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Abstract

EM is a family of intermediate languages designed for producing portable compilers.
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1. INTRODUCTION

EM is a family of intermediate languages designed for producing portable compilers. The general strategy is
for a program called front end to translate the source program to EM. Another program, back end translates
EM to target assembly language. Alternatively, the EM code can be assembled to a binary form and interpreted.
These considerations led to the following goals:

1 The design should allow translation to, or interpretation on, a wide range of
existing machines. Design decisions should be delayed as far as possible and
the implications of these decisions should be localized as much as possible.
The current microcomputer technology offers 8, 16 and 32 bit machines with
various sizes of address space. EM should be flexible enough to be useful on
most of these machines. The differences between the members of the EM
family should only concern the wordsize and address space size.

2 The architecture should ease the task of code generation for high level
languages such as Pascal, C, Ada, Algol 68, BCPL.

3 The instruction set used by the interpreter should be compact, to reduce the
amount of memory needed for program storage, and to reduce the time need-
ed to transmit programs over communication lines.

4 It should be designed with microprogrammed implementations in mind; in
particular, the use of many short fields within instruction opcodes should be
avoided, because their extraction by the microprogram or conversion to other
instruction formats is inefficient.

The basic architecture is based on the concept of a stack. The stack is used for procedure return addresses,
actual parameters, local variables, and arithmetic operations. There are several built-in object types, for exam-
ple, signed and unsigned integers, floating point numbers, pointers and sets of bits. There are instructions to
push and pop objects to and from the stack. The push and pop instructions are not typed. They only care about
the size of the objects. For each built-in type there are reverse Polish type instructions that pop one or more ob-
jects from the top of the stack, perform an operation, and push the result back onto the stack. For all types ex-
cept pointers, these instructions have the object size as argument.

There are no visible general registers used for arithmetic operands etc. This is in contrast to most third gen-
eration computers, which usually have 8 or 16 general registers. The decision not to have a group of general re-
gisters was fully intentional, and follows W.L. Van der Poel’s dictum that a machine should have 0, 1, or an
infinite number of any feature. General registers have two primary uses: to hold intermediate results of compli-
cated expressions, e.g.

((a*b + c*d)/e + f*g/h) * i

and to hold local variables.

Various studies have shown that the average expression has fewer than two operands, making the former use
of registers of doubtful value. The present trend toward structured programs consisting of many small pro-
cedures greatly reduces the value of registers to hold local variables because the large number of procedure calls
implies a large overhead in saving and restoring the registers at every call.

Although there are no general purpose registers, there are a few internal registers with specific functions as
follows:

PC − Program Counter Pointer to next instruction
LB − Local Base Points to base of the local variables

in the current procedure.
SP − Stack Pointer Points to the highest occupied word on the stack.
HP − Heap Pointer Points to the top of the heap area.
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Furthermore, reverse Polish code is much easier to generate than multi-register machine code, especially if
highly efficient code is desired. When translating to assembly language the back end can make good use of the
target machine’s registers. An EM machine can achieve high performance by keeping part of the stack in high
speed storage (a cache or microprogram scratchpad memory) rather than in primary memory.

Again according to van der Poel’s dictum, all EM instructions have zero or one argument. We believe that
instructions needing two arguments can be split into two simpler ones. The simpler ones can probably be used
in other circumstances as well. Moreover, these two instructions together often have a shorter encoding than the
single instruction before.

This document describes EM at three different levels: the abstract level, the assembly language level and the
machine language level.

The most important level is that of the abstract EM architecture. This level deals with the basic design is-
sues. Only the functional capabilities of instructions are relevant, not their format or encoding. Most chapters
of this document refer to the abstract level and it is explicitly stated whenever another level is described.

The assembly language is intended for the compiler writer. It presents a more or less orthogonal instruction
set and provides symbolic names for data. Moreover, it facilitates the linking of separately compiled ’modules’
into a single program by providing several pseudoinstructions.

The machine language is designed for interpretation with a compact program text and easy decoding. The
binary representation of the machine language instruction set is far from orthogonal. Frequent instructions have
a short opcode. The encoding is fully byte oriented. These bytes do not contain small bit fields, because bit
fields would slow down decoding considerably.

A common use for EM is for producing portable (cross) compilers. When used this way, the compilers pro-
duce EM assembly language as their output. To run the compiled program on the target machine, the back end,
translates the EM assembly language to the target machine’s assembly language. When this approach is used,
the format of the EM machine language instructions is irrelevant. On the other hand, when writing an inter-
preter for EM machine language programs, the interpreter must deal with the machine language and not with the
symbolic assembly language.

As mentioned above, the current microcomputer technology offers 8, 16 and 32 bit machines with address
spaces ranging from 216 to 232 bytes. Having one size of pointers and integers restricts the usefulness of the
language. We decided to have a different language for each combination of word and pointer size. All
languages offer the same instruction set and differ only in memory alignment restrictions and the implicit size
assumed in several instructions. The languages differ slightly for the different size combinations. For example:
the size of any object on the stack and alignment restrictions. The wordsize is restricted to powers of 2 and the
pointer size must be a multiple of the wordsize. Almost all programs handling EM will be parametrized with
word and pointer size.
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2. MEMORY

The EM machine has two distinct address spaces, one for instructions and one for data. The data space is di-
vided up into 8-bit bytes. The smallest addressable unit is a byte. Bytes are numbered consecutively from 0 to
some maximum. All sizes in EM are expressed in bytes.

Some EM instructions can transfer objects containing several bytes to and/or from memory. The size of all
objects larger than a word must be a multiple of the wordsize. The size of all objects smaller than a word must
be a divisor of the wordsize. For example: if the wordsize is 2 bytes, objects of the sizes 1, 2, 4, 6,... are al-
lowed. The address of such an object is the lowest address of all bytes it contains. For objects smaller than the
wordsize, the address must be a multiple of the object size. For all other objects the address must be a multiple
of the wordsize. For example, if an instruction transfers a 4-byte object to memory at location m and the word-
size is 2, m must be a multiple of 2 and the bytes at locations m, m + 1,m + 2 and m + 3 are overwritten.

The size of almost all objects in EM is an integral number of words. Only two operations are allowed on ob-
jects whose size is a divisor of the wordsize: push it onto the stack and pop it from the stack. The addressing of
these objects in memory is always indirect. If such a small object is pushed onto the stack it is assumed to be a
small integer and stored in the least significant part of a word. The rest of the word is cleared to zero, although
EM provides a way to sign-extend a small integer. Popping a small object from the stack removes a word from
the stack, stores the least significant byte(s) of this word in memory and discards the rest of the word.

The format of pointers into both address spaces is explicitly undefined. The size of a pointer, however, is
fixed for a member of EM, so that the compiler writer knows how much storage to allocate for a pointer.

A minor problem is raised by the undefined pointer format. Some languages, notably Pascal, require a spe-
cial, otherwise illegal, pointer value to represent the nil pointer. The current Pascal-VU compiler uses the in-
teger value 0 as nil pointer. This value is also used by many C programs as a normally impossible address. A
better solution would be to have a special instruction loading an illegal pointer value, but it is hard to imagine an
implementation for which the current solution is inadequate, especially because the first word in the EM data
space is special and probably not the target of any pointer.

The next two chapters describe the EM memory in more detail. One describes the instruction address space,
the other the data address space.

A design goal of EM has been to allow its implementation on a wide range of existing machines, as well as
allowing a new one to be built in hardware. To this extent we have tried to minimize the demands of EM on the
memory structure of the target machine. Therefore, apart from the logical partitioning, EM memory is divided
into ’fragments’. A fragment consists of consecutive machine words and has a base address and a size. Pointer
arithmetic is only defined within a fragment. The only exception to this rule is comparison with the null pointer.
All fragments must be word aligned.
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3. INSTRUCTION ADDRESS SPACE

The instruction space of the EM machine contains the code for procedures. Tables necessary for the execu-
tion of this code, for example, procedure descriptor tables, may also be present. The instruction space does not
change during the execution of a program, so that it may be protected. No further restrictions to the instruction
address space are necessary for the abstract and assembly language level.

Each procedure has a single entry point: the first instruction. A special type of pointer identifies a procedure.
Pointers into the instruction address space have the same size as pointers into data space and can, for example,
contain the address of the first instruction or an index in a procedure descriptor table.

There is a single EM program counter, PC, pointing to the next instruction to be executed. The procedure
pointed to by PC is called the ’current’ procedure. A procedure may call another procedure using the CAL or
CAI instruction. The calling procedure remains ’active’ and is resumed whenever the called procedure returns.
Note that a procedure has several ’active’ invocations when called recursively.

Each procedure must return properly. It is not allowed to fall through to the code of the next procedure.
There are several ways to exit from a procedure:

- the RET instruction, which returns to the calling procedure.

- the RTT instruction, which exits a trap handling routine and resumes the trapping instruction (see
next chapter).

- the GTO instruction, which is used for non-local goto’s. It can remove several frames from the stack
and transfer control to an active procedure. (see also MES 11 in paragraph 11.1.4.4)

All branch instructions can transfer control to any label within the same procedure. Branch instructions can
never jump out of a procedure.

Several language implementations use a so called procedure instance identifier, a combination of a pro-
cedure identifier and the LB of a stack frame, also called static link.

The program text for each procedure, as well as any tables, are fragments and can be allocated anywhere in
the instruction address space.
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4. DATA ADDRESS SPACE

The data address space is divided into three parts, called ’areas’, each with its own addressing method: glo-
bal data area, local data area (including the stack), and heap data area. These data areas must be part of the
same address space because all data is accessed by the same type of pointers.

Space for global data is reserved using several pseudoinstructions in the assembly language, as described in
the next paragraph and chapter 11. The size of the global data area is fixed per program.

Global data is addressed absolutely in the machine language. Many instructions are available to address glo-
bal data. They all have an absolute address as argument. Examples are LOE, LAE and STE.

Part of the global data area is initialized by the compiler, the rest is not initialized at all or is initialized with
a value, typically −32768 or 0. Part of the initialized global data may be made read-only if the implementation
supports protection.

The local data area is used as a stack, which grows from high to low addresses and contains some data for
each active procedure invocation, called a ’frame’. The size of the local data area varies dynamically during ex-
ecution. Below the current procedure frame resides the operand stack. The stack pointer SP always points to
the bottom of the local data area. Local data is addressed by offsetting from the local base pointer LB. LB al-
ways points to the frame of the current procedure. Only the words of the current frame and the parameters can
be addressed directly. Variables in other active procedures are addressed by following the chain of statically en-
closing procedures using the LXL or LXA instruction. The variables in dynamically enclosing procedures can
be addressed with the use of the DCH instruction.

Many instructions have offsets to LB as argument, for instance LOL, LAL and STL. The arguments of
these instructions range from −1 to some (negative) minimum for the access of local storage and from 0 to some
(positive) maximum for parameter access.

The procedure call instructions CAL and CAI each create a new frame on the stack. Each procedure has an
assembly-time parameter specifying the number of bytes needed for local storage. This storage is allocated each
time the procedure is called and must be a multiple of the wordsize. Each procedure, therefore, starts with a
stack with the local variables already allocated. The return instructions RET and RTT remove a frame. The ac-
tual parameters must be removed by the calling procedure.

RET may copy some words from the stack of the returning procedure to an unnamed ’function return area’.
This area is available for ’READ-ONCE’ access using the LFR instruction. The result of a LFR is only defined
if the size used to fetch is identical to the size used in the last return. The instruction ASP, used to remove the
parameters from the stack, the branch instruction BRA and the non-local goto instruction GTO are the only ones
that leave the contents of the ’function return area’ intact. All other instructions are allowed to destroy the func-
tion return area. Thus parameters can be popped before fetching the function result. The maximum size of all
function return areas is implementation dependent, but should allow procedure instance identifiers and all imple-
mented objects of type integer, unsigned, float and pointer to be returned. In most implementations the max-
imum size of the function return area is twice the pointer size, because we want to be able to handle ’procedure
instance identifiers’ which consist of a procedure identifier and the LB of a frame belonging to that procedure.

The heap data area grows upwards, to higher numbered addresses. It is initially empty. The initial value of
the heap pointer HP marks the low end. The heap pointer may be manipulated by the LOR and STR instruc-
tions. The heap can only be addressed indirectly, by pointers derived from previous values of HP.

4.1 Global data area

The initial size of the global data area is determined at assembly time. Global data is allocated by several
pseudoinstructions in the EM assembly language. Each pseudoinstruction allocates one or more bytes. The
bytes allocated for a single pseudo form a ’block’. A block differs from a fragment, because, under certain con-
ditions, several blocks are allocated in a single fragment. This guarantees that the bytes of these blocks are con-
secutive.

Global data is addressed absolutely in binary machine language. Most compilers, however, cannot assign
absolute addresses to their global variables, especially not if the language allows programs to be composed of
several separately compiled modules. The assembly language therefore allows the compiler to name the first
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address of a global data block with an alphanumeric label. Moreover, the only way to address such a named
global data block in the assembly language is by using its name. It is the task of the assembler/loader to
translate these labels into absolute addresses. These labels may also be used in CON and ROM pseudoinstruc-
tions to initialize pointers.

The pseudoinstruction CON allocates initialized data. ROM acts like CON but indicates that the initialized
data will not change during execution of the program. The pseudoinstruction BSS allocates a block of uninitial-
ized or identically initialized data. The pseudoinstruction HOL is similar to BSS, but it alters the meaning of
subsequent absolute addressing in the assembly language.

Another type of global data is a small block, called the ABS block, with an implementation defined size.
Storage in this type of block can only be addressed absolutely in assembly language. The first word has address
0 and is used to maintain the source line number. Special instructions LIN and LNI are provided to update this
counter. A pointer at location 4 points to a string containing the current source file name. The instruction FIL
can be used to update the pointer.

All numeric arguments of the instructions that address the global data area refer to locations in the ABS
block unless they are preceded by at least one HOL pseudo in the same module, in which case they refer to the
storage area allocated by the last HOL pseudoinstruction. Thus LOE 0 loads the zeroth word of the most recent
HOL, unless no HOL has appeared in the current file so far, in which case it loads the zeroth word of the ABS
fragment.

The global data area is highly fragmented. The ABS block and each HOL and BSS block are separate frag-
ments. The way fragments are formed from CON and ROM blocks is more complex. The assemblers group
several blocks into a single fragment. A fragment only contains blocks of the same type: CON or ROM. It is
guaranteed that the bytes allocated for two consecutive CON pseudos are allocated consecutively in a single
fragment, unless these CON pseudos are separated in the assembly language program by a data label definition
or one or more of the following pseudos:

ROM, BSS, HOL and END

An analogous rule holds for ROM pseudos.

4.2 Local data area

The local data area consists of a sequence of frames, one for each active procedure. Below the frame of the
current procedure resides the expression stack. Frames are generated by procedure calls and are removed by
procedure returns. A procedure frame consists of six ’zones’:

1. The return status block
2. The local variables and compiler temporaries
3. The register save block
4. The dynamic local generators
5. The operand stack.
6. The parameters of a procedure one level deeper

A sample frame is shown in Figure 1.

Before a procedure call is performed the actual parameters are pushed onto the stack of the calling pro-
cedure. The exact details are compiler dependent. EM allows procedures to be called with a variable number of
parameters. The implementation of the C-language almost forces its runtime system to push the parameters in
reverse order, that is, the first positional parameter last. Most compilers use the C calling convention to be com-
patible. The parameters of a procedure belong to the frame of the calling procedure. Note that the evaluation of
the actual parameters may imply the calling of procedures. The parameters can be accessed with certain instruc-
tions using offsets of 0 and greater. The first byte of the last parameter pushed has offset 0. Note that the
parameter at offset 0 has a special use in the instructions following the static chain (LXL and LXA). These in-
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structions assume that this parameter contains the LB of the statically enclosing procedure. Procedures that do
not have a dynamically enclosing procedure do not need a static link at offset 0.

Two instructions are available to perform procedure calls, CAL and CAI. Several tasks are performed by
these call instructions.

First, a part of the status of the calling procedure is saved on the stack in the return status block. This block
should contain the return address of the calling procedure, its LB and other implementation dependent data. The
size of this block is fixed for any given implementation because the lexical instructions LPB, LXL and LXA
must be able to obtain the base addresses of the procedure parameters and local variables. An alternative solu-
tion can be used on machines with a highly segmented address space. The stack frames need not be contiguous
then and the first status save area can contain the parameter base AB, which has the value of SP just after the
last parameter has been pushed.

Second, the LB is changed to point to the first word above the local variables. The new LB is a copy of the
SP after the return status block has been pushed.

Third, the amount of local storage needed by the procedure is reserved. The parameters and local storage
are accessed by the same instructions. Negative offsets are used for access to local variables. The highest byte,
that is the byte nearest to LB, has to be accessed with offset −1. The pseudoinstruction specifying the entry
point of a procedure, has an argument that specifies the amount of local storage needed. The local variables al-
located by the CAI or CAL instructions are the only ones that can be accessed with a fixed negative offset. The
initial value of the allocated words is not defined, but implementations that check for undefined values will prob-
ably initialize them with a special ’undefined’ pattern, typically −32768.

Fourth, any EM implementation is allowed to reserve a variable size block beneath the local variables. This
block could, for example, be used to save a variable number of registers.

Finally, the address of the entry point of the called procedure is loaded into the Program Counter.

The ASP instruction can be used to allocate further (dynamic) local storage. The base address of such
storage must be obtained with a LOR SP instruction. This same instruction ASP may also be used to remove
some words from the stack.

There is a version of ASP, called ASS, which fetches the number of bytes to allocate from the stack. It can
be used to allocate space for local objects whose size is unknown at compile time, so called ’dynamic local gen-
erators’.

Control is returned to the calling procedure with a RET instruction. Any return value is then copied to the
’function return area’. The frame created by the call is deallocated and the status of the calling procedure is re-
stored. The value of SP just after the return value has been popped must be the same as the value of SP just be-
fore executing the first instruction of this invocation. This means that when a RET is executed the operand stack
can only contain the return value and all dynamically generated locals must be deallocated. Violating this res-
triction might result in hard to detect errors. The calling procedure has to remove the parameters from the stack.
This can be done with the aforementioned ASP instruction.

Each procedure frame is a separate fragment. Because any fragment may be placed anywhere in memory,
procedure frames need not be contiguous.
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|===============================|
| actual parameter n-1 |
|-------------------------------|
| . |
| . |
| . |
|-------------------------------|
| actual parameter 0 | ( <− AB )
|===============================|

|===============================|
|///////////////////////////////|
|///// return status block /////|
|///////////////////////////////| <− LB
|===============================|
| |
| local variables |
| |
|-------------------------------|
| |
| compiler temporaries |
| |
|===============================|
|///////////////////////////////|
|///// register save block /////|
|///////////////////////////////|
|===============================|
| |
| dynamic local generators |
| |
|===============================|
| operand |
|-------------------------------|
| operand |
|===============================|
| parameter m-1 |
|-------------------------------|
| . |
| . |
| . |
|-------------------------------|
| parameter 0 | <− SP
|===============================|

Figure 1. A sample procedure frame and parameters.

4.3 Heap data area

The heap area starts empty, with HP pointing to the low end of it. HP always contains a word address. A
copy of HP can always be obtained with the LOR instruction. A new value may be stored in the heap pointer
using the STR instruction. If the new value is greater than the old one, then the heap grows. If it is smaller,
then the heap shrinks. HP may never point below its original value. All words between the current HP and the
original HP are allocated to the heap. The heap may not grow into a part of memory that is already allocated.
When this is attempted, the STR instruction will cause a trap to occur. In this case, HP retains its old value.
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The only way to address the heap is indirectly. Whenever an object is allocated by increasing HP, then the
old HP value must be saved and can be used later to address the allocated object. If, in the meantime, HP is de-
creased so that the object is no longer part of the heap, then an attempt to access the object is not allowed.
Furthermore, if the heap pointer is increased again to above the object address, then access to the old object
gives undefined results.

The heap is a single fragment. All bytes have consecutive addresses. No limits are imposed on the size of
the heap as long as it fits in the available data address space.
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5. MAPPING OF EM DATA MEMORY ONTO TARGET MACHINE MEMORY

The EM architecture is designed to be implemented on many existing and future machines. EM memory is
highly fragmented to make adaptation to various memory architectures possible. Format and encoding of
pointers is explicitly undefined.

This chapter gives solutions to some of the anticipated problems. First, we describe a possible memory lay-
out for machines with 64K bytes of address space. Here we use a member of the EM family with 2-byte word
and pointer size. The most straightforward layout is shown in figure 2.

65534 −> |-------------------------------|
|///////////////////////////////|
|//// unimplemented memory /////|
|///////////////////////////////|

ML −> |-------------------------------|
| |
| | <− LB
| stack and local area |
| |
|-------------------------------| <− SP
|///////////////////////////////|
|//////// inaccessible /////////|
|///////////////////////////////|
|-------------------------------| <− HP
| |
| heap area |
| |
| |

HB −> |-------------------------------|
| |
| global data area |
| |

EB −> |-------------------------------|
| |
| program text | <− PC
| |
| ( and tables ) |
| |
| |

PB −> |-------------------------------|
|///////////////////////////////|
|////////// undefined //////////|
|///////////////////////////////|

0 −> |-------------------------------|

Figure 2. Memory layout showing typical register
positions during execution of an EM program.

The base registers for the various memory pieces can be stored in target machine registers or memory.

PB : program base points to the base of the instruction address space.
EB : external base points to the base of the data address space.
HB : heap base points to the base of the heap area.
ML : memory limit marks the high end of the addressable data space.

The stack grows from high EM addresses to low EM addresses, and the heap the other way. The memory
between SP and HP is not accessible, but may be allocated later to the stack or the heap if needed. The local
data area is allocated starting at the high end of memory.
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Because EM address 0 is not mapped onto target address 0, a problem arises when pointers are used. If a
program pushed a constant, say 6, onto the stack, and then tried to indirect through it, the wrong word would be
fetched, because EM address 6 is mapped onto target address EB+6 and not target address 6 itself. This particu-
lar problem is solved by explicitly declaring the format of a pointer to be undefined, so that using a constant as a
pointer is completely illegal. However, the general problem of mapping pointers still exists.

There are two possible solutions. In the first solution, EM pointers are represented in the target machine as
true EM addresses, for example, a pointer to EM address 6 really is stored as a 6 in the target machine. This
solution implies that every time a pointer is fetched EB must be added before referencing the target machine’s
memory. If the target machine has powerful indexing facilities, EB can be kept in a target machine register, and
the relocation can indeed be done on every reference to the data address space at a modest cost in speed.

The other solution consists of having EM pointers refer to the true target machine address. Thus the instruc-
tion LAE 6 (Load Address of External 6) would push the value of EB+6 onto the stack. When this approach is
chosen, back ends must know how to offset from EB, to translate all instructions that manipulate EM addresses.
However, the problem is not completely solved, because a front end may have to initialize a pointer in CON or
ROM data to point to a global address. This pointer must also be relocated by the back end or the interpreter.

Although the EM stack grows from high to low EM addresses, some machines have hardware PUSH and
POP instructions that require the stack to grow upwards. If reasons of efficiency demand the use of these in-
structions, then EM can be implemented with the memory layout upside down, as shown in figure 3. This is
possible because the pointer format is explicitly undefined. The first element of a word array will have a lower
physical address than the second element.

| | | |
| EB=60 | | ˆ |
| | | | |
|-----------------| |-----------------|

105 | 45 | 44 | 104 214 | 41 | 40 | 215
|-----------------| |-----------------|

103 | 43 | 42 | 102 212 | 43 | 42 | 213
|-----------------| |-----------------|

101 | 41 | 40 | 100 210 | 45 | 44 | 211
|-----------------| |-----------------|
| | | | |
| v | | EB=255 |
| | | |

Type A Type B

Figure 3. Two possible memory implementations.
Numbers within the boxes are EM addresses.

The other numbers are physical addresses.

So, we have two different EM memory implementations:

A − stack downwards

B − stack upwards

For each of these two possibilities we give the translation of the EM instructions to push the third byte of a
global data block starting at EM address 40 onto the stack and to load the word at address 40. All translations
assume a word and pointer size of two bytes. The target machine used is a PDP-11 augmented with push and
pop instructions. Registers ’r0’ and ’r1’ are used and suffer from sign extension for byte transfers. Push $40
means push the constant 40, not word 40.

The translation of the EM instructions depends on the pointer representation used. For each of the two solu-
tions explained above the translation is given.
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First, the translation for the two implementations using EM addresses as pointer representation:

EM type A type B2222222222222222222222222222222222222222222222

LAE 40 push $40 push $40

ADP 3 pop r0 pop r0
add $3,r0 add $3,r0
push r0 push r0

LOI 1 pop r0 pop r0
− neg r0
clr r1 clr r1
bisb eb(r0),r1 bisb eb(r0),r1
push r1 push r1

LOE 40 push eb+40 push eb-41

The translation for the two implementations, if the target machine address is used as pointer representation,
is:

EM type A type B22222222222222222222222222222222222222222222

LAE 40 push $eb+40 push $eb-40

ADP 3 pop r0 pop r0
add $3,r0 sub $3,r0
push r0 push r0

LOI 1 pop r0 pop r0
clr r1 clr r1
bisb (r0),r1 bisb (r0),r1
push r1 push r1

LOE 40 push eb+40 push eb-41

The translation presented above is not intended to be optimal. Most machines can handle these simple cases
in one or two instructions. It demonstrates, however, the flexibility of the EM design.

There are several possibilities to implement EM on machines with address spaces larger than 64k bytes. For
EM with two byte pointers one could allocate instruction and data space each in a separate 64k piece of
memory. EM pointers still have to fit in two bytes, but the base registers PB and EB may be loaded in hardware
registers wider than 16 bits, if available. EM implementations can also make efficient use of a machine with
separate instruction and data space.

EM with 32 bit pointers allows one to make use of machines with large address spaces. In a virtual, seg-
mented memory system one could use a separate segment for each fragment.
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6. TYPE REPRESENTATIONS

The representations used for typed objects are not precisely specified by EM. Sometimes we only specify
that a typed object occupies a certain amount of space and state no further restrictions. If one wants to have a
different representation of the value of an object on the stack one has to use a convert instruction in most cases.
We do specify some relations between the representations of types. This allows some intermixed use of opera-
tors for different types on the same object(s). For example, the instruction ZER pushes signed and unsigned in-
tegers with the value zero and empty sets. ZER has as only argument the size of the object.

The representation of floating point numbers is a good example, it allows widely varying implementations.
The only ways to create floating point numbers are via initialization and via conversions from integer numbers.
Only by using conversions to integers and comparing two floating point numbers with each other, can these
numbers be converted to human readable output. Implementations may use base 10, base 2 or any other base for
exponents, and have freedom in choosing the range of exponent and mantissa.

Other types are more precisely described. In the following paragraphs a description will be given of the res-
trictions imposed on the representation of the types used. A number n used in these paragraphs indicates the
size of the object in bits.

6.1 Unsigned integers

The range of unsigned integers is 0.. 2n-1. A binary representation is assumed. The order of the bits within
an object is knowingly left unspecified. Discussing bit order within each 8-bit byte is academic, so the only real
freedom of this specification lies in the byte order. We really do not care whether an implementation of a 4-byte
integer has its bytes in a particular order of significance. This of course means that some sequences of instruc-
tions have unpredictable effects. For example:

LOC 258 ; STL 0 ; LAL 0 ; LOI 1 ( wordsize >=2 )

The value on the stack after executing this sequence can be anything, but will most likely be 1 or 2.
Conversion between unsigned integers of different sizes have to be done with explicit convert instructions.

One cannot simply pad an unsigned integer with zero’s at either end and expect a correct result.
We assume existence of at least single word unsigned arithmetic in any implementation.

6.2 Signed Integers

The range of signed integers is −2n−1 .. 2n−1−1, in other words the range of signed integers of n bits using
two’s complement arithmetic. The representation is the same as for unsigned integers except the range 2n−1 ..
2n−1 is mapped on the range −2n−1 .. −1. In other words, the most significant bit is used as sign bit. The con-
vert instructions between signed and unsigned integers of the same size can be used to catch errors.

The value −2n−1 is used for undefined signed integers. EM implementations should trap when this value is
used in an operation on signed integers. The instruction mask, accessed with SIM and LIM − see chapter 9 − ,
can be used to disable such traps.

We assume existence of at least single word signed arithmetic in any implementation.

6.3 Floating point values

Floating point values must have a signed mantissa and a signed exponent. Although no base is specified,
base 2 is the normal choice, because the FEF instruction pushes the exponent in base 2.

The implementation of floating point arithmetic is optional. The compilers currently in use have runtime
parameters for the size of the floating point values they should use. Common choices are 4 and/or 8 bytes.

6.4 Pointers

EM has two kinds of pointers: for instruction and for data space. Each kind can only be used for its own
space, conversion between these two subtypes is impossible. We assume that pointers have a range from 0 up-
wards. Any implementation may have holes in the pointer range between fragments. One can of course not ex-
pect to be able to address two megabyte of memory using a 2-byte pointer. Normally, a 2-byte pointer allows up
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to 65536 bytes of addressable memory.
Pointer representation has one restriction. The pointer with the same representation as the integer zero of the

same size should be invalid. Some languages and/or runtime systems represent the nil pointer as zero.

6.5 Bit sets

All bit sets of size n are subsets of the set { i | i>=0, i<n }. A bit set contains a bit for each element showing
its presence or absence. Bit sets are subdivided into words. The word with the lowest EM address governs the
subset { i | i>=0, i<m }, where m is the number of bits in a word. The next higher words each govern the next
higher m set elements. The relation between a set with size of a word and an unsigned integer word is that the
value of the unsigned integer is the summation of the 2i where i is in the set.

Example: a 2-word bit set (wordsize 2) containing the elements 1, 6, 8, 15, 18, 21, 27 and 28 is composed of
two integers, e.g. at addresses 40 and 42. The word at 40 contains the value 33090 (or −32446), the word at 42
contains the value 6180.
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7. DESCRIPTORS

Several instructions use descriptors, notably the range check instruction, the array instructions, the goto in-
struction and the case jump instructions. Descriptors reside in data space. They may be constructed at run time,
but more often they are fixed and allocated in ROM data.

All instructions using descriptors, except GTO, have as argument the size of the integers in the descriptor.
All implementations have to allow integers of the size of a word in descriptors. All integers popped from the
stack and used for indexing or comparing must have the same size as the integers in the descriptor.

7.1 Range check descriptors

Range check descriptors consist of two integers:

1. lower bound signed

2. upper bound signed

The range check instruction checks an integer on the stack against these bounds and causes a trap if the value is
outside the interval. The value itself is neither changed nor removed from the stack.

7.2 Array descriptors

Each array descriptor describes a single dimension. For multi-dimensional arrays, several array instructions
are needed to access a single element. Array descriptors contain the following three integers:

1. lower bound signed

2. upper bound − lower bound unsigned

3. number of bytes per element unsigned

The array instructions LAR, SAR and AAR have the pointer to the start of the descriptor as operand on the
stack.

The element A[I] is fetched as follows:

1. Stack the address of A (e.g., using LAE or LAL)

2. Stack the value of I (n-byte integer)

3. Stack the pointer to the descriptor (e.g., using LAE)

4. LAR n (n is the size of the integers in the descriptor and I)

All array instructions first pop the address of the descriptor and the index. If the index is not within the bounds
specified, a trap occurs. If ok, (I − lower bound) is multiplied by the number of bytes per element (the third
word). The result is added to the address of A and replaces A on the stack.

At this point LAR, SAR and AAR diverge. AAR is finished. LAR pops the address and fetches the data
item, the size being specified by the descriptor. The usual restrictions for memory access must be obeyed. SAR
pops the address and stores the data item now exposed.

7.3 Non-local goto descriptors

The GTO instruction provides a way of returning directly to any active procedure invocation. The argument
of the instruction is the address of a descriptor containing three pointers:

1. value of PC after the jump
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2. value of SP after the jump

3. value of LB after the jump

GTO replaces the loads PC, SP and LB from the descriptor, thereby jumping to a procedure and removing zero
or more frames from the stack. The LB, SP and PC in the descriptor must belong to a dynamically enclosing
procedure, because some EM implementations will need to backtrack through the dynamic chain and use the im-
plementation dependent data in frames to restore registers etc.

7.4 Case descriptors

The case jump instructions CSA and CSB both provide multiway branches selected by a case index. Both
fetch two operands from the stack: first a pointer to the low address of the case descriptor and then the case in-
dex. CSA uses the case index as index in the descriptor table, but CSB searches the table for an occurrence of
the case index. Therefore, the descriptors for CSA and CSB, as shown in figure 4, are different. All pointers in
the table must be addresses of instructions in the procedure executing the case instruction.

CSA selects the new PC by indexing. If the index, a signed integer, is greater than or equal to the lower
bound and less than or equal to the upper bound, then fetch the new PC from the list of instruction pointers by
indexing with index-lower. The table does not contain the value of the upper bound, but the value of upper-
lower as an unsigned integer. The default instruction pointer is used when the index is out of bounds. If the
resulting PC is 0, then trap.

CSB selects the new PC by searching. The table is searched for an entry with index value equal to the case
index. That entry or, if none is found, the default entry contains the new PC. When the resulting PC is 0, a trap
is performed.

The choice of which case instruction to use for each source language case statement is up to the front end. If
the range of the index value is dense, i.e

(highest value − lowest value) / number of cases

is less than some threshold, then CSA is the obvious choice. If the range is sparse, CSB is better.
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|--------------------| |--------------------| high address
| pointer for upb | | pointer n-1 |
|--------------------| |- - - - - - - |
| . | | index n-1 |
| . | |--------------------|
| . | | . |
| . | | . |
| . | | . |
| . | |--------------------|
| . | | pointer 1 |
|--------------------| |- - - - - - - |
| pointer for lwb+1 | | index 1 |
|--------------------| |--------------------|
| pointer for lwb | | pointer 0 |
|--------------------| |- - - - - - - |
| upper - lower | | index 0 |
|--------------------| |--------------------|
| lower bound | | number of entries |
|--------------------| |--------------------|
| default pointer | | default pointer | low address
|--------------------| |--------------------|

CSA descriptor CSB descriptor

Figure 4. Descriptor layout for CSA and CSB
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8. ENVIRONMENT INTERACTIONS

EM programs can interact with their environment in three ways. Two, starting/stopping and monitor calls,
are dealt with in this chapter. The remaining way to interact, interrupts, will be treated together with traps in
chapter 9.

8.1 Program starting and stopping

EM user programs start with a call to a procedure called _m_a_i_n. The assembler and backends look for
the definition of a procedure with this name in their input. The call passes three parameters to the procedure.
The parameters are similar to the parameters supplied by the UNIX operating system to C programs. These
parameters are often called argc, argv and envp. Argc is the parameter nearest to LB and is a wordsized in-
teger. The other two are pointers to the first element of an array of string pointers.
The argv array contains argc strings, the first of which contains the program call name. The other strings in the
argv array are the program parameters.

The envp array contains strings in the form "name=string", where ’name’ is the name of an environment
variable and string its value. The envp is terminated by a zero pointer.

An EM user program stops if the program returns from the first invocation of _m_a_i_n. The contents of the
function return area are used to procure a wordsized program return code. EM programs also stop when traps
and interrupts occur that are not caught and when the exit monitor call is executed.

8.2 Input/Output and other monitor calls

EM differs from most conventional machines in that it has high level i/o instructions. Typical instructions
are OPEN FILE and READ FROM FILE instead of low level instructions such as setting and clearing bits in
device registers. By providing such high level i/o primitives, the task of implementing EM on various non EM
machines is made considerably easier.

I/O is initiated by the MON instruction, which expects an iocode on top of the stack. Often there are also
parameters which are pushed on the stack in reverse order, that is: last parameter first. Some i/o functions also
provide results, which are returned on the stack. In the list of monitor calls we use several types of parameters
and results, these types consist of integers and unsigneds of varying sizes, but never smaller than the wordsize,
and the two pointer types.

The names of the types used are:
int an integer of wordsize
int2 an integer whose size is the maximum of the wordsize and 2 bytes
int4 an integer whose size is the maximum of the wordsize and 4 bytes
intp an integer with the size of a pointer
uns2 an unsigned integer whose size is the maximum of the wordsize and 2
unsp an unsigned integer with the size of a pointer
ptr a pointer into data space

The table below lists the i/o codes with their results and parameters. This list is similar to the system calls of the
UNIX Version 7 operating system.

To execute a monitor call, proceed as follows:

a) Stack the parameters, in reverse order, last parameter first.
b) Push the monitor call number (iocode) onto the stack.

222222222222222222222222222222

UNIX is a Trademark of Bell Laboratories.
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c) Execute the MON instruction.

An error code is present on the top of the stack after execution of most monitor calls. If this error code is zero,
the call performed the action requested and the results are available on top of the stack. Non-zero error codes
indicate a failure, in this case no results are available and the error code has been pushed twice. This construc-
tion enables programs to test for failure with a single instruction ( TEQ or TNE ) and still find out the cause of
the failure. The result name ’e’ is reserved for the error code.

List of monitor calls.

nr name parameters results function

1 Exit status:int Terminate this process
2 Fork e,flag,pid:int Spawn new process
3 Read fildes:int;buf:ptr;nbytes:unsp

e:int;rbytes:unsp Read from file
4 Write fildes:int;buf:ptr;nbytes:unsp

e:int;wbytes:unsp Write on a file
5 Open string:ptr;flag:int

e,fildes:int Open file for read and/or write
6 Close fildes:int e:int Close a file
7 Wait e:int;status,pid:int2

Wait for child
8 Creat string:ptr;mode:int

e,fildes:int Create a new file
9 Link string1,string2:ptr

e:int Link to a file
10 Unlink string:ptr e:int Remove directory entry
12 Chdir string:ptr e:int Change default directory
14 Mknod string:ptr;mode,addr:int2

e:int Make a special file
15 Chmod string:ptr;mode:int2

e:int Change mode of file
16 Chown string:ptr;owner,group:int2

e:int Change owner/group of a file
18 Stat string,statbuf:ptr

e:int Get file status
19 Lseek fildes:int;off:int4;whence:int

e:int;oldoff:int4 Move read/write pointer
20 Getpid pid:int2 Get process identification
21 Mount special,string:ptr;rwflag:int

e:int Mount file system
22 Umount special:ptr e:int Unmount file system
23 Setuid userid:int2 e:int Set user ID
24 Getuid e_uid,r_uid:int2 Get user ID
25 Stime time:int4 e:int Set time and date
26 Ptrace request:int;pid:int2;addr:ptr;data:int

e,value:int Process trace
27 Alarm seconds:uns2 previous:uns2 Schedule signal
28 Fstat fildes:int;statbuf:ptr

e:int Get file status
29 Pause Stop until signal
30 Utime string,timep:ptr

e:int Set file times
33 Access string:ptr;mode:int

e:int Determine file accessibility
34 Nice incr:int Set program priority
35 Ftime bufp:ptr e:int Get date and time
36 Sync Update filesystem



20

37 Kill pid:int2;sig:int
e:int Send signal to a process

41 Dup fildes,newfildes:int
e,fildes:int Duplicate a file descriptor

42 Pipe e,w_des,r_des:int Create a pipe
43 Times buffer:ptr Get process times
44 Profil buff:ptr;bufsiz,offset,scale:intp

Execution time profile
46 Setgid gid:int2 e:int Set group ID
47 Getgid e_gid,r_gid:int Get group ID
48 Sigtrp trapno,signo:int

e,prevtrap:int See below
51 Acct file:ptr e:int Turn accounting on or off
53 Lock flag:int e:int Lock a process
54 Ioctl fildes,request:int;argp:ptr

e:int Control device
56 Mpxcall cmd:int;vec:ptr e:int Multiplexed file handling
59 Exece name,argv,envp:ptr

e:int Execute a file
60 Umask mask:int2 oldmask:int2 Set file creation mode mask
61 Chroot string:ptr e:int Change root directory

Codes 0, 11, 13, 17, 31, 32, 38, 39, 40, 45, 49, 50, 52, 55, 57, 58, 62, and 63 are not used.

All monitor calls, except fork and sigtrp are the same as the UNIX version 7 system calls.

The sigtrp entry maps UNIX signals onto EM interrupts. Normally, trapno is in the range 0 to 252. In that
case it requests that signal signo will cause trap trapno to occur. When given trap number −2, default signal
handling is reset, and when given trap number −3, the signal is ignored.

The flag returned by fork is 1 in the child process and 0 in the parent. The pid returned is the process-id of
the other process.
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9. TRAPS AND INTERRUPTS

EM provides a means for the user program to catch all traps generated by the program itself, the hardware,
or external conditions. This mechanism uses five instructions: LIM, SIM, SIG, TRP and RTT. This section of
the manual may be omitted on the first reading since it presupposes knowledge of the EM instruction set.

The action taken when a trap occurs is determined by the value of an internal EM trap register. This register
contains a pointer to a procedure. Initially the pointer used is zero and all traps halt the program with, hopefully,
a useful message to the outside world. The SIG instruction can be used to alter the trap register, it pops a pro-
cedure pointer from the stack into the trap register. When a trap occurs after storing a nonzero value in the trap
register, the procedure pointed to by the trap register is called with the trap number as the only parameter (see
below). SIG returns the previous value of the trap register on the stack. Two consecutive SIGs are a no-op.
When a trap occurs, the trap register is reset to its initial condition, to prevent recursive traps from hanging the
machine up, e.g. stack overflow in the stack overflow handling procedure.

The runtime systems for some languages need to ignore some EM traps. EM offers a feature called the ig-
nore mask. It contains one bit for each of the lowest 16 trap numbers. The bits are numbered 0 to 15, with the
least significant bit having number 0. If a certain bit is 1 the corresponding trap never occurs and processing
simply continues. The actions performed by the offending instruction are described by the Pascal program in
appendix A.
If the bit is 0, traps are not ignored. The instructions LIM and SIM allow copying and replacement of the ignore
mask.

The TRP instruction generates a trap, the trap number being found on the stack. This is, among other things,
useful for library procedures and runtime systems. It can also be used by a low level trap procedure to pass the
trap to a higher level one (see example below).

The RTT instruction returns from the trap procedure and continues after the trap. In the list below all traps
marked with an asterisk (’*’) are considered to be fatal and it is explicitly undefined what happens when restart-
ing after the trap.

The way a trap procedure is called is completely compatible with normal calling conventions. The only way
a trap procedure differs from normal procedures is the return. It has to use RTT instead of RET. This is neces-
sary because the complete runtime status is saved on the stack before calling the procedure and all this status has
to be reloaded. Error numbers are in the range 0 to 252. The trap numbers are divided into three categories:

0− 63 EM machine errors, e.g. illegal instruction.
0−15 maskable
16−63 not maskable

64−127 Reserved for use by compilers, run time systems, etc.
128−252 Available for user programs.

EM machine errors are numbered as follows:

0 EARRAY Array bound error
1 ERANGE Range bound error
2 ESET Set bound error
3 EIOVFL Integer overflow
4 EFOVFL Floating overflow
5 EFUNFL Floating underflow
6 EIDIVZ Divide by 0
7 EFDIVZ Divide by 0.0
8 EIUND Undefined integer
9 EFUND Undefined float

10 ECONV Conversion error
16* ESTACK Stack overflow
17 EHEAP Heap overflow
18* EILLINS Illegal instruction
19* EODDZ Illegal size argument
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20* ECASE Case error
21* EMEMFLT Addressing non existent memory
22* EBADPTR Bad pointer used
23* EBADPC Program counter out of range
24 EBADLAE Bad argument of LAE
25 EBADMON Bad monitor call
26 EBADLIN Argument of LIN too high
27 EBADGTO GTO descriptor error

As an example, suppose a subprocedure has to be written to do a numeric calculation. When an overflow
occurs the computation has to be stopped and the higher level procedure must be resumed. This can be pro-
grammed as follows using the mechanism described above:

mes 2,2,2 ; set sizes
ersave
bss 2,0,0 ; Room to save previous value of trap procedure

msave
bss 2,0,0 ; Room to save previous value of trap mask

pro $calcule,0 ; entry point
lxl 0 ; fill in non-local goto descriptor with LB
ste jmpbuf+4
lor 1 ; and SP
ste jmpbuf+2
lim ; get current ignore mask
ste msave ; save it
lim
loc 16 ; bit for EFOVFL
ior 2 ; set in mask
sim ; ignore EFOVFL from now on
lpi $catch ; load procedure identifier
sig ; catch wil get all traps now
ste ersave ; save previous trap procedure identifier

; perform calculation now, possibly generating overflow
1 ; label jumped to by catch procedure
loe ersave ; get old trap procedure
sig ; refer all following trap to old procedure
asp 2 ; remove result of sig
loe msave ; restore previous mask
sim ; done now

; load result of calculation
ret 2 ; return result

jmpbuf
con *1,0,0
end
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Example of catch procedure
pro $catch,0 ; Local procedure that must catch the overflow trap
lol 2 ; Load trap number
loc 4 ; check for overflow
bne *1 ; if other trap, call higher trap procedure
gto jmpbuf ; return to procedure calcule

1 ; other trap has occurred
loe ersave ; previous trap procedure
sig ; other procedure will get the traps now
asp 2 ; remove the result of sig
lol 2 ; stack trap number
trp ; call other trap procedure
rtt ; if other procedure returns, do the same
end
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10. EM MACHINE LANGUAGE

The EM machine language is designed to make program text compact and to make decoding easy. Compact
program text has many advantages: programs execute faster, programs occupy less primary and secondary
storage and loading programs into satellite processors is faster. The decoding of EM machine language is so
simple, that it is feasible to use interpreters as long as EM hardware machines are not available. This chapter is
irrelevant when back ends are used to produce executable target machine code.

10.1 Instruction encoding

A design goal of EM is to make the program text as compact as possible. Decoding must be easy, however.
The encoding is fully byte oriented, without any small bit fields. There are 256 primary opcodes, two of which
are an escape to two groups of 256 secondary opcodes each.

EM instructions without arguments have a single opcode assigned, possibly escaped:

|--------------|
| opcode |
|--------------|

or

|--------------|--------------|
| escape | opcode |
|--------------|--------------|

The encoding for instructions with an argument is more complex. Several instructions have an address from the
global data area as argument. Other instructions have different opcodes for positive and negative arguments.

There is always an opcode that takes the next two bytes as argument, high byte first:

|--------------|--------------|--------------|
| opcode | hibyte | lobyte |
|--------------|--------------|--------------|

or

|--------------|--------------|--------------|--------------|
| escape | opcode | hibyte | lobyte |
|--------------|--------------|--------------|--------------|

An extra escape is provided for instructions with four or eight byte arguments.

|--------------|--------------|--------------| |--------------|
| ESCAPE | opcode | hibyte |...| lobyte |
|--------------|--------------|--------------| |--------------|

For most instructions some argument values predominate. The most frequent combinations of instruction and
argument will be encoded in a single byte, called a mini:

|---------------|
|opcode+argument| (mini)
|---------------|

The number of minis is restricted, because only 254 primary opcodes are available. Many instructions have the
bulk of their arguments fall in the range 0 to 255. Instructions that address global data have their arguments dis-
tributed over a wider range, but small values of the high byte are common. For all these cases there is another
encoding that combines the instruction and the high byte of the argument into a single opcode. These opcodes
are called shorties. Shorties may be escaped.
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|--------------|--------------|
| opcode+high | lobyte | (shortie)
|--------------|--------------|

or

|--------------|--------------|--------------|
| escape | opcode+high | lobyte |
|--------------|--------------|--------------|

Escaped shorties are useless if the normal encoding has a primary opcode. Note that for some instruction-
argument combinations several different encodings are available. It is the task of the assembler to select the
shortest of these. The savings by these mini and shortie opcodes are considerable, about 55%.

Further improvements are possible: the arguments of many instructions are a multiple of the wordsize.
Some do also not allow zero as an argument. If these arguments are divided by the wordsize and, when zero is
not allowed, then decremented by 1, more of them can be encoded as shortie or mini. The arguments of some
other instructions rarely or never assume the value 0, but start at 1. The value 1 is then encoded as 0, 2 as 1 and
so on.

Assigning opcodes to instructions by the assembler is completely table driven. For details see appendix B.

10.2 Procedure descriptors

The procedure identifiers used in the interpreter are indices into a table of procedure descriptors. Each
descriptor contains:

1. the number of bytes to be reserved for locals at each invocation.
This is a pointer-sized integer.

2. the start address of the procedure

10.3 Load format

The EM machine language load format defines the interface between the EM assembler/loader and the EM
machine itself. A load file consists of a header, the program text to be executed, a description of the global data
area and the procedure descriptor table, in this order. All integers in the load file are presented with the least
significant byte first.

The header has two parts: the first half (eight 16-bit integers) aids in selecting the correct EM machine or in-
terpreter. Some EM machines, for instance, may have hardware floating point instructions.
The header entries are as follows (bit 0 is rightmost):

1: magic number (07255)
2: flag bits with the following meaning:

bit 0 TEST; test for integer overflow etc.
bit 1 PROFILE; for each source line: count the number of memory cycles executed.
bit 2 FLOW; for each source line: set a bit in a bit map table if instructions on that line are execut-

ed.
bit 3 COUNT; for each source line: increment a counter if that line is entered.
bit 4 REALS; set if a program uses floating point instructions.
bit 5 EXTRA; more tests during compiler debugging.

3: number of unresolved references.
4: version number; used to detect obsolete EM load files.
5: wordsize ; the number of bytes in each machine word.
6: pointer size ; the number of bytes available for addressing.
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7: unused
8: unused

The second part of the header (eight entries, of pointer size bytes each) describes the load file itself:
1: NTEXT; the program text size in bytes.
2: NDATA; the number of load-file descriptors (see below).
3: NPROC; the number of entries in the procedure descriptor table.
4: ENTRY; procedure number of the procedure to start with.
5: NLINE; the maximum source line number.
6: SZDATA; the address of the lowest uninitialized data byte.
7: unused
8: unused

The program text consists of NTEXT bytes. NTEXT is always a multiple of the wordsize. The first byte of
the program text is the first byte of the instruction address space, i.e. it has address 0. Pointers into the program
text are found in the procedure descriptor table where relocation is simple and in the global data area. The ini-
tialization of the global data area allows easy relocation of pointers into both address spaces.

The global data area is described by the NDATA descriptors. Each descriptor describes a number of con-
secutive words (of wordsize) and consists of a sequence of bytes. While reading the descriptors from the load
file, one can initialize the global data area from low to high addresses. The size of the initialized data area is
given by SZDATA, this number can be used to check the initialization.
The header of each descriptor consists of a byte, describing the type, and a count. The number of bytes used for
this (unsigned) count depends on the type of the descriptor and is either a pointer-sized integer or one byte. The
meaning of the count depends on the descriptor type. At load time an interpreter can perform any conversion
deemed necessary, such as reordering bytes in integers and pointers and adding base addresses to pointers.

In the following pictures we show a graphical notation of the initializers. The leftmost rectangle represents
the leading byte.

Fields marked with

n contain a pointer-sized integer used as a count
m contain a one-byte integer used as a count
b contain a one-byte integer
w contain a wordsized integer
p contain a data or instruction pointer
s contain a null terminated ASCII string

-------------------
| 0 | n | repeat last initialization n times
-------------------

---------
| 1 | m | m uninitialized words
---------

____________
/ bytes \

----------------- -----
| 2 | m | b | b |...| b | m initialized bytes
----------------- -----
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_________
/ word \

-----------------------
| 3 | m | w |... m initialized wordsized integers
-----------------------

_________
/ pointer \

-----------------------
| 4 | m | p |... m initialized data pointers
-----------------------

_________
/ pointer \

-----------------------
| 5 | m | p |... m initialized instruction pointers
-----------------------

____________
/ bytes \

-------------------------
| 6 | m | b | b |...| b | initialized integer of size m
-------------------------

____________
/ bytes \

-------------------------
| 7 | m | b | b |...| b | initialized unsigned of size m
-------------------------

____________
/ string \

-------------------------
| 8 | m | s | initialized float of size m
-------------------------

type 0: If the last initialization initialized k bytes starting at address a, do the same initialization again n times,
starting at a+k, a+2*k, .... a+n*k. This is the only descriptor whose starting byte is followed by an in-
teger with the size of a pointer, in all other descriptors the first byte is followed by a one-byte count.
This descriptor must be preceded by a descriptor of another type.

type 1: Reserve m words, not explicitly initialized (BSS and HOL).

type 2: The m bytes following the descriptor header are initializers for the next m bytes of the global data
area. m is divisible by the wordsize.

type 3: The m words following the header are initializers for the next m words of the global data area.

type 4: The m data address space pointers following the header are initializers for the next m data pointers in
the global data area. Interpreters that represent EM pointers by target machine addresses must relo-
cate all data pointers.
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type 5: The m instruction address space pointers following the header are initializers for the next m instruc-
tion pointers in the global data area. Interpreters that represent EM instruction pointers by target
machine addresses must relocate these pointers.

type 6: The m bytes following the header form a signed integer number with a size of m bytes, which is an in-
itializer for the next m bytes of the global data area. m is governed by the same restrictions as for
transfer of objects to/from memory.

type 7: The m bytes following the header form an unsigned integer number with a size of m bytes, which is an
initializer for the next m bytes of the global data area. m is governed by the same restrictions as for
transfer of objects to/from memory.

type 8: The header is followed by an ASCII string, null terminated, to initialize, in global data, a floating point
number with a size of m bytes. m is governed by the same restrictions as for transfer of objects
to/from memory. The ASCII string contains the notation of a real as used in the Pascal language.

The NPROC procedure descriptors on the load file consist of an instruction space address (of pointer size)
and an integer (of pointer size) specifying the number of bytes for locals.
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11. EM ASSEMBLY LANGUAGE

We use two representations for assembly language programs, one is in ASCII and the other is the compact
assembly language. The latter needs less space than the first for the same program and therefore allows faster
processing. Our only program accepting ASCII assembly language converts it to the compact form. All other
programs expect compact assembly input. The first part of the chapter describes the ASCII assembly language
and its semantics. The second part describes the syntax of the compact assembly language. The last part lists
the EM instructions with the type of arguments allowed and an indication of the function. Appendix A gives a
detailed description of the effect of all instructions in the form of a Pascal program.

11.1 ASCII assembly language

An assembly language program consists of a series of lines, each line may be blank, contain one
(pseudo)instruction or contain one label. Input to the assembler is in lower case. Upper case is used in this do-
cument merely to distinguish keywords from the surrounding prose. Comment is allowed at the end of each line
and starts with a semicolon ";". This kind of comment does not exist in the compact form.

Labels must be placed all by themselves on a line and start in column 1. There are two kinds of labels, in-
struction and data labels. Instruction labels are unsigned positive integers. The scope of an instruction label is
its procedure.

The pseudoinstructions CON, ROM and BSS may be preceded by a line containing a 1−8 character data la-
bel, the first character of which is a letter, period or underscore. The period may only be followed by digits, the
others may be followed by letters, digits and underscores. The use of the character "." followed by a constant,
which must be in the range 1 to 32767 (e.g. ".40") is recommended for compiler generated programs. These la-
bels are considered as a special case and handled more efficiently in compact assembly language (see below).
Note that a data label on its own or two consecutive labels are not allowed.

Each statement may contain an instruction mnemonic or pseudoinstruction. These must begin in column 2
or later (not column 1) and must be followed by a space, tab, semicolon or LF. Everything on the line following
a semicolon is taken as a comment.

Each input file contains one module. A module may contain many procedures, which may be nested. A pro-
cedure consists of a PRO statement, a (possibly empty) collection of instructions and pseudoinstructions and
finally an END statement. Pseudoinstructions are also allowed between procedures. They do not belong to a
specific procedure.

All constants in EM are interpreted in the decimal base. The ASCII assembly language accepts constant ex-
pressions wherever constants are allowed. The operators recognized are: +, −, *, % and / with the usual pre-
cedence order. Use of the parentheses ( and ) to alter the precedence order is allowed.

11.1.1 Instruction arguments

Unlike many other assembly languages, the EM assembly language requires all arguments of normal and
pseudoinstructions to be either a constant or an identifier, but not a combination of these two. There is one ex-
ception to this rule: when a data label is used for initialization or as an instruction argument, expressions of the
form ’label+constant’ and ’label-constant’ are allowed. This makes it possible to address, for example, the third
word of a ten word BSS block directly. Thus LOE LABEL+4 is permitted and so is CON LABEL+3. The
resulting address is must be in the same fragment as the label. It is not allowed to add or subtract from instruc-
tion labels or procedure identifiers, which certainly is not a severe restriction and greatly aids optimization.

Instruction arguments can be constants, data labels, data labels offsetted by a constant, instruction labels and
procedure identifiers. The range of integers allowed depends on the instruction. Most instructions allow only
integers (signed or unsigned) that fit in a word. Arguments used as offsets to pointers should fit in a pointer-
sized integer. Finally, arguments to LDC should fit in a double-word integer.

Several instructions have two possible forms: with an explicit argument and with an implicit argument on
top of the stack. The size of the implicit argument is the wordsize. The implicit argument is always popped be-
fore all other operands. For example: ’CMI 4’ specifies that two four-byte signed integers on top of the stack
are to be compared. ’CMI’ without an argument expects a wordsized integer on top of the stack that specifies
the size of the integers to be compared. Thus the following two sequences are equivalent:
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LDL −10 LDL −10
LDL −14 LDL −14

LOC 4
CMI 4 CMI
ZEQ *1 ZEQ *1

Section 11.1.6 shows the arguments allowed for each instruction.

11.1.2 Pseudoinstruction arguments

Pseudoinstruction arguments can be divided in two classes: Initializers and others. The following initializers
are allowed: signed integer constants, unsigned integer constants, floating-point constants, strings, data labels,
data labels offsetted by a constant, instruction labels and procedure identifiers.

Constant initializers in BSS, HOL, CON and ROM pseudoinstructions can be followed by a letter I, U or F.
This indicator specifies the type of the initializer: Integer, Unsigned or Float. If no indicator is present I is as-
sumed. The size of the initializer is the wordsize unless the indicator is followed by an integer specifying the
initializer’s size. This integer is governed by the same restrictions as for transfer of objects to/from memory.
As in instruction arguments, initializers include expressions of the form: "LABEL+offset" and
"LABEL−offset". The offset must be an unsigned decimal constant. The ’IUF’ indicators cannot be used in the
offsets.

Data labels are referred to by their name.

Strings are surrounded by double quotes ("). Semicolon’s in string do not indicate the start of comment. In
the ASCII representation the escape character \ (backslash) alters the meaning of subsequent character(s). This
feature allows inclusion of zeroes, graphic characters and the double quote in the string. The following escape
sequences exist:

newline NL (LF) \n
horizontal tab HT \t
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
double quote " \"
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits specifying the value of the desired
character. If the character following a backslash is not one of those specified, the backslash is ignored. Exam-
ple: CON "hello\012\0". Each string element initializes a single byte. The ASCII character set is used to map
characters onto values.

Instruction labels are referred to as *1, *2, etc. in both branch instructions and as initializers.

The notation $procname means the identifier for the procedure with the specified name. This identifier has
the size of a pointer.

11.1.3 Notation

First, the notation used for the arguments, classes of instructions and pseudoinstructions.
<cst> = integer constant (current range −2**31..2**31−1)
<dlb> = data label
<arg> = <cst> or <dlb> or <dlb>+<cst> or <dlb>−<cst>
<con> = integer constant, unsigned constant, floating-point constant
<str> = string constant (surrounded by double quotes),
<ilb> = instruction label

’*’ followed by an integer in the range 0..32767.
<pro> = procedure number (’$’ followed by a procedure name)
<val> = <arg>, <con>, <pro> or <ilb>.
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<par> = <val> or <str>
<...>* = zero or more of <...>
<...>+ = one or more of <...>
[...] = optional ...

11.1.4 Pseudoinstructions

11.1.4.1 Storage declaration

Initialized global data is allocated by the pseudoinstruction CON, which needs at least one argument. Each
argument is used to allocate and initialize a number of consecutive bytes in data memory. The number of bytes
to be allocated and the alignment depend on the type of the argument. For each argument, an integral number of
words, determined by the argument type, is allocated and initialized.

The pseudoinstruction ROM is the same as CON, except that it guarantees that the initialized words will not
change during the execution of the program. This information allows optimizers to do certain calculations such
as array indexing and subrange checking at compile time instead of at run time.

The pseudoinstruction BSS allocates uninitialized global data or large blocks of data initialized by the same
value. The first argument to this pseudo is the number of bytes required, which must be a multiple of the word-
size. The other arguments specify the value used for initialization and whether the initialization is only for con-
venience or a strict necessity. The pseudoinstruction HOL is similar to BSS in that it requests an (un)initialized
global data block. Addressing of a HOL block, however, is quasi absolute. The first byte is addressed by 0, the
second byte by 1 etc. in assembly language. The assembler/loader adds the base address of the HOL block to
these numbers to obtain the absolute address in the machine language.

The scope of a HOL block starts at the HOL pseudo and ends at the next HOL pseudo or at the end of a
module whatever comes first. Each instruction falls in the scope of at most one HOL block, the current HOL
block. It is not allowed to have more than one HOL block per procedure.

The alignment restrictions are enforced by the pseudoinstructions. All initializers are aligned on a multiple
of their size or the wordsize whichever is smaller. Strings form an exception, they are to be seen as a sequence
of initializers each for one byte, i.e. strings are not padded with zero bytes. Switching to another type of frag-
ment or placing a label forces word-alignment. There are three types of fragments in global data space: CON,
ROM and BSS/HOL.

BSS <cst1>,<val>,<cst2>
Reserve <cst1> bytes. <val> is the value used to initialize the area. <cst1> must be a multiple of the
size of <val>. <cst2> is 0 if the initialization is not strictly necessary, 1 if it is.

HOL <cst1>,<val>,<cst2>
Idem, but all following absolute global data references will refer to this block. Only one HOL is al-
lowed per procedure, it has to be placed before the first instruction.

CON <val>+
Assemble global data words initialized with the <val> constants.

ROM <val>+
Idem, but the initialized data will never be changed by the program.

11.1.4.2 Partitioning

Two pseudoinstructions partition the input into procedures:

PRO <pro>[,<cst>]
Start of procedure. <pro> is the procedure name. <cst> is the number of bytes for locals. The
number of bytes for locals must be specified in the PRO or END pseudoinstruction. When specified in
both, they must be identical.
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END [<cst>]
End of Procedure. <cst> is the number of bytes for locals. The number of bytes for locals must be
specified in either the PRO or END pseudoinstruction or both.

11.1.4.3 Visibility

Names of data and procedures in an EM module can either be internal or external. External names are
known outside the module and are used to link several pieces of a program. Internal names are not known out-
side the modules they are used in. Other modules will not ’see’ an internal name.

To reduce the number of passes needed, it must be known at the first occurrence whether a name is internal
or external. If the first occurrence of a name is in a definition, the name is considered to be internal. If the first
occurrence of a name is a reference, the name is considered to be external. If the first occurrence is in one of the
following pseudoinstructions, the effect of the pseudo has precedence.

EXA <dlb>
External name. <dlb> is known, possibly defined, outside this module. Note that <dlb> may be
defined in the same module.

EXP <pro>
External procedure identifier. Note that <pro> may be defined in the same module.

INA <dlb>
Internal name. <dlb> is internal to this module and must be defined in this module.

INP <pro>
Internal procedure. <pro> is internal to this module and must be defined in this module.

11.1.4.4 Miscellaneous

Two other pseudoinstructions provide miscellaneous features:

EXC <cst1>,<cst2>
Two blocks of instructions preceding this one are interchanged before being processed. <cst1> gives
the number of lines of the first block. <cst2> gives the number of lines of the second one. Blank and
pure comment lines do not count. This instruction is obsolete. Its use is strongly discouraged.

MES <cst>[,<par>]*
A special type of comment. Used by compilers to communicate with the optimizer, assembler, etc. as
follows:
MES 0

An error has occurred, stop further processing.
MES 1

Suppress optimization.
MES 2,<cst1>,<cst2>

Use wordsize <cst1> and pointer size <cst2>.
MES 3,<cst1>,<cst2>,<cst3>,<cst4>

Indicates that a local variable is never referenced indirectly. Used to indicate that a register may
be used for a specific variable. <cst1> is offset in bytes from AB if positive and offset from LB if
negative. <cst2> gives the size of the variable. <cst3> indicates the class of the variable. The
following values are currently recognized:
0 The variable can be used for anything.
1 The variable is used as a loopindex.
2 The variable is used as a pointer.
3 The variable is used as a floating point number.
<cst4> gives the priority of the variable, higher numbers indicate better candidates.

MES 4,<cst>,<str>
Number of source lines in file <str> (for profiler).



33

MES 5
Floating point used.

MES 6,<val>*
Comment. Used to provide comments in compact assembly language.

MES 7,.....
Reserved.

MES 8,<pro>[,<dlb>]...
Library module. Indicates that the module may only be loaded if it is useful, that is, if it can satis-
fy any unresolved references during the loading process. May not be preceded by any other pseu-
do, except MES’s.

MES 9,<cst>
Guarantees that no more than <cst> bytes of parameters are accessed, either directly or indirectly.

MES 10,<cst>[,<par>]*
This message number is reserved for the global optimizer. It inserts these messages in its output
as hints to backends. <cst> indicates the type of hint.

MES 11
Procedures containing this message are possible destinations of non-local goto’s with the GTO
instruction. Some backends keep locals in registers, the locals in this procedure should not be
kept in registers and all registers containing locals of other procedures should be saved upon en-
try to this procedure.

Each backend is free to skip irrelevant MES pseudos.

11.2 The Compact Assembly Language

The assembler accepts input in a highly encoded form. This form is intended to reduce the amount of file
transport between the front ends, optimizers and back ends, and also reduces the amount of storage required for
storing libraries. Libraries are stored as archived compact assembly language, not machine language.

When beginning to read the input, the assembler is in neutral state, and expects either a label or an instruc-
tion (including the pseudoinstructions). The meaning of the next byte(s) when in neutral state is as follows,
where b1, b2 etc. represent the succeeding bytes.

0 Reserved for future use
1−129 Machine instructions, see Appendix A, alphabetical list

130−149 Reserved for future use
150−161 BSS,CON,END,EXA,EXC,EXP,HOL,INA,INP,MES,PRO,ROM
162−179 Reserved for future pseudoinstructions
180−239 Instruction labels 0 − 59 (180 is local label 0 etc.)
240−244 See the Common Table below
245−255 Not used

After a label, the assembler is back in neutral state; it can immediately accept another label or an instruction in
the next byte. No linefeeds are used to separate lines.

If an opcode expects no arguments, the assembler is back in neutral state after reading the one byte contain-
ing the instruction number. If it has one or more arguments (only pseudos have more than 1), the arguments fol-
low directly, encoded as follows:

0−239 Offsets from −120 to 119

240−255 See the Common Table below

Absence of an optional argument is indicated by a special byte.
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Common Table for Neutral State and Arguments
class bytes description

<ilb> 240 b1 Instruction label b1 (Not used for branches)
<ilb> 241 b1 b2 16 bit instruction label (256*b2 + b1)
<dlb> 242 b1 Global label .0−.255, with b1 being the label
<dlb> 243 b1 b2 Global label .0−.32767

with 256*b2+b1 being the label
<dlb> 244 <string> Global symbol not of the form .nnn
<cst> 245 b1 b2 16 bit constant
<cst> 246 b1 b2 b3 b4 32 bit constant
<cst> 247 b1 .. b8 64 bit constant
<arg> 248 <dlb><cst> Global label + (possibly negative) constant
<pro> 249 <string> Procedure name (not including $)
<str> 250 <string> String used in CON or ROM (no quotes-no escapes)
<con> 251 <cst><string> Integer constant, size <cst> bytes
<con> 252 <cst><string> Unsigned constant, size <cst> bytes
<con> 253 <cst><string> Floating constant, size <cst> bytes

254 unused
<end> 255 Delimiter for argument lists or

indicates absence of optional argument

The bytes specifying the value of a 16, 32 or 64 bit constant are presented in two’s complement notation,
with the least significant byte first. For example: the value of a 32 bit constant is
((s4*256+b3)*256+b2)*256+b1, where s4 is b4−256 if b4 is greater than 128 else s4 takes the value of b4. A
<string> consists of a <cst> immediately followed by a sequence of bytes with length <cst>.

The pseudoinstructions fall into several categories, depending on their arguments:

Group 1 − EXC, BSS, HOL have a known number of arguments
Group 2 − EXA, EXP, INA, INP have a string as argument
Group 3 − CON, MES, ROM have a variable number of various things
Group 4 − END, PRO have a trailing optional argument.

Groups 1 and 2 use the encoding described above. Group 3 also uses the encoding listed above, with an <end>
byte after the last argument to indicate the end of the list. Group 4 uses an <end> byte if the trailing argument is
not present.

Example ASCII Example compact
(LOC = 69, BRA = 18 here):

2 182
1 181
LOC 10 69 130
LOC −10 69 110
LOC 300 69 245 44 1
BRA *19 18 139
300 241 44 1
.3 242 3
CON 4,9,*2,$foo 151 124 129 240 2 249 123 102 111 111 255
CON .35 151 242 35 255
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11.3 Assembly language instruction list

For each instruction in the list the range of argument values in the assembly language is given. The column
headed assem contains the mnemonics defined in 11.1.3. The following column specifies restrictions of the ar-
gument value. Addresses have to obey the restrictions mentioned in chapter 2. The classes of arguments are in-
dicated by letters:

assem constraints rationale

c cst fits word constant
d cst fits double word constant
l cst local offset
g arg >= 0 global offset
f cst fragment offset
n cst >= 0 counter
s cst >0 , word multiple object size
z cst >= 0 , zero or word multiple object size
o cst > 0 , word multiple or fraction object size
w cst > 0 , word multiple object size *
p pro pro identifier
b ilb >= 0 label number
r cst 0,1,2 register number
− no argument

The * at the rationale for w indicates that the argument can either be given as argument or on top of the
stack. If the argument is omitted, the argument is fetched from the stack; it is assumed to be a wordsized un-
signed integer. Instructions that check for undefined integer or floating-point values and underflow or overflow
are indicated below by (*).

GROUP 1 − LOAD

LOC c : Load constant (i.e. push one word onto the stack)
LDC d : Load double constant ( push two words )
LOL l : Load word at l-th local (l<0) or parameter (l>=0)
LOE g : Load external word g
LIL l : Load word pointed to by l-th local or parameter
LOF f : Load offsetted (top of stack + f yield address)
LAL l : Load address of local or parameter
LAE g : Load address of external
LXL n : Load lexical (address of LB n static levels back)
LXA n : Load lexical (address of AB n static levels back)
LOI o : Load indirect o bytes (address is popped from the stack)
LOS w : Load indirect, w-byte integer on top of stack gives object size
LDL l : Load double local or parameter (two consecutive words are stacked)
LDE g : Load double external (two consecutive externals are stacked)
LDF f : Load double offsetted (top of stack + f yield address)
LPI p : Load procedure identifier
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GROUP 2 − STORE

STL l : Store local or parameter
STE g : Store external
SIL l : Store into word pointed to by l-th local or parameter
STF f : Store offsetted
STI o : Store indirect o bytes (pop address, then data)
STS w : Store indirect, w-byte integer on top of stack gives object size
SDL l : Store double local or parameter
SDE g : Store double external
SDF f : Store double offsetted

GROUP 3 − INTEGER ARITHMETIC

ADI w : Addition (*)
SBI w : Subtraction (*)
MLI w : Multiplication (*)
DVI w : Division (*)
RMI w : Remainder (*)
NGI w : Negate (two’s complement) (*)
SLI w : Shift left (*)
SRI w : Shift right (*)

GROUP 4 − UNSIGNED ARITHMETIC

ADU w : Addition
SBU w : Subtraction
MLU w : Multiplication
DVU w : Division
RMU w : Remainder
SLU w : Shift left
SRU w : Shift right

GROUP 5 − FLOATING POINT ARITHMETIC

ADF w : Floating add (*)
SBF w : Floating subtract (*)
MLF w : Floating multiply (*)
DVF w : Floating divide (*)
NGF w : Floating negate (*)
FIF w : Floating multiply and split integer and fraction part (*)
FEF w : Split floating number in exponent and fraction part (*)

GROUP 6 − POINTER ARITHMETIC

ADP f : Add f to pointer on top of stack
ADS w : Add w-byte value and pointer
SBS w : Subtract pointers in same fragment and push diff as size w integer
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GROUP 7 − INCREMENT/DECREMENT/ZERO

INC − : Increment word on top of stack by 1 (*)
INL l : Increment local or parameter (*)
INE g : Increment external (*)
DEC − : Decrement word on top of stack by 1 (*)
DEL l : Decrement local or parameter (*)
DEE g : Decrement external (*)
ZRL l : Zero local or parameter
ZRE g : Zero external
ZRF w : Load a floating zero of size w
ZER w : Load w zero bytes

GROUP 8 − CONVERT (stack:source, source size, dest. size (top))

CII − : Convert integer to integer (*)
CUI − : Convert unsigned to integer (*)
CFI − : Convert floating to integer (*)
CIF − : Convert integer to floating (*)
CUF − : Convert unsigned to floating (*)
CFF − : Convert floating to floating (*)
CIU − : Convert integer to unsigned
CUU − : Convert unsigned to unsigned
CFU − : Convert floating to unsigned

GROUP 9 − LOGICAL

AND w : Boolean and on two groups of w bytes
IOR w : Boolean inclusive or on two groups of w bytes
XOR w : Boolean exclusive or on two groups of w bytes
COM w : Complement (one’s complement of top w bytes)
ROL w : Rotate left a group of w bytes
ROR w : Rotate right a group of w bytes

GROUP 10 − SETS

INN w : Bit test on w byte set (bit number on top of stack)
SET w : Create singleton w byte set with bit n on (n is top of stack)

GROUP 11 − ARRAY

LAR w : Load array element, descriptor contains integers of size w
SAR w : Store array element
AAR w : Load address of array element
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GROUP 12 − COMPARE

CMI w : Compare w byte integers, Push negative, zero, positive for <, = or >
CMF w : Compare w byte reals
CMU w : Compare w byte unsigneds
CMS w : Compare w byte values, can only be used for bit for bit equality test
CMP − : Compare pointers

TLT − : True if less, i.e. iff top of stack < 0
TLE − : True if less or equal, i.e. iff top of stack <= 0
TEQ − : True if equal, i.e. iff top of stack = 0
TNE − : True if not equal, i.e. iff top of stack non zero
TGE − : True if greater or equal, i.e. iff top of stack >= 0
TGT − : True if greater, i.e. iff top of stack > 0

GROUP 13 − BRANCH

BRA b : Branch unconditionally to label b

BLT b : Branch less (pop 2 words, branch if top > second)
BLE b : Branch less or equal
BEQ b : Branch equal
BNE b : Branch not equal
BGE b : Branch greater or equal
BGT b : Branch greater

ZLT b : Branch less than zero (pop 1 word, branch negative)
ZLE b : Branch less or equal to zero
ZEQ b : Branch equal zero
ZNE b : Branch not zero
ZGE b : Branch greater or equal zero
ZGT b : Branch greater than zero

GROUP 14 − PROCEDURE CALL

CAI − : Call procedure (procedure identifier on stack)
CAL p : Call procedure (with identifier p)
LFR s : Load function result
RET z : Return (function result consists of top z bytes)
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GROUP 15 − MISCELLANEOUS

ASP f : Adjust the stack pointer by f
ASS w : Adjust the stack pointer by w-byte integer
BLM z : Block move z bytes; first pop destination addr, then source addr
BLS w : Block move, size is in w-byte integer on top of stack
CSA w : Case jump; address of jump table at top of stack
CSB w : Table lookup jump; address of jump table at top of stack
DCH − : Follow dynamic chain, convert LB to LB of caller
DUP s : Duplicate top s bytes
DUS w : Duplicate top w bytes
EXG w : Exchange top w bytes
FIL g : File name (external 4 := g)
GTO g : Non-local goto, descriptor at g
LIM − : Load 16 bit ignore mask
LIN n : Line number (external 0 := n)
LNI − : Line number increment
LOR r : Load register (0=LB, 1=SP, 2=HP)
LPB − : Convert local base to argument base
MON − : Monitor call
NOP − : No operation
RCK w : Range check; trap on error
RTT − : Return from trap
SIG − : Trap errors to proc identifier on top of stack, −2 resets default
SIM − : Store 16 bit ignore mask
STR r : Store register (0=LB, 1=SP, 2=HP)
TRP − : Cause trap to occur (Error number on stack)
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A. EM INTERPRETER

{ This is an interpreter for EM. It serves as the official machine
definition. This interpreter must run on a machine which supports
arithmetic with words and memory offsets.

Certain aspects of the definition are over specified. In particular:

1. The representation of an address on the stack need not be the
numerical value of the memory location.

2. The state of the stack is not defined after a trap has aborted
an instruction in the middle. For example, it is officially un-
defined whether the second operand of an ADD instruction has
been popped or not if the first one is undefined ( -32768 or
unsigned 32768).

3. The memory layout is implementation dependent. Only the most
basic checks are performed whenever memory is accessed.

4. The representation of an integer or set on the stack is not fixed
in bit order.

5. The format and existence of the procedure descriptors depends on
the implementation.

6. The result of the compare operators CMI etc. are -1, 0 and 1
here, but other negative and positive values will do and they
need not be the same each time.

7. The shift count for SHL, SHR, ROL and ROR must be in the range 0
to object size in bits - 1. The effect of a count not in this
range is undefined.

}
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{$i256} {$d+}
program em(tables,prog,input,output);

label 8888,9999;

const
t15 = 32768; { 2**15 }
t15m1 = 32767; { 2**15 -1 }
t16 = 65536; { 2**16 }
t16m1 = 65535; { 2**16 -1 }
t31m1 = 2147483647; { 2**31 -1 }

wsize = 2; { number of bytes in a word }
asize = 2; { number of bytes in an address }
fsize = 4; { number of bytes in a floating point number }
maxret =4; { number of words in the return value area }

signbit = t15; { the power of two indicating the sign bit }
negoff = t16; { the next power of two }
maxsint = t15m1; { the maximum signed integer }
maxuint = t16m1; { the maximum unsigned integer }
maxdbl = t31m1; { the maximum double signed integer }
maxadr = t16m1; { the maximum address }
maxoffs = t15m1; { the maximum offset from an address }
maxbitnr= 15; { the number of the highest bit }

lineadr = 0; { address of the line number }
fileadr = 4; { address of the file name }
maxcode = 8191; { highest byte in code address space }
maxdata = 8191; { highest byte in data address space }

{ format of status save area }
statd = 4; { how far is static link from lb }
dynd = 2; { how far is dynamic link from lb }
reta = 0; { how far is the return address from lb }
savsize = 4; { size of save area in bytes }

{ procedure descriptor format }
pdlocs = 0; { offset for size of local variables in bytes }
pdbase = asize; { offset for the procedure base }
pdsize = 4; { size of procedure descriptor in bytes = 2*asize }

{ header words }
NTEXT = 1;
NDATA = 2;
NPROC = 3;
ENTRY = 4;
NLINE = 5;
SZDATA = 6;

escape1 = 254; { escape to secondary opcodes }
escape2 = 255; { escape to tertiary opcodes }
undef = signbit; { the range of integers is -32767 to +32767 }

{ error codes }
EARRAY = 0; ERANGE = 1; ESET = 2; EIOVFL = 3; EFOVFL = 4;
EFUNFL = 5; EIDIVZ = 6; EFDIVZ = 7; EIUND = 8; EFUND = 9;
ECONV = 10; ESTACK = 16; EHEAP = 17; EILLINS = 18; EODDZ = 19;
ECASE = 20; EMEMFLT = 21; EBADPTR = 22; EBADPC = 23; EBADLAE = 24;
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EBADMON = 25; EBADLIN = 26; EBADGTO = 27;
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{---------------------------------------------------------------------------}
{ Declarations }
{---------------------------------------------------------------------------}

type
bitval= 0..1; { one bit }
bitnr= 0..maxbitnr; { bits in machine words are numbered 0 to 15 }
byte= 0..255; { memory is an array of bytes }
adr= {0..maxadr} long; { the range of addresses }
word= {0..maxuint} long;{ the range of unsigned integers }
offs= -maxoffs..maxoffs; { the range of signed offsets from addresses }
size= 0..maxoffs; { the range of sizes is the positive offsets }
sword= {-signbit..maxsint} long; { the range of signed integers }
full= {-maxuint..maxuint} long; { intermediate results need this range }
double={-maxdbl..maxdbl} long; { double precision range }
bftype= (andf,iorf,xorf); { tells which boolean operator needed }
insclass=(prim,second,tert); { tells which opcode table is in use }
instype=(implic,explic); { does opcode have implicit or explicit operand }
iflags= (mini,short,sbit,wbit,zbit,ibit);
ifset= set of iflags;

mnem = ( NON,
AAR, ADF, ADI, ADP, ADS, ADU,XAND, ASP, ASS, BEQ,
BGE, BGT, BLE, BLM, BLS, BLT, BNE, BRA, CAI, CAL,
CFF, CFI, CFU, CIF, CII, CIU, CMF, CMI, CMP, CMS,
CMU, COM, CSA, CSB, CUF, CUI, CUU, DCH, DEC, DEE,
DEL, DUP, DUS, DVF, DVI, DVU, EXG, FEF, FIF, FIL,
GTO, INC, INE, INL, INN, IOR, LAE, LAL, LAR, LDC,
LDE, LDF, LDL, LFR, LIL, LIM, LIN, LNI, LOC, LOE,
LOF, LOI, LOL, LOR, LOS, LPB, LPI, LXA, LXL, MLF,
MLI, MLU, MON, NGF, NGI, NOP, RCK, RET, RMI, RMU,
ROL, ROR, RTT, SAR, SBF, SBI, SBS, SBU, SDE, SDF,
SDL,XSET, SIG, SIL, SIM, SLI, SLU, SRI, SRU, STE,
STF, STI, STL, STR, STS, TEQ, TGE, TGT, TLE, TLT,
TNE, TRP, XOR, ZEQ, ZER, ZGE, ZGT, ZLE, ZLT, ZNE,
ZRE, ZRF, ZRL);

dispatch = record
iflag: ifset;
instr: mnem;
case instype of
implic: (implicit:sword);
explic: (ilength:byte);

end;

var
code: packed array[0..maxcode] of byte; { code space }
data: packed array[0..maxdata] of byte; { data space }
retarea: array[1..maxret ] of word; { return area }
pc,lb,sp,hp,pd: adr; { internal machine registers }
i: integer; { integer scratch variable }
s,t :word; { scratch variables }
sz:size; { scratch variables }
ss,st: sword; { scratch variables }
k :double; { scratch variables }
j:size; { scratch variable used as index }
a,b:adr; { scratch variable used for addresses }
dt,ds:double; { scratch variables for double precision }
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rt,rs,x,y:real; { scratch variables for real }
found:boolean; { scratch }
opcode: byte; { holds the opcode during execution }
iclass: insclass; { true for escaped opcodes }
dispat: array[insclass,byte] of dispatch;
retsize:size; { holds size of last LFR }
insr: mnem; { holds the instruction number }
halted: boolean; { normally false }
exitstatus:word; { parameter of MON 1 }
ignmask:word; { ignore mask for traps }
uerrorproc:adr; { number of user defined error procedure }
intrap:boolean; { Set when executing trap(), to catch recursive calls}
trapval:byte; { Set to number of last trap }
header: array[1..8] of adr;

tables: text; { description of EM instructions }
prog: file of byte; { program and initialized data }

{---------------------------------------------------------------------------}
{ Various check routines }
{---------------------------------------------------------------------------}

{ Only the most basic checks are performed. These routines are inherently
implementation dependent. }

procedure trap(n:byte); forward;

procedure memadr(a:adr);
begin if (a>maxdata) or ((a<sp) and (a>=hp)) then trap(EMEMFLT) end;

procedure wordadr(a:adr);
begin memadr(a); if (a mod wsize<>0) then trap(EBADPTR) end;

procedure chkadr(a:adr; s:size);
begin memadr(a); memadr(a+s-1); { assumption: size is ok }

if s<wsize
then begin if a mod s<>0 then trap(EBADPTR) end
else if a mod wsize<>0 then trap(EBADPTR)

end;

procedure newpc(a:double);
begin if (a<0) or (a>maxcode) then trap(EBADPC); pc:=a end;

procedure newsp(a:adr);
begin if (a>lb) or (a<hp) or (a mod wsize<>0) then trap(ESTACK); sp:=a end;

procedure newlb(a:adr);
begin if (a<sp) or (a mod wsize<>0) then trap(ESTACK); lb:=a end;

procedure newhp(a:adr);
begin if (a>sp) or (a>maxdata+1) or (a mod wsize<>0)

then trap(EHEAP)
else hp:=a

end;

function argc(a:double):sword;
begin if (a<-signbit) or (a>maxsint) then trap(EILLINS); argc:=a end;
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function argd(a:double):double;
begin if (a<-maxdbl) or (a>maxdbl) then trap(EILLINS); argd:=a end;

function argl(a:double):offs;
begin if (a<-maxoffs) or (a>maxoffs) then trap(EILLINS); argl:=a end;

function argg(k:double):adr;
begin if (k<0) or (k>maxadr) then trap(EILLINS); argg:=k end;

function argf(a:double):offs;
begin if (a<-maxoffs) or (a>maxoffs) then trap(EILLINS); argf:=a end;

function argn(a:double):word;
begin if (a<0) or (a>maxuint) then trap(EILLINS); argn:=a end;

function args(a:double):size;
begin if (a<=0) or (a>maxoffs)

then trap(EODDZ)
else if (a mod wsize)<>0 then trap(EODDZ);

args:=a ;
end;

function argz(a:double):size;
begin if (a<0) or (a>maxoffs)

then trap(EODDZ)
else if (a mod wsize)<>0 then trap(EODDZ);

argz:=a ;
end;

function argo(a:double):size;
begin if (a<=0) or (a>maxoffs)

then trap(EODDZ)
else if (a mod wsize<>0) and (wsize mod a<>0) then trap(EODDZ);

argo:=a ;
end;

function argw(a:double):size;
begin if (a<=0) or (a>maxoffs) or (a>maxuint)

then trap(EODDZ)
else if (a mod wsize)<>0 then trap(EODDZ);

argw:=a ;
end;

function argp(a:double):size;
begin if (a<0) or (a>=header[NPROC]) then trap(EILLINS); argp:=a end;

function argr(a:double):word;
begin if (a<0) or (a>2) then trap(EILLINS); argr:=a end;

procedure argwf(s:double);
begin if argw(s)<>fsize then trap(EILLINS) end;

function szindex(s:double):integer;
begin s:=argw(s); if (s mod wsize <> 0) or (s>2*wsize) then trap(EILLINS);

szindex:=s div wsize
end;

function locadr(l:double):adr;
begin l:=argl(l); if l<0 then locadr:=lb+l else locadr:=lb+l+savsize end;
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function signwd(w:word):sword;
begin if w = undef then trap(EIUND);

if w >= signbit then signwd:=w-negoff else signwd:=w
end;

function dosign(w:word):sword;
begin if w >= signbit then dosign:=w-negoff else dosign:=w end;

function unsign(w:sword):word;
begin if w<0 then unsign:=w+negoff else unsign:=w end;

function chopw(dw:double):word;
begin chopw:=dw mod negoff end;

function fitsw(w:full;trapno:byte):word;
{ checks whether value fits in signed word, returns unsigned representation}
begin

if (w>maxsint) or (w<-signbit) then
begin trap(trapno);

if w<0 then fitsw:=negoff- (-w)mod negoff
else fitsw:=w mod negoff;

end
else fitsw:=unsign(w)

end;

function fitd(w:full):double;
begin

if abs(w) > maxdbl then trap(ECONV);
fitd:=w

end;

{---------------------------------------------------------------------------}
{ Memory access routines }
{---------------------------------------------------------------------------}

{ memw returns a machine word as an unsigned integer
memb returns a single byte as a positive integer: 0 <= memb <= 255
mems(a,s) fetches an object smaller than a word and returns a word
store(a,v) stores the word v at machine address a
storea(a,v) stores the address v at machine address a
storeb(a,b) stores the byte b at machine address a
stores(a,s,v) stores the s least significant bytes of a word at address a
memi returns an offset from the instruction space

Note that the procedure descriptors are part of instruction space.
nextpc returns the next byte addressed by pc, incrementing pc

lino changes the line number word.
filna changes the pointer to the file name.

All routines check to make sure the address is within range and valid for
the size of the object. If an addressing error is found, a trap occurs.

}

function memw(a:adr):word;
var b:word; i:integer;
begin wordadr(a); b:=0;

for i:=wsize-1 downto 0 do b:=256*b + data[a+i] ;
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memw:=b
end;

function memd(a:adr):double; { Always signed }
var b:double; i:integer;
begin wordadr(a); b:=data[a+2*wsize-1];

if b>=128 then b:=b-256;
for i:=2*wsize-2 downto 0 do b:=256*b + data[a+i] ;
memd:=b

end;

function mema(a:adr):adr;
var b:adr; i:integer;
begin wordadr(a); b:=0;

for i:=asize-1 downto 0 do b:=256*b + data[a+i] ;
mema:=b

end;

function mems(a:adr;s:size):word;
var i:integer; b:word;
begin chkadr(a,s); b:=0; for i:=1 to s do b:=b*256+data[a+s-i]; mems:=b end;

function memb(a:adr):byte;
begin memadr(a); memb:=data[a] end;

procedure store(a:adr; x:word);
var i:integer;
begin wordadr(a);

for i:=0 to wsize-1 do
begin data[a+i]:=x mod 256; x:=x div 256 end

end;

procedure storea(a:adr; x:adr);
var i:integer;
begin wordadr(a);

for i:=0 to asize-1 do
begin data[a+i]:=x mod 256; x:=x div 256 end

end;

procedure stores(a:adr;s:size;v:word);
var i:integer;
begin chkadr(a,s);

for i:=0 to s-1 do begin data[a+i]:=v mod 256; v:=v div 256 end;
end;

procedure storeb(a:adr; b:byte);
begin memadr(a); data[a]:=b end;

function memi(a:adr):adr;
var b:adr; i:integer;
begin if (a mod wsize<>0) or (a+asize-1>maxcode) then trap(EBADPTR); b:=0;

for i:=asize-1 downto 0 do b:=256*b + code[a+i] ;
memi:=b

end;

function nextpc:byte;
begin if pc>=pd then trap(EBADPC); nextpc:=code[pc]; newpc(pc+1) end;

procedure lino(w:word);
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begin store(lineadr,w) end;

procedure filna(a:adr);
begin storea(fileadr,a) end;

{---------------------------------------------------------------------------}
{ Stack Manipulation Routines }
{---------------------------------------------------------------------------}

{ push puts a word on the stack
pushsw takes a signed one word integer and pushes it on the stack
pop removes a machine word from the stack and delivers it as a word
popsw removes a machine word from the stack and delivers a signed integer
pusha pushes an address on the stack
popa removes a machine word from the stack and delivers it as an address
pushd pushes a double precision number on the stack
popd removes two machine words and returns a double precision integer
pushr pushes a float (floating point) number on the stack
popr removes several machine words and returns a float number
pushx puts an object of arbitrary size on the stack
popx removes an object of arbitrary size

}

procedure push(x:word);
begin newsp(sp-wsize); store(sp,x) end;

procedure pushsw(x:sword);
begin newsp(sp-wsize); store(sp,unsign(x)) end;

function pop:word;
begin pop:=memw(sp); newsp(sp+wsize) end;

function popsw:sword;
begin popsw:=signwd(pop) end;

procedure pusha(x:adr);
begin newsp(sp-asize); storea(sp,x) end;

function popa:adr;
begin popa:=mema(sp); newsp(sp+asize) end;

procedure pushd(y:double);
begin { push double integer onto the stack } newsp(sp-2*wsize) end;

function popd:double;
begin { pop double integer from the stack } newsp(sp+2*wsize); popd:=0 end;

procedure pushr(z:real);
begin { Push a float onto the stack } newsp(sp-fsize) end;

function popr:real;
begin { pop float from the stack } newsp(sp+fsize); popr:=0.0 end;

procedure pushx(objsize:size; a:adr);
var i:integer;
begin

if objsize<wsize
then push(mems(a,objsize))
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else for i:=1 to objsize div wsize do push(memw(a+objsize-wsize*i))
end;

procedure popx(objsize:size; a:adr);
var i:integer;
begin

if objsize<wsize
then stores(a,objsize,pop)
else for i:=1 to objsize div wsize do store(a-wsize+wsize*i,pop)

end;

{---------------------------------------------------------------------------}
{ Bit manipulation routines (extract, shift, rotate) }
{---------------------------------------------------------------------------}

procedure sleft(var w:sword); { 1 bit left shift }
begin w:= dosign(fitsw(2*w,EIOVFL)) end;

procedure suleft(var w:word); { 1 bit left shift }
begin w := chopw(2*w) end;

procedure sdleft(var d:double); { 1 bit left shift }
begin { shift two word signed integer } end;

procedure sright(var w:sword); { 1 bit right shift with sign extension }
begin if w >= 0 then w := w div 2 else w := (w-1) div 2 end;

procedure suright(var w:word); { 1 bit right shift without sign extension }
begin w := w div 2 end;

procedure sdright(var d:double); { 1 bit right shift }
begin { shift two word signed integer } end;

procedure rleft(var w:word); { 1 bit left rotate }
begin if w >= t15

then w:=(w-t15)*2 + 1
else w:=w*2

end;

procedure rright(var w:word); { 1 bit right rotate }
begin if w mod 2 = 1

then w:=w div 2 + t15
else w:=w div 2

end;

function sextend(w:word;s:size):word;
var i:size;
begin

for i:=1 to (wsize-s)*8 do rleft(w);
for i:=1 to (wsize-s)*8 do sright(w);
sextend:=w;

end;

function bit(b:bitnr; w:word):bitval; { return bit b of the word w }
var i:bitnr;
begin for i:= 1 to b do rright(w); bit:= w mod 2 end;

function bf(ty:bftype; w1,w2:word):word; { return boolean fcn of 2 words }
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var i:bitnr; j:word;
begin j:=0;

for i:= maxbitnr downto 0 do
begin j := 2*j;

case ty of
andf: if bit(i,w1)+bit(i,w2) = 2 then j:=j+1;
iorf: if bit(i,w1)+bit(i,w2) > 0 then j:=j+1;
xorf: if bit(i,w1)+bit(i,w2) = 1 then j:=j+1

end
end;

bf:=j
end;

{---------------------------------------------------------------------------}
{ Array indexing }
{---------------------------------------------------------------------------}

function arraycalc(c:adr):adr; { subscript calculation }
var j:full; objsize:size; a:adr;
begin j:= popsw - signwd(memw(c));

if (j<0) or (j>memw(c+wsize)) then trap(EARRAY);
objsize := argo(memw(c+wsize+wsize));
a := j*objsize+popa; chkadr(a,objsize);
arraycalc:=a

end;

{---------------------------------------------------------------------------}
{ Double and Real Arithmetic }
{---------------------------------------------------------------------------}

{ All routines for doubles and floats are dummy routines, since the format of
doubles and floats is not defined in EM.

}

function doadi(ds,dt:double):double;
begin { add two doubles } doadi:=0 end;

function dosbi(ds,dt:double):double;
begin { subtract two doubles } dosbi:=0 end;

function domli(ds,dt:double):double;
begin { multiply two doubles } domli:=0 end;

function dodvi(ds,dt:double):double;
begin { divide two doubles } dodvi:=0 end;

function dormi(ds,dt:double):double;
begin { modulo of two doubles } dormi:=0 end;

function dongi(ds:double):double;
begin { negative of a double } dongi:=0 end;

function doadf(x,y:real):real;
begin { add two floats } doadf:=0.0 end;

function dosbf(x,y:real):real;
begin { subtract two floats } dosbf:=0.0 end;
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function domlf(x,y:real):real;
begin { multiply two floats } domlf:=0.0 end;

function dodvf(x,y:real):real;
begin { divide two floats } dodvf:=0.0 end;

function dongf(x:real):real;
begin { negate a float } dongf:=0.0 end;

procedure dofif(x,y:real;var intpart,fraction:real);
begin { dismember x*y into integer and fractional parts }

intpart:=0.0; { integer part of x*y, same sign as x*y }
fraction:=0.0;

{ fractional part of x*y, 0<=abs(fraction)<1 and same sign as x*y }
end;

procedure dofef(x:real;var mantissa:real;var exponent:sword);
begin { dismember x into mantissa and exponent parts }

mantissa:=0.0; { mantissa of x , >= 1/2 and <1 }
exponent:=0; { base 2 exponent of x }

end;
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{---------------------------------------------------------------------------}
{ Trap and Call }
{---------------------------------------------------------------------------}

procedure call(p:adr); { Perform the call }
begin

pusha(lb);pusha(pc);
newlb(sp);newsp(sp - memi(pd + pdsize*p + pdlocs));
newpc(memi(pd + pdsize*p+ pdbase))

end;

procedure dotrap(n:byte);
var i:size;
begin

if (uerrorproc=0) or intrap then
begin

if intrap then
writeln(’Recursive trap, first trap number was ’, trapval:1);

writeln(’Error ’, n:1);
writeln(’With’,ord(insr):4,’ arg ’,k:1);
goto 9999

end;
{ Deposit all interpreter variables that need to be saved on

the stack. This includes all scratch variables that can
be in use at the moment and ( not possible in this interpreter )
the internal address of the interpreter where the error occurred.
This would make it possible to execute an RTT instruction totally
transparent to the user program.
It can, for example, occur within an ADD instruction that both
operands are undefined and that the result overflows.
Although this will generate 3 error traps it must be possible
to ignore them all.

}
intrap:=true; trapval:=n;
for i:=retsize div wsize downto 1 do push(retarea[i]);
push(retsize); { saved return area }
pusha(mema(fileadr)); { saved current file name pointer }
push(memw(lineadr)); { saved line number }
push(n); { push error number }
a:=argp(uerrorproc);
uerrorproc:=0; { reset signal }
call(a); { call the routine }
intrap:=false; { Don’t catch recursive traps anymore }
goto 8888; { reenter main loop }

end;

procedure trap;
{ This routine is invoked for overflow, and other run time errors.

For non-fatal errors, trap returns to the calling routine
}
begin

if n>=16 then dotrap(n) else if bit(n,ignmask)=0 then dotrap(n);
end;

procedure dortt;
{ The restoration of file address and line number is not essential.

The restoration of the return save area is.
}
var i:size;
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n:word;
begin

newsp(lb); lb:=maxdata+1 ; { to circumvent ESTACK for the popa + pop }
newpc(popa); newlb(popa); { So far a plain RET 0 }
n:=pop; if (n>=16) and (n<64) then goto 9999 ;
lino(pop); filna(popa); retsize:=pop;
for i:=1 to retsize div wsize do retarea[i]:=pop ;

end;

{---------------------------------------------------------------------------}
{ monitor calls }
{---------------------------------------------------------------------------}

procedure domon(entry:word);
var index: 1..63;

dummy: double;
count,rwptr: adr;
token: byte;
i: integer;

begin
if (entry<=0) or (entry>63) then entry:=63 ;
index:=entry;
case index of
1: begin { exit } exitstatus:=pop; halted:=true end;
3: begin { read } dummy:=pop; { All input is from stdin }

rwptr:=popa; count:=popa;
i:=0 ;
while (not eof(input)) and (i<count) do
begin

if eoln(input) then begin storeb(rwptr,10) ; count:=i end
else storeb(rwptr,ord(inputˆ)) ;

get(input); rwptr:=rwptr+1 ; i:=i+1 ;
end;
pusha(i); push(0)

end;
4: begin { write } dummy:=pop; { All output is to stdout }

rwptr:=popa; count:=popa;
for i:=1 to count do

begin token:=memb(rwptr); rwptr:=rwptr+1 ;
if token=10 then writeln else write(chr(token))

end ;
pusha(count);
push(0)

end;
54: begin { ioctl, faked } dummy:=popa;dummy:=popa;dummy:=pop;push(0) end ;

2, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 55, 56, 57, 58, 59, 60,
61, 62:

begin push(22); push(22) end;
63: { exists only for the trap }

trap(EBADMON)
end

end;
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{---------------------------------------------------------------------------}
{ Initialization and debugging }
{---------------------------------------------------------------------------}

procedure doident; { print line number and file name }
var a:adr; i,c:integer; found:boolean;
begin

write(’at line ’,memw(lineadr):1,’ ’);
a:=mema(fileadr); if a<>0 then
begin i:=20; found:=false;

while (i<>0) and not found do
begin c:=memb(a); a:=a+1; found:=true; i:=i-1;

if (c>=48) and (c<=57) then
begin found:=false; write(chr(ord(’0’)+c-48)) end;

if (c>=65) and (c<=90) then
begin found:=false; write(chr(ord(’A’)+c-65)) end;

if (c>=97) and (c<=122) then
begin found:=false; write(chr(ord(’a’)+c-97)) end;

end;
end;
writeln;

end;

procedure initialize; { start the ball rolling }
{ This is not part of the machine definition }
var cset:set of char;

f:ifset;
iclass:insclass;
insno:byte;
nops:integer;
opcode:byte;
i,j,n:integer;
wtemp:sword;
count:integer;
repc:adr;
nexta,firsta:adr;
elem:byte;
amount,ofst:size;
c:char;

function readb(n:integer):double;
var b:byte;
begin read(prog,b); if n>1 then readb:=readb(n-1)*256+b else readb:=b end;

function readbyte:byte;
begin readbyte:=readb(1) end;

function readword:word;
begin readword:=readb(wsize) end;

function readadr:adr;
begin readadr:=readb(asize) end;

function ifind(ordinal:byte):mnem;
var loopvar:mnem;

found:boolean;
begin ifind:=NON;

loopvar:=insr; found:=false;
repeat
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if ordinal=ord(loopvar) then
begin found:=true; ifind:=loopvar end;

if loopvar<>ZRL then loopvar:=succ(loopvar) else loopvar:=NON;
until found or (loopvar=insr) ;

end;

procedure readhdr;
type hdrw=0..32767 ; { 16 bit header words }
var hdr: hdrw;

i: integer;
begin

for i:=0 to 7 do
begin hdr:=readb(2);

case i of
0: if hdr<>3757 then { 07255 }

begin writeln(’Not an em load file’); halt end;
2: if hdr<>0 then

begin writeln(’Unsolved references’); halt end;
3: if hdr<>3 then

begin writeln(’Incorrect load file version’); halt end;
4: if hdr<>wsize then

begin writeln(’Incorrect word size’); halt end;
5: if hdr<>asize then

begin writeln(’Incorrect pointer size’); halt end;
1,6,7:;
end

end
end;

procedure noinit;
begin writeln(’Illegal initialization’); halt end;

procedure readint(a:adr;s:size);
var i:size;
begin { construct integer out of byte sequence }

for i:=1 to s do { construct the value and initialize at a }
begin storeb(a,readbyte); a:=a+1 end

end;

procedure readuns(a:adr;s:size);
begin { construct unsigned out of byte sequence }

readint(a,s) { identical to readint }
end;

procedure readfloat(a:adr;s:size);
var i:size; b:byte;
begin { construct float out of string}

if (s<>4) and (s<>8) then noinit; i:=0;
repeat { eat the bytes, construct the value and intialize at a }

b:=readbyte; i:=i+1;
until b=0 ;

end;

begin
halted:=false;
exitstatus:=undef;
uerrorproc:=0; intrap:=false;

{ initialize tables }
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for i:=0 to maxcode do code[i]:=0;
for i:=0 to maxdata do data[i]:=0;
for iclass:=prim to tert do

for i:=0 to 255 do
with dispat[iclass][i] do

begin instr:=NON; iflag:=[zbit] end;

{ read instruction table file. see appendix B }
{ The table read here is a simple transformation of the table on page xx }
{ - instruction names were transformed to numbers }
{ - the ’-’ flag was transformed to an ’i’ flag for ’w’ type instructions }
{ - the ’S’ flag was added for instructions having signed operands }
reset(tables);
insr:=NON;
repeat

read(tables,insno) ; cset:=[]; f:=[];
insr:=ifind(insno);
if insr=NON then begin writeln(’Incorrect table’); halt end;
repeat read(tables,c) until c<>’ ’ ;
repeat

cset:=cset+[c];
read(tables,c)

until c=’ ’ ;
if ’m’ in cset then f:=f+[mini];
if ’s’ in cset then f:=f+[short];
if ’-’ in cset then f:=f+[zbit];
if ’i’ in cset then f:=f+[ibit];
if ’S’ in cset then f:=f+[sbit];
if ’w’ in cset then f:=f+[wbit];
if (mini in f) or (short in f) then read(tables,nops) else nops:=1 ;
readln(tables,opcode);
if (’4’ in cset) or (’8’ in cset) then

begin iclass:=tert end
else if ’e’ in cset then

begin iclass:=second end
else iclass:=prim;
for i:=0 to nops-1 do
begin

with dispat[iclass,opcode+i] do
begin

iflag:=f; instr:=insr;
if ’2’ in cset then ilength:=2
else if ’u’ in cset then ilength:=2
else if ’4’ in cset then ilength:=4
else if ’8’ in cset then ilength:=8
else if (mini in f) or (short in f) then

begin
if ’N’ in cset then wtemp:=-1-i else wtemp:=i ;
if ’o’ in cset then wtemp:=wtemp+1 ;
if short in f then wtemp:=wtemp*256 ;
implicit:=wtemp

end
end

end
until eof(tables);

{ read in program text, data and procedure descriptors }
reset(prog);
readhdr; { verify first header }
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for i:=1 to 8 do header[i]:=readadr; { read second header }
hp:=maxdata+1; sp:=maxdata+1; lino(0);
{ read program text }
if header[NTEXT]+header[NPROC]*pdsize>maxcode then

begin writeln(’Text size too large’); halt end;
if header[SZDATA]>maxdata then

begin writeln(’Data size too large’); halt end;
for i:=0 to header[NTEXT]-1 do code[i]:=readbyte;
{ read data blocks }
nexta:=0;
for i:=1 to header[NDATA] do

begin
n:=readbyte;
if n<>0 then

begin
elem:=readbyte; firsta:=nexta;
case n of
1: { uninitialized words }

for j:=1 to elem do
begin store(nexta,undef); nexta:=nexta+wsize end;

2: { initialized bytes }
for j:=1 to elem do
begin storeb(nexta,readbyte); nexta:=nexta+1 end;

3: { initialized words }
for j:=1 to elem do
begin store(nexta,readword); nexta:=nexta+wsize end;

4,5: { instruction and data pointers }
for j:=1 to elem do
begin storea(nexta,readadr); nexta:=nexta+asize end;

6: { signed integers }
begin readint(nexta,elem); nexta:=nexta+elem end;

7: { unsigned integers }
begin readuns(nexta,elem); nexta:=nexta+elem end;

8: { floating point numbers }
begin readfloat(nexta,elem); nexta:=nexta+elem end;

end
end

else
begin

repc:=readadr; amount:=nexta-firsta;
for count:=1 to repc do
begin

for ofst:=0 to amount-1 do data[nexta+ofst]:=data[firsta+ofst];
nexta:=nexta+amount;

end
end

end;
if header[SZDATA]<>nexta then writeln(’Data initialization error’);
hp:=nexta;
{ read descriptor table }
pd:=header[NTEXT];
for i:=1 to header[NPROC]*pdsize do code[pd+i-1]:=readbyte;
{ call the entry point routine }
ignmask:=0; { catch all traps, higher numbered traps cannot be ignored}
retsize:=0;
lb:=maxdata; { illegal dynamic link }
pc:=maxcode; { illegal return address }
push(0); a:=sp; { No environment }
push(0); b:=sp; { No args }
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pusha(a); { envp }
pusha(b); { argv }
push(0); { argc }
call(argp(header[ENTRY]));

end;
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{---------------------------------------------------------------------------}
{ MAIN LOOP OF THE INTERPRETER }
{---------------------------------------------------------------------------}
{ It should be noted that the interpreter (microprogram) for an EM

machine can be written in two fundamentally different ways: (1) the
instruction operands are fetched in the main loop, or (2) the in-
struction operands are fetched after the 256 way branch, by the exe-
cution routines themselves. In this interpreter, method (1) is used
to simplify the description of execution routines. The dispatch
table dispat is used to determine how the operand is encoded. There
are 4 possibilities:

0. There is no operand
1. The operand and instruction are together in 1 byte (mini)
2. The operand is one byte long and follows the opcode byte(s)
3. The operand is two bytes long and follows the opcode byte(s)
4. The operand is four bytes long and follows the opcode byte(s)

In this interpreter, the main loop determines the operand type,
fetches it, and leaves it in the global variable k for the execution
routines to use. Consequently, instructions such as LOL, which use
three different formats, need only be described once in the body of
the interpreter.

However, for a production interpreter, or a hardware EM
machine, it is probably better to use method (2), i.e. to let the
execution routines themselves fetch their own operands. The reason
for this is that each opcode uniquely determines the operand format,
so no table lookup in the dispatch table is needed. The whole table
is not needed. Method (2) therefore executes much faster.

However, separate execution routines will be needed for LOL with
a one byte offset, and LOL with a two byte offset. It is to avoid
this additional clutter that method (1) is used here. In a produc-
tion interpreter, it is envisioned that the main loop will fetch the
next instruction byte, and use it as an index into a 256 word table
to find the address of the interpreter routine to jump to. The
routine jumped to will begin by fetching its operand, if any,
without any table lookup, since it knows which format to expect.
After doing the work, it returns to the main loop by jumping in-
directly to a register that contains the address of the main loop.

A slight variation on this idea is to have the register contain
the address of the branch table, rather than the address of the main
loop.

Another issue is whether the execution routines for LOL 0, LOL
2, LOL 4, etc. should all be have distinct execution routines. Doing
so provides for the maximum speed, since the operand is implicit in
the routine itself. The disadvantage is that many nearly identical
execution routines will then be needed. Another way of doing it is
to keep the instruction byte fetched from memory (LOL 0, LOL 2, LOL
4, etc.) in some register, and have all the LOL mini format instruc-
tions branch to a common routine. This routine can then determine
the operand by subtracting the code for LOL 0 from the register,
leaving the true operand in the register (as a word quantity of
course). This method makes the interpreter smaller, but is a bit
slower.
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To make this important point a little clearer, consider how a
production interpreter for the PDP-11 might appear. Let us assume the
following opcodes have been assigned:

31: LOL -2 (2 bytes, i.e. next word)
32: LOL -4
33: LOL -6
34: LOL b (format with a one byte offset)
35: LOL w (format with a one word, i.e. two byte offset)

Further assume that each of the 5 opcodes will have its own execution
routine, i.e. we are making a tradeoff in favor of fast execution and
a slightly larger interpreter.

Register r5 is the em program counter.
Register r4 is the em LB register
Register r3 is the em SP register (the stack grows toward low core)
Register r2 contains the interpreter address of the main loop

The main loop looks like this:

movb (r5)+,r0 /fetch the opcode into r0 and increment r5
asl r0 /shift r0 left 1 bit. Now: -256<=r0<=+254
jmp *table(r0) /jump to execution routine

Notice that no operand fetching has been done. The execution routines for
the 5 sample instructions given above might be as follows:

lol2: mov -2(r4),-(sp) /push local -2 onto stack
jmp (r2) /go back to main loop

lol4: mov -4(r4),-(sp) /push local -4 onto stack
jmp (r2) /go back to main loop

lol6: mov -6(r4),-(sp) /push local -6 onto stack
jmp (r2) /go back to main loop

lolb: mov $177400,r0 /prepare to fetch the 1 byte operand
bisb (r5)+,r0 /operand is now in r0
asl r0 /r0 is now offset from LB in bytes, not words
add r4,r0 /r0 is now address of the needed local
mov (r0),-(sp) /push the local onto the stack
jmp (r2)

lolw: clr r0 /prepare to fetch the 2 byte operand
bisb (r5)+,r0 /fetch high order byte first !!!
swab r0 /insert high order byte in place
bisb (r5)+,r0 /insert low order byte in place
asl r0 /convert offset to bytes, from words
add r4,r0 /r0 is now address of needed local
mov (r0),-(sp) /stack the local
jmp (r2) /done

The important thing to notice is where and how the operand fetch occurred:
lol2, lol4, and lol6, (the mini’s) have implicit operands
lolb knew it had to fetch one byte, and did so without any table lookup
lolw knew it had to fetch a word, and did so, high order byte first }
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{---------------------------------------------------------------------------}
{ Routines for the individual instructions }
{---------------------------------------------------------------------------}
procedure loadops;
var j:integer;
begin

case insr of
{ LOAD GROUP }
LDC: pushd(argd(k));
LOC: pushsw(argc(k));
LOL: push(memw(locadr(k)));
LOE: push(memw(argg(k)));
LIL: push(memw(mema(locadr(k))));
LOF: push(memw(popa+argf(k)));
LAL: pusha(locadr(k));
LAE: pusha(argg(k));
LXL: begin a:=lb; for j:=1 to argn(k) do a:=mema(a+savsize); pusha(a) end;
LXA: begin a:=lb;

for j:=1 to argn(k) do a:= mema(a+savsize);
pusha(a+savsize)

end;
LOI: pushx(argo(k),popa);
LOS: begin k:=argw(k); if k<>wsize then trap(EILLINS);

k:=pop; pushx(argo(k),popa)
end;

LDL: begin a:=locadr(k); push(memw(a+wsize)); push(memw(a)) end;
LDE: begin k:=argg(k); push(memw(k+wsize)); push(memw(k)) end;
LDF: begin k:=argf(k);

a:=popa; push(memw(a+k+wsize)); push(memw(a+k))
end;

LPI: push(argp(k))
end

end;

procedure storeops;
begin

case insr of
{ STORE GROUP }
STL: store(locadr(k),pop);
STE: store(argg(k),pop);
SIL: store(mema(locadr(k)),pop);
STF: begin a:=popa; store(a+argf(k),pop) end;
STI: popx(argo(k),popa);
STS: begin k:=argw(k); if k<>wsize then trap(EILLINS);

k:=popa; popx(argo(k),popa)
end;

SDL: begin a:=locadr(k); store(a,pop); store(a+wsize,pop) end;
SDE: begin k:=argg(k); store(k,pop); store(k+wsize,pop) end;
SDF: begin k:=argf(k); a:=popa; store(a+k,pop); store(a+k+wsize,pop) end

end
end;

procedure intarith;
var i:integer;
begin

case insr of
{ SIGNED INTEGER ARITHMETIC }
ADI: case szindex(argw(k)) of

1: begin st:=popsw; ss:=popsw; push(fitsw(ss+st,EIOVFL)) end;
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2: begin dt:=popd; ds:=popd; pushd(doadi(ds,dt)) end;
end ;

SBI: case szindex(argw(k)) of
1: begin st:=popsw; ss:= popsw; push(fitsw(ss-st,EIOVFL)) end;
2: begin dt:=popd; ds:=popd; pushd(dosbi(ds,dt)) end;
end ;

MLI: case szindex(argw(k)) of
1: begin st:=popsw; ss:= popsw; push(fitsw(ss*st,EIOVFL)) end;
2: begin dt:=popd; ds:=popd; pushd(domli(ds,dt)) end;
end ;

DVI: case szindex(argw(k)) of
1: begin st:= popsw; ss:= popsw;

if st=0 then trap(EIDIVZ) else pushsw(ss div st)
end;

2: begin dt:=popd; ds:=popd; pushd(dodvi(ds,dt)) end;
end;

RMI: case szindex(argw(k)) of
1: begin st:= popsw; ss:=popsw;

if st=0 then trap(EIDIVZ) else pushsw(ss - (ss div st)*st)
end;

2: begin dt:=popd; ds:=popd; pushd(dormi(ds,dt)) end
end;

NGI: case szindex(argw(k)) of
1: begin st:=popsw; pushsw(-st) end;
2: begin ds:=popd; pushd(dongi(ds)) end
end;

SLI: begin t:=pop;
case szindex(argw(k)) of
1: begin ss:=popsw;

for i:= 1 to t do sleft(ss); pushsw(ss)
end

end
end;

SRI: begin t:=pop;
case szindex(argw(k)) of
1: begin ss:=popsw;

for i:= 1 to t do sright(ss); pushsw(ss)
end;

2: begin ds:=popd;
for i:= 1 to t do sdright(ss); pushd(ss)

end
end

end
end

end;

procedure unsarith;
var i:integer;
begin

case insr of
{ UNSIGNED INTEGER ARITHMETIC }
ADU: case szindex(argw(k)) of

1: begin t:=pop; s:= pop; push(chopw(s+t)) end;
2: trap(EILLINS);
end ;

SBU: case szindex(argw(k)) of
1: begin t:=pop; s:= pop; push(chopw(s-t)) end;
2: trap(EILLINS);
end ;
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MLU: case szindex(argw(k)) of
1: begin t:=pop; s:= pop; push(chopw(s*t)) end;
2: trap(EILLINS);
end ;

DVU: case szindex(argw(k)) of
1: begin t:= pop; s:= pop;

if t=0 then trap(EIDIVZ) else push(s div t)
end;

2: trap(EILLINS);
end;

RMU: case szindex(argw(k)) of
1: begin t:= pop; s:=pop;

if t=0 then trap(EIDIVZ) else push(s - (s div t)*t)
end;

2: trap(EILLINS);
end;

SLU: case szindex(argw(k)) of
1: begin t:=pop; s:=pop;

for i:= 1 to t do suleft(s); push(s)
end;

2: trap(EILLINS);
end;

SRU: case szindex(argw(k)) of
1: begin t:=pop; s:=pop;

for i:= 1 to t do suright(s); push(s)
end;

2: trap(EILLINS);
end

end
end;

procedure fltarith;
begin

case insr of
{ FLOATING POINT ARITHMETIC }
ADF: begin argwf(k); rt:=popr; rs:=popr; pushr(doadf(rs,rt)) end;
SBF: begin argwf(k); rt:=popr; rs:=popr; pushr(dosbf(rs,rt)) end;
MLF: begin argwf(k); rt:=popr; rs:=popr; pushr(domlf(rs,rt)) end;
DVF: begin argwf(k); rt:=popr; rs:=popr; pushr(dodvf(rs,rt)) end;
NGF: begin argwf(k); rt:=popr; pushr(dongf(rt)) end;
FIF: begin argwf(k); rt:=popr; rs:=popr;

dofif(rt,rs,x,y); pushr(y); pushr(x)
end;

FEF: begin argwf(k); rt:=popr; dofef(rt,x,ss); pushr(x); pushsw(ss) end
end

end;

procedure ptrarith;
begin

case insr of
{ POINTER ARITHMETIC }
ADP: pusha(popa+argf(k));
ADS: case szindex(argw(k)) of

1: begin st:=popsw; pusha(popa+st) end;
2: begin dt:=popd; pusha(popa+dt) end;
end;

SBS: begin
a:=popa; b:=popa;
case szindex(argw(k)) of
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1: push(fitsw(b-a,EIOVFL));
2: pushd(b-a)

end
end

end
end;

procedure incops;
var j:integer;
begin

case insr of
{ INCREMENT/DECREMENT/ZERO }
INC: push(fitsw(popsw+1,EIOVFL));
INL: begin a:=locadr(k); store(a,fitsw(signwd(memw(a))+1,EIOVFL)) end;
INE: begin a:=argg(k); store(a,fitsw(signwd(memw(a))+1,EIOVFL)) end;
DEC: push(fitsw(popsw-1,EIOVFL));
DEL: begin a:=locadr(k); store(a,fitsw(signwd(memw(a))-1,EIOVFL)) end;
DEE: begin a:=argg(k); store(a,fitsw(signwd(memw(a))-1,EIOVFL)) end;
ZRL: store(locadr(k),0);
ZRE: store(argg(k),0);
ZER: for j:=1 to argw(k) div wsize do push(0);
ZRF: pushr(0);

end
end;

procedure convops;
begin

case insr of
{ CONVERT GROUP }
CII: begin s:=pop; t:=pop;

if t<wsize then begin push(sextend(pop,t)); t:=wsize end;
case szindex(argw(t)) of
1: if szindex(argw(s))=2 then pushd(popsw);
2: if szindex(argw(s))=1 then push(fitsw(popd,ECONV))
end

end;
CIU: case szindex(argw(pop)) of

1: if szindex(argw(pop))=2 then push(unsign(popd mod negoff));
2: trap(EILLINS);
end;

CIF: begin argwf(pop);
case szindex(argw(pop)) of 1:pushr(popsw); 2:pushr(popd) end

end;
CUI: case szindex(argw(pop)) of

1: case szindex(argw(pop)) of
1: begin s:=pop; if s>maxsint then trap(ECONV); push(s) end;
2: trap(EILLINS);
end;

2: case szindex(argw(pop)) of
1: pushd(pop);
2: trap(EILLINS);
end;

end;
CUU: case szindex(argw(pop)) of

1: if szindex(argw(pop))=2 then trap(EILLINS);
2: trap(EILLINS);
end;

CUF: begin argwf(pop);
if szindex(argw(pop))=1 then pushr(pop) else trap(EILLINS)
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end;
CFI: begin sz:=argw(pop); argwf(pop); rt:=popr;

case szindex(sz) of
1: push(fitsw(trunc(rt),ECONV));
2: pushd(fitd(trunc(rt)));
end

end;
CFU: begin sz:=argw(pop); argwf(pop); rt:=popr;

case szindex(sz) of
1: push( chopw(trunc(abs(rt)-0.5)) );
2: trap(EILLINS);
end

end;
CFF: begin argwf(pop); argwf(pop) end

end
end;

procedure logops;
var i,j:integer;
begin

case insr of
{ LOGICAL GROUP }
XAND:

begin k:=argw(k);
for j:= 1 to k div wsize do

begin a:=sp+k; t:=pop; store(a,bf(andf,memw(a),t)) end;
end;

IOR:
begin k:=argw(k);

for j:= 1 to k div wsize do
begin a:=sp+k; t:=pop; store(a,bf(iorf,memw(a),t)) end;

end;
XOR:

begin k:=argw(k);
for j:= 1 to k div wsize do

begin a:=sp+k; t:=pop; store(a,bf(xorf,memw(a),t)) end;
end;

COM:
begin k:=argw(k);

for j:= 1 to k div wsize do
begin

store(sp+k-wsize*j, bf(xorf,memw(sp+k-wsize*j), negoff-1))
end

end;
ROL: begin k:=argw(k); if k<>wsize then trap(EILLINS);

t:=pop; s:=pop; for i:= 1 to t do rleft(s); push(s)
end;

ROR: begin k:=argw(k); if k<>wsize then trap(EILLINS);
t:=pop; s:=pop; for i:= 1 to t do rright(s); push(s)

end
end

end;

procedure setops;
var i,j:integer;
begin

case insr of
{ SET GROUP }
INN:
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begin k:=argw(k);
t:=pop;
i:= t mod 8; t:= t div 8;
if t>=k then

begin trap(ESET); s:=0 end
else

begin s:=memb(sp+t) end;
newsp(sp+k); push(bit(i,s));

end;
XSET:

begin k:=argw(k);
t:=pop;
i:= t mod 8; t:= t div 8;
for j:= 1 to k div wsize do push(0);
if t>=k then

trap(ESET)
else

begin s:=1; for j:= 1 to i do rleft(s); storeb(sp+t,s) end
end

end
end;

procedure arrops;
begin

case insr of
{ ARRAY GROUP }
LAR:

begin k:=argw(k); if k<>wsize then trap(EILLINS); a:=popa;
pushx(argo(memw(a+2*k)),arraycalc(a))

end;
SAR:

begin k:=argw(k); if k<>wsize then trap(EILLINS); a:=popa;
popx(argo(memw(a+2*k)),arraycalc(a))

end;
AAR:

begin k:=argw(k); if k<>wsize then trap(EILLINS); a:=popa;
push(arraycalc(a))

end
end

end;

procedure cmpops;
begin

case insr of
{ COMPARE GROUP }
CMI: case szindex(argw(k)) of

1: begin st:=popsw; ss:=popsw;
if ss<st then pushsw(-1) else if ss=st then push(0) else push(1)

end;
2: begin dt:=popd; ds:=popd;

if ds<dt then pushsw(-1) else if ds=dt then push(0) else push(1)
end;

end;
CMU: case szindex(argw(k)) of

1: begin t:=pop; s:=pop;
if s<t then pushsw(-1) else if s=t then push(0) else push(1)

end;
2: trap(EILLINS);
end;
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CMP: begin a:=popa; b:=popa;
if b<a then pushsw(-1) else if b=a then push(0) else push(1)

end;
CMF: begin argwf(k); rt:=popr; rs:=popr;

if rs<rt then pushsw(-1) else if rs=rt then push(0) else push(1)
end;

CMS: begin k:=argw(k);
t:= 0; j:= 0;
while (j < k) and (t=0) do

begin if memw(sp+j) <> memw(sp+k+j) then t:=1;
j:=j+wsize

end;
newsp(sp+wsize*k); push(t);

end;

TLT: if popsw < 0 then push(1) else push(0);
TLE: if popsw <= 0 then push(1) else push(0);
TEQ: if pop = 0 then push(1) else push(0);
TNE: if pop <> 0 then push(1) else push(0);
TGE: if popsw >= 0 then push(1) else push(0);
TGT: if popsw > 0 then push(1) else push(0);

end
end;

procedure branchops;
begin

case insr of
{ BRANCH GROUP }
BRA: newpc(pc+k);

BLT: begin st:=popsw; if popsw < st then newpc(pc+k) end;
BLE: begin st:=popsw; if popsw <= st then newpc(pc+k) end;
BEQ: begin t :=pop ; if pop = t then newpc(pc+k) end;
BNE: begin t :=pop ; if pop <> t then newpc(pc+k) end;
BGE: begin st:=popsw; if popsw >= st then newpc(pc+k) end;
BGT: begin st:=popsw; if popsw > st then newpc(pc+k) end;

ZLT: if popsw < 0 then newpc(pc+k);
ZLE: if popsw <= 0 then newpc(pc+k);
ZEQ: if pop = 0 then newpc(pc+k);
ZNE: if pop <> 0 then newpc(pc+k);
ZGE: if popsw >= 0 then newpc(pc+k);
ZGT: if popsw > 0 then newpc(pc+k)

end
end;

procedure callops;
var j:integer;
begin

case insr of
{ PROCEDURE CALL GROUP }
CAL: call(argp(k));
CAI: begin call(argp(popa)) end;
RET: begin k:=argz(k); if k div wsize>maxret then trap(EILLINS);

for j:= 1 to k div wsize do retarea[j]:=pop; retsize:=k;
newsp(lb); lb:=maxdata+1; { To circumvent stack overflow error }
newpc(popa);
if pc=maxcode then
begin
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halted:=true;
if retsize=wsize then exitstatus:=retarea[1]

else exitstatus:=undef
end
else

newlb(popa);
end;

LFR: begin k:=args(k); if k<>retsize then trap(EILLINS);
for j:=k div wsize downto 1 do push(retarea[j]);

end
end

end;

procedure miscops;
var i,j:integer;
begin

case insr of
{ MISCELLANEOUS GROUP }
ASP,ASS:

begin if insr=ASS then
begin k:=argw(k); if k<>wsize then trap(EILLINS); k:=popsw end;
k:=argf(k);
if k<0

then for j:= 1 to -k div wsize do push(undef)
else newsp(sp+k);

end;
BLM,BLS:

begin if insr=BLS then
begin k:=argw(k); if k<>wsize then trap(EILLINS); k:=pop end;
k:=argz(k);
b:=popa; a:=popa;
for j := 1 to k div wsize do

store(b-wsize+wsize*j,memw(a-wsize+wsize*j))
end;

CSA: begin k:=argw(k); if k<>wsize then trap(EILLINS);
a:=popa;
st:= popsw - signwd(memw(a+asize));
if (st>=0) and (st<=memw(a+wsize+asize)) then

b:=mema(a+2*wsize+asize+asize*st) else b:=mema(a);
if b=0 then trap(ECASE) else newpc(b)

end;
CSB: begin k:=argw(k); if k<>wsize then trap(EILLINS); a:=popa;

t:=pop; i:=1; found:=false;
while (i<=memw(a+asize)) and not found do

if t=memw(a+(asize+wsize)*i) then found:=true else i:=i+1;
if found then b:=memw(a+(asize+wsize)*i+wsize) else b:=memw(a);
if b=0 then trap(ECASE) else newpc(b);

end;
DCH: begin pusha(mema(popa+dynd)) end;
DUP,DUS:

begin if insr=DUS then
begin k:=argw(k); if k<>wsize then trap(EILLINS); k:=pop end;

k:=args(k);
for i:=1 to k div wsize do push(memw(sp+k-wsize));

end;
EXG: begin

k:=argw(k);
for i:=1 to k div wsize do push(memw(sp+k-wsize));
for i:=0 to k div wsize - 1 do
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store(sp+k+i*wsize,memw(sp+k+k+i*wsize));
for i:=1 to k div wsize do
begin t:=pop ; store(sp+k+k-wsize,t) end;

end;
FIL: filna(argg(k));
GTO: begin k:=argg(k);

newlb(mema(k+2*asize)); newsp(mema(k+asize)); newpc(mema(k))
end;

LIM: push(ignmask);
LIN: lino(argn(k));
LNI: lino(memw(0)+1);
LOR: begin i:=argr(k);

case i of 0:pusha(lb); 1:pusha(sp); 2:pusha(hp) end;
end;

LPB: pusha(popa+statd);
MON: domon(pop);
NOP: writeln(’NOP at line ’,memw(0):5) ;
RCK: begin a:=popa;

case szindex(argw(k)) of
1: if (signwd(memw(sp))<signwd(memw(a))) or

(signwd(memw(sp))>signwd(memw(a+wsize))) then trap(ERANGE);
2: if (memd(sp)<memd(a)) or

(memd(sp)>memd(a+2*wsize)) then trap(ERANGE);
end

end;
RTT: dortt;
SIG: begin a:=popa; pusha(uerrorproc); uerrorproc:=a end;
SIM: ignmask:=pop;
STR: begin i:=argr(k);

case i of 0: newlb(popa); 1: newsp(popa); 2: newhp(popa) end;
end;

TRP: trap(pop)
end

end;
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{---------------------------------------------------------------------------}
{ Main Loop }
{---------------------------------------------------------------------------}

begin initialize;
8888:

repeat
opcode := nextpc; { fetch the first byte of the instruction }
if opcode=escape1 then iclass:=second
else if opcode=escape2 then iclass:=tert
else iclass:=prim;
if iclass<>prim then opcode := nextpc;
with dispat[iclass][opcode] do

begin insr:=instr;
if not (zbit in iflag) then

if ibit in iflag then k:=pop else
begin

if mini in iflag then k:=implicit else
begin

if short in iflag then k:=implicit+nextpc else
begin k:=nextpc;

if (sbit in iflag) and (k>=128) then k:=k-256;
for i:=2 to ilength do k:=256*k + nextpc

end
end;

if wbit in iflag then k:=k*wsize;
end

end;
case insr of

NON: trap(EILLINS);

{ LOAD GROUP }
LDC,LOC,LOL,LOE,LIL,LOF,LAL,LAE,LXL,LXA,LOI,LOS,LDL,LDE,LDF,LPI:

loadops;

{ STORE GROUP }
STL,STE,SIL,STF,STI,STS,SDL,SDE,SDF:

storeops;

{ SIGNED INTEGER ARITHMETIC }
ADI,SBI,MLI,DVI,RMI,NGI,SLI,SRI:

intarith;

{ UNSIGNED INTEGER ARITHMETIC }
ADU,SBU,MLU,DVU,RMU,SLU,SRU:

unsarith;

{ FLOATING POINT ARITHMETIC }
ADF,SBF,MLF,DVF,NGF,FIF,FEF:

fltarith;

{ POINTER ARITHMETIC }
ADP,ADS,SBS:

ptrarith;

{ INCREMENT/DECREMENT/ZERO }
INC,INL,INE,DEC,DEL,DEE,ZRL,ZRE,ZER,ZRF:

incops;



71

{ CONVERT GROUP }
CII,CIU,CIF,CUI,CUU,CUF,CFI,CFU,CFF:

convops;

{ LOGICAL GROUP }
XAND,IOR,XOR,COM,ROL,ROR:

logops;

{ SET GROUP }
INN,XSET:

setops;

{ ARRAY GROUP }
LAR,SAR,AAR:

arrops;

{ COMPARE GROUP }
CMI,CMU,CMP,CMF,CMS, TLT,TLE,TEQ,TNE,TGE,TGT:

cmpops;

{ BRANCH GROUP }
BRA, BLT,BLE,BEQ,BNE,BGE,BGT, ZLT,ZLE,ZEQ,ZNE,ZGE,ZGT:

branchops;

{ PROCEDURE CALL GROUP }
CAL,CAI,RET,LFR:

callops;

{ MISCELLANEOUS GROUP }
ASP,ASS,BLM,BLS,CSA,CSB,DCH,DUP,DUS,EXG,FIL,GTO,LIM,
LIN,LNI,LOR,LPB,MON,NOP,RCK,RTT,SIG,SIM,STR,TRP:

miscops;

end; { end of case statement }
if not ( (insr=RET) or (insr=ASP) or (insr=BRA) or (insr=GTO) ) then

retsize:=0 ;
until halted;

9999:
writeln(’halt with exit status: ’,exitstatus:1);
doident;

end.
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B. EM CODE TABLES

The following table is used by the assembler for EM machine language. It specifies the opcodes used for
each instruction and how arguments are mapped to machine language arguments. The table is presented in three
columns, each line in each column contains three or four fields. Each line describes a range of interpreter op-
codes by specifying for which instruction the range is used, the type of the opcodes (mini, shortie, etc..) and
range for the instruction argument.

The first field on each line gives the EM instruction mnemonic, the second field gives some flags. If the op-
codes are minis or shorties the third field specifies how many minis/shorties are used. The last field gives the
number of the (first) interpreter opcode.

Flags :

Opcode type, only one of the following may be specified.

− opcode without argument

m mini

s shortie

2 opcode with 2-byte signed argument

4 opcode with 4-byte signed argument

8 opcode with 8-byte signed argument

u opcode with 2-byte unsigned argument

Secondary (escaped) opcodes.

e The opcode thus marked is in the secondary opcode group instead of the primary

restrictions on arguments

N Negative arguments only

P Positive and zero arguments only

mapping of arguments

w argument must be divisible by the wordsize and is divided by the wordsize before use as opcode
argument.

o argument ( possibly after division ) must be >= 1 and is decremented before use as opcode argu-
ment

If the opcode type is 2,4 or 8 the resulting argument is used as opcode argument (least significant byte first).
If the opcode type is mini, the argument is added to the first opcode − if in range − . If the argument is negative,
the absolute value minus one is used in the algorithm above.
For shorties with positive arguments the first opcode is used for arguments in the range 0..255, the second for
the range 256..511, etc.. For shorties with negative arguments the first opcode is used for arguments in the range
−1..−256, the second for the range −257..−512, etc.. The byte following the opcode contains the least significant
byte of the argument. First some examples of these specifications.

aar mwPo 1 34
Indicates that opcode 34 is used as a mini for Positive instruction arguments only. The w and o indicate
division and decrementing of the instruction argument. Because the resulting argument must be zero (
only opcode 34 may be used ), this mini can only be used for instruction argument 2. Conclusion: opcode
34 is for "AAR 2".
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adp sP 1 41
Opcode 41 is used as shortie for ADP with arguments in the range 0..255.

bra sN 2 60
Opcode 60 is used as shortie for BRA with arguments −1..−256, 61 is used for arguments −257..−512.

zer e− 145
Escaped opcode 145 is used for ZER.

The interpreter opcode table:

aar mwPo 1 34 adf sP 1 35 adi mwPo 2 36
adp 2 38 adp mPo 2 39 adp sP 1 41
adp sN 1 42 ads mwPo 1 43 and mwPo 1 44
asp mwPo 5 45 asp swP 1 50 beq 2 51
beq sP 1 52 bge sP 1 53 bgt sP 1 54
ble sP 1 55 blm sP 1 56 blt sP 1 57
bne sP 1 58 bra 2 59 bra sN 2 60
bra sP 2 62 cal mPo 28 64 cal sP 1 92
cff − 93 cif − 94 cii − 95
cmf sP 1 96 cmi mwPo 2 97 cmp − 99
cms sP 1 100 csa mwPo 1 101 csb mwPo 1 102
dec − 103 dee sw 1 104 del swN 1 105
dup mwPo 1 106 dvf sP 1 107 dvi mwPo 1 108
fil u 109 inc − 110 ine w2 111
ine sw 1 112 inl mwN 3 113 inl swN 1 116
inn sP 1 117 ior mwPo 1 118 ior sP 1 119
lae u 120 lae sw 7 121 lal P2 128
lal N2 129 lal mP 1 130 lal mN 1 131
lal swP 1 132 lal swN 2 133 lar mwPo 1 135
ldc mP 1 136 lde w2 137 lde sw 1 138
ldl mP 1 139 ldl swN 1 140 lfr mwPo 2 141
lfr sP 1 143 lil swN 1 144 lil swP 1 145
lil mwP 2 146 lin 2 148 lin sP 1 149
lni − 150 loc 2 151 loc mP 34 0
loc mN 1 152 loc sP 1 153 loc sN 1 154
loe w2 155 loe sw 5 156 lof 2 161
lof mwPo 4 162 lof sP 1 166 loi 2 167
loi mPo 1 168 loi mwPo 4 169 loi sP 1 173
lol wP2 174 lol wN2 175 lol mwP 4 176
lol mwN 8 180 lol swP 1 188 lol swN 1 189
lxa mPo 1 190 lxl mPo 2 191 mlf sP 1 193
mli mwPo 2 194 rck mwPo 1 196 ret mwP 2 197
ret sP 1 199 rmi mwPo 1 200 sar mwPo 1 201
sbf sP 1 202 sbi mwPo 2 203 sdl swN 1 205
set sP 1 206 sil swN 1 207 sil swP 1 208
sli mwPo 1 209 ste w2 210 ste sw 3 211
stf 2 214 stf mwPo 2 215 stf sP 1 217
sti mPo 1 218 sti mwPo 4 219 sti sP 1 223
stl wP2 224 stl wN2 225 stl mwP 2 226
stl mwN 5 228 stl swN 1 233 teq − 234
tgt − 235 tlt − 236 tne − 237
zeq 2 238 zeq sP 2 239 zer sP 1 241
zge sP 1 242 zgt sP 1 243 zle sP 1 244
zlt sP 1 245 zne sP 1 246 zne sN 1 247
zre w2 248 zre sw 1 249 zrl mwN 2 250
zrl swN 1 252 zrl wN2 253 aar e2 0
aar e− 1 adf e2 2 adf e− 3
adi e2 4 adi e− 5 ads e2 6
ads e− 7 adu e2 8 adu e− 9
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and e2 10 and e− 11 asp ew2 12
ass e2 13 ass e− 14 bge e2 15
bgt e2 16 ble e2 17 blm e2 18
bls e2 19 bls e− 20 blt e2 21
bne e2 22 cai e− 23 cal e2 24
cfi e− 25 cfu e− 26 ciu e− 27
cmf e2 28 cmf e− 29 cmi e2 30
cmi e− 31 cms e2 32 cms e− 33
cmu e2 34 cmu e− 35 com e2 36
com e− 37 csa e2 38 csa e− 39
csb e2 40 csb e− 41 cuf e− 42
cui e− 43 cuu e− 44 dee ew2 45
del ewP2 46 del ewN2 47 dup e2 48
dus e2 49 dus e− 50 dvf e2 51
dvf e− 52 dvi e2 53 dvi e− 54
dvu e2 55 dvu e− 56 fef e2 57
fef e− 58 fif e2 59 fif e− 60
inl ewP2 61 inl ewN2 62 inn e2 63
inn e− 64 ior e2 65 ior e− 66
lar e2 67 lar e− 68 ldc e2 69
ldf e2 70 ldl ewP2 71 ldl ewN2 72
lfr e2 73 lil ewP2 74 lil ewN2 75
lim e− 76 los e2 77 los e− 78
lor esP 1 79 lpi e2 80 lxa e2 81
lxl e2 82 mlf e2 83 mlf e− 84
mli e2 85 mli e− 86 mlu e2 87
mlu e− 88 mon e− 89 ngf e2 90
ngf e− 91 ngi e2 92 ngi e− 93
nop e− 94 rck e2 95 rck e− 96
ret e2 97 rmi e2 98 rmi e− 99
rmu e2 100 rmu e− 101 rol e2 102
rol e− 103 ror e2 104 ror e− 105
rtt e− 106 sar e2 107 sar e− 108
sbf e2 109 sbf e− 110 sbi e2 111
sbi e− 112 sbs e2 113 sbs e− 114
sbu e2 115 sbu e− 116 sde eu 117
sdf e2 118 sdl ewP2 119 sdl ewN2 120
set e2 121 set e− 122 sig e− 123
sil ewP2 124 sil ewN2 125 sim e− 126
sli e2 127 sli e− 128 slu e2 129
slu e− 130 sri e2 131 sri e− 132
sru e2 133 sru e− 134 sti e2 135
sts e2 136 sts e− 137 str esP 1 138
tge e− 139 tle e− 140 trp e− 141
xor e2 142 xor e− 143 zer e2 144
zer e− 145 zge e2 146 zgt e2 147
zle e2 148 zlt e2 149 zne e2 150
zrf e2 151 zrf e− 152 zrl ewP2 153
dch e− 154 exg esP 1 155 exg e2 156
exg e− 157 lpb e− 158 gto eu 159
ldc 4 0 lae 4 1 lal P4 2
lal N4 3 lde w4 4 ldf 4 5
ldl wP4 6 ldl wN4 7 lil wP4 8
lil wN4 9 loc 4 10 loe w4 11
lof 4 12 lol wP4 13 lol wN4 14
lpi 4 15 adp 4 16 asp w4 17
beq 4 18 bge 4 19 bgt 4 20
ble 4 21 blm 4 22 blt 4 23
bne 4 24 bra 4 25 cal 4 26
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dee w4 27 del wP4 28 del wN4 29
fil 4 30 gto 4 31 ine w4 32
inl wP4 33 inl wN4 34 lin 4 35
sde 4 36 sdf 4 37 sdl wP4 38
sdl wN4 39 sil wP4 40 sil wN4 41
ste w4 42 stf 4 43 stl wP4 44
stl wN4 45 zeq 4 46 zge 4 47
zgt 4 48 zle 4 49 zlt 4 50
zne 4 51 zre w4 52 zrl wP4 53
zrl wN4 54 loi 4 55 sti 4 56

The table above results in the following dispatch tables. Dispatch tables are used by interpreters to jump to
the routines implementing the EM instructions, indexed by the next opcode. Each line of the dispatch tables
gives the routine names of eight consecutive opcodes, preceded by the first opcode number on that line. Routine
names consist of an EM mnemonic followed by a suffix. The suffices show the encoding used for each opcode.
The following suffices exist:

.z no arguments

.l 16-bit argument

.L 32-bit argument

.u 16-bit unsigned argument

.lw 16-bit argument divided by the wordsize

.Lw 32-bit argument divided by the wordsize

.p positive 16-bit argument

.P positive 32-bit argument

.pw positive 16-bit argument divided by the wordsize

.Pw positive 32-bit argument divided by the wordsize

.n negative 16-bit argument

.N negative 32-bit argument

.nw negative 16-bit argument divided by the wordsize

.Nw negative 32-bit argument divided by the wordsize

.s<num> shortie with <num> as high order argument byte

.w<num> shortie with argument divided by the wordsize

.<num> mini with <num> as argument

.<num>W mini with <num>*wordsize as argument

<num> is a possibly negative integer.
The dispatch table for the 256 primary opcodes:

0 loc.0 loc.1 loc.2 loc.3 loc.4 loc.5 loc.6 loc.7
8 loc.8 loc.9 loc.10 loc.11 loc.12 loc.13 loc.14 loc.15

16 loc.16 loc.17 loc.18 loc.19 loc.20 loc.21 loc.22 loc.23
24 loc.24 loc.25 loc.26 loc.27 loc.28 loc.29 loc.30 loc.31
32 loc.32 loc.33 aar.1W adf.s0 adi.1W adi.2W adp.l adp.1
40 adp.2 adp.s0 adp.s−1 ads.1W and.1W asp.1W asp.2W asp.3W
48 asp.4W asp.5W asp.w0 beq.l beq.s0 bge.s0 bgt.s0 ble.s0
56 blm.s0 blt.s0 bne.s0 bra.l bra.s−1 bra.s−2 bra.s0 bra.s1
64 cal.1 cal.2 cal.3 cal.4 cal.5 cal.6 cal.7 cal.8
72 cal.9 cal.10 cal.11 cal.12 cal.13 cal.14 cal.15 cal.16
80 cal.17 cal.18 cal.19 cal.20 cal.21 cal.22 cal.23 cal.24
88 cal.25 cal.26 cal.27 cal.28 cal.s0 cff.z cif.z cii.z
96 cmf.s0 cmi.1W cmi.2W cmp.z cms.s0 csa.1W csb.1W dec.z

104 dee.w0 del.w−1 dup.1W dvf.s0 dvi.1W fil.u inc.z ine.lw
112 ine.w0 inl.−1W inl.−2W inl.−3W inl.w−1 inn.s0 ior.1W ior.s0
120 lae.u lae.w0 lae.w1 lae.w2 lae.w3 lae.w4 lae.w5 lae.w6
128 lal.p lal.n lal.0 lal.−1 lal.w0 lal.w−1 lal.w−2 lar.1W
136 ldc.0 lde.lw lde.w0 ldl.0 ldl.w−1 lfr.1W lfr.2W lfr.s0
144 lil.w−1 lil.w0 lil.0W lil.1W lin.l lin.s0 lni.z loc.l
152 loc.−1 loc.s0 loc.s−1 loe.lw loe.w0 loe.w1 loe.w2 loe.w3
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160 loe.w4 lof.l lof.1W lof.2W lof.3W lof.4W lof.s0 loi.l
168 loi.1 loi.1W loi.2W loi.3W loi.4W loi.s0 lol.pw lol.nw
176 lol.0W lol.1W lol.2W lol.3W lol.−1W lol.−2W lol.−3W lol.−4W
184 lol.−5W lol.−6W lol.−7W lol.−8W lol.w0 lol.w−1 lxa.1 lxl.1
192 lxl.2 mlf.s0 mli.1W mli.2W rck.1W ret.0W ret.1W ret.s0
200 rmi.1W sar.1W sbf.s0 sbi.1W sbi.2W sdl.w−1 set.s0 sil.w−1
208 sil.w0 sli.1W ste.lw ste.w0 ste.w1 ste.w2 stf.l stf.1W
216 stf.2W stf.s0 sti.1 sti.1W sti.2W sti.3W sti.4W sti.s0
224 stl.pw stl.nw stl.0W stl.1W stl.−1W stl.−2W stl.−3W stl.−4W
232 stl.−5W stl.w−1 teq.z tgt.z tlt.z tne.z zeq.l zeq.s0
240 zeq.s1 zer.s0 zge.s0 zgt.s0 zle.s0 zlt.s0 zne.s0 zne.s−1
248 zre.lw zre.w0 zrl.−1W zrl.−2W zrl.w−1 zrl.nw escape1 escape2

The list of secondary opcodes (escape1):

0 aar.l aar.z adf.l adf.z adi.l adi.z ads.l ads.z
8 adu.l adu.z and.l and.z asp.lw ass.l ass.z bge.l

16 bgt.l ble.l blm.l bls.l bls.z blt.l bne.l cai.z
24 cal.l cfi.z cfu.z ciu.z cmf.l cmf.z cmi.l cmi.z
32 cms.l cms.z cmu.l cmu.z com.l com.z csa.l csa.z
40 csb.l csb.z cuf.z cui.z cuu.z dee.lw del.pw del.nw
48 dup.l dus.l dus.z dvf.l dvf.z dvi.l dvi.z dvu.l
56 dvu.z fef.l fef.z fif.l fif.z inl.pw inl.nw inn.l
64 inn.z ior.l ior.z lar.l lar.z ldc.l ldf.l ldl.pw
72 ldl.nw lfr.l lil.pw lil.nw lim.z los.l los.z lor.s0
80 lpi.l lxa.l lxl.l mlf.l mlf.z mli.l mli.z mlu.l
88 mlu.z mon.z ngf.l ngf.z ngi.l ngi.z nop.z rck.l
96 rck.z ret.l rmi.l rmi.z rmu.l rmu.z rol.l rol.z

104 ror.l ror.z rtt.z sar.l sar.z sbf.l sbf.z sbi.l
112 sbi.z sbs.l sbs.z sbu.l sbu.z sde.u sdf.l sdl.pw
120 sdl.nw set.l set.z sig.z sil.pw sil.nw sim.z sli.l
128 sli.z slu.l slu.z sri.l sri.z sru.l sru.z sti.l
136 sts.l sts.z str.s0 tge.z tle.z trp.z xor.l xor.z
144 zer.l zer.z zge.l zgt.l zle.l zlt.l zne.l zrf.l
152 zrf.z zrl.pw dch.z exg.s0 exg.l exg.z lpb.z gto.u

Finally, the list of opcodes with four byte arguments (escape2).

0 ldc.L lae.L lal.P lal.N lde.Lw ldf.L ldl.Pw ldl.Nw
8 lil.Pw lil.Nw loc.L loe.Lw lof.L lol.Pw lol.Nw lpi.L

16 adp.L asp.Lw beq.L bge.L bgt.L ble.L blm.L blt.L
24 bne.L bra.L cal.L dee.Lw del.Pw del.Nw fil.L gto.L
32 ine.Lw inl.Pw inl.Nw lin.L sde.L sdf.L sdl.Pw sdl.Nw
40 sil.Pw sil.Nw ste.Lw stf.L stl.Pw stl.Nw zeq.L zge.L
48 zgt.L zle.L zlt.L zne.L zre.Lw zrl.Pw zrl.Nw loi.L
56 sti.L
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C. AN EXAMPLE PROGRAM

1 program example(output);
2 {This program just demonstrates typical EM code.}
3 type rec = record r1: integer; r2:real; r3: boolean end;
4 var mi: integer; mx:real; r:rec;
5
6 function sum(a,b:integer):integer;
7 begin
8 sum := a + b
9 end;
10
11 procedure test(var r: rec);
12 label 1;
13 var i,j: integer;
14 x,y: real;
15 b: boolean;
16 c: char;
17 a: array[1..100] of integer;
18
19 begin
20 j := 1;
21 i := 3 * j + 6;
22 x := 4.8;
23 y := x/0.5;
24 b := true;
25 c := ’z’;
26 for i:= 1 to 100 do a[i] := i * i;
27 r.r1 := j+27;
28 r.r3 := b;
29 r.r2 := x+y;
30 i := sum(r.r1, a[j]);
31 while i > 0 do begin j := j + r.r1; i := i - 1 end;
32 with r do begin r3 := b; r2 := x+y; r1 := 0 end;
33 goto 1;
34 1: writeln(j, i:6, x:9:3, b)
35 end; {test}
36 begin {main program}
37 mx := 15.96;
38 mi := 99;
39 test(r)
40 end.
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The EM code as produced by the Pascal-VU compiler is given below. Comments have been added manually.
Note that this code has already been optimized.

mes 2,2,2 ; wordsize 2, pointersize 2
.1
rom ’t.p\000’ ; the name of the source file
hol 552,−32768,0 ; externals and buf occupy 552 bytes
exp $sum ; sum can be called from other modules
pro $sum,2 ; procedure sum; 2 bytes local storage
lin 8 ; code from source line 8
ldl 0 ; load two locals ( a and b )
adi 2 ; add them
ret 2 ; return the result
end 2 ; end of procedure ( still two bytes local storage )

.2
rom 1,99,2 ; descriptor of array a[]
exp $test ; the compiler exports all level 0 procedures
pro $test,226 ; procedure test, 226 bytes local storage

.3
rom 4.8F8 ; assemble Floating point 4.8 (8 bytes) in

.4 ; global storage
rom 0.5F8 ; same for 0.5
mes 3,−226,2,2 ; compiler temporary not referenced by address
mes 3,−24,2,0 ; the same is true for i, j, b and c in test
mes 3,−22,2,0
mes 3,−4,2,0
mes 3,−2,2,0
mes 3,−20,8,0 ; and for x and y
mes 3,−12,8,0
lin 20 ; maintain source line number
loc 1
stl −4 ; j := 1
lni ; lin 21 prior to optimization
lol −4
loc 3
mli 2
loc 6
adi 2
stl −2 ; i := 3 * j + 6
lni ; lin 22 prior to optimization
lae .3
loi 8
lal −12
sti 8 ; x := 4.8
lni ; lin 23 prior to optimization
lal −12
loi 8
lae .4
loi 8
dvf 8
lal −20
sti 8 ; y := x / 0.5
lni ; lin 24 prior to optimization
loc 1
stl −22 ; b := true
lni ; lin 25 prior to optimization
loc 122
stl −24 ; c := ’z’
lni ; lin 26 prior to optimization
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loc 1
stl −2 ; for i:= 1

2
lol −2
dup 2
mli 2 ; i*i
lal −224
lol −2
lae .2
sar 2 ; a[i] :=
lol −2
loc 100
beq *3 ; to 100 do
inl −2 ; increment i and loop
bra *2

3
lin 27
lol −4
loc 27
adi 2 ; j + 27
sil 0 ; r.r1 :=
lni ; lin 28 prior to optimization
lol −22 ; b
lol 0
stf 10 ; r.r3 :=
lni ; lin 29 prior to optimization
lal −20
loi 16
adf 8 ; x + y
lol 0
adp 2
sti 8 ; r.r2 :=
lni ; lin 30 prior to optimization
lal −224
lol −4
lae .2
lar 2 ; a[j]
lil 0 ; r.r1
cal $sum ; call now
asp 4 ; remove parameters from stack
lfr 2 ; get function result
stl −2 ; i :=

4
lin 31
lol −2
zle *5 ; while i > 0 do
lol −4
lil 0
adi 2
stl −4 ; j := j + r.r1
del −2 ; i := i - 1
bra *4 ; loop

5
lin 32
lol 0
stl −226 ; make copy of address of r
lol −22
lol −226
stf 10 ; r3 := b
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lal −20
loi 16
adf 8
lol −226
adp 2
sti 8 ; r2 := x + y
loc 0
sil −226 ; r1 := 0
lin 34 ; note the absence of the unnecessary jump
lae 22 ; address of output structure
lol −4
cal $_wri ; write integer with default width
asp 4 ; pop parameters
lae 22
lol −2
loc 6
cal $_wsi ; write integer width 6
asp 6
lae 22
lal −12
loi 8
loc 9
loc 3
cal $_wrf ; write fixed format real, width 9, precision 3
asp 14
lae 22
lol −22
cal $_wrb ; write boolean, default width
asp 4
lae 22
cal $_wln ; writeln
asp 2
ret 0 ; return, no result
end 226
exp $_main
pro $_main,0 ; main program

.6
con 2,−1,22 ; description of external files

.5
rom 15.96F8
fil .1 ; maintain source file name
lae .6 ; description of external files
lae 0 ; base of hol area to relocate buffer addresses
cal $_ini ; initialize files, etc...
asp 4
lin 37
lae .5
loi 8
lae 2
sti 8 ; mx := 15.96
lni ; lin 38 prior to optimization
loc 99
ste 0 ; mi := 99
lni ; lin 39 prior to optimization
lae 10 ; address of r
cal $test
asp 2
loc 0 ; normal exit
cal $_hlt ; cleanup and finish
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asp 2
end 0
mes 5 ; reals were used

The compact code corresponding to the above program is listed below. Read it horizontally, line by line, not
column by column. Each number represents a byte of compact code, printed in decimal. The first two bytes
form the magic word.

173 0 159 122 122 122 255 242 1 161 250 124 116 46 112 0
255 156 245 40 2 245 0 128 120 155 249 123 115 117 109 160
249 123 115 117 109 122 67 128 63 120 3 122 88 122 152 122
242 2 161 121 219 122 255 155 249 124 116 101 115 116 160 249
124 116 101 115 116 245 226 0 242 3 161 253 128 123 52 46
56 255 242 4 161 253 128 123 48 46 53 255 159 123 245 30

255 122 122 255 159 123 96 122 120 255 159 123 98 122 120 255
159 123 116 122 120 255 159 123 118 122 120 255 159 123 100 128
120 255 159 123 108 128 120 255 67 140 69 121 113 116 68 73
116 69 123 81 122 69 126 3 122 113 118 68 57 242 3 72
128 58 108 112 128 68 58 108 72 128 57 242 4 72 128 44
128 58 100 112 128 68 69 121 113 98 68 69 245 122 0 113
96 68 69 121 113 118 182 73 118 42 122 81 122 58 245 32

255 73 118 57 242 2 94 122 73 118 69 220 10 123 54 118
18 122 183 67 147 73 116 69 147 3 122 104 120 68 73 98
73 120 111 130 68 58 100 72 136 2 128 73 120 4 122 112

128 68 58 245 32 255 73 116 57 242 2 59 122 65 120 20
249 123 115 117 109 8 124 64 122 113 118 184 67 151 73 118
128 125 73 116 65 120 3 122 113 116 41 118 18 124 185 67
152 73 120 113 245 30 255 73 98 73 245 30 255 111 130 58
100 72 136 2 128 73 245 30 255 4 122 112 128 69 120 104
245 30 255 67 154 57 142 73 116 20 249 124 95 119 114 105

8 124 57 142 73 118 69 126 20 249 124 95 119 115 105 8
126 57 142 58 108 72 128 69 129 69 123 20 249 124 95 119
114 102 8 134 57 142 73 98 20 249 124 95 119 114 98 8
124 57 142 20 249 124 95 119 108 110 8 122 88 120 152 245
226 0 155 249 125 95 109 97 105 110 160 249 125 95 109 97
105 110 120 242 6 151 122 119 142 255 242 5 161 253 128 125
49 53 46 57 54 255 50 242 1 57 242 6 57 120 20 249

124 95 105 110 105 8 124 67 157 57 242 5 72 128 57 122
112 128 68 69 219 110 120 68 57 130 20 249 124 116 101 115
116 8 122 69 120 20 249 124 95 104 108 116 8 122 152 120
159 124 160 255 159 125 255
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