof f
maxsi nt
maxui nt
maxdb
maxadr
maxof f s
maxbi t nr

i neadr
fileadr
maxcode
maxdat a

32
32
65
65

768;
767;
536;
535;

2147483647,

2
2
4.
4

t 15;
t 16;

t15mi;
tilemt,
t31m;
t1lemt;
t15mi;

15;

0;
4
8191;
8191;

{ 2**15

{ 2**15 -
{ 2**16

{ 2**16 -
{ 2**31 -
nunber
nunber
nunber
nunber

latn Nate Nate Wate

latn Nt Nt Watn Wann W Wos  Wee

addr ess
addr ess
hi ghest
hi ghest

latn Nate Wate Wane

{ format of status save area }

statd
dynd
reta
savsi ze

4;

21
0
4.

{ how far
{ how far
{ how far
{ size of

{ procedure descriptor format }

pdl ocs
pdbase
pdsi ze

0;

asi ze;

4;

{ header words }

NTEXT
NDATA
NPRCC
ENTRY
NLI NE
SZDATA

escapel
escape?
undef

{ error codes }

EARRAY
EFUNFL
ECONV
ECASE

1
2;
3;
4;
5;
6;
254;
255;
si gnbi t;
0; ERANGE
5; EIDIVZ
10; ESTACK
20; EMEMFLT

{ offset for size of

1

e e e

1
1

of
of
of
of

t he power
t he next power
t he maxi num si gned i nteger }
t he maxi mum unsi gned i nteger }

t he maxi mum doubl e si gned integer }
t he maxi num address }

the maxi num offset from an address }
the nunber of the highest bit }

byt es
byt es
byt es
wor ds

in a word }
in an address }

in a floating point

nunber }

in the return value area }

of two indicating the sign bit }
of two }

of the |ine nunber }
of the file nanme }

byte in code address space }
byte in data address space }

is static link fromlb }

is dynamic link fromlb }
is the return address fromlb }
save area in bytes }

| ocal

{ offset for the procedure base }
{ size of procedure descriptor

{ escape to secondary opcodes }

{ escape to tertiary opcodes }

{ the range of

= 1, ESET

= 6; EFDIVZ
= 16; EHEAP

= 21; EBADPTR

2;
7,
17;
22;

El OVFL
El UND
El LLI NS
EBADPC

integers is -32767

vari ables in bytes }

to +32767 }
3; EFOVFL
8; EFUND
18; EODDZ
23; EBADLAE

in bytes = 2*asize }



EBADMON = 25; EBADLIN = 26; EBADGIO = 27,



{ Decl arati ons }
e R e R P R PR PR SEREEE PP PEEEP R PEREEPPROD }
type

bitval = 0..1; { one bit }

bitnr= 0..nmaxbitnr; { bits in machi ne words are nunbered 0 to 15 }

byt e= 0. . 255; { menory is an array of bytes }

adr = {0..maxadr} long; { the range of addresses }

wor d= {0..maxuint} long;{ the range of unsigned integers }

of fs= -maxoffs..maxoffs; { the range of signed offsets from addresses }

si ze= 0. . maxof fs; { the range of sizes is the positive offsets }

sword= {-signbit..maxsint} long; { the range of signed integers }

full= {-maxuint..maxuint} long; { internediate results need this range }

doubl e={- maxdbl . . maxdbl } 1 ong; { doubl e precision range }

bftype= (andf,iorf,xorf); { tells which bool ean operator needed }

i nscl ass=(primsecond,tert); { tells which opcode table is in use }
instype=(inplic,explic); { does opcode have inplicit or explicit operand }
iflags= (mni,short,shit,wbhit,zbit,ibit);

ifset= set of iflags

mem = ( NON,

AAR, ADF, ADI, ADP, ADS, ADU, XAND, ASP, ASS, BEQ
BGE, BGI, BLE, BLM BLS, BLT, BNE, BRA, CAl, CAL,
CFF, CFI, CFU, CIF, Cl, CU CwW, CM, CWP, CMS
CMJ, COM CSA, CSB, CUF, Cu, CuUU, DCH, DEC, DEE,
DEL, DUP, DUS, DVF, DVI, DVU, EXG, FEF, FIF, FIL,
GTO, INC, INE, INL, INN, IOR LAE, LAL, LAR, LDC
LDE, LDF, LDL, LFR, LIL, LIM LIN, LN, LOC, LOCE
LOF, LA, LA, LOR, LGS, LPB, LPI, LXA, LXL, MF,
M., MU, MON, NGF, NG, NOP, RCK, RET, RM, RWMJ
ROL, ROR, RTT, SAR, SBF, SBI, SBS, SBU, SDE, SDF,
SDL, XSET, SIG SIL, SIM SLI, SLU, SRI, SRU, STE,
STF, STI, STL, STR, STS, TEQ TGE, TGI, TLE, TLT
TNE, TRP, XOR, ZEQ ZER, ZGE, ZGT, ZLE, ZLT, ZNE,
ZRE, ZRF, ZRL);

di spatch = record
iflag: ifset;
instr: mem
case instype of
inmplic: (inmplicit:sword);
explic: (ilength:byte);

end;
var
code: packed array[O0..nmaxcode] of byte; { code space }
data: packed array[O..nmaxdata] of byte; { data space }
retarea: array[1l..nmaxret ] of word; { return area }
pc, | b,sp, hp,pd: adr; { internal machine registers }
i: integer; { integer scratch variable }
s,t :word; { scratch variables }
sz:size; { scratch variables }
ss, st: sword; { scratch variables }
k :doubl e; { scratch variables }
j:size; { scratch variable used as index }
a, b: adr; { scratch variable used for addresses }
dt, ds: doubl €; { scratch variables for double precision }



rt,rs,x,y:real; { scratch variables for real }

f ound: bool ean; { scratch }
opcode: byte; { holds the opcode during execution }
i class: insclass; { true for escaped opcodes }

di spat: array[insclass, byte] of dispatch;

retsize:size; hol ds size of last LFR }

insr: mem hol ds the instruction nunber }

hal t ed: bool ean; normal ly fal se }

exi tstatus: word; paraneter of MON 1 }

i gnmask: wor d; i gnore mask for traps }

uerrorproc: adr; nunber of user defined error procedure }

i ntrap: bool ean; Set when executing trap(), to catch recursive call s}
trapval : byt e; Set to nunber of last trap }

header: array[1l..8] of adr;

fate Nt Wt Watn Wann W Wos  Wee

tabl es: text; { description of EMinstructions }

prog: file of byte; { programand initialized data }
e R e L LR EEREEE PR P PEEEP R PEEEEPPROD }
{ Vari ous check routines }
R R e R R P R PR PR SEREEE PP PEEEP R PEREEPPROD }

{ Only the nost basic checks are perfornmed. These routines are inherently
i mpl ement ati on dependent. }

procedure trap(n:byte); forward;

procedure nenadr(a:adr);
begin if (a>naxdata) or ((a<sp) and (a>=hp)) then trap(EMEMFLT) end;

procedure wordadr (a: adr);
begin nenadr(a); if (a nod wsize<>0) then trap(EBADPTR) end;

procedure chkadr(a:adr; s:size);
begi n nenadr(a); nenmadr(a+s-1); { assunption: size is ok }

if s<wsize
then begin if a mbd s<>0 then trap(EBADPTR) end
el se if a mod wsize<>0 then trap(EBADPTR)

end;

procedure newpc(a: doubl e);
begin if (a<0) or (a>nmaxcode) then trap(EBADPC); pc:=a end;

procedure newsp(a:adr);
begin if (a>b) or (a<hp) or (a nod wsize<>0) then trap(ESTACK); sp:=a end;

procedure new b(a:adr);
begin if (a<sp) or (a nod wsize<>0) then trap(ESTACK); |b:=a end;

procedure newhp(a:adr);

begin if (a>sp) or (a>naxdata+l) or (a nod wsi ze<>0)
t hen trap( EHEAP)
el se hp: =a

end;

function argc(a: doubl e):sword;
begin if (a<-signbit) or (a>maxsint) then trap(EILLINS); argc:=a end;



function argd(a: doubl e): doubl €;
begin if (a<-maxdbl) or (a>maxdbl) then trap(ElILLINS); argd:=a end;

function argl (a: double):offs;
begin if (a<-maxoffs) or (a>maxoffs) then trap(EILLINS); argl:=a end;

function argg(k:double): adr;
begin if (k<0) or (k>maxadr) then trap(ElILLINS); argg:=k end;

function argf(a:double):offs;
begin if (a<-maxoffs) or (a>maxoffs) then trap(EILLINS); argf:=a end;

function argn(a: doubl e): word;
begin if (a<0) or (a>maxuint) then trap(ElILLINS); argn:=a end;

function args(a: double): size;
begin if (a<=0) or (a>naxoffs)
t hen trap( EODDZ)
else if (a nod wsize)<>0 then trap(EODDZ);
args: =a ;
end;

function argz(a:double): size;
begin if (a<0) or (a>maxoffs)
t hen trap( EODDZ)
else if (a nod wsize)<>0 then trap(EODDZ);
argz: =a ;
end;

function argo(a: doubl e): si ze;
begin if (a<=0) or (a>naxoffs)
t hen trap( EODDZ)
else if (a nod wsize<>0) and (wsize nod a<>0) then trap(EODDZ);
argo: =a ;
end;

function argwa: doubl e): si ze;
begin if (a<=0) or (a>maxoffs) or (a>maxuint)
t hen trap( EODDZ)
else if (a nod wsize)<>0 then trap(EOCDDZ);
argw =a ;
end;

function argp(a: double): size;
begin if (a<0) or (a>=header[ NPROC]) then trap(ElILLINS); argp:=a end;

function argr(a:double): word;
begin if (a<0) or (a>2) then trap(EILLINS); argr:=a end;

procedure argw (s: doubl e);
begin if argw(s)<>fsize then trap(ElILLINS) end;

function szindex(s:doubl e):integer;

begin s:=argw(s); if (s nod wsize <> 0) or (s>2*wsize) then trap(ElILLINS);
szi ndex: =s div wsize

end;

function | ocadr(l:double):adr;
begin I:=argl (l); if 1<0 then |ocadr:=lb+l else |ocadr:=Ilb+l +savsi ze end;



function signwd(w word):sword;
begin if w = undef then trap(El UND);
if w>= signbit then signwd: =w negoff el se signwd:

1l
=

end;

function dosi gn(w word):sword;
begin if w >= signbit then dosign: =w negoff el se dosign: =w end;

function unsign(w sword):word;
begin if w0 then unsign: =w+negoff el se unsi gn: =w end,;

function chopw(dw. doubl e): word;
begi n chopw. =dw nod negoff end;

function fitsw(w full;trapno: byte): word;
{ checks whether value fits in signed word, returns unsigned representation}
begi n
if (wenmaxsint) or (w<-signbit) then
begin trap(trapno);
if wO then fitsw =negoff- (-w)nod negoff
el se fitsw =w nod negoff;
end
el se fitsw =unsign(w)
end;

function fitd(w: full):double;

begin
if abs(w) > naxdbl then trap( ECONV);
fitd:=w
end;
{ ___________________________________________________________________________
{ Menory access routines
{ ___________________________________________________________________________

{ memw returns a nachine word as an unsi gned integer
menb returns a single byte as a positive integer: 0 <= nenb <= 255
nmens(a,s) fetches an object smaller than a word and returns a word
store(a,v) stores the word v at machi ne address a
storea(a,v) stores the address v at machi ne address a
storeb(a,b) stores the byte b at nmachi ne address a
stores(a,s,v) stores the s least significant bytes of a word at address a
menm returns an offset fromthe instruction space

Not e that the procedure descriptors are part of instruction space.

nextpc returns the next byte addressed by pc, increnenting pc

lino changes the |ine nunber word
filna changes the pointer to the file nane.

Al'l routines check to make sure the address is within range and valid for
the size of the object. If an addressing error is found, a trap occurs.

function nemM a: adr) : word;
var b:word; i:integer
begi n wordadr (a); b:=0;
for i:=wsize-1 downto 0 do b:=256*b + datala+i]



memv. =b
end;

function nend(a: adr): double; { Always signed }

var b:double; i:integer;

begi n wordadr(a); b:=data]a+2*wsi ze-1];
if b>=128 then b:=b-256;
for i:=2*wsize-2 downto 0 do b:=256*b + data[a+i] ;
mend: =b

end;

function nenma(a: adr): adr;

var b:adr; i:integer;

begi n wordadr (a); b:=0;
for i:=asize-1 downto 0 do b:=256*b + datala+i]
mema: =b

end;

function nens(a: adr;s:size):word;
var i:integer; b:word;

begi n chkadr(a,s); b:=0; for i:=1 to s do b:=b*256+data[a+s-i]; nens:=b end

function nenb(a: adr): byte;
begi n nmenadr (a); nenb: =data[a] end;

procedure store(a:adr; x:word);

var i:integer;
begi n wor dadr (a);
for i:=0 to wsize-1 do

begin data[a+i]:=x nobd 256; x:=x div 256 end
end;

procedure storea(a:adr; x:adr);

var i:integer;
begi n wordadr (a);
for i:=0 to asize-1 do

begin data[a+i]:=x nod 256; x:=x div 256 end
end;

procedure stores(a: adr;s:size;v:word);
var i:integer;
begi n chkadr(a, s);
for i:=0 to s-1 do begin data[a+i]:=v nod 256; v:=v div 256 end;
end;

procedure storeb(a:adr; b:byte);
begi n menmadr(a); data[a]:=b end;

function nem (a:adr): adr;

var b:adr; i:integer;

begin if (a nbod wsize<>0) or (a+asize-1>maxcode) then trap(EBADPTR); b: =0;
for i:=asize-1 downto 0 do b:=256*b + code[ a+i]
mem : =b

end;

function nextpc: byte;
begin if pc>=pd then trap(EBADPC); nextpc:=code[pc]; newpc(pc+l) end;

procedure |ino(w word);



begin store(lineadr,w end;

procedure filna(a:adr);
begin storea(fileadr,a) end;

{ push puts a word on the stack
pushsw takes a signed one word integer and pushes it on the stack
pop renoves a machine word fromthe stack and delivers it as a word
popsw renoves a machine word fromthe stack and delivers a signed integer
pusha pushes an address on the stack
popa renoves a nmachine word fromthe stack and delivers it as an address
pushd pushes a doubl e precision nunber on the stack
popd renoves two nmachi ne words and returns a double precision integer
pushr pushes a float (floating point) nunber on the stack
popr renoves several nmachine words and returns a float nunber
pushx puts an object of arbitrary size on the stack
popx renoves an object of arbitrary size

procedure push(x:word);
begi n newsp(sp-wsi ze); store(sp, x) end;

procedure pushsw( x:sword);
begi n newsp(sp-wsi ze); store(sp,unsign(x)) end;

function pop: word;
begi n pop: =memm(sp); newsp(sp+wsize) end;

function popsw sword;
begi n popsw: =si gnwd( pop) end;

procedure pusha(x:adr);
begi n newsp(sp-asize); storea(sp,x) end

function popa: adr;
begi n popa: =menma(sp); newsp(sp+asize) end;

procedure pushd(y: doubl e);
begin { push double integer onto the stack } newsp(sp-2*wsize) end;

function popd: doubl e;
begin { pop double integer fromthe stack } newsp(sp+2*wsi ze); popd: =0 end;

procedure pushr(z:real);
begin { Push a float onto the stack } newsp(sp-fsize) end;

function popr:real;
begin { pop float fromthe stack } newsp(sp+fsize); popr:=0.0 end;

procedure pushx(objsize:size; a:adr);
var i:integer;
begin
i f objsize<wsize
t hen push(nmens(a, obj si ze))



else for i:=1 to objsize div wsize do push(nmemv a+obj si ze-wsi ze*i))
end;

procedure popx(objsize:size; a:adr);
var i:integer;
begin
if objsize<wsize
then stores(a, objsize, pop)

else for i:=1 to objsize div wsize do store(a-wsize+wsi ze*i, pop)
end;
e TR R L R RCEEEPPROD }
{ Bit mani pul ation routines (extract, shift, rotate) }
R R e R e P R PR PR S EREEE P P PEEEPEPEREEPPROD }

procedure sleft(var wsword); { 1 bit left shift }
begin w = dosign(fitsw(2*w, El OVFL)) end,;

procedure suleft(var wword); { 1 bit left shift }
begin w : = chopw 2*w) end;

procedure sdleft(var d:double); { 1 bit left shift }
begin { shift two word signed integer } end;

procedure sright(var w.sword); { 1 bit right shift with sign extension }

begin if w>= 0 then w:=wdiv 2 else w:= (wl) div 2 end;
procedure suright(var w word); { 1 bit right shift w thout sign extension }
begin w:= wdiv 2 end;

procedure sdright(var d:double); { 1 bit right shift }
begin { shift two word signed integer } end;

procedure rleft(var wwrd); { 1 bit left rotate }
begin if w>=t15

then w.=(wt15)*2 + 1

el se w. =w2
end;

procedure rright(var w.word); { 1 bit right rotate }
begin if wnod 2 =1

then w=w div 2 + t15

else w=wdiv 2
end;

function sextend(w word;s: size):word;
var i:size;

begin
for i:=1to (wsize-s)*8 do rleft(w);
for i:=1to (wsize-s)*8 do sright(w);
sext end: =w;

end;

function bit(b:bitnr; wword):bitval; { return bit b of the word w}
var i:bitnr;
begin for i:= 1to b do rright(w); bit:= w nod 2 end;

function bf(ty: bftype; wl,w2:word):word; { return boolean fcn of 2 words }



var i:bitnr; j:word;

begin j:=0;
for i:= maxbitnr downto 0 do
begin j := 2*j;
case ty of
andf: if bit(i,wl)+bit(i,w2) = 2 then j:=j+1;
iorf: if bit(i,wl)+bit(i,w2) > 0 then j:=j+1
xorf: if bit(i,wl)+bit(i,w2) = 1 then j:=j+1
end
end;
bf : =j
end;
{ ___________________________________________________________________
{ Array indexing
{ ___________________________________________________________________

function arraycal c(c:adr):adr; { subscript calculation }
var j:full; objsize:size; a:adr
begin j:= popsw - signwd(nmemvc));

if (j<0) or (j>remm c+wsize)) then trap( EARRAY);

obj si ze : = argo(memyM c+wsi ze+wsi ze)) ;
a := j*objsize+popa; chkadr(a, objsize);
arraycal c: =a
end;
{ ___________________________________________________________________
{ Doubl e and Real Arithnetic
{ ___________________________________________________________________

{ Al routines for doubles and floats are dunmy routines, since the format

doubl es and floats is not defined in EM

}

function doadi (ds, dt: doubl e): doubl e;
begin { add two doubles } doadi: =0 end;

function doshi (ds, dt: doubl e): doubl e;
begin { subtract two doubles } dosbi:=0 end;

function donli (ds, dt: doubl e): doubl e;
begin { nultiply two doubles } domi:=0 end;

function dodvi (ds, dt: doubl e): doubl e;
begin { divide two doubles } dodvi:=0 end;

function dorm (ds, dt: doubl e): doubl e;
begin { nodulo of two doubles } dorm :=0 end

function dongi (ds: doubl e): doubl €;
begin { negative of a double } dongi:=0 end;

function doadf (x,y:real):real;
begin { add two floats } doadf:=0.0 end;

function dosbf(x,y:real):real;
begin { subtract two floats } dosbf:=0.0 end



function dom f(x,y:real):real
begin { nultiply two floats } dom f:=0.0 end;

function dodvf(x,y:real):real;
begin { divide two floats } dodvf:=0.0 end;

function dongf(x:real):real;
begin { negate a float } dongf:=0.0 end;

procedure dofif(x,y:real;var intpart,fraction:real);
begin { disnmenber x*y into integer and fractional parts }
intpart:=0.0; { integer part of x*y, sane sign as x*y }
fraction: =0.0;
{ fractional part of x*y, O<=abs(fraction)<l and sane sign as x*y }
end;

procedure dofef(x:real;var mantissa:real;var exponent:sword);
begin { disnmenber x into nmanti ssa and exponent parts }
mantissa:=0.0; { mantissa of x , >= 1/2 and <1 }
exponent : =0; { base 2 exponent of x }
end;



procedure call(p:adr); { Performthe call }

begin
pusha(l b); pusha(pc);
new b(sp); newsp(sp - nem (pd + pdsize*p + pdlocs));
newpc(neni (pd + pdsi ze*p+ pdbase))

end;

procedure dotrap(n: byte);
var i:size;

begin
if (uerrorproc=0) or intrap then
begin
if intrap then
writeln(’ Recursive trap, first trap nunber was ', trapval:1);
witeln('Error ', n:1);
witeln(”Wth',ord(insr):4,” arg ',k:1);
goto 9999
end;
{ Deposit all interpreter variables that need to be saved on

the stack. This includes all scratch variables that can

be in use at the monent and ( not possible in this interpreter )
the internal address of the interpreter where the error occurred.
This would nake it possible to execute an RTT instruction totally
transparent to the user program

It can, for exanple, occur within an ADD instruction that both
operands are undefined and that the result overfl ows.

Al though this will generate 3 error traps it nust be possible

to ignore themall.

intrap: =true; trapval:=n;
for i:=retsize div wsize downto 1 do push(retarea[i]);

push(retsize); { saved return area }
pusha(nmena(fileadr)); { saved current file nane pointer }
push(memm | i neadr)); { saved line nunber }
push(n); { push error nunber }
a: =argp(uerrorproc);
uerrorproc: =0; { reset signal }
call (a); { call the routine }
i ntrap: =fal se; { Don’t catch recursive traps anynore }
got o 8888; { reenter main | oop }

end;

procedure trap
{ This routine is invoked for overflow, and other run tine errors.
For non-fatal errors, trap returns to the calling routine
}
begi n
if n>=16 then dotrap(n) else if bit(n,ignmask)=0 then dotrap(n);
end;

procedure dortt;
{ The restoration of file address and |ine nunber is not essential
The restoration of the return save area is.

}

var i:size;



n: wor d;
begin
newsp(lb); Ib:=maxdata+l ; { to circunvent ESTACK for the popa + pop }
newpc(popa); new b(popa); { So far a plain RET 0 }
n: =pop; if (n>=16) and (n<64) then goto 9999
lino(pop); filna(popa); retsize:=pop

for i:=1to retsize div wsize do retareali]:=pop
end;
{ ___________________________________________________________________________
{ nonitor calls
{ ___________________________________________________________________________

procedure donon(entry:word);

var i ndex: 1..63;
dummy: doubl €;
count, rwptr: adr;
token: byte
i i nt eger;

begin

if (entry<=0) or (entry>63) then entry: =63 ;
i ndex: =entry;
case index of
1. begin { exit } exitstatus:=pop; halted:=true end;
3: begin{ read } dumy:=pop; { Al input is fromstdin }
rwptr: =popa; count:=popa

i:=0 ;

while (not eof(input)) and (i<count) do

begin
if eoln(input) then begin storeb(rwptr,10) ; count:=i end

el se storeb(rwptr,ord(input™)) ;

get(input); rwptr:=rwotr+1 ; i:=i+1

end;

pusha(i); push(0)

end;
4: begin { wite } dunmy:=pop; { Al output is to stdout }
rwptr: =popa; count:=popa
for i:=1 to count do
begi n token: =menb(rwptr); rwptr:=rwptr+1
if token=10 then witeln else wite(chr(token))

end ;
pusha(count);
push(0)
end;
54: begin { ioctl, faked } dummy: =popa; dummy: =popa; dunmy: =pop; push(0) end ;
2, 5 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 55, 56, 57, 58, 59, 60,
61, 62:

begi n push(22); push(22) end;
63: { exists only for the trap }

t r ap( EBADMON)
end

end;



{ Initialization and debuggi ng }
R R R R LR P R PR PRI PESEEE PR P PEEEP R PEREEPPRPD }
procedure doident; { print line nunber and file nane }
var a:adr; i,c:integer; found:bool ean
begin

wite('at line ', memMlineadr):1,” ");

a:=nema(fileadr); if a<>0 then
begin i:=20; found: =fal se;
while (i<>0) and not found do
begin c:=nenb(a); a:=a+l; found:=true; i:=i-1;
if (c>=48) and (c<=57) then
begi n found: =fal se; wite(chr(ord(’0")+c-48)) end;
if (c>=65) and (c<=90) then
begi n found: =false; wite(chr(ord(’A")+c-65)) end;
if (c>=97) and (c<=122) then
begin found: =false; wite(chr(ord(’a’)+c-97)) end;
end;
end;
witeln;
end;

procedure initialize; { start the ball rolling }
{ This is not part of the machine definition }
var cset:set of char;

f:ifset;

i cl ass:inscl ass;

i nsno: byt e;

nops: i nt eger;

opcode: byt e;

i,j,n:integer;

wt enp: swor d;

count:integer;

repc: adr;

nexta, firsta: adr;
el em byt e;

anmount , of st: si ze;
c: char;

function readb(n:integer):double;
var b: byte;
begin read(prog,b); if n>1 then readb: =readb(n-1)*256+b el se readb: =b end,;

functi on readbyte: byte;
begi n readbyte: =readb(1) end;

functi on readword: word;
begi n readwor d: =r eadb(wsi ze) end;

function readadr: adr;
begi n readadr: =readb(asi ze) end;

function ifind(ordinal:byte): nmem
var | oopvar: mem
f ound: bool ean;
begin ifind: =NON
| oopvar: =insr; found:=fal se;
r epeat



i f ordinal =ord(

| oopvar) then

begi n found: =true; ifind:=loopvar end
i f loopvar<>ZRL then | oopvar:=succ(l oopvar) el se | oopvar:=NON
until found or (Iloopvar=insr) ;

end;

procedure readhdr
type hdrw=0..32767
var hdr: hdrw;
i: integer;
begin
for i:=0 to 7 do
begi n hdr: =readb(
case i of
0: if hdr<>3757
begin witel

; { 16 bit header words }

2);

then { 07255 }
n(’Not an emload file'); halt end;

2. if hdr<>0 then

begin witel

n(’ Unsol ved references’); halt end;

3: if hdr<>3 then

begin witel

n(’Incorrect load file version’); halt end;

4: if hdr<>wsize then

begin witel

n(’Incorrect word size'); halt end;

5. if hdr<>asize then

begin witel
1,6,7:;
end
end
end;

procedure noinit;

n(’ Incorrect pointer size'); halt end;

begin witeln('lIllegal initialization); halt end;

procedure readint(a
var i:size;
begin { construct i

;adr; s:size);

nt eger out of byte sequence }

for i:=1to s do { construct the value and initialize at a }

begi n storeb(a,
end;

procedure readuns(a
begin { construct u

readbyte); a:=a+l end

;adr; s:size);
nsi gned out of byte sequence }

readint(a,s) { identical to readint }

end;

procedure readfl oat

var i:size; b:byte;

begin { construct f
if (s<>4) and (s<
repeat { eat the

b: =readbyte; i:

until b=0 ;

end;

begin
hal t ed: =f al se
exi t status: =undef;
uerrorproc:=0; intrap

{ initialize tables }

(a:adr;s:size);

| oat out of string}

>8) then noinit; i:=0

bytes, construct the value and intialize at
=i +1;

: =f al se;



for

i:=0 to maxcode do code[i]: =0

for i:=0 to maxdata do data[i]: =0
for iclass:=primto tert do
for i:=0 to 255 do

with dispat[iclass][i] do

begi n instr:=NON

{ read instruction table file.

iflag:=[zbit] end;

see appendix B}

{ The table read here is a sinple transfornmation of the table on page xx }

{ -

{ - the -’

{ - the 'S flag was added for
reset (tabl es);

i nsr: =NON,

repeat

read(tabl es,insno) ;
insr:=ifind(insno);

if insr=NON then begin witeln(' Incorrect table');

cset: =[];

fo=[1;

repeat read(tables,c) until c<> ;
r epeat

cset: =cset+[c];

read(tabl es, c)
until c=" ' ;
if 'm in cset then f:=f+[mni];
if 's’ in cset then f:=f+[short];
if -’ in cset then f:=f+[zbit];
if i’ in cset then f:=f+[ibit];
if 'S in cset then f:=f+[shit];
if 'w in cset then f:=f+[whit];
if (mni inf) or (short

readl n(t abl es, opcode) ;
if ("4 in cset) or (’

8 in cset) then

begin iclass:=tert end

else if "¢

in cset then

begin iclass: =second end

el se iclass:=prim

i nstruction nanes were transforned to nunbers }
flag was transforned to an 'i’
i nstructions having signed operands }

flag for

"W

hal t

for i:=0 to nops-1 do
begin
with dispat[iclass, opcode+i] do
begin
iflag:=f; instr:=insr;
if 2 in cset then il ength: =2
else if "u in cset then ilength: =2
else if "4 in cset then ilength: =4
else if "8 in cset then ilength: =8
else if (mMni inf) or (short in f) then
begin
if "N in cset then wenp:=-1-i else wenp: =
if "o in cset then wtenp: =wt enp+1
if short in f then wtenp: =wtenp*256 ;
inmplicit:=wtenp
end
end
end

until eof(tables);

{ read in programtext,
reset (prog);

r eadhdr ;

data and procedure descriptors }

type instructions }

end;

in f) then read(tables,nops) else nops: =1 ;

{ verify first header }



for i:=1 to 8 do header[i]:=readadr; { read second header }
hp: =maxdat a+1; sp: =nmaxdata+1; |ino(0);

{ read programtext }

i f header [ NTEXT] +header [ NPROC] * pdsi ze>nmaxcode t hen

begin wri

teln(’ Text size too large’); halt end;

i f header[ SZDATA] >naxdat a t hen

begin wri

teln(’'Data size too large’); halt end;

for i:=0 to header[ NTEXT]-1 do code[i]: =readbyte;
{ read data bl ocks }

next a: =0;
for i:=1 to header[ NDATA] do
begin

n: =r eadbyt e;
if n<>0 then

begin

el em =readbyte; firsta:=nexta;

cas
1

e n of

{ uninitialized words }

for j:=1 to elemdo

begi n store(nexta, undef); nexta:=nexta+wsize end;

{ initialized bytes }

for j:=1 to elemdo

begi n storeb(nexta, readbyte); nexta:=nexta+l end;

{ initialized words }

for j:=1 to elemdo

begi n store(nexta, readword); nexta:=nexta+wsize end;

4,5: { instruction and data pointers }

6:
7.
8:
end

end
el se

begin

for j:=1 to elemdo

begi n storea(nexta,readadr); nexta:=nextatasize end;
{ signed integers }

begi n readint (nexta, el em; nexta:=nexta+el emend

{ unsigned integers }

begi n readuns(nexta, el em; nexta:=nexta+el em end

{ floating point nunbers }

begi n readfl oat (nexta, el em; nexta:=nexta+el em end;

repc: =readadr; anount:=nexta-firsta;

for
beg

count:=1 to repc do
in

for ofst:=0 to anmpbunt-1 do data[ nexta+ofst]:=data[firsta+tofst];

n
end
end
end;

ext a: =next a+anpunt ;

i f header[ SZDATA] <>nexta then witeln('Data initialization error’);

hp: =next a;

{ read desc
pd: =header [
for i:=1to
{ call the
i gnmask: =0;
retsize: =0;

| b: =maxdat a;

pc: =naxcode
push(0); a:
push(0); b:

riptor table }

NTEXT] ;

header [ NPROC] *pdsi ze do code[ pd+i -1]: =readbyt e;
entry point routine }

{ catch all traps, higher nunbered traps cannot

illegal dynamic link }
illegal return address }
envi ronnent }

args }

{
; {
{
{

be ignored}



pusha(a); { envp }

pusha(b); { argv }

push(0); { argc }

cal | (argp(header[ ENTRY]));
end;



It should be noted that the interpreter (mcroprogram for an EM
machine can be witten in tw fundanmentally different ways: (1) the
i nstruction operands are fetched in the main loop, or (2) the in-
struction operands are fetched after the 256 way branch, by the exe-
cution routines thenmselves. |In this interpreter, nmethod (1) is used
to sinplify the description of execution routines. The dispatch
tabl e dispat is used to deternm ne how the operand is encoded. There
are 4 possibilities:

There is no operand

The operand and instruction are together in 1 byte (mni)
The operand is one byte long and foll ows the opcode byte(s)
The operand is two bytes long and foll ows the opcode byte(s)
The operand is four bytes long and foll ows the opcode byte(s)

PWNEPO

In this interpreter, the nmin |oop determ nes the operand type,
fetches it, and leaves it in the global variable k for the execution
routines to use. Consequently, instructions such as LOL, which use
three different formats, need only be described once in the body of
the interpreter.

However, for a production interpreter, or a hardware EM
machine, it is probably better to use nethod (2), i.e. to let the
execution routines thenselves fetch their own operands. The reason
for this is that each opcode uniquely deterni nes the operand format,
so no table lookup in the dispatch table is needed. The whole table
is not needed. Method (2) therefore executes nmuch faster.

However, separate execution routines will be needed for LOL with
a one byte offset, and LO.L with a two byte offset. It is to avoid
this additional clutter that nethod (1) is used here. In a produc-

tion interpreter, it is envisioned that the main loop will fetch the
next instruction byte, and use it as an index into a 256 word table
to find the address of the interpreter routine to junp to. The
routine junped to will begin by fetching its operand, if any,
wi thout any table |ookup, since it knows which format to expect.
After doing the work, it returns to the main loop by junping in-
directly to a register that contains the address of the main | oop.

A slight variation on this idea is to have the register contain
the address of the branch table, rather than the address of the main
| oop.

Anot her issue is whether the execution routines for LOL 0, LCL
2, LOL 4, etc. should all be have distinct execution routines. Doing
so provides for the maxi num speed, since the operand is inplicit in
the routine itself. The disadvantage is that many nearly identica
execution routines will then be needed. Another way of doing it is
to keep the instruction byte fetched fromnenory (LOL 0, LOL 2, LOL
4, etc.) in sone register, and have all the LOL mni fornmat instruc-
tions branch to a conmmon routine. This routine can then detern ne
the operand by subtracting the code for LOL O fromthe register
| eaving the true operand in the register (as a word quantity of
course). This method makes the interpreter snaller, but is a bit
sl ower.



To nake this inportant point a little clearer, consider how a
production interpreter for the PDP-11 m ght appear. Let us assune the
fol |l owi ng opcodes have been assi gned:

31: LOL -2 (2 bytes, i.e. next word)

32: LAL -4

33: LAL -6

34: LOL b (format with a one byte offset)

35: LOL w (format with a one word, i.e. two byte offset)
Further assune that each of the 5 opcodes will have its own execution
routine, i.e. we are nmaking a tradeoff in favor of fast execution and

a slightly larger interpreter.
Regi ster r5 is the em program counter.
Register r4 is the em LB register
Register r3 is the em SP register (the stack grows toward | ow core)
Regi ster r2 contains the interpreter address of the main | oop

The main | oop | ooks like this:

novb (r5)+,r0 /fetch the opcode into r0O and increnent r5
asl ro0 /shift rO left 1 bit. Now -256<=r0<=+254
jmp *table(r0) /junp to execution routine

Notice that no operand fetching has been done. The execution routines for
the 5 sanple instructions given above nmight be as foll ows:

lol2: nov -2(rd4),-(sp) / push local -2 onto stack
jmp (r2) /go back to main | oop

lol4: nov -4(rd),-(sp) / push local -4 onto stack
jmp (r2) /go back to main | oop

ol 6: nov -6(r4),-(sp) / push local -6 onto stack
jmp (r2) /go back to main | oop

ol b: mov $177400,r0 /prepare to fetch the 1 byte operand
bisb (r5)+,r0 /operand is nowin r0
asl r0 /r0 is now offset fromLB in bytes, not words
add r4,r0 /r0 is now address of the needed | ocal
mov (r0), -(sp) / push the local onto the stack
jm (r2)

lolw. clr r0 /prepare to fetch the 2 byte operand
bisb (r5)+,r0 /fetch high order byte first !!!
swab ro0 /insert high order byte in place
bisb (r5)+,r0 /insert low order byte in place
asl r0 /convert offset to bytes, from words
add r4,r0 /r0 is now address of needed | ocal
mov (r0), -(sp) /stack the | oca
jmp (r2) / done

The inportant thing to notice is where and how the operand fetch occurred:
lol2, lol4, and lol6, (the mni’s) have inplicit operands
lolb knew it had to fetch one byte, and did so w thout any table | ookup
lolw knew it had to fetch a word, and did so, high order byte first }



{ Routines for the individual instructions }
e R R P R PR PR SEREEE PP PEEE P POREEPPROD }
procedure | oadops;

var j:integer;

begin

case insr of
{ LOAD GROUP }
LDC. pushd(argd(k));
LOC. pushsw(argc(k));
LOL: push(memm | ocadr (k)));
LCE: push(memm argg(k)));
LIL: push(memM nenma(l ocadr(k))));
LOF: push(nmemM popa+argf(k)));
LAL: pusha(l ocadr(Kk));
LAE: pusha(argg(k));
LXL: begin a:=lhb; for j:=1 to argn(k) do a:=nmema(a+savsi ze); pusha(a) end;
LXA: begin a:=lb;
for j:=1 to argn(k) do a:= nema(at+savsize);
pusha(a+savsi ze)
end;
LA : pushx(argo(k), popa);
LOS: begin k:=argwmk); if k<>wsize then trap(ElILLINS)
k: =pop; pushx(argo(k), popa)
end;
LDL: begin a:=locadr(k); push(memm a+wsi ze)); push(nmemmM a)) end;
LDE: begin k:=argg(k); push(memu k+wsi ze)); push(nemv k)) end;
LDF: begin k:=argf(k);
a: =popa; push(memv a+k+wsi ze)); push(memu a+k))
end;
LPI: push(argp(k))
end
end;

procedure storeops;
begi n
case insr of
{ STORE GROUP }
STL: store(locadr(k), pop);
STE: store(argg(k), pop);
SIL: store(nmema(l ocadr(k)), pop);
STF: begi n a: =popa; store(a+argf(k), pop) end;
STl : popx(argo(k), popa);
STS: begin k:=argw(k); if k<>wsize then trap(ElLLINS)
k: =popa; popx(argo(k), popa)
end;
SDL: begin a:=locadr(k); store(a, pop); store(a+wsize, pop) end;
SDE: begin k:=argg(k); store(k, pop); store(k+wsize, pop) end;
SDF: begin k:=argf(k); a:=popa; store(a+tk, pop); store(atk+wsize, pop) end
end
end;

procedure intarith
var i:integer;
begin
case insr of
{ SI GNED | NTEGER ARI THMVETI C }
ADI : case szindex(argw(k)) of
1: begin st:=popsw, ss:=popsw, push(fitsw(ss+st, EIOVFL)) end



SBI :

M_I :

DVI :

RM :

NG :

SLI:

SRI :

end
end;

2: begin dt:=popd; ds:=popd; pushd(doadi (ds, dt))
end ;
case szindex(argwk)) of

1: begin st:=popsw, ss:= popsw, push(fitsw(ss-st,

2: begin dt:=popd; ds:=popd; pushd(dosbi (ds, dt))
end ;
case szindex(argwk)) of

1: begin st:=popsw, ss:= popsw, push(fitsw(ss*st,

2: begin dt:=popd; ds:=popd; pushd(doni (ds, dt))
end ;

case szindex(argwk)) of

1: begin st:= popsw, SS:= popsw,

end;

El OVFL)) end;
end;

El OVFL)) end;
end;

if st=0 then trap(El Dl VZ) else pushsw(ss div st)

end;
2: begin dt:=popd; ds:=popd; pushd(dodvi (ds, dt))
end;
case szindex(argwk)) of
1: begin st:= popsw, SS:=popsw,
if st=0 then trap(ElI DI VZ) el se pushsw(ss -
end;
2: begin dt:=popd; ds:=popd; pushd(dorm (ds, dt))
end;
case szindex(argwk)) of
1: begin st:=popsw, pushsw -st) end;
2: begin ds:=popd; pushd(dongi (ds)) end
end;
begin t: =pop;
case szindex(argwk)) of
1: begin ss:=popsw,

for i:=1tot do sleft(ss); pushswss)
end
end
end;
begin t: =pop;

case szindex(argwk)) of
1: begin ss:=popsw,

for i:= 1 tot do sright(ss); pushsw(ss)
end;
2: begin ds:=popd;
for i:= 1 tot do sdright(ss); pushd(ss)
end
end
end

procedure unsarith;
var i:integer;

begin

case insr of
{ UNSI GNED | NTEGER ARI THVETI C }

ADU:

SBU:

case szindex(argwk)) of

1: begin t:=pop; s:= pop; push(chopw(s+t)) end;
2: trap(ElILLINS);

end ;

case szindex(argwk)) of

1: begin t:=pop; s:= pop; push(chopw(s-t)) end;
2: trap(ElILLINS);

end ;

end;

(ss div st)*st)

end



M_U:

DVU:

RVMU

SLU:

SRU:

end
end;

case szindex(argwk)) of
1: begin t:=pop; s:= pop; push(chopw(s*t)) end;
2: trap(ElILLINS);

end

case szindex(argwk)) of
1: begin t:= pop; s:= pop;

if t=0 then trap(EIDIVZ) else push(s div t)

end;
2: trap(ElILLINS);

end;

case szindex(argwk)) of
1: begin t:= pop; s:=pop;

if t=0 then trap(EIDIVZ) else push(s - (s div t)*t)

end;
2: trap(ElILLINS);

end;

case szindex(argwk)) of
1: begin t:=pop; s:=pop;

for i:= 1 tot do suleft(s); push(s)

end;
2: trap(ElLLINS);

end;

case szindex(argwk)) of
1: begin t:=pop; s:=pop;

for i:= 1 tot do suright(s); push(s)

end;
2: trap(ElLLINS);

end

procedure fltarith

begin

case insr
{ FLOATI NG

ADF:
SBF:
M_F:
DVF:
NGF:
FI F:

FEF:
end
end;

beg
beg
beg
beg
beg
beg

end;
beg

of

n

n
n
n
n
n

n

PO NT ARI THVETIC }

argwf (k); rt:=popr; rs:=popr; pushr(doadf(rs,rt)) end
argwf (k); rt:=popr; rs:=popr; pushr(dosbf(rs,rt)) end
argwf (k); rt:=popr; rs:=popr; pushr(domf(rs,rt)) end
argwf (k); rt:=popr; rs:=popr; pushr(dodvf(rs,rt)) end
argwf (k); rt:=popr; pushr(dongf(rt)) end;

argwf (k); rt:=popr; rs:=popr

dofif(rt,rs,x,y); pushr(y); pushr(x)

argwf (k); rt:=popr; dofef(rt,x,ss); pushr(x); pushsw(ss) end

procedure ptrarith

begin

case insr

of

{ PO NTER ARI THVETI C }

pusha( popa+ar gf (k));

case szindex(argwk)) of

1: begin st:=popsw, pusha(popa+st) end;
2: begin dt:=popd; pusha(popa+dt) end;

ADP:
ADS:

SBS:

end;
beg

n

a: =popa; b:=popa
case szindex(argwk)) of



1. push(fitsw(b-a, EI OVFL));
2: pushd(b-a)
end
end
end
end;

procedure incops;
var j:integer;
begin
case insr of
{ 1 NCREMENT/ DECREMENT/ ZERO }
I NC. push(fitswpopsw+l, EI OVFL));
INL: begin a:=locadr(k); store(a,fitswsignwd(memy a))+1, El OVFL)) end
I NE: begin a:=argg(k); store(a,fitsw(signwd(nmemm a))+1, El OVFL)) end
DEC. push(fitswpopsw 1, El OVFL));
DEL: begin a:=locadr(k); store(a,fitswsignwd(memma))-1, El OVFL)) end
DEE: begin a:=argg(k); store(a,fitsw(signwd(nmemm a))-1, EIOVFL)) end
ZRL: store(locadr(k),0);
ZRE: store(argg(k),0);
ZER: for j:=1 to argm k) div wsize do push(0);
ZRF: pushr(0);
end
end;

procedure convops;
begin
case insr of
{ CONVERT GROUP }
Cll: begin s:=pop; t:=pop;
if t<wsize then begin push(sextend(pop,t)); t:=wsize end;
case szindex(argwm(t)) of
1. if szindex(argw(s))=2 then pushd(popsw);
2: if szindex(argw(s))=1 then push(fitsw popd, ECONV))
end
end;
Cl U. case szi ndex(argw(pop)) of
1. if szindex(argw pop))=2 then push(unsign(popd nod negoff));
2: trap(ElILLINS);
end;
ClF: begin argw (pop);
case szi ndex(argw pop)) of 1:pushr(popsw); 2:pushr(popd) end
end;
CUl : case szi ndex(argw(pop)) of
1: case szindex(argw pop)) of
1: begin s:=pop; if s>maxsint then trap(ECONV); push(s) end;
2: trap(EILLINS);
end;
2: case szindex(argw pop)) of
1: pushd(pop);
2: trap(EILLINS);
end;
end;
CUU. case szi ndex(argw(pop)) of
1. if szindex(argwpop))=2 then trap(ElLLINS)
2: trap(ElILLINS);
end;
CUF: begin ar gwf (pop);
i f szindex(argw(pop))=1 then pushr(pop) else trap(ElILLINS)



end;
CFl: begin sz:=argw pop); argwf(pop); rt:=popr;
case szindex(sz) of
1. push(fitsw(trunc(rt), ECONV));
2: pushd(fitd(trunc(rt)));
end
end;
CFU. begin sz:=argw pop); argwf(pop); rt:=popr;
case szindex(sz) of
1: push( chopw(trunc(abs(rt)-0.5)) );
2: trap(ElILLINS);

end
end;
CFF: begin argwf (pop); argw (pop) end
end
end;

procedure | ogops;
var i,j:integer;
begin
case insr of
{ LOG CAL GROUP }

XAND:
begi n k: =argwm k) ;
for j:= 1 to k div wsize do
begi n a: =sp+k; t:=pop; store(a, bf (andf,remma),t)) end;
end;
I OR:
begi n k: =argwm k) ;
for j:= 1 to k div wsize do
begi n a: =sp+k; t:=pop; store(a,bf(iorf,memma),t)) end;
end;
XOR:

begi n k: =argwm k) ;
for j:= 1 to k div wsize do
begi n a: =sp+k; t:=pop; store(a, bf(xorf,memma),t)) end;

end;
cav
begi n k: =argwm k) ;
for j:= 1 to k div wsize do
begin
store(sp+k-wsi ze*j, bf(xorf, memM sp+k-wsize*j), negoff-1))
end
end;
ROL: begin k:=argwmk); if k<>wsize then trap(ElLLINS)
t:=pop; s:=pop; for i:=1tot do rleft(s); push(s)
end;
ROR: begin k:=argwmk); if k<>wsize then trap(ElILLINS);
t:=pop; s:=pop; for i:=1tot do rright(s); push(s)
end
end

end;

procedure setops;
var i,j:integer;
begin
case insr of
{ SET GROUP }
I NN:



begi n k:=argw k) ;

t:=pop;
i:=t nod 8; t:=1t div 8;
if t>=k then
begin trap(ESET); s:=0 end
el se

begin s:=menmb(sp+t) end;
newsp(sp+k); push(bit(i,s));
end;
XSET:
begi n k: =argwm k) ;
t:=pop;
i:=t nod 8; t:=1t div 8;
for j:= 1 to k div wsize do push(0);
if t>=k then
t rap( ESET)
el se
begin s:=1; for j:= 1to i do rleft(s); storeb(sp+t,s) end
end
end
end;

procedure arrops;
begin
case insr of
{ ARRAY GROUP }

LAR:
begin k:=argwmk); if k<>wsize then trap(ElILLINS); a:=popa
pushx(argo(memm a+2*k) ), arraycal c(a))
end;
SAR:
begin k:=argwmk); if k<>wsize then trap(ElILLINS); a:=popa
popx(argo(memy a+2*k)), arraycal c(a))
end;
AAR:
begin k:=argwmk); if k<>wsize then trap(EILLINS); a:=popa
push(arraycal c(a))
end
end

end;

procedure cnpops;
begin
case insr of
{ COWPARE GROUP }
CM : case szindex(argwk)) of
1: begin st:=popsw, SS:=popsw,
if ss<st then pushsw(-1) else if ss=st then push(0) else push(1)
end;
2: begin dt:=popd; ds:=popd;
if ds<dt then pushsw(-1) else if ds=dt then push(0) else push(1)
end;
end;
CMJ:. case szindex(argwk)) of
1: begin t:=pop; s:=pop;
if s<t then pushsw(-1) else if s=t then push(0) else push(1)
end;
2: trap(ElILLINS);
end;



CWP: begi n a: =popa; b: =popa;
if b<a then pushsw(-1) else if b=a then push(0) else push(1)
end;
CMF: begin argwf (k); rt:=popr; rs:=popr;
if rs<rt then pushsw(-1) else if rs=rt then push(0) else push(1)
end;
CMs: begin k:=argw(k);
t:=0; j:= 0;
while (j < k) and (t=0) do
begin if memMsp+j) <> memw(sp+k+j) then t:=1;
j =] twsize
end;
newsp(sp+wsi ze*k); push(t);
end;

TLT: if popsw < O then push(1l) else push(0);
TLE: if popsw <= 0 then push(1l) else push(0);
TEQ if pop = 0 then push(1l) else push(0);
TNE: if pop <> 0 then push(1) else push(0);
TGE: if popsw >= 0 then push(1l) else push(0);
TGT: if popsw > O then push(1l) else push(0);
end
end;

procedure branchops;
begin
case insr of
{ BRANCH GROUP }
BRA: newpc(pc+k);

BLT: begin st:=popsw;, if popsw < st then newpc(pc+k) end;
BLE: begin st:=popsw;, if popsw <= st then newpc(pc+k) end;
BEQ begint :=pop ; if pop = t then newpc(pc+k) end;
BNE: begint :=pop ; if pop <> t then newpc(pc+k) end;
BCE: begin st:=popsw;, if popsw >= st then newpc(pc+k) end;
BGT: begin st:=popsw;, if popsw > st then newpc(pc+k) end;

ZLT: if popsw < 0 then newpc(pc+k);
ZLE: if popsw <= 0 then newpc(pc+k);
ZEQ if pop = 0 then newpc(pc+k);
ZNE: if pop <> 0 then newpc(pc+k);
ZGE: if popsw >= 0 then newpc(pc+k);
ZGT: if popsw > 0 then newpc(pc+k)
end
end;

procedure call ops;
var j:integer;
begin
case insr of
{ PROCEDURE CALL GROUP }
CAL: call (argp(k));
CAl : begin call (argp(popa)) end;
RET: begin k:=argz(k); if k div wsize>maxret then trap(ElILLINS);

for j:= 1 to k div wsize do retarea[]:=pop; retsize: =k;
newsp(l b); |b:=maxdata+1l; { To circunvent stack overflow error }
newpc( popa) ;

i f pc=maxcode then
begin



hal t ed: =t rue
if retsize=wsize then exitstatus:=retareall]
el se exitstatus: =undef
end
el se
new b( popa);
end;
LFR begin k:=args(k); if k<>retsize then trap(ElLLINS)
for j:=k div wsize downto 1 do push(retarea[j]);
end

end

end;

procedure niscops;

var
begi

i,j:integer;
n

case insr of

{ M SCELLANEQUS GROUP }
ASP, ASS
begin if insr=ASS then
begin k:=argwm(k); if k<>wsize then trap(EILLINS); k:=popsw end

k: =ar gf (k) ;
if k<O
then for j:= 1 to -k div wsize do push(undef)
el se newsp(sp+k);
end;
BLM BLS:

begin if insr=BLS then
begin k:=argwmk); if k<>wsize then trap(EILLINS); k:=pop end

k:=argz(k);
b: =popa; a: =popa
for j :=1to k div wsize do
store(b-wsi ze+wsi ze*|, memv a- wsi ze+wsi ze*j))
end;
CSA: begin k:=argwm(k); if k<>wsize then trap(ElILLINS);
a: =popa;

st: = popsw - signwd(memy atasi ze));
if (st>=0) and (st<=nemM a+wsi ze+asi ze)) then

b: =mema( a+2*wsi ze+asi ze+asi ze*st) el se b: =nema(a);
if b=0 then trap(ECASE) el se newpc(b)

end;
CSB: begin k:=argw(k); if k<>wsize then trap(ElILLINS); a:=popa
t:=pop; i:=1; found:=fal se;
whil e (i <=memw( a+asi ze)) and not found do

if t=memm a+(asi ze+twsize)*i) then found:=true else i:=i+1
if found then b:=mremwm a+(asi ze+wsi ze) *i +wsi ze) el se b: =memn a) ;
if b=0 then trap(ECASE) el se newpc(b);

end;
DCH: begi n pusha(nmema( popa+dynd)) end;
DUP, DUS

begin if insr=DUS then
begin k:=argw(k); if k<>wsize then trap(ElILLINS); k:=pop end;

k: =args(k);
for i:=1to k div wsize do push(nmemu sp+k-wsize));
end;
EXG begin
k: =ar gwm k) ;
for i:=1to k div wsize do push(nmemu sp+k-wsize));

for i:=0 to k div wsize - 1 do



store(sp+k+i *wsi ze, memM sp+k+k+i *wsi ze) ) ;

for i:=1to k div wsize do
begin t:=pop ; store(sp+k+k-wsize,t) end;
end;

FIL: filna(argg(k));
GIO begin k: =argg(Kk);
new b(mema( k+2*asi ze)); newsp(mema(k+asize)); newpc(nema(k))
end;
LIM push(ignmask);
LIN: lino(argn(k));
LNl : lino(memM0)+1);
LOR begin i:=argr(k);
case i of 0:pusha(lb); 1:pusha(sp); 2:pusha(hp) end;
end;
LPB: pusha(popa+statd);
MON:  donon( pop) ;
NOP: witeln('’NOP at line ', memwm(0):5) ;
RCK: begi n a: =popa;
case szindex(argwk)) of
1. if (signwd(memM sp))<signwd(memva))) or
(si gnwd( mema( sp) ) >si gnwd( memm a+wsi ze))) then trap( ERANGE);
2: if (mend(sp)<nend(a)) or
(mend(sp) >mend(a+2*wsi ze)) then trap( ERANGE);
end
end;
RTT: dortt;
SIG begin a: =popa; pusha(uerrorproc); uerrorproc:=a end;
SIM ignmask: =pop;
STR: begin i:=argr(k);
case i of 0: newl b(popa); 1: newsp(popa); 2: newhp(popa) end;
end;
TRP: trap(pop)
end
end;



{ Mai n Loop
{ ___________________________________________________________________________
begin initialize;
8888:
repeat
opcode : = nextpc; { fetch the first byte of the instruction }

i f opcode=escapel then iclass:=second
el se if opcode=escape2 then iclass:=tert
el se iclass:=prim
if iclass<>primthen opcode := nextpc;
with dispat[iclass][opcode] do
begin insr:=instr;
if not (zbit iniflag) then
if ibit iniflag then k:=pop el se
begin
if mini iniflag then k:i=inplicit else
begin
if short iniflag then k:=inplicit+nextpc el se
begi n k: =next pc;
if (sbit iniflag) and (k>=128) then k:=k-256;
for i:=2 to ilength do k:=256*k + nextpc
end
end;
if whit in iflag then k:=k*wsi ze;
end
end;
case insr of

NON: trap(ElLLINS);

{ LOAD GROUP }
LDC, LOC, LOL, LCE, LIL, LOF, LAL, LAE, LXL, LXA, LA, LGS, LDL, LDE, LDF, LPI :
| oadops;

{ STORE GROUP }
STL, STE, SI L, STF, STI, STS, SDL, SDE, SDF:
st or eops;

{ SIGNED | NTEGER ARI THVETIC }
ADI, SBlI, M_LI , DVI, RM , NG , SLI , SRI
intarith;

{ UNSI GNED | NTEGER ARI THVETI C }
ADU, SBU, M_U, DVU, RMJ, SLU, SRU
unsarith;

{ FLOATI NG PO NT ARI THVETIC }
ADF, SBF, MLF, DVF, NGF, FI F, FEF:
fltarith;

{ PO NTER ARI THVETI C }
ADP, ADS, SBS
ptrarith;

{ 1 NCREMENT/ DECREMENT/ ZERO }
I NC, I NL, | NE, DEC, DEL, DEE, ZRL, ZRE, ZER, ZRF:
i ncops;



{ CONVERT GROUP }
Cl1,Cl U CF CU,Cu, CUF, CFl, CFU, CFF
convops;

{ LOG CAL GROUP }
XAND, | OR, XOR, COM ROL, ROR
| ogops;

{ SET GROUP }
| NN, XSET:
set ops;

{ ARRAY GROUP }
LAR, SAR, AAR:
arrops;

{ COVPARE GROUP }
CM , CMJ, CMP, CMF, CMS,  TLT, TLE, TEQ TNE, TGE, TGT:
cnpops;

{ BRANCH GROUP }
BRA, BLT, BLE, BEQ BNE, BGE, BGT, ZLT, ZLE, ZEQ ZNE, ZGE, ZGT:
branchops;

{ PROCEDURE CALL GROUP }
CAL, CAl, RET, LFR
cal | ops;

{ M SCELLANEQUS GROUP }

ASP, ASS, BLM BLS, CSA, CSB

LI'N, LN, LOR, LPB, MON, NOP
m scops;

DCH, DUP, DUS, EXG, FI L, GTQ, LI M
RCK, RTT, SI G, SI M STR, TRP

end; { end of case statenent }
if not ( (insr=RET) or (insr=ASP) or (insr=BRA) or (insr=GTQ ) then
retsize: =0
until halted;
9999:
witeln('halt with exit status: ',exitstatus:1);
doi dent ;
end.



B. EM CODE TABLES

The following table is used by the assembler for EM machine language. It specifies the opcodes used for
each instruction and how arguments are mapped to machine language arguments. The table is presented in three
columns, each line in each column contains three or four fields. Each line describes a range of interpreter op-
codes by specifying for which instruction the range is used, the type of the opcodes (mini, shortie, etc..) and
range for the instruction argument.

Thefirst field on each line gives the EM instruction mnemonic, the second field gives some flags. If the op-
codes are minis or shorties the third field specifies how many minis/shorties are used. The last field gives the
number of the (first) interpreter opcode.

Flags:
Opcode type, only one of the following may be specified.

- opcode without argument

m  mini

S shortie

2 opcode with 2-byte signed argument
4 opcode with 4-byte signed argument
8 opcode with 8-byte signed argument

u opcode with 2-byte unsigned argument

Secondary (escaped) opcodes.

e The opcode thus marked is in the secondary opcode group instead of the primary
restrictions on arguments

N Negative arguments only

P Positive and zero arguments only

mapping of arguments

w  argument must be divisible by the wordsize and is divided by the wordsize before use as opcode
argument.

(o] argument ( possibly after division ) must be >= 1 and is decremented before use as opcode argu-
ment

If the opcode typeis 2,4 or 8 the resulting argument is used as opcode argument (least significant byte first).

If the opcode type is mini, the argument is added to the first opcode — if in range — . If the argument is negative,
the absolute value minus one is used in the algorithm above.

For shorties with positive arguments the first opcode is used for arguments in the range 0..255, the second for
the range 256..511, etc.. For shorties with negative arguments the first opcode is used for arguments in the range
-1..-256, the second for the range —257..-512, etc.. The byte following the opcode contains the least significant
byte of the argument. First some examples of these specifications.

aar mwPo 134
Indicates that opcode 34 is used as a mini for Positive instruction arguments only. The w and o indicate
division and decrementing of the instruction argument. Because the resulting argument must be zero (
only opcode 34 may be used ), this mini can only be used for instruction argument 2. Conclusion: opcode
34isfor "AAR 2"



adpsP 141
Opcode 41 is used as shortie for ADP with arguments in the range 0..255.

brasN 2 60
Opcode 60 is used as shortie for BRA with arguments —1..—-256, 61 is used for arguments —257..-512.

zer e- 145
Escaped opcode 145 is used for ZER.

The interpreter opcode table:

aar mwPo 1 34 adf sP 1 35 adi mwPo 2 36
adp 2 38 adp mPo 2 39 adp sP 1 4
adp sN 1 42 ads mwPo 1 43 and mwPo 1 44
asp mwPo 5 45 asp swP 1 50 beq 2 51
beq sP 1 52 bge sP 1 53 bgt sP 1 54
ble sP 1 55 bim sP 1 56 blt sP 1 57
bne sP 1 58 bra 2 59 bra sN 2 60
bra sP 2 62 cad mPo 28 64 ca sP 1 92
cff - 93 cf - 94 ci - 95
cmf sP 1 9 cmi mwPo 2 97 cmp - 99
cms sP 1 100 csa mwPo 1 101 csb mwPo 1 102
dec - 103 dee sw 1 104 del swN 1 105
dup mwPo 1 106 dvf sP 1 107 dvi mwPo 1 108
fil u 109 inc — 110 ine w2 111
ine sw 1 112 inn mwN 3 113 inl  swN 1 116
inn sP 1 117 ior mwPo 1 118 ior sP 1 119
lae u 120 lae sw 7 121 la P2 128
la N2 129 la mP 1 130 la mN 1 131
la swP 1 132 la swN 2 133 lar mwPo 1 135
Ildc mP 1 136 Ide w2 137 lde sw 1 138
Id mP 1 139 ld swN 1 140 Ifr mwPo 2 141
Ifr sP 1 143 il swN 1 144 lil  swP 1 145
il mwP 2 146 lin 2 148 lin sP 1 149
Ini - 150 loc 2 151 loc mP 34 0
loc mN 1 152 loc sP 1 153 loc sN 1 154
loe w2 155 loe sw 5 156 lof 2 161
lof mwPo 4 162 lof sP 1 166 loi 2 167
loo mPo 1 168 loo mwPo 4 169 loi sP 1 173
lol wP2 174 lol  wN2 175 loo mwP 4 176
loo mwN 8 180 lol swP 1 188 lol  swN 1 189
Ixa mPo 1 190 IXl mPo 2 191 mif sP 1 193
mi mwPo 2 194 rck mwPo 1 196 re¢e mwP 2 197
ret sP 1 199 rmi mwPo 1 200 sar mwPo 1 201
sbf sP 1 202 sbi mwPo 2 203 sd swN 1 205
set sP 1 206 sl swN 1 207 sil swP 1 208
di mwPo 1 209 ste w2 210 ste sw 3 211
sf 2 214 sf mwPo 2 215 stf sP 1 217
sti mPo 1 218 sti mwPo 4 219 i sP 1 223
sl wP2 224 stl wN2 225 sl mwP 2 226
sl mwN 5 228 sl swN 1 233 teq - 234
tgt - 235 tht - 236 tne - 237
zeq 2 238 zeq sP 2 239 zer sP 1 241
zge sP 1 242 zgt sP 1 243 zle sP 1 244
zZt sP 1 245 zne sP 1 246 zne sN 1 247
zre w2 248 zre sw 1 249 zfl mwN 2 250
zrl swN 1 252 zrl  wN2 253 aar €2 0
aar e- 1 adf e2 2 adf e- 3
adi e2 4 adi e 5 ads e2 6
ads e- 7 adu e2 8 adu e- 9



and €2
ass e2
bgt €2
bls e2
bne e2
cfi e
cmf €2
cmi e-
cmu e2
com e—

g
®

cui
del
dus
dvf
dvu
fef
inl
inn
lar
|df
Ifr
lim
lor
I
mii
miu
ngf
nop
ret
rmu
rol
rtt
sbf
sbi
sbu
sdf

TRTRE?
N

g
N

N

sil
di
slu
sru
sts
tge
xor
zer
Zle
zrf
dch
€xg
Idc
la
d wP4
lil wN4
lof 4

Ipi 4

beq 4

ble 4

bne 4

EPTIRRIRIRRINRIVRARIRIIRRITIRRETITRIRR?

10
13
16
19
22
25
28
31

37
40

46
49
52
55
58
61

67
70
73
76
79
82
85
88
91
94
97
100
103
106
109
112
115
118
121
124
127
130
133
136
139
142
145
148
151
154
157

inl  ewN2

o
TRIRRIRRRY

g8
T2
N\

sl ewN2

tle
xor
zge
zIt
zrf
€Xg
Ipb
lae
Ide
Id  wN4
loc 4
lol wP4
adp 4
bge 4
bim 4
bra 4

TR TRRTITPPIR®

11
14
17
20
23
26
29
32
35
38
41

47
50
53
56
59
62
65
68
71
74
77
80
83
86
89
92
95
98

101

104

107

110

113

116

119

122

125

128

131

134

137

140

143

146

149

152

155

158

~N AP

10

16
19
22
25

bge
blm
blt
cal
ciu
cmi

cms e-
com e2

csa
cuf
dee
dup
dvf
dvi
fef
fif
inn
ior
Idc
Idi
lil
los
Ixa
mif
miu
ngf
ngi
rck
rmi
rol
ror

Soi
sbs
sde
sl
sig
sim
slu
i
sti
str
trp
zer
zgt
zne
zrl
€Xg
gto
lal
|df
lil
loe
lol

bgt
blt
cal

e
e
ew?2
e2
e2

e2
e2
e2
ewN2
ewN2
e2

e2
e2

PP

ewP2

wP4
w4
wN4
w4
4

4

4

12
15
18
21
24
27
30
33
36
39
42
45
48
51

57
60
63
66
69
72
75
78
81

87

90

93

96

99
102
105
108
111
114
117
120
123
126
129
132
135
138
141
144
147
150
153
156
159

[6210\8)

14
17
20
23
26



dee w4 27 del wP4 28 del wN4 29

fil 4 30 gto 4 31 ine w4 32
inl  wP4 33 inl wN4 34 lin 4 35
sde 4 36 sdf 4 37 sdl wP4 38
sdl wN4 39 sl wP4 40 sil wN4 41
ste w4 42 stf 4 43 st wP4 44
sl wN4 45 zeq 4 46 zge 4 47
gt 4 48 Zle 4 49 zZIt 4 50
zne 4 51 zre w4 52 zrl wP4 53
zrl  wN4 54 loi 4 55 i 4 56

The table above results in the following dispatch tables. Dispatch tables are used by interpreters to jump to
the routines implementing the EM instructions, indexed by the next opcode. Each line of the dispatch tables
gives the routine names of eight consecutive opcodes, preceded by the first opcode number on that line. Routine
names consist of an EM mnemonic followed by a suffix. The suffices show the encoding used for each opcode.
The following suffices exist:

no arguments

16-bit argument

32-hit argument

16-bit unsigned argument

16-bit argument divided by the wordsize

32-hit argument divided by the wordsize

positive 16-bit argument

positive 32-bit argument

positive 16-bit argument divided by the wordsize
positive 32-bit argument divided by the wordsize
negative 16-bit argument

negative 32-bit argument

negative 16-bit argument divided by the wordsize
.Nw negative 32-bit argument divided by the wordsize
.s<num> shortie with <num> as high order argument byte
w<num>  shortie with argument divided by the wordsize
.<num> mini with <num> as argument

.<num>W  mini with <num>*wordsize as argument

'g'z':'g-'g'-u‘oié—g?: — =N

<num> is a possibly negative integer.
The dispatch table for the 256 primary opcodes:

0 locO loc.1 loc.2 loc.3 loc.4 loc.5 loc.6 loc.7

8 loc8 loc.9 loc.10 loc.11 loc.12 loc.13 loc.14 loc.15
16 loc.16 loc.17 loc.18 loc.19 loc.20 loc.21 loc.22 loc.23
24  loc.24 loc.25 loc.26 loc.27 loc.28 loc.29 loc.30 loc.31

32 loc.32 loc.33 aar.1W adf.s0 adi.1W adi.2w adp.| adp.1
40 adp.2 adp.s0 adps-1 adsIW  and.lW  asp.lW  asp.2W  asp.3W
48 asp.dW  asp.5SW  asp.wO beq.| beq.s0 bge.s0 bgt.s0 ble.s0
56 blm.sO blt.s0 bne.s0 bral bras-1 bra.s-2 bra.sO bra.sl
64 ca.l ca.2 cal.3 ca.4 ca.5 cal.6 cal.7 cal.8
72 cal9 cal.10 cal.ll cal.12 ca.13 ca.l4 ca.15 cal.16
80 ca.l7 cal.18 cal.19 ca.20 ca.2l cal.22 cal.23 cal.24
88 cd.25 cal.26 cal.27 cal.28 cal.s0 cff.z cif.z cii.z
96 cmf.s0 cmi.lW - cmi.2W  cmp.z cms.s0 csa.lW csh.lW  decz
104 deewO delw-1 dup.lW  dvf.s0 dvi.lW filLu inc.z ine.lw
112 inewO inl.-1wW  inl.-2W inl.-3W inlw-1 inn.s0 ior. AW ior.s0
120 laeu lae.w0 lae.wl lae.w2 lae.w3 lae.w4 lae.wb lae.w6
128 ld.p lal.n lal.0 lal.-1 lal.wO0 law-1 ldw-2 lar.lW
136  Idc.0 Ide.lw Ide.w0 Idl.0 [dlw-1  Ifr.AW Ifr.2W Ifr.s0
144 lilw-1 lil.wO lil.ow lil.IW lin.l lin.s0 Ini.z loc.|

152 loc.—-1 loc.s0 loc.s-1 loe.lw loe.w0 loe.wl loe.w?2 loe.w3



160
168
176
184
192
200
208
216
224
232
240
248

loew4
loi.1
lol.OW
lol.-5W
IxI.2
rmi. 1w
sil.w0
stf.2wW
stl.pw
stl.-5W
zeg.s1l
zrelw

lof |
loi.1W
lol.1W
lol.—6W
mif.s0
sar. W
di. AW
stf.s0
stl.nw
stl.w-1
zer.s0
zrewO

The list of secondary opcodes (escapel):

0

8
16
24
32
40
48
56
64
72
80
88
96
104
112
120
128
136
144
152

aar.|
adu.l
bgt.|
ca.l
cms.
csb.l
dup.|
dvu.z
inn.z
[dl.nw
Ipi.l
miu.z
rck.z
ror.|
shi.z
sdl.nw
di.z
stsl
zer.l
zrf.z

aar.z
adu.z
blel
cfi.z
cms.z
csh.z
dus.|
fef.l
ior.|
[fr.l
Ixal
mon.z
ret.|
ror.z
sbs.
set.l
dul
sts.z
zer.z
zrl.pw

Finally, the list of opcodes with four byte arguments (escape2).

0

8
16
24
32
40
48
56

Idc.L
lil.Pw
adp.L
bne.L
ineLw
sil.Pw
zgt.L
sti.L

lae.L
lil.Nw
asp.Lw
bra.L
inl.Pw
sil.Nw
ZleL

lof . 1W lof.2W lof.3W lof .4W
loi.2W loi.3W loi.4W loi.s0
lol.2W lol.3W lol.-1W  lol.-2W
lol.-=7W  lol.-8W lol.w0 lol.w-1
mli.1W mli.2W rck.1wW ret.0W
sbf.s0 sbi. AW shi.2W sdl.w-1
stelw stewO stewl stew?2
sti.l sti. W &ti.2W sti.3W
stl.owW stl.IwW stl-1wW  stl.-2wW
teq.z tot.z tit.z tne.z
zge.s0 zgt.s0 zle.s0 ZIt.s0
zrl-1W  zrl.-2W  zriw-1  zrl.nw
adf | adf.z adi.l adi.z ads.|
and.| and.z asplw  assl ass.z
bim.| bls.| bls.z bit.I bne.l
cfu.z ciu.z cmf.l cmf.z cmi.l
cmul  cmuz  coml comz csal
cuf.z Ccui.z cuu.z deelw  del.pw
dusz  dvfll dvf.z avi.l dvi.z
fef.z fif.l fif.z inl.pw  inl.nw
ior.z lar.l lar.z Idc.I Idf.I
lilLpw  lil.nw  lim.z los. los.z
IxI.I mif.l mif.z mii.l mli.z
ngf.| ngf.z ngi.l ngi.z nop.z
rmi.l rmi.z rmu.l rmu.z rol.l
rtt.z sar .l sar.z sbf.l shf.z
shs.z sbu.l sbu.z sde.u sdf .l
set.z sig.z sl.pw sl.nw  sim.z
su.z sl Sz sru.l sru.z
str.s0  tgez tlez trp.z xor.l
zgell zgt.l Zlel zitl znell
dch.z  exg.s0 exgl exg.z Ipb.z
lal.P lal.N ldeLw Idf.L [dl.Pw
loc.L loeLw lof.L lol.Pw lol.Nw
beqg.L bge.L bgt.L ble.L bim.L
cal.L deelw del.Pw del.Nw fil.L
ink,Nw  lin.L sde.L sdf .L sdl.Pw
stelw  stfL stl.Pw st.Nw  zeq.L
zIt.L zne.L zrelw  zrl.Pw zrl.Nw

lof.s0
lol.pw
lol.-3W
Ixal
ret.1W
set.s0
stf.l

&ti. AW
stl.—3wW
zeq
zne.s0

escapel

ads.z
bge.l
cai.z
cmi.z
csaz
del.nw
dvu.l
inn.
Idl.pw
lor.s0
miu.l
rek.l
rol.z
sbi.l
sdl.pw
di.l
il
Xor.z
zrf.l
gto.u

[dl.Nw
Ipi.L
bit.L
gto.L
sdl.Nw
zge.L
loi.L

loi.l
lol.nw
lol.—4W
IxI.1
ret.s0
sil.w-1
stf.IW
ti.s0
stl.—4w
zeq.s0
zne.s-1
escape?2



C. AN EXAMPLE PROGRAM

SREBowo~N~ous~wNR
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program example(output);
{This program just demonstrates typica EM code.}
type rec = record rl: integer; r2:real; r3: boolean end;
var mi: integer; mx:real; rrec;
function sum(a,b:integer):integer;
begin
sum:=a+b
end;
procedure test(var r: rec);
label 1;
var i,j: integer;
X,y: real;
b: boolean;
c: char;
a array[1..100] of integer;
begin
j=1
i:=3*j+6;
X :=4.8;
y :=x/0.5;
b :=true;
c:='7;
fori:=1to100do a[i] :=i * i;
r.rl:=j+27,
rr3:=b;
r.r2:=x+y,
i :=sum(r.rl, aj]);
whilei >0dobeginj:=j+r.rl;i:=i-1end
withr do beginr3:=b; r2:=x+y; rl:=0end,
goto 1,
1:  writeln(j, i:6, x:9:3, b)
end; {test}
begin {main program}
mx := 15.96;
mi :=99;
test(r)

end.



The EM code as produced by the Pascal-VU compiler is given below. Comments have been added manually.
Note that this code has already been optimized.

mes 2,2,2 ; wordsize 2, pointersize 2
A

rom 't.p\000’ ; the name of the source file

hol 552,-32768,0 ; externals and buf occupy 552 bytes

exp $sum ; sum can be called from other modules

pro $sum,2 ; procedure sum; 2 bytes local storage

lin8 ; code from source line 8

Idl 0 ; load two locals (aand b)

adi 2 ; add them

ret 2 ; return the result

end 2 ; end of procedure ( still two byteslocal storage)
2

rom 1,99,2 ; descriptor of array &[]

exp $test ; the compiler exports al level O procedures

pro $test,226 ; procedure test, 226 bytes local storage
3

rom 4.8F8 ; assemble Floating point 4.8 (8 bytes) in
4 ; global storage

rom 0.5F8 ; samefor 0.5

mes 3,-226,2,2 ; compiler temporary not referenced by address

mes 3,-24,2,0 ; thesameistruefori, j, band cintest

mes 3,-22,2,0

mes 3,-4,2,0

mes 3,-2,2,0

mes 3,-20,8,0 ;andfor x andy

mes 3,-12,8,0

lin20 ; maintain source line number

loc1

stl -4 =1

Ini ; lin 21 prior to optimization

lol -4

loc 3

mli 2

loc 6

adi 2

stl =2 ;1:=3*]+6

Ini ; lin 22 prior to optimization

lae .3

loi 8

lal -12

sti 8 ;X :=4.8

Ini ; lin 23 prior to optimization

lal -12

loi 8

lae .4

loi 8

dvf 8

lal =20

sti 8 ;y:=x/05

Ini ; lin 24 prior to optimization

loc1

st =22 ; bi=true

Ini ; lin 25 prior to optimization

loc 122

stl =24 ;c:='7

Ini ; lin 26 prior to optimization



loc 1

stl =2 ; for i:
2

lol -2

dup 2

mli 2 ;ii
lal —224

lol -2

lae .2

sar 2 ]
lol -2

loc 100

beq *3 ; 10 100 do

inl =2 ; increment i and loop
bra*2

1
-

lin27
lol -4
loc 27
adi 2 i+ 27
sil0 yrrl=
Ini ; lin 28 prior to optimization
lol =22 b
lol O
stf 10 ;3=
Ini ; lin 29 prior to optimization
lal —20
loi 16
adf 8 PX+y
lol O
adp 2
sti 8 ;rr2:=
Ini ; 1in 30 prior to optimization
lal —224
lol -4
lae .2
lar 2 > ]
lil 0 ;rrl
cal $sum ; call now
asp 4 ; remove parameters from stack
Ifr 2 ; get function result
stl =2 =
4
lin31
lol -2
zZle*5 ; whilei >0do
lol -4
lilo
adi 2
stl -4 pjiEjral
del -2 pi=i-1
bra*4 ; loop

lin 32

lol O

stl —226 ; make copy of address of r
lol —22

lol —226

stf 10 ;13:=b



lal =20

loi 16

adf 8

lol —226

adp 2

sti 8 (2 =X+y

loc 0

sil —226 ;rl:=0

lin34 ; note the absence of the unnecessary jump

lae 22 ; address of output structure

lol -4

ca $ wri ; write integer with default width

asp4 ; pOp parameters

lae 22

lol -2

loc 6

cal $ ws ; write integer width 6

asp6

lae 22

lal -12

loi 8

loc 9

loc 3

ca $ wrf ; write fixed format real, width 9, precision 3

asp 14

lae 22

lol —22

ca $ wrb ; write boolean, default width

asp4

lae 22

cad $ win ; writeln

asp 2

ret O ; return, no result

end 226

exp $_main

pro$ main,0 ; main program
.6

con 2,-1,22 ; description of external files
5

rom 15.96F8

fil .1 ; maintain source file name

lae .6 ; description of external files

lae 0 ; base of hol areato relocate buffer addresses

cad$ ini ; initializefiles, etc...

asp4

lin 37

lae .5

loi 8

lae 2

sti 8 ; mx :=15.96

Ini ; lin 38 prior to optimization

loc 99

ste 0 ; mi =99

Ini ; lin 39 prior to optimization

lae 10 ; address of r

cal $test

asp 2

loc 0 ; normal exit

ca $ hit ; cleanup and finish



asp 2
end O
mes5 : reals were used

The compact code corresponding to the above program is listed below. Read it horizontaly, line by line, not
column by column. Each number represents a byte of compact code, printed in decimal. The first two bytes
form the magic word.

173 0 159 122 122 122 255 242 1 161 250 124 116 46 112 0
255 156 245 40 2 245 0 128 120 155 249 123 115 117 109 160
249 123 115 117 109 122 67 128 63 120 3 122 88 122 152 122
242 2 161 121 219 122 255 155 249 124 116 101 115 116 160 249
124 116 101 115 116 245 226 0 242 3 161 253 128 123 52 46
56 255 242 4 161 253 128 123 48 46 53 255 159 123 245 30
255 122 122 255 159 123 96 122 120 255 159 123 98 122 120 255
159 123 116 122 120 255 159 123 118 122 120 255 159 123 100 128
120 255 159 123 108 128 120 255 67 140 69 121 113 116 68 73
116 69 123 81 122 69 126 3 122 113 118 68 57 242 3 72
128 58 108 112 128 68 58 108 72 128 57 242 4 72 128 44
128 58 100 112 128 68 69 121 113 98 68 69 245 122 0 113
96 68 69 121 113 118 182 73 118 42 122 81 122 58 245 32
255 73 118 57 242 2 94 122 73 118 69 220 10 123 54 118
18 122 183 67 147 73 116 69 147 3 122 104 120 68 73 98
73 120 111 130 68 58 100 72 136 2 128 73 120 4 122 112
128 68 58 245 32 255 73 116 57 242 2 59 122 65 120 20
249 123 115 117 109 8 124 64 122 113 118 184 67 151 73 118
128 125 73 116 65 120 3 122 113 116 41 118 18 124 185 67
152 73 120 113 245 30 255 73 98 73 245 30 255 111 130 58
100 72 136 2 128 73 245 30 255 4 122 112 128 69 120 104
245 30 255 67 154 57 142 73 116 20 249 124 95 119 114 105
8 124 57 142 73 118 69 126 20 249 124 95 119 115 105 8
126 57 142 58 108 72 128 69 129 69 123 20 249 124 95 119
114 102 8 134 57 142 73 98 20 249 124 95 119 114 98 8
124 57 142 20 249 124 95 119 108 110 8 122 88 120 152 245
226 0 155 249 125 95 109 97 105 110 160 249 125 95 109 97
105 110 120 242 6 151 122 119 142 255 242 5 161 253 128 125
49 53 46 57 54 255 50 242 1 57 242 6 57 120 20 249
124 95 105 110 105 8 124 67 157 57 242 5 72 128 57 122
112 128 68 69 219 110 120 68 57 130 20 249 124 116 101 115
116 8 122 69 120 20 249 124 95 104 108 116 8 122 152 120
159 124 160 255 159 125 255
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