Andrew S. Tanenbaum, Johan W. Stevenson and H. van Staveren

Description of an Experimental
machine Architecture for use with
Block Structured Languages

Rapport nr. IR-54

| VZ l VRIJE UNIVERSITEIT AMSTERDAM

DESCRIPTION OF AN EXPERIMENTAL
MACHINE ARCHITECTURE FOR USE
WITH BLOCK STRUCTURED LANGUAGES

Andrew S. Tanenbaum
Johan W. Stevenson
Hans van Staveren

April 1930

informatica Rapport IR-54

Abstract

£M-1 is a machine architecture designed to be interpreted on microcomput-
Grs. It has an instruction set convenient for compilers as well as a compact
object program format. Furthermore, the encoding has been ‘done to make in-
terpretation with a cost penalty of roughly a factor of 5-3 feasible. This do-
cument describes the machine architecture, its instructions and their meanings.

1.
2.
3.
4.
5.
6.
7
8.
g.
16.
1.
12.
13.

TABLE OF CONTENTS

INTRODUCTION

MEMORY

INSTRUCTION ADDRESS SPACE

DATA ADDRESS SPACE

MAPPING OF EM-1 MEMORY ONTO TARGET MACHINE MEMORY
POSSIBLE SUCCESSORS TG EM-1
DESCRIPTORS

INPUT/OUTPUT AND OTHER MONITGR CALLS
TRAPS AND INTERRUPTS

EM-1 MACHINE LANGUAGE

EM-1 ASSEMBLY LANGUAGE

ASSEMBLY LANGUAGE INSTRUCTION LIST
KERNEL INSTRUCTION SET

APPENDIX t. CFFICIAL EM-1 MACHINE DEFINITION
APPENDIX 2. EM-1 CGDE TABLES
APPENDIX 3. AN EXAMPLE PASCAL PROGRAM IN EM-1

7. INTRCDUCTION

EM-1 is an Experimental Machine architecture designed with the following
goals in mind:

1. A compact instruction set, to reduce the amount of memory need-
ed for program storage, and to reduce the time needed to
transmit programs over communication lines.

2. The architecture should ease the task of code generation for
high Level Languages such as Pascal, C, ADA, Algol 68, BCPL,
etc.

3. It should be designed with microprogrammed implementations in
mind; in particutar, the use of many short fields within in-
struction opcodes should be avoided, since their extraction by
the microprogram is inefficient.

4. The design should allow interpretation on, or transtation to, a
wide range of existing machines. Design decisions should be
delayed as far as possible and the implications of these deci-
sions should be localized as much as possible.

5. It should be relatively easy to adapt the machine to new tech-
nological trends such as 32-bit address spaces or 32-bit
machine words.

_ The basic architecture is based on the concept of a stack. The stack is
used for procedure return addresses, actual parameters, local variables, and
arithmetic operations. There are a small number of built-in object types, for
example single and double precision integers, fleoating point numbers, pointers
and sets of bits. There are instructions to push and pop objects to and from
the stack. The push and pop instructions are not typed. They only care about
the size of the objects. For each built-in type there are reverse Polish type
instructions that pop two objects from the top of the stack, perform an opera-
tion on them, and push the result back onto the stack.

There are no visible general registers used for arithmetic operands etc.
This is in contrast to most third generation computerw, which usually have 8 or
16 general registers. The decision not to have a group of general registers was
fully intentional, and follows W.L. van der Poel's dictum that a machine should
have 0, 1, or an infinite number of any feature. General registers have two
primary uses: to hold intermediate results of complicated expressions, e.g.

{(axb + cxd)/e + fxg/h) * i
and to hold local variables.

Various studies have shown that the average expression has fewer than two
operands, making the former use of registers of doubtful value. The present
trend toward structured programs consisting of many small procedures greatly
reduces the value of registers to hold local variables because the large number

of procedure calls implies a large overhead in saving and restoring the regis-
ters at every call.

Although there are no general purpose registers, there are a small number
of internal registers with specific functions as follows:

PC: Program Counter. Byte number of next instruction

LB: Local Base. Points to zeroth local variable in the current procedure.
SP: Stack Pointer. Points to the highest occupied word on the stack.

HP: Heap Pointer. Points to the bottom of the heap area.

Furthermore, reverse Polish code is much easier to generate than multi-
register machine code, especially if highly efficient code is desired. High
performance can be achieved by keeping part of the stack in high speed storage
(a cache or microprogram scratchpad memory) rather than in primary memory.

Again according to van der Poel's dictum, all EM-1 instructions have zero
or one operand. We believe that instructions needing two operands can be split
into two simpter ones. The simpler ones can probably be used in other cir-
cumstances as well. Moreover, these two instructions together often have a
shorter encoding than the single instruction before.

This document describes the EM-1 machine at three different Llevels: the
abstract Llevel, the assembly Language level and the machine language level.
The most important level is that of the abstract EM-1 architecture. This level
deals with the basic design issues. Only the functional capabilities of in-
structions are relevant, not their format or encoding. Most chapters of this
document refer to the abstract level and it is explicitly stated whenever
another Llevels is described. The assembly language is intended for the com-
piler writer. it presents a more or less orthogonal instruction set and pro-
vides symbolic names for data. Moreover, it facilitates the Llinking of
separately compiled 'modules' into a single program by providing several pseudo
instructions. The machine language is designed to make program text compact
and to make decoding easy. The binary representation of the machine instruc-
tion set is far from orthogonal. Frequent instructions have a short opcode.
The encoding 1is fully byte oriented. These bytes do not contain small bit
fields, because bit fields would slow down decoding considerably. The encoding
is nevertheless efficient: within 5% of the optimal Huffman code, measured over
a large sample of Pascal programs.

A common use for EM-1 is for producing portable (cross) compilers. When
used this way, the compilers produce EM-]1 assembly language as their output.
To run the compiled program on the target machine, another program, caltled
'back end', translates the EM-1 assembly language to the target machine's as-
sembler. When this approach is used, the format of the EM-1 machine Llanguage
instructions is irrelevant. On the other hand, when writing an interpreter for
EM=1 machine language programs, the interpreter must deal with the machine
language and not with the assembly language. This point is not trivial, be-
cause the semantics of many EM-1 assembly language instructions systematically
differ from their machine language counterparts. For example, if an assembly
Language operand must be even, the machine language representation may not in-
clude the low order bit, which is always zero.

The machine described in this document, EM-1, uses machine words of 16
bits and pointers fitting in one machine word. There are two planned succes-
sors. (ne, callead EM-2, uses two word pointers to address very large address
spaces. The other successor, EM-3, has machine words of 32 bits. A single word
is used for pointers in EM-3.

2. MEMORY

The EM-1 machine has two distinct address spaces, one for instruction and
one for data. Each address space is divided up into 3-bit bytes. Bytes are
the smallest addressable units. Bytes are numbered consecutively from 0 to
some maximum. For the EM-1 machine we have made the following choices:

DECISION A-1: The instruction address space consists of up to 2 ** 16 bytes.
DECISICN B-1: The data address space consists of up to 2 ** 16 bytes.

Therefore, all addresses can be represented in two bytes.
While bytes are the smallest addressable units, the basic unit in EM-1 is
the machine word. The low order byte of a machine word is the rightmost byte,

and has an address that is a multiple of the wordsize n. Figure 1 shows the
first two words, with addresses 0 and n.

!

hibyte lobyte |

s emme e g e B ARy IR ARG |

I I | |

second word 2n-1 | | n+t | n |
address n | | | i
m———]

o | 1 a |
first word n-1 | | 1 | 0 |
address 0O | | | |
e v i B e f

I T 1

bitno 8n-1 g7 0

Fig. 1. byte-word addressing

The first word contains bytes 0,1,...,n=1; the second word contains bytes
n,ntl,...,2n~1 etc. Machine words are addressed by the address of the low ord-
er byte. For the EM-1 machine we have made the following choice:

DECISION C-1: A machine word consists of two bytes.
Thus all EM-1 words have even addresses.

The size of all objects in EM-1 is an integral number of words with one
exception: objects consisting of a single byte. There are only two operations
allowed on single byte objects: push it onto the stack and pop it from the
stack. The addressing of bytes in memory is always indirect. If a single byte
object 1s pushed onto the stack it is put in the low order byte of a word and
the rest of the word is cleared to zero. Popping a byte from the stack removes
a word from the stack, stores the Low order byte of this word in memory and
discards the rest of the word.

The assembly language format of dinstructions that reference memory by
offset, requires the offset to be a multiple of the word size. For example,
LOL 8 means fetch the local variable 8 bytes from the base of the current stack
frame. To make compact encoding possible the offset actually present in the
machine instructions is given in words, rather than 1in bytes. However, for
simplicity, the offset specified in the assembly language is always in bytes.
The compiler writer and the back end writer need not be aware of the details of
the machine encoding.

The same remarks as for offsets apply to the size of objects. Sizes in
assembly language are always 1in bytes and are one byte or a multiple of the
wordsize. They are specified in words in the machine language and there is a
special encoding for the size of one byte.

Some instructions fetch their offset or object size argument indirectly,
for instance from the top of the stack. These offsets and sizes are always in
bytes, so that the instruction itself must check that the addresses are word
addresses or that the sizes are a single byte or word multiples.

The format of pointers into both address spaces is explicitly undefined.
Each implementor of EM-1 may choose a suitable representaticn of pointers him-
self. The size of a pointer, however, is fixed, so that the compiler writer
knows how much storage to allocate for a pointer. For EM-1 the size of
pointers into the data address space as well as into the instruction address
space is a single word.

A minor problem ds raised by the undefined pointer format. Some
languayes, notably Pascal, require a special, otherwise illegal, pointer value
to represent the nil pointer. The current Pascal-VU compiler uses the single
precision integer value O as nil pointer. This value is also used by many C
programs as normally impossible address. A better solution would be to have a
special instruction loading an illegal pointer value, but it is hard to imagine
an imptementation for which the current solution 1is inadequate, especially
since the first word 1in the EM-1 data space is special and probably not the
target of any pointer.

The next two chapters describe the EM-1 memory in more detail. One
describes the dnstruction address space, the other the data address space.
Figure 2 gives an overview of these memory partitions.

A design goal of EM-1 has been to allow its implementation on a wide range
of existing machines, not only designing a new one to be built in hardware. To
this extent we have tried to minimize the demands of EM-1 on the memory struc-—
ture of the target machine. Therefore, apart from the logical partitioning,
EM-1 memgry is divided into ‘fragments'. A fragment consists of consecutive
machine words and has & base address and a size. The only way to address the
words of a fragment is by offsetting from its base address. The base address
may only be used to address words of the corresponding fragment, i.e. offsets
greater than the fragment's size are illegal.

It will be clear that fragments may be allocated anywhere in the address
space and that only the calculation of the base address must be adapted. Real-
location of fragments at run time, however, is not trivial, because pointers to
fragment words may be stored, which must then be relocated.

While following the Llogical partitioning in the next chapters, we will in-
dicate the relation to fragments.

Instruction address space
Procedure descriptor table
Number of bytes for parameters
Procedure base address

.
X o -
.

Program text
Procedure text
Data address space
Global data area
Global data blocks
ABS block
Line number

.
PO PO =) e 3
N

.
—
.

.
X o=t
.

CON blocks

ROM blocks

BSS blocks

HOL blocks

Local data area

Procedure frame
. Mark block zone
s Static link

.
.
" a
VI WWN s s
« a2 u

r =
L]
- 8

[ECSEUE N Y

TR

i
2 Dynamic Link
e Return address
X

Actual parameter zone
Local variable zone
Dynamic local generator zone
Stack
Heap data area

M
. .

MO MO MNP MNP N N = = = =l =3
. .

.
B S PR N G YK S T I U

.

.

.

L]

.

.

.

s oa
PR
= .
(R [T A T S S N
= s e

=

MMNROPMNMNMNMNONNRN MO NN NN = 23 e e
.

.

.
et s et 3 S)) e et e e el e et) md md emd e mad

Figs 2. Memory overview.

3. INSTRUCTION ADDRESS SPACE

The instruction space of the EM=]1 machine contains the procedure descrip~
tor table and the binary machine code for procedures. The instruction space
does not change during the execution of a program, so that it may be protected.

The procedure descriptor table contains an entry for each procedure in the
program. The size of a descriptor is explicitly undefined. A descriptor must
contain at Least two items:

1. A constant telling how many bytes of parameters the procedure has.
2. The base address of the procedure's code. This is the only place that
proceaure addresses are used.

A descriptor may contain other (implementation dependent) information for de-
bugging or monitoring. The most important reason to have a procedure descrip-
tor table is that it makes very compact procedure calls possible. It may not
be necessary for some implementations, however, to have a procedure descriptor
table at all.

Each procedure has a single entry point: the first instruction, located at
the base address stored in the descriptor. There is a single EM-1 program
counter PC pointing to the next instruction to be executed. The procedure
pointed into by PC is called the 'current' procedure. A procedure may call
another procedure using the CAL or CAS dnstruction. The c¢alling procedure
remains ‘'active' and 1is resumed whenever the called procedure returns. Note
that a procedure may have many ‘active' invocations.

Each procedure must return properly. It is not allowed to fall through to
the code of the next procedure. There are several ways to exit from & pro-
cedure:

- the HLT instruction that stops the program, exiting all active pro-
cedures.

- the RET or RES instruction, which returns to the calling procedure.

- the RTT instruction, which exits a trap handling routine and resumes the
trapping instruction (see below).

- & non—local jump using the CSA or CSB instructions. These 1instructions
are normally used for case statements to jump to selected pieces of code
local to the procedure that executes them. If these instructions must be
used to exit from procedures you have to proceed with great care, because
you have to unravel the stack yourself! This way of exiting a procedure
should only be used in emergencies.

All branch instructions are relative to the program counter. There 1is
only one branch dinstruction that jumps backward: BRB, unconditional branch
backward. Branch instructions can never jump out of a procedure. Because the
operand of a branch instruction must have a fixed range accommodating atl pos-—
sible offsets, there must be a maximum procedure size:

DECISION D-1: The code for a single procedure must fit in 2 ** 15 bytes.

The program text for each procedure, as well as the descriptor table, are
fragments and can be allocated anywhere in the instruction address space.

4. DATA ADDRESS SPACE

The data address space is divided into three parts, called ‘areas', each
with its own unique addressing method: global data area, local data area (in-
cluding the stack), and heap data area. These data areas must be part of the
same address space because all data is accessed by the same type of pointers.
However, constructing pointers is different for these data areas.

Global data is allocated by using several pseudo instructions in the as-
sembly language, as described below. The size of the global data area is fixed
per program. Global data is addressed absolutely in the machine Llanguage.
Many instructions are available to address global data. They all have an abso-
lute address as operand. Examples are LOE, LAE and STE. The operands of these
instructions range from 0 to some maximum.

DECISION E-1: The maximum size of global data is 2 ** 15 bytes

Part of the global data area is initialized by the compiler, part of it is ini-
tialized with program arguments supplied by the user and the rest is not ini-
tialized at all or is initialized with some arbitrary value, typically -327638
or 0. Part of the initialized global data may be made read-only if the imple-
mentation supports protection.

The Local data area contains the stack and some data for each active pro-
cedure 1invocation, called & 'frame'. The size of the local data area varies.
The base address is fixed, so it grows from a low EM-1 address to a high EM-1
address. On top of the current procedure frame resides the operand stack. The
stack pointer SP always points to the top of the stack and it thereby marks the
high end of the local data area. Local data is addressed by offsetting from
the local base pointer LB. LB always points to the frame of the current pro-
cedure. only the words of the current frame can be addressed directly. Vari-
ables in other active procedures are addressed by following the chain of stati-
cally enclosing procedures using the LEX instruction. Many instructions have
offsets to LB as argument, for instance LOL, LAL and STL. The argument of
these instructions range from 0 to some maximum.

DECISICN F-1: The maximum size of a procedure frame including the operand
stack is 2 ** 15 bytes.

The procedure call instructions CAL and CAS transform some words on top of
the stack dintoc a new frame. Each procedure, therefore, starits with an empty
stack. The return instructions RET, RES and RTT remove a frame. RET and RES
may copy some words on top of the stack of the returning procedure to the top
of the stack of the previous routine, as result value.

The heap data area grows downwards. It is initially empty. The initial
value of the heap pointer HP marks the high end. The heap pointer may be mani-
pulated by the LOR and STR instructions. The heap can only be addressed in-
directly, by pointers obtained from previous values of HP.

4.1. GLOBAL DATA AREA

The size of global data is fixed at compile time. Global data is allocat-
ed by several pseudo instructions in the EM-1 assembly language. This section
anticipates the description of the assembly language below, but the concepts
are similar to other assembly languages. Each pseudo instruction allocates
some words. The words allocated for a single pseudo form a 'block'. A block
differs from a fragment, because, under certain conditions, several blocks are
allocated in & single fragment. This guarantees that the words of these blocks
are consecutive.

Initialized global data is allocated by the pseudo instruction CON. It
needs at least one operand. There are several operand types: single and double
precision integer constants, floating point constants, procedure numbers, in—
struction labels, addresses in the global data area and strings. Strings are
byte sequences. For each operand an integral number of words, determined by
the operand type, is atlocated and initialized. The assembler pads strings out
to an integral number of words.

The pseudo instruction ROM is the same as CON, except that it guarantees
that the initialized words will not change during the execution of the program.
This information allows optimizers to perform certain calculations such as ar-
ray indexing and subrange checking at compite time instead of at run time.

The pseudo instruction BSS allocates uninitialized global data. The only
operand to this pseudo is the number of bytes required, which must be a multi-
ple of the wordsize. AlLL words of a BSS block may have different dinitial
values, but most implementations will assign some fixed value to these words,
typically -32768 or 0.

Global data is addressed absolutely in binary machine language. Most com-—
pilers, however, cannot assign absolute addresses to their global variables,
especially not if the language allows programs to be composed of several
separately compiled modules. The assembly language therefore allows the com-
piler tc name global data blocks by prepending CON, RCM and BSS pseudos with
alphanumeric labels. Moreover, the only way to address these named global data
blocks is by using their name. it is the task of the assembler/loader to
transtate these labels into absolute addresses. These labels may also be used
in CON and ROM pseudo imstructions to initialize pointers.

Unlike many other assembly languages, the EM-1 assembly language requires
all operands of normal and pseudo instructions to be either a number or an
identifier, but not an expression. This makes it 1mpossible to address the
third word of a ten word BSS block directly. Thus LOE LABEL+4 is not permit-
ted, nor is CON LABEL+4. To access LABEL+4 you must first Load the base ad-
dress of the BSS block using its name (LABEL). Then a second instruction may
add an offset (4) to this address and can load the addressed object onto the
stack. This restriction, although annoying, is fully intentional, and greatly
aids optimization.

The pseudo instruction HOL offers a partial solution to this problem. HOL
is similar to BSS in that it requests an uninitialized global data block with
size equal to the value of its operand (in bytes, but a multiple of the word-
size). Addressing of a HOL block, however, is quasi absolute. The first word
is addressed by 0, the second word by 2 etc. in assembly language. The

assembler/loader adds the base address of the HOL block to these numbers to ob-
tain the absolute address in the machine language.

The scope of a HOL block starts at the HOL pseudo and ends at the next HOL
pseudo or at the end of a module (EOF pseudo) whatever comes first. Each in-
struction falls in the scope of at most one HOL block, the current HOL block.

A fifth type of global data is a small block, called ABS block, with im-
plementation defined size. It 1is addressed abscolutely, both in assembly
Language and in the machine Language. The first word has address 0 and is used
to maintain the source line number. Special instructions LIN and LNI are pro-
vided to update this counter. Other items in this block might be the arguments
supplied by the caller of this program.

Note that all numeric operands of the instructions that address the global
data area refer to the current HOL block if they are preceded by at least one
HOL pseudo in the same module and that they refer to the ABS block otherwise.
Thus LOE O loads the zeroth word in the most recent HOL, unless no HOL has ap-
peared in the current file, in which case it loads the zeroth word in the ABS
fragment.

The global data area is highly fragmented. The ABS block and each HOL
block form a separate fragment. The situation for CON, ROM and BSS blocks is
more complex. The assembler groups several blocks into a single fragment. A
fragment only contains blocks of the same type: CON, ROM or BSS. It is
guaranteed that the words allocated for two CON pseudos are allocated consecu-
tively 1in a single fragment, unless these CON pseudos are separated in the as-
sembly Language program by one or more of the following pseudos:

ROM, BSS, HOL, END and EOF

A similar statement can be made for ROM pseudos and for BSS pseudos.

4.2. LOCAL DATA AREA

The local data area consists of a sequence of frames, one for each active
procedure. ¢n top of the frame of the current procedure resides the stack.
Frames are generated by procedure calls and are removed by procedure returns.
A procedure frame consists of 5 ‘zones':

7. The mark block.

2. The actual parameters

3. The local variables and compiler temporaries
4. The dynamic local generators

5. The operand stack.

A sample frame is shown in Fig. 3.
The first step in the procedure calling sequence 1is to deposit @& mark

block on the stack of the current procedure (using the MRK or MRS instruction).
The mark block contains at least the following items:

10

- static link: the LB value of the most recent invocation of the statically
enclosing procedure. This field supports the linkage needed by block
structured languages.

= dynamic Llink: the LB value of the calling procedure.

- return address of the calling procedure, pointing 1into the instruction
space.

The exact format and encoding of the mark block is explicitly undefined and may
vary from implementation to implementation, i.e. it is up to the implementor to
decide the number of machine words, their order and their encoding.

The second step in the calling sequence is to push the actual parameters
on top of the stack of the calling procedure. The exact details are compiler
dependent. If a procedure has no parameters this zone will be empty. Note
that the evaluation of the actual parameters may imply the calling of pro-
cedures.

The third and last step is to call the procedure using the CAL or CAS in-
struction. Several tasks are performed by the call instructions. First, the
LB is changed to point to the first word above the mark block, containing the
first parameter if present. The new LB is calculated by subtracting the number
of bytes passed as parameter (see procedure descriptor) from the stack pointer
SP. Second, the old program counter PC is saved in the mark block, some words
below the new LB. Third, the new program counter is fetched from the procedure
descriptor and stored in PC.

Normally the first instruction of the called procedure will be BEG to ad-
vance SP, reserving space for local variables and compiler temporaries. The
initial value of the allocated words is not defined, but implementations that
check for undefined values will probably initialize them with the special 'un-
defined' pattern, typically -32768. This same instruction BEG may also be used
to remove some words from the stack.

There is a version of BEG, called BES, which fetches the number of bytes
to allocate from the stack. It can be used to allocate space for local objects
whose size is unknown at compile time, so called dynamic local generators. By
allocating the objects of known size first, these can be addressed using the
more efficient instructions with fixed offset.

The distinction between the Last four zones of procedure frames is rather
vague . The only restriction is that SP may not be smaller than LB and that
only words between LB and SP may be accessed by offsetting to LB.

It should be noted that procedures with a variable number of parameters
cannot be accommodated. Each such procedure must have some maximum number of
bytes worth of parameters, and exactly this number must be passed on each call.
0f <course the programmer or compiler is free to use the BEG instruction in the
calling procedure to advance the stack pointer, thus simulating the passing of
many dummy parameters in one instruction.

Each procedure frame is a separate fragment. Since any fragment may be
placed anywhere 1in memory, procedure frames need not be contiguous. If for
some reason it is necessary to implement frames non-contiguously, the call in-

m

struction must copy the mark block and actual parameters to the location of the
new frame. However, this movement implies that an actual parameter that points
to another actual parameter in the same fragment has to be relocated, an impos-
sible task. Consequently, on implementations that do not store procedure
frames contiguously, programs must not allow actual parameters to point to oth-
er actual parameters in the same procedure. It is difficult, however, to con-
struct an example for which this restriction is prohibitive.

operand <= SP

| operand

dynamic local generators

H
It

compiler temporaries

local variables

actual parameter n-1

actual parameter 0 <« LB

return address

dynamic Llink

static Llink

Fig. 3. A sample procedure frame.

4.3. HEAP DATA AREA

The heap area starts empty, Wwith HP pointing to the high end of it. HP
always contains a word address. The current value of HP can always be obtained
by the LCR instruction. (Note: we use 'value' to indicate the byte number in
the data space, independent of the pointer representation). A new value may be

12

stored in the heap pointer using the STR instruction. If the new value is
smaller than the old one, then the heap grows downwards. If it is greater,
then the heap shrinks. The value of HP may never exceed the original value of
HP. AlLL words between the current HP and the original HP are allocated to the
heap. The heap may not grow into a part of memory that 1is already allocated
for Llocal or global data. If this is attempted the STR instruction will cause
& trap to occur.

The only way to address the heap is indirectly. Whenever an object is al-
located by decreasing HP, then the new HP value must be saved and can be used
Later on to address the allocated object. If, in the meantime, HP is increased
50 that the object is nc longer part of the heap, then an attempt to access the
object is not allowed. More strongly, if the heap pointer is decreased again
to below the object address, then access to the old object gives undefined
results.

The heap is a single fragment. AlL words have consecutive addresses.
There are no Limits on the size of the heap as long as it fits in the data ad-
dress space.

13

5. MAPPING OF EM-1 MEMORY ONTO TARGET MACHINE MEMORY

The ENM-] architecture is designed to be implemented on a targe number of
existing and future machines. EM=-1 memory is highly fragmented to make adapta-
tion to various memory architectures possible. Format and encoding of pointers
is explicitly undefined. Byte addressing is concentrated in a few instruc—
tions.

This chapter gives solutions to some of the anticipated problems. First
we describe a possible memory Layout for machines with 64k bytes of address
space. The most straightforward Layout is shown in figure 4.

65534 —> |
JIEETIEEL I i i ititiilti !
/1771 unimplemented memory /////
FILEELTEEEEitrtiiiliittititiit!
ML~ |
I
heap area
l
<= HP
JIEIEETEEEEiiiiiiieiiriiiiriif
/171171} inaccessible 777171111
VILETEETIEE i ittty
- -==] <« sP
stack and Local area
< LB
B = |==——-
global area
EB >
procedure descriptors
PD =
|
program text < PC
PB = |———- -
i///////////////////////////////
[111F11171 undefined ///1177111
JIIEEEELILEEETEtiitittiliritt!
g— -

Fig. 4. Memory Layout showing typical register
positions during execution of an EM-1 program.

14

Several target machine registers are used as base registers for the various
memory pieces.

PD: points to the base of the procedure descriptor table.
PB: points to the base of the instruction address space.
EB: points to the base of the data address space.

SB: points to the base of the local data area.

ML: marks the high end of the addressable data space.

The stack grows from low EM-1 addresses to high EM-1 addresses, and the heap
the other way. The memory between SP and HP is not accessible, but may be al-
Located later to the stack or the heap if needed. The local data area is allo-
cated starting at the high end of the global data area.

Since EM-1 address 0 is not mapped onto target address 0, a problem arises
when pointers are used. If a program pushed a constant, say 6, onto the stack,
and then tried to indirect through it, the wrong word would be fetched, since
EM-1 address 6 is mapped onto target address EB+6 and not target address 6 it~
self. This particular problem is solved by explicitly declaring the format of
a pointer to be undefined, so that using a constant as a pointer is completely
illegal. However the general problem of mapping pointers still exists.

There are two possible solutions. In the first solution EM-1 pointers are
represented in the target machine as true EM-1 addresses, e.g. a pointer to
EM-1 address 6 really is stored as a 6 in the target machine. This solution
implies that every time a pointer is fetched EB must be added to it before it
is used to reference the target machine's memory. If the target machine has
powerful dindexing facilities, EB can be kept in a target machine register, and
the relocation can indeed be done on every reference to the data address space
at a modest cost in speed.

The other solution consists of having EM=-1 painters refer to the true tar-
get machine address. Thus the instruction LAE 6 (Load Address of External 6)
would push the value of EB+6 onto the stack. When this approach is chosen,
back ends must know the value of EB, to translate all instructions that manipu-
Late EM-1 addresses. However, the problem is not completely solved, since a
compiler may have to initialize a pointer in CON or ROM data to point to a glo=
bal address. This pointer must also be relocated by the back end or the inter-
preter.

EM-1 requires the stack to grow from Low to high EM-1 addresses. Some
machines, however, have hardware PUSH and POP instructions that require the
stack to grow downwards. If reasons of efficiency urge you to use these in-
structions, then the implementation of EM-1 may be done by implementing the
memory Llayout shown in figure 4 upside down. This 1is possible because the
pointer format is explicitly undefined. The first element of a word array will
have a higher physical address than the second element. Problems arise for
byte addressing, since even numbered bytes are still the lLow order bytes in a
word and since words are still addressed by these Low order bytes. The problem
is demonstrated clearly in figure 5, type B: the bytes in a byte array allocat-
ed at EM-1 address 40 have non-linear physical addresses.

15

T EB=200
105 45 INA 104 161 41 40 160
103 43 42 102 159 43 42 158
101 41 40 100 157 45 Lt 156
EB=60 1/
Type A Type B
T ES=200
104 45 44 105 160 41 40 161
102 43 42 103 158 43 42 159
100 41 40 101 156 45 A 157
EB=60 \L
Type C Type D

Figure 5. Four possible memory implementations.
Numbers within the boxes are EM-1 addresses.
The other numbers are physical addresses.

A similar problem may arise if EM-1 is implemented on machines for which
the Llowest addressed byte in a word is the high order byte, i.e. byte 0 is to
the Left of byte 1, instead of to the right. There are no prcblems with ward
addressing, because word addresses are still even. But byte addressing is dif-
ficult again. A fourth possible combination is to implement the EM-1 address
space upside down on a machine with the bytes in a word swapped.

50, these two characteristics of the target machine - stack grows upwards
or downwards, and the lowest addressed byte is the least significant byte {Lsb)
or the most significant byte (msb) - tead to four different EM-1 memory imple=
mentations:

A - stack upwards and Lsb has lowest address
B - stack downwards and Llsb has lowest address
¢ - stack upwards and msb has Lowest address

16

D - stack downwards and msb has lowest address

For each of these four possibilities we give the translation of the EM-1
instructions to push the third byte of a global data block starting at EM-1 ad-
dress 40 onto the stack. The target machine used is a PDP-11 augmented with
push and pop instructions. Registers 'rO' and 'r1' are used and suffer from
sign extension for byte transfers. Push $40 means push the constant 40, not
word 40.

The translation of the EM~1 instructions depends on the pointer represen—
tation used. For each of the two solutions explained above the transtation is
given. The second solution, a true target machine address as pointer represen-—
tation, needs to be modified slightly to obtain continuous addresses for con-
tiguous bytes. Pointers to words are true target machine addresses, but
pointers to bytes may be off by two.

First the translation for the four implementations using EM-1 addresses as
pointer representation:

EM-1 type A type B type C type D
t t + t
LAE 40 push $40 push $40 push 340 push 840
ADI 3 pop r0 pop rO pop rO pop r0
add $3,r0 add $3,r0 add $3,r0 add $3,r0
push rQ push r0 push r0 push r0
LOL 1 pop r0 pop r0 pop rO pop r0
= neg r0 - neg r0
- inc r0 - inc r0
= xor 3$1,r0 xor $1,r0 -
ckr r1l clr r1 clr 1 clr r?
bisb eb(r0),r1 bisb eb(r0),r1 bisb eb(r®),r1 bisb eb(rd),r?
push r1 push ri push r1 push r1

The translation for the four implementations, if the target machine ad-
dress is used as pointer representation, is:

17

EM-1 type A type B type C type D
} i t i
LAE 40 push Seb+40 push $eb-40 push Seb+40 push $eb-40
ADI 3 pop rG pop r0 pcp r0 pop r0
add $3,r0 sub $3,r0 add 3%3,r0 sub $3,r0
push r0 push r0 push r0 push r0
LOI 1 pop r0 pop rO pop rd pop r0
- inc r0 = inc r0
- xar $1,r0 xor $1,r0 -
ctr ri clr r1 clr 1 clr 1
bisb (r0J,r1 bisb (r@),r1 bisb (r0),r1 bisb (rl),r
push r1 push r1 push r1 push r1

The translation presented above is not intended to be optimal. Most
machines can handle these simple cases in one or two instructions. It demon=
strates, however, the flexibility of the EM-1 design. The number of EM-1 in-
structions that is influenced by the peculiar byte addressing is limited. It
only affects:

LOL/LOS, STL/STS, LAR/LAS, SAR/SAS, LAI and SAI

If EM-1 is implemented on machines with address spaces Llarger than 64k
bytes, then there are several possibilities to use this. The simplest one is
to allocate instruction and data space each in a separate 64k piece of memory.
EM-1 pointers must be represented in the target machine as true EM-1 addresses,
because they must fit in a single machine word. The base registers PB and EB
may be loaded in hardware registers wider than 16 bits, if available.

The next possibility is to have a 32-bit instruction address space and a
16-bit data address space. The only change to the basic machine needed to
achieve this is to use two word addresses within the procedure descriptors and
the mark blocks and perhaps for PC. Since the size of a procedure descriptor
and the size of a mark block are explicitly undefined, this change is trivial.
Changing from a 16-bit to a 32-bit instruction address space does not affect
existing compilers. Assemblers and back ends for the various target machines
will need only minor modifications in the following instructions:

MRK/MRS, CAL/CAS, RET/RES, CSA, CSB, TRP and RTT

Therefore, the machine with entarged instruction space is still classified as
EM-1, although one of the basic design decisions (A=1) is modified. It should
be pointed out, however, that 64k of program space is sufficient for rather
large programs.

A third possible implementation on machines with Large address spaces is
described in the next chapter. -

18

6. POSSIBLE SUCCESSORS TO EM-1

6.1. EM-2

To use the large address space available on some machines effectively, the
data address space of EM-1 should be increased. The main difficulty with in-
creasing the data space is the need for lLarger (multiword) addresses 1in many
contexts. There is no technical difficulty in changing the addresses from one
to two words, but the effect is to increase program size and decrease program
speed considerably.

We refer to the design with 32-bit pointers for both instruction and data
space as EM-2. Actually, the choice of 16 or 32 bits can be made independently
for instruction space and data space, but since the price of a 32 bit instruc-
tion space 1is rarely more than a few hundred words in the object program, and
the price of a larger data space is considerable, a large data space and a
small instruction space makes Little sense. The List of decisions for the EM-2
design is slightly different:

DECISION A~2: The instruction address space consists of up to 2 ** 32 bytes.
DECISION B-2: The data address space consists of up to 2 *x 32 bytes.

DECISION C~2: A machine word consists of two bytes.

DECISION D-2: The code for & single procedure must fit in 2 ** 15 bytes.
DECISION E-2: The maximum size of global data is 2 ** 15 bytes

DECISION F-2: The maximum size of a procedure frame dincluding the operand

stack is 2 ** 15 bytes.

Compilers must be changed to reserve 2 words for pointer variables (the
Pascal-VU compiler has such an option already built in). Assemblers, inter-
preters and back ends have to be changed as well, especially for the dinstruc—
tions that manipulate data addresses. But, using 32-bit pointers, several al-
ternatives are available. The simplest one is to assign a 32k memory piece to
the Local and global data area each. Because of the unrestricted size of the
heap, the rest of the address space can be allocated to heap objects.

A second alternative is to allow each fragment in the Local area to occupy
up to 32k bytes. The consequences for procedure calls of this approach are
described above. The tocal and heap area compete for memory as before, the lo-
cal area growing upwards and the heap growing in the opposite direction.

Allocating 32k to each fragment in global data is not straightforward, be~
cause each word in global data must be addressable by the 15-bit offsets to the
instructions Llike LAE. If the 32-bit address space is divided into 65536 seg-
ments, each of 64k bytes, then one can use one of these segments for the normal
global data and allocate large arrays in other segments. Each word in the ad-
dress space can be addressed by lLoading the segment base address, using the new
instruction LSA, and by adding an offset to this pointer using instructions
Like ADI.

6.2. EM-3

19

Both EM-1 and EM-2 use machine words of 16 bits. The same instruction
set, however, can be used for a machine, EM-3, with 32-bit machine words. Ad-
dresses into the large address spaces fit into a single word again. The design
decisions for EM-3 are:

DECISION
DECISION
DECISION
DECISION
DECISION
DECISION

A-3: The instruction address space consists of up to 2 ** 32 bytes.

B-3: The data address space consists of up to 2 ** 32 bytes.

C-3: A machine word consists of four bytes.

D~3: The code for a single procedure must fit in 2 ** 31 bytes.

E~3: The maximum size of global data is 2 ** 31 bytes

F=3: The maximum size of a procedure frame 1including the operand
stack is 2 ** 31 bytes.

Although the instruction set is the same as for EM-1, all compilers, op-

timizers,
as well as

back end compilers, assemblers and interpreters have to be changed,
the compact assembly format and the binary machine encoding.

20

7. DESCRIPTORS

Besides the procedure descriptors used by the call instruction, several
other ipstructions use descriptors, notably the range check instruction, the
array instructions and the case jump instructions. Procedure descriptors are
allocated 1in instruction space, the others in data space. The descriptors in
data space may be constructed at run time, but more often they are fixed and
allocated in ROM data.

Range check descriptors consist of two words:

1. lower bound
2. upper bound

The range check instruction checks a word on the stack against these bounds and
causes a trap if the value is outside the interval. The value itself is neij-
ther changed nor removed from the stack.

Array descriptors describe a single dimension. For multi-dimensional ar-
rays several array instructions in row are needed to access a single element.
Array descriptors contain the following three words:

1. Llower bound
2. upper bound = lower bound
3. number of bytes per element

The array instructions LAR, SAR and AAR have the offset of the start of the
descriptor from the base of the global data area as operand. The array in-
structions LAS, SAS and AAS fetch the pointer to the descriptor from the top of
the stack.

The element ALI] is fetched as follows:

a) Stack the address of A (e.g. using LAE, LEX, or LAL)

b) Stack the value of I (16 bit integer)
¢) LAR n (n is offset for descriptor)

ALl array instructions pop the index and subtract the lLower bound from it. If
the result 1is negative, a trap occurs. If zero or positive, it is compared to
upper bound - lower bound (the second descriptor word). If it is out of range,
& trap occurs. If ok, (I - lower bound) is multiplied by the number of bytes
per element (the third word). The result is added to the address of A, which
replaces A on the stack.

At this point LAR (LAS), SAR (SAS) and AAR (AAS) diverge. AAR is finished.
LAR pops the address and fetches the data item the size being specified by the
descriptor (this must be & multiple of the word size, except for one byte); SAR
pops the address and stores the data item now exposed.

The case jump instructions CSA and CSB both provide multiway branches
within a single procedure (most likely the current one), selected by a case in-
dex. Both fetch two arguments from the stack: first a pointer to the case
descriptor and then the case index. CSA uses the case index as index in the
descriptor table, but CSB searches the table for an occurrence of the case in-
dex. Therefore, the descriptors for CSA and €SB, as shown in figure 6, are

21

different.

CSA selects the new PC by indexing. The lower bound 1is subtracted from
the case index. iIf the result is greater or equal to 0 and less or equal to
upper-lower, then fetch the offset from the List of offsets by indexing with
index-lower, 1f index-lower is out of bounds or if the fetched offset is -1,
then fetch the default offset. If the resulting offset is -1, then trap. If
not, then calculate the new PC by adding the offset to the base of the pro-
cedure text mentioned in the procedure descriptor corresponding with the pro-
cedure number. By adding the offset to the procedure base you may not come in
a different procedure.

CSB selects the new P{ by searching. The table is searched for an entry
with index value equal to the case index. The code offset of that entry (the
default offset if no such entry found) is used to calculate the new PC as for
CSA.

The choice of which case instruction to use for each source language case
statement is up to the compiler. If the range of the index value is dense, i.e

(highest value - lowest value) / number of cases

is less than some threshold, then CSA is the obvious choice. If the range is
sparse, CSB is better.)

offset of upb offset n-1
. . 'ir?dex r?-“!-
: offset 1
offset of Lwb+1 | 1‘-nde: —’I T
offset of Lwb offset O
upper = lower . i;de; _D o
lower bound number of entries
default offset default offset
procedure number procedure number
CSA descriptor €SB descriptor

Figure &. Descriptor lLayout for C3A and CSB

22

8. INPUT/OUTPUT AND OTHER MONITOR CALLS

EM-1 differs from most conventional machines in that it has high level i/o
instructions. Typical instructions are OPEN FILE and READ FROM FILE rather
than low level instructions such as setting and clearing bits in device regis-
ters. By providing such high Level i/o primitives, the task of implementing
EM=-1 on various non EM-1 machines is made considerably easier.

I/0 is initiated by the MON instruction, which expects an iocode on top of
the stack. 0Often there are also parameters p1,p2,...,pn which have been previ-
ously stacked in the order listed. Some i/o functions also provide results,
which are returned on the stack. The table below lists the i/o codes and their
results. This Llist is similar to the system calls of the UNIX operating sys—
tem. (UNIX is a Trademark of Bell Laboratories.)

To execute a monitor call, proceed as follows:

@) Stack the parameters in the order specified, one word per parameter
b) Push the monitor call number (iocode) onto the stack
c) Execute the MON instruction

The result of the MON instruction can be at most 3 words: e, R1, RO. Next to
the number of each call in the List below, a three character code is given.
If the call returns an error code (e), the first character of the code is e,
else -. The next two characters tell whether return values R1 and RO are
present (digit) or absent (-). The order in which these return values are
pushed onto the stack is: RO, R1, e. So the error code, if present, is found
on top of the stack. If an error occcurs on a monitor call having RO, RO is
also set to the error code.

List of monitor calls.

2 el0 Fork() - spawn new process
RO = processid of other process, Ri1=1 for child, 0 for parent
3 e-0 Read(bufaddr,nbytes,fildes) - read from file
RO = number of bytes actually read
4 e-0 Write(bufaddr,nbytes,fildes) - write on a file
RO = number of bytes actually written (should be equal to nbytes}
5 e-0 Open(string,open flag) =~ open for reading or writing or both
RO = fildes
6 e—— Close(fildes) - close a file
7 el0 Wait() - wait for process to terminate
RO = process id , R1 = exit status
8 e-0 Creat(string,mode) - create a new file

. RC = fildes
9 e-- Link(stringi,string2) = Link to a file
10 e-=- Unlink(string) - remove directory entry

12 e-- Chdir(string) - change default directory
13 =10 Time() - get date and time
RO = high order word, R1 = Low order word

14 e-- Mknod(string,mode,addr} - make a directory or a special file
15 e=- Chmod(string,mode) - change mode of file
16 e=- Chown(string,owner,group) = change owner and group of a file

18 e-- Stat(string,statbuf) - get file status
19 e10 Lseek(highword,lowword,fildes) - move read/write pointer

23

RO = prev. highword, R1 = prev. lowword
20 =--0 Getpid() - get process identification
RO = process id

21 e-- Mount(stringl,string2,rwflag) - mount file system
22 e-- Umount(string) - unmount file system
23 e-- Setuid(userid) - set user ID

24 =10 Getuid{() - get user ID
RO = real user ID , R1 = effective user ID

25 e-- Stime(hightime,lowtime) - set time and date

26 e-0 Ptrace(pid,addr,request,data) - process trace
RO = returned value

27 --0 Alarm(seconds) - schedule signal after specified time
RO = previous value

28 e-- Fstat(statbuf,fildes) - get file status

29 =—- Pause() - stop until signal

30 e-- Utime(string,timep) - set file times

3% e-- Access(string,mode) - determine accessibility of file
34 =--- Nice(incr) - set program priority

35 =--- Ftime(bufp) - get date and time

36 --— Sync() - update superblock

37 e-- Kill(sig,pid) = send signal to a process
41 e-0 Dup(fildes,newfildes) - duplicate an open file descriptor
RO = new file descriptor
42 e10 Pipe() - create an interprocess channel
RO = read descriptor , R1 = write descriptor
43 --- Times(buffer) = get process times
44 === Profil(buff,bufsiz,offset,scale)- execution time profile
46 e== Setgid{(gid) - set group 1D
47 =10 Getgid() - get group 1D
RO = real yroup ID , R1 = effective group ID
48 e-0 Sigtrp(trapno,signo) - see below
RO = previous value

51 e-~ Acct(file) - turn accounting on or off

52 e-- Phys(segreg,size,physadr) - allow a process to access phys. addr.
53 e-— Lock(flag) - lock a process in primary memory

54 e-- Ioctl(fildes,request,argp) - control device

56 e-- Mpxcall(cmd,vec) - manipulate multiplexed files

59 e-- Exece(name,argv,envp) - execute a file

60 e-- Umask(compimode) - set file creation mode mask

61 e-- Chroot(string) - change root directory

Codes O, 1, 11, 17, 31, 32, 38, 39, 40, 45, 49, 50, 55, 57, 58, 62, and 63 are
not used.

The sigtrp() entry works specially. Normally, trapno is in the range 0 to
255. In that case it requests that signal signo will cause trap trapno to oc-
cur. When given trap number -2, default signal handling is reset, and when
given trap number -3, the signal is ignored.

ALL of the above monitor calls, except for the sigtrp(), which is stightly
modified, are the same as the UNIX version 7 system calls.

24

9. TRAPS AND INTERRUPTS

EM-T provides a means for the user program to catch all errors generated
by the program itself, the hardware, or external conditicns. This mechanism
uses three instructions: SIG, TRP and RTT. This section of the manual may be
omitted on the first reading since it presupposes knowledge of the EM-1 in-
struction set.

The S1G instruction expects a procedure identifier on the stack, that is a
static Llink and a procedure number. From that moment on all errors will be
passed to this procedure. When an error occurs, this procedure is called with
the number of the error as the only parameter (see below). SIG returns an
analogous procedure identifier on the stack representing the previous procedure
for dealing with errors. Two consecutive SIGs are a no-op. After the pro-
cedure is called, the values are reset to their default condition, to prevent
recursive traps from hanging the machine up, e.g. stack overflow in the stack
overflow handling routine. Default error processing is explicitly undefined,
but will usually be the lowest possible form of getting the error number to the
ocutside world.

The TRP instruction generates an trap, the trap number being found on the
stack. This is among other things useful for Llibrary routines, runtime systems
etc.. Also it can be used by a low Level error routine to pass the error to a
higher level one (see example below).

The RTT instruction returns from the error routine and continues after the
error. In the Llist below altl errors marked with an asterisk ('*') are con-
sidered to be fatal and it is explicitly undefined what happens if you try to
restart after the error.

The way an error routine is called is completely compatible with normal
calling conventions. The only way an error routine differs from normal pro-
cedures is the return. It has to use RTT instead of RET. This is necessary be-
cause all interpreter status is saved on the stack before calling the procedure
and all this status has to be reloaded. Error numbers are in the range 0 to
255. There are three categories of error numbers:

0- 63 EM-1 machine errors, e.g. illegal instruction.
54-127 Reserved for use by compilers, run time systems, etc.
128-255 Available for user programs.

EM-1 machine errors are numbered as follows:

O*x Stack overflow

1* Heap overflow

2x Illegal instruction

3% Illegal odd or zero argument
4% Case error

Set bound error

Array bound error

Range bound error
Integer overflow

Double integer overflow
Floating overflow
Floating underflow

= OO0~

Y

25

12 Divide by O

13 Divide by 0.0

14 Integer undefined

15 Double integer undefined

16 Floating undefined

17 Float -> int conversion error

18 Float -> double int conversion error
19 Double int => 1int conversion error
20 Floating hardware error

21 Argument of LIN too high

22 Bad monitor call

23* CAL with wrong number of args

24 Bad argument of LAE

25% Addressing non existent memory

26x Bad pointer used

27x Procedure number too high

28*% Program counter out of range

As an example, suppose a subroutine has to be written to generate random
numbers. The usual method of doing this uses multiplications that can overflow
without harm to the result of the procedure. This overflow should not be no-
ticed by the user program since it has no idea whatsoever what happens inside
the random procedure. This can be programmed as follows using the mechanism
described above:

let ovf err,8 ; This is the error number of integer overflow
save bss 4 Room to save previous value of error routine

-

pro catch,2,0 ; Local procedure that must catch the overflow trap
lol O ; Load error number

Loc ovf_err ; check for overflow

bne 1 ; if other error call higher routine

lex 1 ; load static link to random

Loc $catch ; load procedure number

sig ; get ready to catch next overflow

rtt s return to random
1 ; other error has occurred

Lde save ; previous error routine

sig ; other routine will get the traps now

beg -4 ; remove the result of sig

lol O ; stack error number

trp ; call other error routine

rit ; if other routine returns, do the same

end

pro random,0,1 ; entry point without parameters

lex O ; static Link of catch will point to LB of random so all

; local variables of random are accessible from catch

Lloc Scatch

sig ; errors will be trapped to catch

sde save ; save previous value

r
; calculate random number now, generating overflow at will

’
lde save ; restore previous status

AT T

sig
load result of random

ret 2
end

done now

return random number

26

27

10. EM-1 MACHINE LANGUAGE

The EM-1 machine language is designed to make program text compact and to
make decoding easy. Compact program text has many advantages: programs execute
faster, programs occupy less primary and secondary storage and loading programs
into satellite processors 1is faster. Since the decoding of EM-1 machine
Language is very simple, it is feasible to use interpreters as long as EM-]
hardware machines are not available. This chapter is irrelevant if back end
compilers are used to produce executable target machine code.

10.1. INSTRUCTION ENCODING

A design goal of EM-1 is to make the program text as compact as possible.
Decoding must be easy, however. The encoding is fully byte oriented, without
any small bit fields. There are 256 primary opcodes, one of which is an escape
to a group of 256 secondary opcodes. EM-1 instructions without operands have a
single opcode assigned, possibly escaped:

opcode

ar

escape opcode

The situation for instructions with an operand is more complex. It is assumed
that the machine words are two bytes long. There is always one opcode that
takes the next two bytes as operand, high byte first (operands always fit in 16
bits):

opcode hibyte Lobyte
or
escape opcode hibyte lobyte

For most instructions, however, some operand values predominate. The most fre-
guent combinations of instruction and operand will be encoded in a single byte,
called a mini:

opcodetoperand (mini)

28

The savings for these mini opcodes are considerable, 66% to 75%. But the
number of minis is restricted, since only 255 primary opcodes are available.
Many instructions have the bulk of their operands fall in the range 0 to 255.
Instructions that address global data have their operands distributed over a
wider range, but small values of the high byte are very common. Ffor all these
cases there is another encoding that combines the instruction and the high byte
of the operand into a single opcode. These opcodes are called shorties. Shor-
ties may be escaped. .

opcode+high tobyte (shortie)
or
-
escape opcode+high lobyte

Escaped shorties are useless if the normal encoding has a primary opcode. Note
that for some instruction-operand combinations three different encodings are
available. It is the task of the assembler to select the shortest of these.

Further improvements are possible: many dnstructions have only even
operands. If these operands are divided by two, then more of them will be en-
coded as shortie or mini. The operands of some other instructions, that give
an object size 1in bytes, are even, except for the value 1. In this case the
vatue 1 is encoded as 0, since 0 is not a valid size, and the other operand
values are divided by two as above.

To reduce instruction Length of most call instructions to one byte, a spe-
cial mechanism dis available. If all the instructions between a MRK and its
corresponding CAL belong to a certain group (specified below), the assembler
automatically replaces the MRK by the special instruction MRX. This redefines
all the opcodes fetched until the CAL has executed. The redefined opcode table
is called the "alternate context". Opcodes 0O up to (but excluding) CUTOFF have
the same meaning as in the regular context. However, CUTOFF means call pro-
cedure 0, CUTOFF+1 means call procedure 1, etc. Instruction MRX may only be
generated by the assembler, not by compilers.

It should now be clear that the instructions allowed between MRK and CAL
in alternate context are just those with opcodes 0 to CUTOFF-1. When assigning
opcodes to mnemonics, those useful in parameter passing have been given Llow
values.

Assigning opcodes to instructions by the assembler 1is completely table
driven. For details see appendix 2.

29

10.2. LOAD FORMAT

The EM=1 machine language load format defines the interface between the
EM-1 assembler/loader and the EM-1 machine itself. A load file consists of a
header (16 words), the program text to be executed, a description of the global
data area and the procedure descriptor table, in this order.

The header has twe parts: the first half of it (8 words) aids in selecting
the correct EM-1 machine or interpreter. Some EM-1 machines, for instance, may
have hardware floating point instructions. The header words are used for:

G: magic number (07254)
1: flag bits with the following meaning:
bit0: TEST; perform tests Like integer overflow etc.
bit1: PROFILE; for each source lLine: count the number of memory cycles
executed.
bitd: FLOW; for each source Line: set a bit in a bitmap table if instruc-
tions on that line are executed.
bit3: COUNT; for each source Line: increment a counter if that Line 1is
entered.
bit4: REALS; set if a program uses floating point instructions.
bit5: EXTRA; more tests during compiler debugging.
Z2: number of unresolved references.
3: version number; used to detect obsolete EM-1 load files.
4: unused
5: unused
6: unused
7: unused

The second part of the header (8 words) describes the Load file itself:
8: NTEXT; the program text size in bytes.
9: NDATA; the number of Load file descriptors (see below).
10: NPRCGC; the number of entries in the procedure descriptor table.
11: ENTRY; procedure number of the procedure to start with.
12: NLINE; the maximum source Line number.
13: unused
14: unused
15: unused

The program text consists of NTEXT bytes. NTEXT is always even. The first
byte of the program text is the first byte of the instruction address space,
i.e. it has address 0. The only pointers into the program text are found 1in
the procedure descriptor table, so relocation is simple.

- The global data area is described by the NDATA descriptors. Each descrip-
tor describes a number of consecutive words. While reading the descriptors
from the load file, one can initialize the global data area from Llow to high
addresses. Five descriptor types are available, characterized by their first
word:

30

et iy S ———

0 n type 1: not initialized

1 00 n type 2: initialized words

1 01 n type 3: initialized pointers

1 10 n type 4: initialized doubles
i

14 M1 n type 5: initialized floats

type 1: Reserve n words, not explicitly initialized (BSS and HGL).

type 2: The next n words are initializers for the next n words of the global
data area.

type 3: The next n words of globat data are initialized pointers into the EM-1
data address space. Interpreters that represent EM-1 pointers by true
EM-1 addresses do not need this dinformation, but interpreters that
represent EM-1 pointers by target machine addresses must relocate all
data pointers.

type 4: The next 2#n words of global data are initialized double precision din-
tegers. The load file contains n pairs of words as initializer. The
first word of each pair is the most significant one.

type 5: The load file contains n ASCII strings, null terminated, to initialize
n floating point numbers in global data. Each string starts at a word
boundary. o

Note that the first descriptor describes the ABS block. This descriptor is of
type 1.

The NPROC procedure descriptors on the load file consist of two words
each: the first word gives the number of bytes for parameters, the second word
yives the address of the first instruction of the procedure, assuming that pro-
gram. text starts at address 0.

31

11. EM-1 ASSEMBLY LANGUAGE

11.1. Introduction

An assembly language program consists of a series of Llines, each contain-
ing 0 or 1 statements. A machine instruction may not be Labeled. In other
words, the label field on a machine instruction must be Left blank. There are
two kinds of Llabels, instruction and data labels. Labels start in column 1.
instruction labels are unsigned positive integers, and each must appear alone
on a Lline by itself. The scope of an instruction label is its procedure.

The pseudoinstructions CON, ROM, and BSS may be labeled with a 1-8 char-
acter data label, the first character of which is a letter, period or under-
score, followed by letters, digits, periods and underscores. Only 1 Label per
Line is allowed. The use of the character "." followed by a number (e.g. .40)
is recommended for compiler generated programs, since these are considered as a
special case and handled more efficiently in compact assembly language (see
below).

Each statement may contain an instruction mnemonic or pseudoinstruction.
These must begin in column 2 or later (not column 1) and must be followed by a
space, tab, semicolon or LF. Everything on the line following & semicolon is
taken as a comment.

ALL constants are decimal unless started with a zero e.g. 0177, in which
case they are octal. 1In CON and ROM pseudoinstructions, floating point numbers
are distinguished by the presence of a decimal point or an exponent (indicated
by E or e), or both. Double precision (long) integers are followed directly by
an L or L.

Also aliowed as initializers in CON and ROM are strings. Strings are sur-
rounded by double quotes and may include \xxx, where xxx is a 3-digit octal
constant, e.g. CON "hello\012\000". Each string element initializes a single
byte. Strings are padded at the end up to a multiple of the word size.

Local lLabels are referred to as *1, *2, etc. 1in CON and ROM pseudoin-
structions (to distinguish them from constants), but without the asterisk in
branch instructions, e.g. BRF 3, not BRF *3.

The notation $procname is used to mean the descriptor number for the pro-
cedure with the specified name.

An input file may contain many procedures. A procedure consists of zero or
more pseudoinstructions, a PRG statement, a (possibly empty) collection of in-
structions and pseudoinstructions and finally an END statement. The wvery Llast
statement on the input file must be EOF. The END directly preceding the EOF
may be omitted.

Input to the assembler is in Lower case, if available. Upper case is used
in this document merely to distinguish key words from the surrounding prose.

32

11.2. Pseudo instructions

First the notation used for the operands of the pseudo instructions.

<num> = an integer constant

<sym> = an identifier

<arg> = <num> or <sym>

<val> = <arg>, long constant (ending with L or L), real constant, string
constant (surrounded by double quotes), procedure number {(starting
with $) or instruction label (starting with *).

<eea?>* = zero or more of <...>

<ews?t = one or more of <...>

Four pseudo instructions request global data:

BSS <num>
Reserve <num> bytes, not explicitly initialized. <num> must be a multiple
of the word size.

HOL <num>
Idem, but all following absolute global data references will refer to
this block.

CON <val>+
Assemble global data words initjalized with the <val> canstants.

ROM <val>+
Idem, but the initialized data will never be changed.

Three pseudo instructions partition the input into procedures:

PRO <sym>,<num1>,<num2>
Start of procedure. <sym> is the procedure name. <num1> is the number
of bytes for arguments. <num2> is 1 for procedure names to be exported
out of the current module, 0 otherwise.

END
End of Procedure.

EOF
End of module.

Besides the export flag in PRO, six other pseudo instructions are involved with
separate compilation and Linking:

EXD <sym>
Export data. <sym> is exported out of this module.

IMA <sym>
Import address. IMA alliows global symbol <sym> to be used before it is

mc

FWA

FWC

FWP

Three

LET

EXC

MES

33

defined. Note that <sym> may be defined in the same module.

<sym>

Similar to IMA, but used for imported single word constants. These two
different forms are necessary, because the assembler must know how much
storage must be allocated if <sym> is used in CON or ROM.

<sym>
Forward address. Notify the assembler that <sym> will be defined Llater
on in this module, so that it may be used before being defined.

<sym>
Similar to FWA, but for constants.

<sym>

Forward procedure reference. FWP allows <sym> to be used before it is
defined. <sym> must be defined in the same module and must not be ex-
ported. Normally, unknown procedure names are entered in the undefined
global reference table, so that their names will be known outside this
module. Procedure names introduced by FWP are treated differently, “how-
ever, to prevent their being exported.

other pseudo instructions provide miscellaneous features:

<sym>,<arg>
Assembly time assignment of the second operand to the first one.

<num1>,<num2>

Two blocks of instructions preceding this one are interchanged before be-
ing assembted. <num1> gives the number of lines of the first block.
<num2> gives the number of Lines of the second one. Blank and pure com-
ment Lines do not count.

<num>,<val>*
A special type of comment. Used by compilers to communicate with the op-
timizer, assembler, etc. as follows:
MES 0 -
An error has occurred, stop assembly.
MES 1 -
Suppress optimization
MES 2 -
Use virtual memory (EM=2)
MES 3,<numl1>,<num2> -
Indicates that a local variable is never referenced indirectly.
<numl1> is offset in bytes from LB. <num2> indicates the class of
the variable.
MES &4 -
Number of source lLines (for profiler).
MES 5 -
Floating point used.
MES 6,<val>x -
Comment. Used to provide comments in compact assembly Language
(see below).

34

Each back end is free to skip irrelevant MES pseudos.

41.3. The Compact Assembly Language

The assembler accepts input in a highly encoded form. This form is in-
tended to reduce the amount of file transport between the compiler and assem-—
bler, and also reduce the amount of storage required for storing Llibraries.
Libraries are stored as archived compact assembly Llanguage, not machine
language. The compact assembly language assumes that a machine word is two
bytes long.

When beginning to read the input, the assembler is in neutral state, and
expects either a Llabel or an instruction (including the pseudoinstructions).
The meaning of the next byte(s) when in neutral state is as follows, where b1,
b2 etc. represent the succeeding bytes.

4] Reserved for future use
1-139 Machine instructions, see Appendix 2, alphabetical list
140-149 Reserved for future use
150-~165 BSS,CON,END,EOF ,EXC,EXD,FWA,FWC,FWP,HOL, IMA, IMC,LET ,MES,PRO, ROM
166-179 Reserved for future pseudoinstructions
180-239 Local labels G - 59 (180 is local Label 0 etc.)
240~-244 See the Common Table below
245-255 Not used

After a label, the assembler is back in neutral state; it can immediately ac-
cept another label or an dinstruction in the very next byte. There are no
linefeeds used to separate lines.

If an opcode has no operands, the assembler is back in neutral state after
reading the one byte containing the instruction number. If it has one or more
operands (only pseudos have more than 1), the operands follow directly, encoded
as follows:

0-239 Integer constant from 0 to 239
240-255 See the Common Table below

Common Table for Neutral State and Operands

240 b1 Local Llabel b1 <{(WNot used for branches)

241 bl b2 16 bit Local Label (256%b2 + b1)

242 bl Global Llabel .0-.255, with b1 being the Llabel

243 bt b2 Global Label .0-.65535 with 256*%b2+b1 being the Llabel

244 <pSCIL string> Global symbol not of the form .nnn

245 <ASCLI string> Procedure name (not including $2

246 <ASCIIL string> 3tring used in CON or ROM {no guotes)

247 <ASCII string> Real value for CON

248 constant 0-255 (In fact only used for 241-255 in practice)
249 b1 <negative of constant b1 in range -1 to -255>
250 b1 b2 (16 bit constant) 256*b2+bi

251 <ASCII string> Double precision integer constant
255 Delimiter for CON, ROM Lists

The notation <ASCII string> consists first of a Length field, and then an
arbitrary string of bytes. If the length field starts out with 0-254, that is
the lLength of the string. If it is 255, the length follows 1in the next two
bytes, Low order byte first.

The pseudoinstructions fall into several categories, depending on their
operands:

Group 1 -— END, EOF have no operands

Group 2 -— BSS, EXC, HGL have a known number of numeric operands q
Group 3 -- EXD, FWA, FWC, FWP, IMA, IMC, LET, PR(start with a string '
Group 4 -— CON, MES, ROM have a variable number of various things

Group 1 is easy; just go back into neutral state immediately. Groups 2 and 3
use the encoding described above. Group & alsc uses the encoding listed above,
With a 255 byte after the last operand to indicate the end of the Llist.

Example ASCII Example compact
(LOC = 76, BRF = 18 here):
2 182
1 181
LoC 10 76 10
LoC =0 76 249 10
LoC 300 76 250 44 1
BRF 19 18 19
300 241 44 1
.3 CON 4,9,%2,%fo0 242 3 152 4 9 240 2 245 3 102 111 111 255

LoC .35 76 242 35

36

12. ASSEMBLY LANGUAGE INSTRUCTION LIST

m:
n:
X:
y:
2
p:
r:

GROUP

LaC
LNC
LCL
LGE
LoP
LAl
LOF
LAL
LAE
LEX
LoI
LOS
LDL
LDE
LDF

GRGUP

STL
STE
STP
SAI
STF

STI

5TS
SPL
SDE
SDF

For each instruction in the List the range of operand values in the assem—
bly language is given. These ranges are all subranges of -32768..32767 and are
indicated by letters:

full rang
0..32767
0..32766
T or (2..
-52768..3
2..32766
0, 1Tor 2

e, i.e. =32768..32767
and even
32766 and even)

2766 and even
and even

The Letters should not be confused with the Letters used in the EM-1 in-
struction tabl
and underflow or overflow are indicated by (*).

2

WO X X 33X X X x 33
I

T: LOAD

- Load
- Load
- Load
- Load
- Load
Load
- Load
- Load
- Load
= Load
- Load
- Load
Load
Load
m - Load

x X
[|

2: STORE

x = Store
x — Store
X = Store
y = Store
m - Store
y = Store
- Store
x = Store
X = Store
m = Store

GRCUP 3: SINGLE

ADD
SUB
MUL

- Addit
- Subtr
- Multi

e in appendix 2. Instructions that check for undefined operands

constant (i.e. push it onto the stack)

negative constant

Local word x

external word x

word pointed to by x-th local

auto increment y bytes (address of pointer on stack)
offsetted. (top of stack + m yield address)

address of Local

address of external

lexical. (address of LB n static levels back)

indirect y bytes (address is popped from the stack)
indirect (pop byte count, address; count is 1 or even)
double local (two consecutive locals are stacked)
double external (two consecutive externals are stacked)
double offsetted (top of stack + m yield address)

local

external

into word pointed to by x-th local

auto increment y bytes (address of pointer on stack)
offsetted

indirect y bytes (pop address, then data)

indirect (pop byte count, then address, then data)
double Local

double external

double offsetted

PRECISION INTEGER ARITHMETIC
ion (%)

action (%)
plication (%)

DIV
MoD
NEG
SHL
SHR

GR QUP

DAD
DSB
DHU
DDV
DMD

GROUP

FAD
FSB
FMU
FDV
FIF
FEF

GROUP

AD1
PAD
PSB

GR QUP

INC
INL
INE
DEC
DEL
DEE
ZRL
IRE

GROUP

CID
DI
-CIF
CFI
CDF
CFD

GROUP
AND
ANS

ICR
108

P

o

~ Division
Modulo 1.
Negate (t
Shift tef
Shift rig

DOUBLE PRE

§

Double ad
Double Su
- Double Mu
Double Di
Double Mo

FLOATING P

- Floating
- Floating
- Floating
- Floating
- Floating
- Split flo

POINTER AR

~ Add the ¢
- Pointer a
- Subtract

INCREMENT/

- Increment
- Increment
« Increment
- Decrement
- Decrement
- Decrement

37

(%)

e.remainder (%)

wo's complement) (%)
t (x)

ht (%)

CISION ARITHMETIC (Format not defined)

d (*)
btract (%)
L{tiply (%)
vide (%)
dulo (%)

OINT ARITHMETIC (Format not defined)

add (%)

subtract (%)

multiply (*)

divide (%)

multiply and split integer and fraction part (¥)
ating number in exponent and fraction part (%)

ITHMETIC

onstant m to pointer on top of stack
dd; pop integer, then pointer, push sum as pointer
two pointers (in same fragment) and push diff as integer

DECREMENT/ZERO

top of stack by 1 (%)
Llocal (*)

external (%)

top of stack by 1 (x)
Local (%)

external (%)

- Zero local
- Zero external

: CONVERT

- Convert i

nteger to double (¥)

- Convert double to integer (%)

- Convert i
- Convert f

nteger to floating (*)
Loating to integer (%)

- Convert doubte to floating (*)

- Convert f

: LOGICAL

Boolean a
Boolean a
- Boolean i
Boolean 1

Loating to double (%)

nd on two groups of p bytes

nd; number of bytes is first popped from stack
nclusive or on two groups of p bytes

nclusive or; nr of bytes is first popped from stack

XCOR p - Boolean exclusive or on two groups of p bytes

X0S - Boolean exclusive or; nr of bytes is first popped from stack
CCM p - Complement (one's complement of top p bytes)

C0S - Complement; first pop number of bytes from stack

ROL - Rotate left

ROR - Rotate right

GRCUP 10: SETS

INN p - Bit test on p byte set (bit number on top of stack)

INS - Bit test; first pop set size, then bit number
SET p - Create singleton p byte set with bit n on (n is top of stack)
SES - Create singteton set; first pop set size, then bit number

GROUP 11: ARRAY

LAR x = Load array element

LAS - Load array element; first pop ptr to descriptor from stack
SAR x - Store array element

SAS - Store array element; first pop ptr to descriptor from stack
AAR x - Load address of array element

AAS - Load address; first pop pointer to descriptor from stack

GROUP 12: COMPARE

CM1 ~ Compare 2 integers. Push negative, zero, positive for <, = or >
CMD - Compare 2 double integers

CMF - Compare 2 reals

CMU p - Compare 2 blocks of p bytes each

CHMS - Compare 2 blocks of bytes; pop byte count

CMP - Compare 2 pointers

TLT - True if less, i.e. iff top of stack < O

TLE - True if less or equal, i.e. iff top of stack <= 0
TEQ - True if equal, i.e. iff top of stack = 0

TNE - True if not equal, i.e. iff top of stack non zero
TGE - True if greater or equal, i.e. iff top of stack >= 0
T6T = True if greater, i.e. iff top of stack > D

GROUP 13: BRANCH

BRF n - Branch forward unconditionatly n bytes
BRB n - Branch backward unconditionally n bytes

BLT n - Forward branch less {(pop 2 words, branch if top > second)
BLE n - Forward branch less or equal

BEQ n - Forward branch equal

BNE n - Forward branch not equal

BGE n — Forward branch greater or equal

BGT n - Forward branch greater

ILT n - Forward branch tess than zero (pop 1 word, branch negative)
ZLE n - Forward branch less or equal to zero

ZEQ n - Forward branch equal zero

INE n - Forward branch not zero

IGE n - Forward branch greater or equal zero
ZGT n - Forward branch greater than zero

GROUP ‘i4: PROCEDURE CALL

MRK n - Mark stack (n = change in static depth of nesting - 1)

MRS - Mark stack; first pop the static Link from the stack
CAL n - Call procedure (with descriptor n)

CAS - Call indirect; first pop procedure number from stack
RET x - Return {(function result consists of top x bytes)

RES - Like RET, but size of result on top of stack

GROUP 15: MISCELLANEOQUS

BEG z - Begin procedure (reserve z bytes for locals)

BES -~ Like BEG, except first pop z from stack .

BLM x - Block move x bytes; first pop destination addr, then source addr
BLS - Block move; Llike BLM, except first pop x, then addresses

CSA - Case jump; address of jump table at top of stack

€SB - Table Lookup jump; address of jump table at top of stack

DUP p - Duplicate top p bytes

DUS - Like DUP, except first pop b

EXG - Exchange top 2 words

HLT - Halt the machine (Exit status on the stack)

LIN n = Line number (external 0 := n)

LNI - Line number increment

LR r - Load register (0=LB, 1=SP, 2=HP)

MON = Monitor call

NOP - No operation

RCK x - Range check; descriptor at (external) x; trap on error

RCS - Like RCK, except first pop x from stack

RTT - Return from trap

SIG - Trap errors to proc nr on top of stack (-2 resets default). Static

Link of procedure is below procedure number. Old vatues returned
STR r ~ Store register (0=LB, 1=5P, 2=HP)
TRP - Cause trap to occur (Error number on stack)

40

13. KERNEL INSTRUCTION SET

Many of the instructions presented in the previous chapter are replace-
ments for a small sequence of basic instructions. The basic instructions form
less than half of the complete instruction set. Only a few basic instructions
have operands. Most of them fetch their arguments from the stack. Very few
basic tinstructions are provided to load and store objects.

For each of the groups of instructions the basic ones are given:

GROUP 1: LOC, LAE, LEX, LOS
GROUP 2: 5TS
GROUP 3: ADD, SUB, MUL, DIV, SHL, SHR
GROUP 4: DAD, DSB, DMU, DDV
GROUP 5: FAD, FSB, FMU, FDV, FIF, FEF
GROUP 6: PAD, PSB

7

GROUP

GROUP 8: CID, CDI, CDF, CFD

GROUP 9: ANS, 10S, X0S, COS, ROL, ROR

GROUP 10: INS, SES

GROUP 11: AAS

GROUP 12: CMI, CMD, CMF, CMS, CMP, TGT, TLT, TEQ

GROUP 13: DRB, ZNE

GROUP 14: MRS, CAS, RES

GROUP 15: BES, BLS, CSA, CSB, DUS, EXG, HLT, LOR, MON, NOP, RC3,
RTT, SIG, STR, TRP

Almost all the other instructions can be replaced in the assembly language by a
short equivalent sequence of simpler instructions. By applying these replace-
ments recursively a sequence of basic instructions can be found.

GROUP 1:
LNCm = LOC -m
LOL x = LAL x + LOI 2
LOE x = LAE x + LOQOI 2
LGP x = LOL x + LOI 2
LAI y = DUP 2 + DUP 2 + LOI 2 + ADI y + EXG + STI 2 + LOI y
LCFm = ADIm + LOI 2
LAL x = LEX O + ADI x
LOIy = LOCy + LGS
LbL x = LAL x + LOI 4
LDE x = LAE x + LOI 4
LDFm = ADIm + LOI &

GROUP 2:
STL x = LAL x + STI 2
STE x = LAE x + 53TI 2
STP x = LOL x + 871 2
SALy = DUPZ2 + DUP2 + LOIL 2 + ADI y + EXG + STI 2 + STl y
STFm = ADI m + STI 2
3Tl y = LG y + STS
SbL x = LAL x + S5TI 4
SDE x = LAE x + STI 4
SOFm = ADI m + STI 4

GROQUP
Mob
NEG

GROUP
DMD

GROUP
ADI

GROUP
INC
INL
IRE
DEC
DEL
DEE
IRL
ZRE

GROUP
CIF
CFI

GR OUP
AND
I0R
XOR
COoM

GROUP °

INN
SET

GROUP
LAR
SAR
AAR

GR OUP
MU
TLE
TGE
TNE

GR OUP
BRF
BLT
BLE
BEQ
BNE
BGE
BGT
ILT
ZLE

3333333 IIT -

(]

B B onnunn

wounn nu oW onon [}

LI T LI (I I £ 1}

puP
LoC

DUP
LoC

Lac
LoL
LGE
Loc
LoL
L OE

LoC

CIiD
CFD

LoC
LGC
Loc
LCC

LoC
Loc

LAE
LAE
LAE

LGC
TGT
TLT
TEGQ

LoC
CMI
CMI
CMl
CMI
cMI
CMI
TLT
TLE

OO X X ~aX X =

T T TT

+ 4+ + +++ o+

+ + + + + +

+ +

+ + + +

+ o+ 4+ o+ + o+

DLV
EXG

DDV

PAD

ADD
INC
INC
SuB
DEC
DEC
STL
STE

CDF
DI

ANS
105
X0S
cos

INS
SES

LAS
SAS
AAS

CMS
TEQ
TEQ
TEQ

ZEQ
ILT
ILE
ZEQ
ZNE
ZGE
16T
ZNE
ZNE

o e (o i s T s B A |

MUL
suB

DMU

STL
STE

STL
STE

+ SuUB

+ DSB

41

42

ZE@ n = TEQ + INE n

IGE n = TGE + INE n

16T n = TGT + INE n
GROUP 14:

MRK n = LOC n + MRS

CAL n = LOC n + CAS

RET p = LOGC p + RES
GROUP 15:

BEG z = LOC z + BES

BLM p = LOC p + B8LS

DUP p = LOC p + DUS

LINn = LOCn + STE(

LNI = INE O

RCK x = LAE x + RCS

The replacements for LIN and LNI are only equivalent if they precede the
first HOL in that assembly module. The replacements for LAL and SAI are rather
artificial. These instructions are most Likely preceded by a LAL or LAE in-
struction. Then they replace the sequence:

LAL x + LAIy = LG x + DUP2 + ADIy + STL x + LOLy
LAE x + LAIy = LOEx + DUP2 + ADIy + STEx + LOLy
LAL x + SAIy = LOLx + DUP2 + ADLy + STL x + STI y
LAE x + SALy = LOEx + DUP2 + ADIy + STEx + STIy

The replacements for LAS and SAS would even be longer, because the size of
the object to be loaded or stored must be fetched from the descriptor. If the
size y is known, then LAS and SAS can be replaced by:

LAS
SAS

AAS + LOI y
AAS + STI y

14. APPENDIX 1. OFFICIAL EM-1 MACHINE DEFINITION

{ This

is an interpreter for EM-1. It serves as the official machine

definition. This interpreter must run on a machine which supports 32
bit arithmetic.

Certain aspects of the definition are over specified. In particular:

1.

2.

The representation of an address on the stack need not be the
numerical value of the memory location.

The state of the stack is not defined after a trap has aborted
an instruction in the middle. For example, it is officially un-
defined whether the second operand of an ADD instruction has
peen popped or not if the first one is undefined (-32768).

The memory layout is implementation dependent. Only the most
basic checks are performed whenever memory is accessed.

The format of the mark block is implementation dependent.

The format of the procedure descriptors is implementation
dependent.

The result of the compare operators CMI etc. are -1, 0 and 1
here, but other negative and positive values will do and they
need not be the same each time.

The shift count for SHL, SHR, ROL and ROR must be in the range 0
to 15. The effect of a count greater than 15 or less than 0 is
undefined.

43

44

program em1{(tables,prog,output);

Label 9999;

A A PR e

A

Ao

)

()

{

const
t13 = 38192;
t14 = 16384;
t15 = 32768;
ti5m1 = 32747;
t16 = 65536;
t16m1 = 65535;
t31m1 = 2147483647;
maxcode = §191;
maxdata = 8191;
{ mark block format 2}
statd = 6;
dynd = 4;
reta =2;
mrksize = 6;
{ procedure descriptor
pdargs = 0;
pdbase = 2;
pdsize = &4;
dsize = &;
rsize = 4;
{ header words }
NTEXT = 1;
NDATA = 2;
NPR CGC = 3;
ENTRY = 4;
NLINE = 5;
escape = 0;
undef = -32768;
{ error codes
ESTACK = 0; EHEAP
ECASE = 4; ESET
EIOVFL = 8&; EDOVFL
EIDIVZ = 12; EFDIVZ
EFUND = 16; ECFI
EFPP = 20; ELIN
ELAE = 24, EMEMFLT
EPC = 28;

2*%x13 X
2xk14 b
2x%15 X
2%x%15 -1 %
2x*16 i
2%%16 -1 }
2%%x31 =1 }
highest byte in code address space
highest byte in data address space }
how far is static Link from Lb 2}
how far is dynamic link from Lb %
how far is the return address from Lb }
size of mark block in bytes }
format ¥
offset for the number of argument bytes }
offset for the procedure base
size of procedure descriptor in bytes }
size of double precision integers ¥
size of reals 2}
escape to secondary opcodes }
the range of integers is -32767 to +32767 ¥
1; EILLINS = 2; ECDDI = 3;
S; EARRAY = 6; ERANGE = 7;
9; EFOVFL = 10; EFUNFL = 11;
13; EIUND = 14; EDUND = 15;
17; ECFD = 18; ECDI = 19;
21; EMON = 22; ECAL = 23;
25; EPTR = 26; EPROC = 27;

beclarations

A

type
bitval= 0..1;
bitnr= 0..15;
byte= 0..255;
offset= 0..t15ml;

one bit

bits in machine words are numbered 0 to 15 }
memory is an array of bytes }

positive integers are offsets J

adr= 0..t16m1; a machine word interpreted as an address 2}
word= -t15..t15m1; a machine word interpreted as a signed integer }
full= -t16m1..t16m1; { intermediate results need this range »
double=-t31m1..t31m1; { double precision range }

bftype= (andf,iorf,xorf); { tells which boolean operator needed
iflags= (mini,short,xbit,ybit,zbit);

ifset= set of iflags;

At

mnem = (NON,
AAR, AAS, ADD, ADI,%AND, ANS, BEG, BEG, BES, BGE,
BGT, BLE, BLM, BLS, BLT, BNE, BRB, BRF, CAL, CAS,
CDF, CDI, CFD, CFI, CID, CIF, CMD, CMF, CMI, CMP,
cMs, CMU, COM, CCGS, CSA, CSB, DAD, DDV, DEC, DEE,
DEL,XDIV, DMD, DMU, DSB, DUP, DUS, EXG, FAD, FDV,
FEF, FIF, FMU, FSB, HLT, INC, INE, INL, INN, INS,
I0R, 10S, LAB, LAE, LA, LAL, LAR, LAS, LDE, LDF,
LbL, LEX, LIN, LNC, LNI, LOC, LOE, LOF, LOI, LOL,
LOP, LOR, LOS, LSA,XMOD, MON, MRK, MRS, MRX, MUL,
MXS, NEG, NOP, NUL, PAD, PSB, RCK, RCS, RES, RET,
ROL, ROR, RTT, SAI, SAR, SAS, SDE, SbF, sDL, SES,
XSET, SHL, SHR, SiG, STE, STF, STI, STL, STP, STR,
$7S, SuB, TEQ, TGE, TGT, TLE, TLT, TNE, TRP, XOR,
X08, ZEQ, IGE, IGT, ILE, ZLT, INE, ZRE, IRL);

dispatch = record
iflag: ifset;
instr: mnem;
implicit: word

end;
var
code: packed arrayLO..maxcodel of byte; { code space }
data: packed arrayl0..maxdatal of byte; { data space X

pc,lb,sp,hp,pd: adr; { internal machine registers 2

opcode: byte; holds the opcode during execution 2}
escaped: boolean; true for escaped opcodes 1}
cutoff: byte; opcode of first call in alternate context }

dispat: arraylboolean,bytel of dispatch;

-i: integer; { integer scratch variable }
s,t,k: word; { scratch variables 7
jroffset; { scratch variable used as index ¥
a,bradr; { scratch variable used for addresses }
dt,ds:double; { scratch variables for double precision
rt,rs,x,y:real; { scratch variables for real ¥
found:boolean; { scratch 2}

{

{

{

o

46

holds the instructionnumber }

true except when in alternate context

normally false. set to true by halt instruction X
parameter of HLT }

uerrorlb:adr; static link of error procedure

uerrorproc:adr; number of user defined error procedure }

header: arrayL1..81 of adr;

insr: mnem;
normalmap: boolean;
halted: boclean;
exitstatus:word;

Fon N N N W e Mo

tables: text; { description of EM=1 instructions ¥
prog: file of byte; { program and initialized data }

Various check routines

vy

Only the most basic checks are performed. These routines are inherently
implementation dependent. }

procedure trap(n:byte); forward;

procedure oddchkadr(a:zadr);
begin if (a>maxdata) or ({a>sp) and (a<hp)) then trap(EPTR) end;

procedure chkadr(a:adr);
begin if odd(a) then trap(EPTR); oddchkadr(a) end;

procedure newpc(a:adr);
begin if (a<0) or (a>pd) then trap(EPC); pc:i=a end;

procedure newsp{a:adr};
begin if (a<lb-2) or (a>=hp) or odd{a) then trap(ESTACK); sp:=a end;

procedure newlb(a:adr);
begin if (a>sp+2) or odd(a) then trap(ESTACK); lb:=a end;

procedure newhp(a:adr);
begin if (a<=sp) or (a>maxdata+1) or odd(a) then trap(EHEAP); hp:=a end;

function argi(w:word):word;
begin if w = undef then trap(EIUND); argi:=w end;

function argn(w:word):word;
begin if w<0 then trap(EILLINS); argn:=w end;

function argx{w:word):word; :
begin if (w<0) or (w>=t15) or odd(w) then trap(EILLINS); argx:=w end;

function argp(w:word) :word;
begin if odd(w) or (w<=0) or (w>=t15) then trap(EILLINS); argp:=w end;

function argy(w:wérd):word;

begin if w=1 then argy:=1 else argy:=argp(w) end;

function argz(w:word) :word;
begin if odd(w) or (w<-t15) or (w>=t15) then trap(EILLINS); argz:=w end;

function chkovf(z:double):word;
begin if abs(z) >= t15 then trap(EIQVFL); chkovf:=z end;

Memory access routines

I Tl

{ memw returns a machine word as a signed integer: -32768 <= memw <= +32767
mema returns a machine word as an address : 0 <= mema <= 65535
memb returns a single byte as a positive integer: 0 <= memb <= 255
store(a,v) stores the word or address v at machine address a
storeb(a,b) stores the byte b at machine address a

memi returns a word from the instruction space: 0 <= memi <= 65535
Note that the procedure descriptors are part of instruction space.
nextpc returns the next byte addressed by pc, incrementing pc

Lino changes the Lline number word.

ALl routines check to make sure the address is within range. The word
routines also check to see that the address is even. If an addressing
error is found, a trap occurs. 1}

function mema(a:adr):adr;
var b:adr;
begin chkadr(a); b:=datala+1]; mema:=256%b + datalal end;

function memw(a:adr):word;
var b:adr;
begin bi=mema(a); if b>=t15 then memw:=b-t1é else memw:=b end;

function memb(a:adr):byte;
begin oddchkadr(a); memb:=datalal end;

procedure store(azadr; x:full);

begin chkadr(a);
if x < 0 then x := x+t16; { equivalent value, but positive }
datalal := x mod 256; datalat1] := x div 256

end;

procedure storeb(a:zadr; b:byte);
begin oddchkadr(a); datafal:=b end;

function memiCazadr):adr;

PR

47

48

var b:adr;

begin
if odd{a) or (a>maxcode) then trap(EPTR);
b:=codelat+1]; memi:=256%b + codelal

end;

function nextpc:byte;
begin nextpc:=codelpcl; newpc(pc+l) end;

procedure Llino(w:word);
begin if (w<0) or (w>header[NLINEI) then trap(ELIN); store(D,w) end;

- 3
{ Stack Manipulation Routines X
t --}

{ push puts a word or address on the stack
popw removes a machine word from the stack and delivers it as a word
popa removes a machine word from the stack and delivers it as an address
pushd pushes a double precision number on the stack
popd removes 2 machine words and returns a double precision integer
pushr pushes a real (floating point) number onto the stack
popr removes 2 machine words and returns a real number
pushx puts an object of arbitrary size on the stack
popx removes an object of arbitrary size

procedure push{x:full);
begin newsp{sp+2); store(sp,x) end;

function popw:word;
begin popw:=memw(sp); newsp(sp—2) end;

function popa:adr;
begin popa:=mema(sp}; newsp(sp—-2) end;

procedure pushd(y:doublte);
begin { push double integer onto the stack } newsp(sp+dsize) end;

function popd:double;
pbegin { pop double integer from the stack 7 newsp (sp-dsize); popd:=0 end;

procedure pushr(z:ireal);
begin { Push a real onto the stack } newsp{sptrsize) end;

function popr:real;
pegin { pop resl from the stack } newsp(sp-rsize); popr:=0.0 end;

procedure pushx(size:offset; a:adr);
var izinteger;
begin

if size=1
then push(memb(a))
else if odd(size) or (size<=0)
then trap(EQDDZ}
else for i:=1 to size div 2 do push(memw(a-2+2%i)}
end;

procedure popx(sijze:offset; azadr);
var i:integer;
begin
if size=1
then begin storeb(a,memb(sp)); newsp(sp-2) end
else if odd(size) or (size<=()
then trap(EODDZ)
else for i:=1 to size div 2 do storea+size=2*1i,popw)
end;

{ -

{ Bit manipulation routines (extract, shift, rotate)
{

[}

Iy

procedure sleft(var wiword); { 1 bit Lleft shift 3
begin if abs(w) >= t14 then trap(EIQVFL) else w := 2%w end;

procedure sright{var wiword); { 1 bit right shift with sign extension }
begin if w >= 0 then w := w div 2 else w := (w=1) div 2 end;

procedure rleft(var wiword); { 1 bit Left rotate }
begin if w >=0

then if w < t14 then wi= 2%w else wi= 2*w-t16

else if w >= =t14 then w := 2xw+1 else wi= 2*xw+t16+1
end;

procedure rright(var w:word); 1 1 bit right rotate }

begin if odd(w)
then if w<0 then w:=(w=1) div 2 else w = w div 2 - t15
else if w<D then w:={(w+ti16) div 2 else wi= w div 2

end;

function bit{b:bitnr; w:word):bitval; { return bit b of the word w ¥
var.i:bitnr;
begin for i:= 1 to b do rright(w); bit:=ord(odd(w)) end;

function bf(ty:bftype; wil,w2:word):word; { return boolean fcn of 2 words }
var i:bitnr; j:adr;
begin j:=0;
for i:= 15 downto 0 do
begin j := 2%j;
case ty of
andf: if bit(i,wl)+bit(i,w2) = 2 then j:=j+1;
jorf: if bit(i,w1)+bit(i,w2) > 0 then j:=j+1;

49

50

xorf: if bit(i,wid+bit(i,w2) = 1 then j:=j+1

end
end;
if j <= t15m1 then bf:=j else bf:= j - t16
end;
{ ¥
{ Array indexing
{ 3

function arraycalc{c:adr):adr; { subscript calculation }
var j:word; size:offset; a:adr;
begin j:= popw - memw(c);
if (j<0) or {j>memw(c+2)) then trap(EARRAY);
size := memw(c+4);
if (size<D) or ((size>1) and odd(size)) then trap(EODDZ);
a := jxsize+tpopa;
arraycalc:=a

end;

{ = i s >
{ Double and Real Arithmetic >
{- o 3}

{ ALL routines for doubles and reals are dummy routines, since the format of
doubles and reals is not defined in EM-1.
T

function dodad(ds,dt:double):double;
begin { add two doubles } dodad:=0 end;

function dodsb(ds,dt:double):double;
begin { subtract two doubles } dodsb:=0 end;

function dodml (ds,dt :double):double;
begin { multiply two doubles } dodml:=0 end;

function doddv(ds,dt:double):double;
begin { divide twoc doubles ¥ doddv:=0 end;

function dodmd(ds,dt:double):double;
begin { modulo of two doubles > dodmd:=0 end;

function dofad(x,y:real):real;
begin { add two reals } dofad:=0.0 end;

function dofsb(x,y:real):real;
begin { subtract two reals } dofsb:=0.0 end;

function dofmu(x,y:real):real;
begin { multiply two reals } dofmu:=0.0 end;

function dofdv(x,y:real):real;
begin { divide two reals } dofdv:=0.0 end;

procedure dofif(x,y:real;var intpart,fraction:real);
begin { dismember x*y into integer and fractional parts 2
intpart:=0.0; { integer part of x*y 7
fraction:=0.0; { fractional part of x*xy }
end,

procedure dofef(x:real;var mantissa:real;var exponent:integer);

begin { dismember x into mantissa and exponent parts 2
mantissa:=0.0; { mantissa of x 1}
exponent :=0; { exponent of x ¥

end;

51

52

(e

{
{ Trap
L&

procedure trap;

{ This routine is invoked for overflow, and other run time errors.
For non-fatal errors, trap returns to the calling routine

X

begin
if uerrortb=0 then
begin
writeln('error ', n:1, ' occurred without being caught');
goto 9999
end;
{ Deposit all interpreter variables that need to be saved on
the stack. This includes normalmap, all scratch variables that cen
be in use at the moment and (not possible in this interpreter)
the internal address of the interpreter where the error occurred.
This will make it possible to execute an RTT instruction totally
transparent to the user program.
It can, for example, occur within an ADD instruction that both
operands are undefined and that the result overflows.
Although this will generate 3 error traps it must be possible
to ignore them all.

For simplicity just the normalmap flag will be stacked here

push{ord{normatmap));
{ Now simulate the effect of an MRS instruction }
push(uerrorlb); { push static Llink }
push(lb); { push dynamic Link ¥
push(pc); { push return address }
push(nl; { push error number }
{ Now simulate the effect of a CAS instruction }
newlb(spl; newpc {memi (pd+pdsize*uerrorproc+pdbase));
if nin EESTACK,EHEAP,EILLINS,EODDZ,ECASE,ECAL,EMEMFLT,EPTR,
EPROC,EPC]
then goto 9999;
end;

procedure dortt;

var s:adr;

begin
newpc (mema(lb-retal)); s:=lb-mrksize-2; newlb(mema¢lb-dynd)); newsp(s);
{ So far this was a plain ret 0}
normatmap := popw = 1;

end;

{
{ Initialization and debugging
{

procedure initialize; { start the ball rolling ¥
{ This is not part of the official machine definition >
const tab = ! -
var b:boolean;
cset:set of char;
f:ifset;
nmini,mbase,nshort,sbase,obase,i,j, n:integer;
c:char;

function readword:word;
var b1,b2:byte; a:adr;
begin read(prog,bi,b2); a:=b2; a:=b1+256%a;
if a>=t15 then readword:=a-t16 else readword:=a
end;

function readdouble:double;
var a,b:adr;
begin a:=readword; b:=readword;
{ construct double out of a and b ¥ readdouble:=0
end;

function readreal :real;
var b:byte; i:integer;
s:arrayl1..1001 of char;
begin 1:=0;
repeat
read(prog,b); i:=i+1; s{il:=chr(b)
until b=0;
if odd(i) then read(prog,b); { skip padding byte >
{ construct real out of character string s } readreal :=0.0
end;

begin
normalmap:=true;
halted:=false;
exitstatus:==1;
uerrorlb:=0;
uerrorproc:=0;

{ initialize tables
.for 1:=0 to maxcode do codeli]:=0;
for 1:=0 to maxdata do datalil:=0;
for b:=false to true do
for i:=0 to 255 do
with dispatCblLi] do
begin instr:=NON; iflag:=[Lzbit] end;

{ read instruction table file. see appendix 2 }

reset(tables); insr:=NON;

repeat readln(tables) until eoln(tables); { skip until empty line >
repeat readln(tables) until ecln(tables); { skip until empty line }

[T

53

readln{(tables); { skip empty Line }
repeat
insr:=succ(insr); cset:=[1; f:=[1;
read(tables,c,c,c,c);
while (e="' ') or (c=tab) do read(tables,c);
repeat
cset:=cset+lcl;
read(tables,c)
until (c=*' ") or (c=tabl;
readln(tables,nmini, mbase, nshort,sbase, obase);
if 'x' in cset then f:=f+Ixbitl;
if 'y' in cset then f:=f+lybit];
if 'z2' in cset then
with dispatl's' in csetllobasel do
begin iflag:=f+[zbitl; instr:=insr end
else
begin
with dispat['Ll"' in csetllobasel do
begin iflag:=f; instr:=insr end;
for 1:=0 to nshort-1 do
with dispatl's' in csetllsbase+i]l do
begin iflag:=f+[shortl; instr:=insr; implicit:=256%i end;
if insr=CAL then cutoff:=mbase else
for i:=0 to nmini-1 do
with dispatlfalsellmbase+il do
begin iflag:=f+Iminil; instr:=insr;
implicit:=i+ord('o' in cset)
end;
end;
until eoln(tables);

{ read in program text, data and procedure descriptors }
reset (prog);
for i:=1 to 8 do n:=readword; { skip first header }
for i:=1 to 8 do header[il:=readword; { read second header }
Lb:=0; hp:i=maxdata+1; sp:=0; Lino(0);
{ read program text ¥
for i:=1 to header[NTEXT] do read{prog, codeli=11);
{ read data blocks ¥
for i:=2 to readword do push(undef); { ABS block ¥
for 1:=2 to header[NDATA] do
begin n:=readword;
if n>=0 then
for j:=1 to n do push(undef)
‘else
begin j:=(n+t15) div t13; n:=(n+t15) mod t13;
case j of
0, { words
1: { pointers
for j:=1 to n do push(readword);
2: { double integers }
for j:=1 to n do pushd(readdouble);
3: { reals as character strings
for j:=1 to n do pushr(readreal);
end

end
end;
{ read descriptor table }
pd:=header[NTEXTJI;

for i:=1 to headerCNPROCI*pdsize do read{(prog,codelpd+i-11);
{ call the entry point routine ¥

push{maxdata); { illegal static Link %

push{maxdata); { illegal dynamic link 2}

push(maxcode); <{ illegal return address ¥

newlb(sp+2);

newpc (memi{pd + pdsizexheader[ENTRY] + pdbase));
end;

55

{
{
i
{

MALN LOOP OF THE INTERPRETER

It should be noted that the interpreter (microprogram) for an EM-]
machine can be written in two fundamentally different ways: (1) the
instruction operands are fetched in the main loop, or (2) the in-
struction operands are fetched after the 256 way branch, by the exe-
cution routines themselves. In this interpreter, method (1) 1is used
to simplify the description of execution routines. The dispatch
table dispat is used to determine how the operand is encoded. There
are 4 possibilities:

0. There is no operand

1. The cperand and dinstruction are together in 1 byte (mini)
2. The operand is one byte Long and follows the opcode byte(s)
3. The operand is two bytes Long and follows the opcode byte(s)

In this dnterpreter, the main Loop determines the operand type,
fetches it, and Leaves it in the global variable k for the execution
routines to use. Consequently, instructions such as LOL, which use
three different formats, need only be described once in the body of
the interpreter.

However, for a production interpreter, or a hardware EM-1
machine, it 1is probably better to use method (2), i.e. to let the
execution routines themselves fetch their own operands. The reason
for this is that each opcode uniquely determines the operand format,
so no table lookup in the dispatch table is needed. The whole table
is not needed. Method (2) therefore executes much faster.

However, separate execution routines will be needed for LOL with
a one byte offset, and LOL with a two byte offset. It is to avoid
this additional clutter that method (1) is used here. In a produc-
tion interpreter, it is envisioned that the main loop will fetch the
next instruction byte, and use it as an index into a 256 word table
to find the address of the interpreter routine to jump to. The
routine jumped to will begin by fetching 1its operand, if any,
without any table Lookup, since it knows which format to expect.
After doing the work, it returns to the main Lloop by jumping in-
directly to a register that contains the address of the main Loop.
When the alternate context is entered (after the MRX or MXS in-
structions), this register is reloaded so that an alternate main
Loop is used, with an alternate branch table. A slight variation on
this idea is to have the register contain the address of the branch
table, rather than the address of the main Loop.

Another issue is whether the execution routines for LCL 0, LOL
2, LOL 4, etc. should all have distinct execution routines. Doing
so provides for the maximum speed, since the operand is implicit in
the routine itself. The disadvantage is that many nearly identical
execution routines will then be needed. Another way of doing it is
to keep the instruction byte fetched from memory (LOL O, LOL 2, LOL
4, etc.) in some register, and have all the LOL mini format instruc-
tions branch to a common routine. This routine can then determine
the operand by subtracting the code for LOL O from the register,
leaving the true operand in the register (as a word quantity of
course). This method makes the interpreter smaller, but is a bit
slower.

W

56

To make this important point a little clearer, ¢
production interpreter for the PDP-11 might appear.
following opcodes have been assigned:

30:
3z
32:
23
342
25

LoL
Lol
LOL
LoL
LoL
LOL

T ooV O

(2 bytes, i.e. next word)

(format with a cne byte offset)
{(format with a one word, i.e. two byte offset)

57

onsider how a
Let us assume the

Further assume that each of the é opcodes will have its own execution
routine, i.e. we are making a tradeoff in favor of fast execution and
a slightly Llarger interpreter.

The m

Register r5
Register ré&
Register r3
Register r2

ain Loop
movh (r5)+,r0

ast r0
jmp *table(r0)

looks Like this:

is the em1 program counter.
is the em1 LB register
is the em1 SP register (the stack grows toward high core)
contains the interpreter address of the main loop

/fetch the opcode into r0 and increment r5
/shift r0 Left 1 bit. Now: -256<=r0<=+254
/jump to execution routine

Notice that no operand fetching has been done. The execution routines for
sample instructions given above might be as follows:

the 6
Llol0:
lol2:
Lolé4:
tolé:

lolb:

lolwe

mov
imp
mov
jmp
mov
imp

(rd),(sp)+
(r2>

2(r4) ,(sp)+
(r2>
4(r4),(sp)+
(r2)

mov 6(r4),(sp)+
imp (r2)

clr r0Q

bisb (r5)+,r0
asl rO

add r4,r0

mov (r0),(sp)+
jmp (r2)

clr r0

bisb (r5)+,r0
swab r0

bisb (r5)+,r0
asl rC

add ré&,rQ

mov (rQ),(sp)+
jmp (r2)

/push Llocal
/go back to
/push local
/go back to
/push local
/go back to
/push Local
/go back to
/prepare to
/operand is

0 onto stack
main Loop
2 onto stack
main Loop
4 onto stack
main Loop
6 onto stack
main lLoop

fetch the 1 byte operand

now in r0

/r0 is now offset from LB in bytes, not words
/r0 is now address of the needed local
/push the Local onto the stack

/prepare to fetch the 2 byte operand
/fetch high order byte first !!!
/insert high order byte in place
/insert Low order byte in place
/convert offset to bytes, from words
/r0 is now address of needed local
/stack the local

/done

The important thing to notice is where and how the operand fetch occurred:
tolQ, lol2, lLol4, and Lolé, (the mini's) have implicit operands

Ltolb knew it had to fetch one byte, and did so without any table tookup
lolw knew it had to fetch a word, and did so, high order byte first }

58

{
{ Main Loop
{ it i
begin initialize;
repeat
opcode := nextpc; { fetch the first byte of the instruction 3
if normalmap or {opcode<cutoff) then
begin escaped:=opcode=escape;
if escaped then opcode := nextpc;
with dispatlescapedilopcodel do
begin insr:=instr;
if not {(zbit in iflag) then
begin
if mini in iflag then k:i=implicit else
if short in iflag then k:=implicit+nextpc else
begin k:=nextpc; if k>=128 then k:=k-256;
k:=256%k + nextpc
end,
if xbit in iflag then k:=k*2 else
if ybit in iflag then
if k=0 then k:=1 else kizk*2
end
end
end
else
begin insr:=CAL; k:=opcode-cutoff end;

{m——— —_ - i

{ Routines for the individual instructions
{___ it £ B

Wy

case insr of
NON: trap(EILLINS);

{ LGAD GROUP

LOC: push(k);

LNC: push(-k);

LOL: push{memw(lb+argx(<k)));

LOE: push(memw(argx(k)));

LOP: push{memw(mema{lb+argx(k))));

LAI: begin k:=argy(k); a:=popa; b:=memala); store(a,b+k); pushx(k,b) end;

LOF: push(memw{popatk));

LAL: push(lb+argx(k)};

LAE: push(argx(k));

LEX: begin a:=lb; for j:=1 to argn(k) do a:= mema(a-statd); push(a) end;
LOI: pushx{argy(k),popal;

LOS: begin k:=popa; pushx(argy(k),popa) end;

LDL: begin k:i=argx(k); push{memw(lb+k)); push(memw{lb+k+2)) end;

LDE: begin k:=argx(k); push(memw(k)); push(memw(k+2)) end;

LDF: begin a:=popa; push{memw(a+k)); push(memw(a+k+2}) end;

{ STORE GROUP

STL: store(lb+argx(k) ,popw);

STE: storelargx{(k) ,popw);

STP: store(mema(lb+argx(k)) , popw);

SAI: begin k:=argy(k); a:i=popa; b:=mema(a); store(a,b+k); popx(k,b) end;
STF: begin a:=popa; store(atk,popw) end;

STI: popx(argy(k),popa);

STS: begin k:=popa; popx({argy(k),popa) end;

SDL: begin k:=argx(k); store(lb+k+2,popw); store(lb+k ,popw) end;
SDE: begin k:i=argx(k); store(k+Z,popw); store(k,popw) end;

SDF: begin a:=popa; store(a+2+k,popw); store(a+k,popw) end;

{ SINGLE PRECISION ARITHMETIC 2
ADD: begin t:=argi{popw); s:= argi{popw); push(chkovf(s+td) end;
SUB: begin t:=argi(popw); s:= argi(popw); push(chkovf(s=t)) end;
MUL: begin t:=argi(popw); s:= argi(popw); push(chkovf(s*t)) end;
XDIV: begin t:= argilpopw); s:= argi(popw);

if t=0 then trap(EIDIVZ) else push(s div tJ

end;

XMOD: begin t:= argi(popw); s:=argi(popw);

if t=0 then trap(EIDIVZ) else push(s = (s div t)*t)

end;
NEG: begin t:=argi(popw); push(-t) end;
SHL: begin t:=argi{popw); s:=argi(popw);
for i:= 1 to t do sleft(s); push(s)
end;
SHR: begin t:=argi{popw); s:=argi{popw);
for i:= 1 to t do sright(s); push(s)
end;

{ DOUBLE PRECISION ARITHMETIC }

DAD: begin dt:=popd; ds:=popd; pushd(dodad(ds,dt)) end;
DSB: begin dt:=popd; ds:=popd; pushd(dodsb(ds,dt)) end;
DMU: begin dt:=popd; ds:=popd; pushd(dodmd(ds,dt)) end;
DDV: begin dt:=popd; ds:=popd; pushd(dcddv(ds,dt)) end;
DMD: begin dt:=popd; ds:=popd; pushd(dodmd(ds,dt)) end;

{ FLOATING POINT ARITHMETIC }

FAD: begin rt:=popr; rs:=popr; pushr(dofad(rs,rt)) end;

FSB: begin rt:=popr; rs:=popr; pushr(dofsb(rs,rt)) end;

FMU: begin rt:=popr; rs:=popr; pushr(defmu(rs,rt)) end;

FOV: begin rt:=popr; rs:=popr; pushr(dofdv(rs,rt)) end;

FiF: begin rt:=popr; rs:=popr; dofiflrt,rs,x,y); pushr(y); pushr(x) end;
FEF: begin rt:=popr; dofef(rt,x,i); pushr(x); push(i) end;

{ POINTER ARITHMETIC 7

ADI: push(popa+tk);

PAD: begin t:=popw; push{popa+t) end;

PSB: begin a:=popa; b:=popa; push(chkovf(b-a}) end;

60

{ INCREMENT/DECREMENT/ZERG }

INC: push(chkovf(argi(popw)+1));

INL: begin k:=argx(k); t:=argi(memw(lb+k)); store(lb+k,chkovf(t+1)) end;
INE: begin k:=argx(k); t:=argi(memw(k)); storelk,chkovf(t+1)) end;

DEC: push(chkovf{argi(popw)-1));

DEL: begin k:=argx(k); t:=argi(memw(lb+k)}; store(lb+k,chkovf({t~1)) end;
DEE: begin k:i=argx(k); t:=argilmemw(k)); store(k,chkovf(t-1)) end;

ZRL: store(lb+argx(k),0);

LRE: store(argx(k),0);

{ CONVERT GROUP 3}
CID: pushd(popw);
CDI: begin dt:=popd; if abs(dt) > t15m1 then trap{ECDI) else push(dt} end;
CIF: pushr(popw);
CFI: begin rt:=popr;
if abs(rt)>t15m1-0.5 then trap{ECFI) else push(round(rt))
end;
CDF: begin dt:=popd; pushr(dt) end;
CFD: begin rt:=popr; if abs(rt) > t31m1-0.5 then trap(ECFD) ;
pushd(round(rt))
end;

{ LOGICAL GROUP }
XAND , ANS :
begin if insr=ANS then k:=popw; k:=argp(k);
for j:= 1 to k div 2 do
begin t:=popw; a:=sp-k+2; store(a,bf(andf,memw(a),t)) end;
end;
ICR,10S:
begin if insr=I0S then k:i=popw; k:i=argp(k);
for j:= 1 to k div 2 do
begin t:=popw; a:=sp-k+2; store(a,bf(iorf,memw(a),t)) end;
end;
XCR, X0S:
begin if insr=X0S then k:=popw; k:=argp(k);
for j:= 1 to k div 2 do
begin t:=popw; a:=sp~k+2; store(a,bf(xorf,memw(a),t)) end;
end;
COM,C08;
begin if insr=C0S then k:=popw; k:=argp(k);
for j:= 1 to k div 2 do
begin store(sp-k+2+j, bf(xorf, memw(sp-k+2%xj), -1)) end
. end;
ROL: begin t:=popw; s:=popw; for i:
ROR: begin t:=popw; s:=popw; for i:

1 to t do rleft(s); push(s) end;
1 to t do rright(s); push{(s) end;

{ SET GROUP ¥
INN,INS:
begin if insr=INS then k:=popw; k:=argp(k);
t:i=popw; if t<O then trap(ESET);
i:= t mod 16; t:= t div 16; if 2%t>=k then trap(ESET);
si=memuw (sp~k+2+2%1); newsp(sp-k); push(bit(i,s));

end;
XSET,SES:

begin if insr=SES then k:=popw; k:=zargp(k);
t:=popw; if t<0 then trap(ESET);
j:= t mod 16; t:= t div 16; if 2%t>=k then trap(ESET);
for j:= 1 to t do push(0);
s:=1; for j:= 1 to i do rleft(s}; push(s);
for j := 1 to k div 2-t=1 do push(d)

end;

{ ARRAY GROUP }
LAR,LAS:
begin if insr=LAS then k:=popa; k:=argx(k);
pushx (memw(k+4) ,arraycalc(k))
end;
SAR,SAS:
begin if insr=SAS then k:=popa; k:=argx(k);
popx (memw(k+4) ,arraycalc(k))
end;
AARR,AAS:
begin if insr=AAS then k:=popa; k:=argx(k);
push(arraycalc(k})
end;

{ COMPARE GROUP }
CMI: begin t:=popw; S:=pOpW;
if s<t then push(-1) else if s=t then push(0) else push(1)
end;
CHP: begin a:=popa; b:=popa;
if b<a then push(-1) else if b=a then push(0) else push(1)
end;
CMD: begin dt:=popd; ds:=popd;
if ds<dt then push(-1) else if ds=dt then push(() else push(1)
end;
CMF: begin rt:=popr; rs:i=popr;
~if rs<rt then push(-1) else if rs=rt then push(0) else push(1)
end;
CMU,CMS 2
begin if insr=CMS then k:=popw; k:=argp(k};
t:=0; j:= 0;
while (§ < k) and (t=0) do
begin a:= mema(sp=j); b:=mema(sp~k=j);
if b<a then t:= =1 else if b>a then t:=1;
ji=j+e
end;
newsp{sp-2*k); push{t);
end;

TLT: if popw < O then push(1) else push{(();
TLE: if popw <= 0 then push(1) else push(Q);
TEQ: if popw = 0 then push(i) etlse push(l);
TNE: if popw <> 0 then push(1) else push(D);
TGE: if popw >= 0 then push(1) else push{(0);

62

TGT: if popw > 0O then push(1) else push(0);

{ BRANCH GROUP 2}
BRF: newpc (pctargn(k));
BRB: newpc(pc-argn(k)};

BLT: begin t:=popw; if popw < t then newpc(pc+argn(k)) end;
BLE: beyin t:=popw; if popw <= t then newpc{(pctargn(k)) end;
BEQ: begin t:=popw; if popw = t then newpc(pct+argn(k)) end;
BNE: begin t:=popw; if popw <> t then newpc{pctargn(k)) end;
BGE: begin t:=popw; if popw >= t then newpc(pc+argn(k)) end;
BGT: begin t:=popw; if popw > t then newpc(pc+argn(k)) end;

ZLT: if popw < O then newpc(pctargn(k));
ZLE: if popw <= 0 then newpc(pc+argn(k));
ZEQ: if popw = 0 then newpc(pc+argn(k));
INE: if popw <> 0 then newpc(pc+argn(k));
IZGE: if popw >= 0 then newpc(pc+argn(k));
IGT: if popw > 0O then neuwpc(pctargn(k));

{ PROCEDURE CALL GROUP }

{ There are four ways to mark the stack. The change in static depth can
be given as an immediate operand or the new static Link can be provided
on the stack. Also, the instruction may switch into alternate context,
or not. Only two of these have mnemonics, i.e. can be used by the prog-
rammer. These mnemonics are MRK and MRS, corresponding to the immediate
and stacked forms respectively. The decision about using alternate con-
text is made by the assembler. The four cases are:

MRK: immediate, normal context
MRX: immediate, alternate context
MRS: stacked, normal context

MXS: stacked, alternate context

>
MRK, MRS, MRX, MXS :
begin if (insr=MRS) or (insr=MXS) then k:=popw; k:=argn(k);
a:= lb; for j:= 1 to k do a:= mema(a-statd);
push(a); push(lb); push(0);
normalmap:=(insr=MRK) or (insr=MRS);
end;
CAL,CAS:
. begin if insr=CAS then k:=popw; k:=argn(k);
a:=pd+pdsizexk; t:= memi(atpdarys); store{sp+2-t-reta,pc);
newpc (memi (a+pdbase)); newlb(sp+2-t); normalmap:=true;
end;
RET,RES:

begin if insr=RES then k:=popw; k:=argx(k);
newpc {mema(lb-retal}); a:=sp~k; b:=Lb-mrksize-2;
newlb(mema (lb~dynd));
for ji= 1 to k div 2 do store(b+2%j,memw{a+2%j));
newsp (b+k) ;

end;

63

{ MISCELLANEOUS GROUUP ¥

BEG,BES: .
begin if insr=BES then k:=popw; k:=argz(k);
if k>=0
then for j:= 1 to k div 2 do push{undef)
else newsp(sp+k);
end;
BLW,BLS:

begin if insr=BLS then k:=popw; k:=argx{k);
t :=popa,; s:=popa;
for j := 1 to k div 2 do store(t-2+2%j,memw(s=2+2%]))
end;
CSA: begin k:=popa; b:=memi{pd+pdsize*memw(k)+pdbase);
t:= popw — memw(k+4); s:==1;
if (t>=0) and (t<=memw(k+6)) then s:=memw(k+8+2*t);
if s==1 then s:=memw(k+2);
if s=-1 then trap(ECASE) else newpc(b+s)
end;
CSB: begin k:=popa; b:=memi(pd+pdsize*memw(k)+pdbase);
t:=popu; i:=1; found:=false;
while (i<=memw(k+4)) and not found do
if t=memw(k+2+4*i) then found:=true else i:=i+1;
if found then s:=memw(k+4+4%i) else si=memw(k+2);
if s=-1 then trap(ECASE) else newpc(b+s);
end;
DUP,DUS:
begin if insr=DUS then k:=popw; k:=argp(k);
for i:=1 to k div 2 do push(memw(sp = k + 2));

end;
EXG: begin t:=popw; s:=popw; push(t); push(s) end;
HLT: begin exitstatus:=popw; halted := true end;

LIN: LlinoCargn(k));
LNI: Lino(memw(0)+1);
LOR: begin i:=k;
case i of Q:push(lb); 1:push{sp); 2:push(hp) end;

end;
MON: ; { MON will not be described here }
NOP: ;
RCK,RCS:

begin if insr=RCS then k:=popa; k:i=argx(k);
if (memw(sp)<memw(k)) or (memw(sp)>memw(k+2)) then trap(ERANGE)
end;
RTT: dortt;
$IG: begin a:=popa; b:=popa; push(uerrorlb); push(uerrorproc);
: uerrorproc:=a; uerrorlb:=b
end;
STR: begin 1:7k;
case i of 0: newlb{popa); 1: newsp(popa); 2: newhp(popa} end;
end;
TRP: trap(popw);

end { end of case statement 2}
until halted;
9999

writeln('halt with exit status:',exitstatus);
end.

64

65

15. APPENDIX 2. EM-1 CODE TABLES

Many programs involved with EM-1 are table driven. Some of these tables
are presented 1in this appendix. The first table contains some constants
describing the compact assembly code format:

sp_fmnem 1
sp_nmnem 149
sp_Llmnem 139
sp_fpseu 150
sp_npseu 30
sp lpseu 165
Sp:}ilbﬂ 180
sp nilbC 60
sp_fest0 O
sp_ncst0 240
sp_ilb1 240
sp_itb2 241
sp_dlb1 242
sp_dlb2 243
sp_dnam 244
sp pnam 245
sp scon 246
sp_rcon 247
sp_cst1 248
sp_cstm 249
sp_cstd 250
sp_Lcon 251
sp_cend 255

The next table gives the numbers of the assembly language pseudo instructions:

ps_bss
ps_con
ps end
ps eof
ps_exc
ps_exd
ps fwa
ps fwc
ps fwp
ps_hol
" ps_ima 10
ps_imc 11
ps_let 12
ps_mes 13
ps_pro 14
ps_rom 15

Noo~NocwVm LN = O

The third table gives the list of EM-1 instructions, sorted alphabetically.
The mnem field gives the 3 character mnemonic of the instruction, the flags

66

field gives various flags as explained below, then follow the number of opcodes
encoded with the instruction in one byte, the base of these minis, the number
of opcodes wherein the highbyte is encoded and the base of these opcodes, and
finally the opcode for all other instructions with that mnemonic. The flag
field contains letters, describing some features of the instructions. Three
ygroups of features are described:

Instruction type (mutually exclusivel:

- Alternate context mark instruction
- Branch instruction

- Call instruction

-~ Operand is offset into global data
- Normal context mark instruction

Faolw

Operand type (mutually exclusive):
x = Only even operands allowed
y - Only 1,2,4,6,8,.... allowed as operands
z - No operands

Encoding information:
s - Escaped opcodes

L - Only the lLong format escaped
o - Minis start at 1, not at O

Now the EM-1 instruction List sorted alphabetically:

NUMBER MNEM FLAGS NMINIS MBASE NSHORT SBASE 0BASE

1 aar xe 0 0 2 138 140

2 aas zs 0 0 0 0 1

3 add 2z o] 0 0 0 129

4 adi L o 0 1 156 2

5 and slxo 1 229 1 4 5

6 ans zs 4] 0 0 0] 6

7 beg Lxo 2 252 1 255 7

8 beg Lbo G 0 1 165 8

9 bes zs 0 0 0 0 16

10 bge Lbo g 0 1 166

11 bgt Lbo 0 4] 1 167 10

12 ble Lbo 0] 1 168 11

13 blm Lx G 0 1 173 17
14 bls zs 0 0 0 0 18

15 blt Lbo 0 0 1 169 12

16 bne lbo 0 0 1 170 13

17 brb tbo 0 0 1 171 15

18 brf lbo 0 0 1 172 14

19 cal lc 122 134 1 174 19

20 cas Z5¢C 0 G 0 0 20

21 cdi zs C 0 0 0 21

22 cdf zs] 0 0 0 100

23 cfd zs 0 v 0 0 101

24 cfi z 0 0 0 0 175

25 cid zs 0 0 0 0 22

cif
cmd
cmf
cmi
cmp
cms
cmu
com
cos
csa
csh
dad
ddv
dec
dee
del
div
dmd
dmu
dsb
dup
dus
exg
fad
fdv
fef
fif
fmu
fsb
hit
inc
ine
inl
inn
ins
ior
i0s
Lab
Lae
Lai
Lal
Lar
las
Lde
Ldf
Ldl
Lex
Lin
Lnc
Lmi
Loc
Loe
Lof
Loi
Lol

43

zs
zs
slx
slx
2s

25
s

slxe

slx

zZs
25
Zs

slxo

25
Z3

Zs

Zs

zs

xXe

Lx
zs

slxo

Zs

xe
sly

xe
zs
xe
six
Lx
slo

lo

xe
xe

Ly
Lx

S ONWOO L, ONNOCOCOONO OO FCOoOVCOoO0O0O00000C 0000000 C0O000C0D0O0OOO0O00O0CO00O0
oW

o

o]
o

DOOCJ‘OO-"DDGOCJ—‘DOOOOOOODDOAOODOODDOOODGODODDDDD
o0

SN WO
N
- o

o
- O~

123

(o]
0

E e LD AN OD e S e N ON S 2000, 0L, L0000 00 0C 000, 0000000000, 0000 OQ

=~ \i

P R
0 O 0
= W o

oo~ O
i

113
115

135
145
155
53
195
38
34
90

128
55

117

120
121
122

124
- 125
126
127
128
129
130
131
132
133
134
135

Lop
Lor
Los
isa
mod
mon
mrk
mrs
mrx
mul
mxs
neg
nop
nul
pad
psh
rck
rcs
res
ret
rol
ror
rtt
sai
sar
sas
sde
sdf
sdl
ses
set
shl
shr
sig
ste
stf
sti
stl
stp
str
sts
sub
teqg
tge
tgt
tle
tlt
tne
trp
Xor
X0S
zeq
zge
zgt
zle

Lx
sl
zs
sl

zs
slm
zZsm
sla

Zs4a

Z5

zs
zs
xe
zs
zs
six
zs
zs
zs
sly
xe
Zs
Lxe
slx

six

OO0 O0OOoOoOO0OOOoOLOOO - NWODODODODOCOCOO0OoOO0OODOONVNDOOOOCOoOCOOOPFr OO0 OOCOMN

o
n

Ll
[o B

GDOO(:DODDODODDDSDDDDDDOODONONOOGCDO-—\
0

[I o i e - 3 e I e T s o J e e Y e J e) v

_S e L O, o000 00000 =, =S NO0O00O0 "0, 20N, 00000000000 C 2020020 ==

164
58

104

-

[V}

DDDO‘DD;DDOOODC‘JO\OU\C‘?O
(%]

NMNNORROCODOOOoOO0OOO
(SN SN o~
o~ O

239

68

69

136 zlt Lbo 0 0 1 240 98
137 zne Lbo 0 0 1 241 99
138 zre Lxe 0 0 [242 92
139 zri Lx 0 v 1 243 93

The above three tabltes, together with an optimizer table, are maintained
on a single file, which can be read in by all the involved programs. These
tables are separated then by an empty line. See the initialize routine in ap-
pendix 1.

The table above results in the following dispatch tables. Dispatch tables
are used by interpreters to jump to the routines implementing the EM-1 instruc-
tions, indexed by the next opcode. Each Lline of the dispatch tables gives the
routine names of ~eight consecutive opcodes, preceded by the opcode number of
the first opcode of that Line. Routine names consist of an EM-1 mnemonic fol-
Lowed by a suffix. The suffices indicate the encoding used. The following
suffices exist:

e 4 instruction without operands

-l instruction with 16-bit operand

. s<num> shortie with <num> as high arder byte
<Lnum> mini with <num> as operand

First the dispatch table for the 256 primary opcodes:
0 escape; loc.D; loc.1; loc.2; loc.3; Loc.4; loc.5; Lloc.é
8 loc.7; loc.8; tLoc.9; Lloc.10; loc.11; Lloc.12; Loc.13; loc.14
16 loc.15; toc.16; loc.17; loc.18; loc.19; loc.20; loc.21; loc.22
2h Loc.23; loc.24; loc.25; loc.26; loc.27; Lloc.28; loc.29; Loc.30
32 loc.31; loc.32; loc.sO; loc.sl; loc.l; lnc.1; Llnc.sO; lol.O
4G tol.1; lol.2; Llol.3; Llot.4; Llol.5; Llok.§; lol.7; Llol.8
48 tol.9; Llol.10; Llol.11; lol.12; LloL.13; lol.14; Llol.15; lol.sO
56 loe.0; loe.1; loe.2; Lloe.3; Lloe.4; loe.5; Lloe.6; loe.7
64 loe.8; loe.9; Lloe.10; loe.11; loe.12; Loe.13; loe.14; lLoe.15
72 Loe.16; Loe.17; loe.18; loe.19; loe.s0; loe.s’; loe.s2; loe.s3
80 Lloe.l; lof.1; Llof.2; tof.3; Llof.é4; Llof.5; lof.6; Llof.?
88 lof.8; lof.9; Llof.sG; Lof.l; Llal.0; Lal.i; lal.2; Llal.3
96 lal.4; lal.5; Llal.6; Llal.sO; lae.0; Llae.1; lae.2; Llae.3
104 tae.4; Llae.5; lae.6; lae.7; lae.8; Llae.9; Llae.10; lae.l
112 lae.12; lae.s0; lae.s1; lae.sZ; lae.s3; lae.s&; Llae.s5; Lae.sé
120 lae.s7; lae.s8; lae.l; Lloi.0; Lloi.1; loi.2; loi.3; Lloi.4
128 Loj.s0; add.z; sub.z; mul.z; div.z; inc.z; dec.z; lar.sO
136 lar.s1; lar.l; aar.s0; aar.s1; aar.l; lex.1; lex.2; rck.sO
144 rck.l; lde.s0; lde.st; lde.l; Ldl.0; LldL.1; tdl.2; LldL.3
152 kdl.4; dl.5; Lldl.6; Ldl.s0; adi.sO; cif.z; jor.1; dor.2
160 dor.3; dor.4; Llop.0; lop.1; Llop.sO; beg.sD; bge.s0; bgt.s0
168 Dble.s0; blt.s0; bne.s0; brb.sO; brf.s0; blm.s0; cal.s0; cfi.z
176 emf.z; ¢mi.z; csa.z; csb.z; dup.1; fad.z; fsb.z; fmu.z
184 fdv.z; Llni.z; ine.sC; ine.l; int.0; inl.1; inl.2; inl.3
192 dnl.4; inl.sO; inn.s0; Llin.s0; lin.l; mod.z; neg.z; ret.0

200
208
216
224
232
240
2438

ret.l;
ste.s1;
sti.s0;
stl.7;
tgt.z;
zlt.s0;
mrx.0;

the Llist

hit.z;
beqg.l;
bes.z;
cms.z;
dmu.z;
dus.z;
lal.L;
Lol.L;
mrx.l;
sde.l;
stiul;
X0S.2;
zgt.l;
lsa.sO;
illins;
sai.sO;

sar.sD;
ste.l;
stl.0;
stl.8;
tle.z;
zne.sO;
mrx.1;

sar.sl;
stf.1;
stl.1;
stl.9;
tLteZ;
zre.s0;

nrx.2;

sar.l;
stf.2;
stl.2;
stl.s0;
tHe.z2:
zrl.s0;
mrx.3;

of secondary opcodes:

aas5.2;
bge.l;
blm.l;
cmu.s0;
ddv.z;
exg.z;
las.z;
lop.l;
mrs.z;
sdf.s0;
stl.l;
nop.z;
zle.l;
lsa.l;
fef.z;
sai.l;

adi.l;
bgt.l;
bls.z;
cmulLl;
dee.sO;
inl.l;
ldf.s0;
lor.s0;
MXS+2;
sdf.l;
str.sQ;
illins;
zlt.l;
lor.l;
fifaz;
sig.z;

pad.z;
ble.l;
cal.l;
com.sQ;
dee.l;
inn.t;
ldf.l;
los.z;
ret.s0;
sdl.l;
sts.z;.
shr.z;
zne.l;
str.l;
Lai.s0;
irp.z;

sde.s0;
stf.3;
stt.3;
stp.s0;
zeq.sl;
mrk.0;
beg.1;

and.s0;
blt.i;
cas.z;
com.l;
del.s0;
ins.z;
ldl.L;
mon.z;
ret.l;
ses.z;
cmp.z;
zre.l;
cdf.z;
lnc.l;
Lai.l;
illins;

sdl.s0;
stf.s0;
stl.4;
and.1;
zge.s0;
mrk.1;
beg.2;

and.l;
bne.l;
cdi.z;
c0S.2;
del.l;
ior.s0;
tex.s0;
mrk.s0;
rol.z;
set.s0;
illins;
zrlals
cfdu«z;
stp.l;
psb.z;
illins;

shl.z; ste.sO
sti.0; sti.l
stl.5; stl.é
teq.z; tge.z
zgt.s0; zle.sO
mrk.2; mrk.3
peg.3; beg.s0

ans.z; beg.l
brf.l; brb.l
cid.z; cmd.z
dad.z; dsb.z
dup.sQ; dup.l
ior.l; dos.z
lex.l; Loi.l
mrk.l; mrx.sO
ror.z; sas.z
set.l; stf.l
xor.sO; xor.l
zeg.l; zge.l
dmd.z; res.z
illins; illins
rcs.z; rtt.z
illins; illins

70

16. APPENDIX 3. AN EXAMPLE PROGRAM

1 program example(output);
2 {This program just demonstrates typical EM-1 code.}
3 type rec = record rl1: integer; r2:real; r3: boolean end;
4 var mi: integer; mx:real; r:rec;
5
6 function sum(a,b:integer):integer;
7 begin
8 sum := a + b
9 end;
10
11 procedure test{var r: rec);
12 Label 1;
13 var 1,j: integer;
14 X,y: real;
15 b: boolean;
16 c: char;
17 a: array[1..100] of integer;
18
19 begin
20 jo=1;
21 i =3 %3+ 6;
22 x = 4£.8;
23 y = x/0.5;
24 b = true;
25 c &= 'z2';
26 for i:= 1 to 100 do alil := i * 1i;
27 r.rl 1= j+27;
28 r.rd ¥= b;
29 r.rz := xt+y;
30 i = sumCr.rl, aljl);
31 while i > 0 do begin j := j + r.rl; 1 :=1 -1 end;
32 with r do begin r3 :=b; r2 := x+y; rl1 := 0 end;
33 goto 1;
34 1: writeln(j, i:6, x:9:3, b)
35 end; {test}
36 begin {main program}
3 mx = 15.96;
38 mi := 99;
39 test(r)

40 end.

71

The EM-1 code as produced
have been added manually.

hol
pro
fwe
beg
tin
Ldl
add
ret
let
end

mes 3,218,100

mes
mes
mes
mes

542
sum,4, 0
.1

2
]
0
2
.1,2

3,16,0
3,14,0
3,4,0
3,2,0

.2 rom 1,99,2

pro
fuwc
bey
Lin
loc
stl
Lni
Loc
lol
mul
Loc
add
stl
tni

test,2,1

.3
218
20
1

4

3
4
6
2

4 orom 4.8

Lde
sdl
Lni
Ldl

A
6

6

.5 rom 0.5

lde
fdv
sdtb
Ini
Loc
stl
Lni
loc
stl
Lni
Loc
stl
2
Lol
dup
mutb

-]
10

1
14

122
16

i)
2

LR TR TEL T SV Y

N NE N N s wr oW

e W

LY

72

by the Pascal-VU compiler is given below. Comments
Note that this code has already been optimized.

Uninitialized externals and bufs occupy 542 bytes
Procedure sum; 4 bytes of parameters & externals
.1 will be defined Later

Ask room for function result

Code from source lLine 8

Load two locals (a and b)

Add them

Return result

Now define .1

End of procedure

compiler temporary not referenced indirect

the same is true for i, j, b and ¢ in test

the optimizer moves these pseudos to the

start of the procedure

Descriptor of array all
the compiler exports all level O procedure names

Room for local variables
Maintain source Line number

;) =1

e N N

b1}

e

AT T

i

LTI

Was a Lin 21 prior to optimization

i =3 %3 +6
Was a Lin 22 prior to optimization
Assemble 4.8 in external area

X 1= 4.8
Was & Lin 23 prior to optimization

y = x/0.5
Was a Lin 24 prior to optimization

b = true
Was a lin 25 prior to optimization

. o1z V70

Was a Lin 26 prior to optimization

for i:= 1

i*i

Lal
Lol
sar
Lol
loc
beg
inl
brb

(9]

Lin
Lol
Loc
add
stp
Lni
Lol
Lol
stf
Lni
Ldl
Ldl
fad
Lol
sdf
Lni
mrk
Lop
lal
Lol
Lar
cal
stl

Lin
tol
zle
Lol
Lop
add
stl
del
brb

Lin
-lol
stl
Lol
Lol
stf
Ldl
Ldl
fad
Lol
sdf
Loc

sum

-

o~V

SN

32
218

218

10

218

e % W W

e N

e Wi we W

N NE N

s

73

alil :=

to 100 do

Increment i and Loop

j+ev

r.rt =

Was a Lin 28 prior to optimization
b

r.r3 :=

Was a Lin 29 prior to optimization
Xty

r.re ==

Was a Lin 30 prior to optimization

Mark for subsequent cal
r.ri

aljl
cal now
i o=

while i > 0 do

ré :i= x+y

stp
Lni
1
Lin
mrk
Lae
lol
cat
mrk
Lae
lol
Loc
cal
mrk
Lae
LdL
Loc
Loc
cal
mrk
Lae
Lol
cal
mrk
lae
cal
let
ret
end
pro
fwa
mrk
Lae
Lae
cal
fwc
Lin

218

34
0
14
4

£
b |
s

oo =)
o~

Wsi

Woo
=d

_wrf

0

14

14
_wrb
Q

4
_win
.3,218
G

_main,0,1
)

0

.6

0

ini
7
37

.8 rom 15.96

Lde
sde
Lni
Loc
ste
Lni
mrk
Lae
cal
let

.6 con 2,-1,14

mrk
Loc
cal
mes
mes
eof

test
By

0

0
_hlt
4,40
o

L

AT TR TEE TI T

T4

rt == 0
Was a Llin 33 prior to optimization
Note the absence of the unnecessary goto

Address of output structure

Write integer with default width

Write integer width 6

Write fixed format real, width 9, precision 3

Write bootean, default width

Writeln

Return without Leaving anything on the stack
Main program

Description of external files

Base of HOL area to relocate buffer addresses
Initialize files, etcaus

X = 15.96
Was a Lin 38 prior to optimization

mi = 99
Was a lin 39 prior to optimization

Address of r

Description of external files

Normal exit

Cleanup and finish

Length of source file is 40 lines
Reals were used

End of this input module

75

The compact code corresponding to the above program is listed below. Read it
horizontally, Lline by Line, not column by column. Each number represents a
byte of compact code, printed in decimal. The first two bytes form the magic
word.

172 000 159 250 030 002 164 245 003 115 117 109 004 001 157 242
001 007 002 073 008 071 000 003 100 002 162 242 001 002 152 163
003 218 100 255 163 003 016 D00 255 163 003 014 000 255 163 003
004 000 255 163 003 002 000 255 242 002 165 001 099 002 255 164
245 004 116 101 115 116 002 001 157 242 003 007 218 073 020 076
001 118 004 075 076 003 080 004 090 076 006 003 118 002 075 242
004 165 247 003 052 046 056 255 069 242 004 109 006 075 071 006
242 005 165 247 GO03 048 046 053 255 069 242 005 050 109 010 075
076 001 118 014 075 076 122 118 016 075 G766 001 118 002 182 080
002 046 002 090 066 018 080 002 105 242 002 080 002 076 100 008
003 058 002 017 002 183 073 027 080 004 076 027 003 119 00O 075
080 014 080 000 116 006 075 071 006 071 010 049 080 000 108 002
075 087 001 081 000 066 018 080 004 067 242 002 019 245 003 115
117 109 118 002 184 073 031 080 002 135 005 G80 004 081 000 003
118 004 041 Q02 D17 004 185 073 032 080 000 118 218 080 014 080
218 116 006 071 006 071 010 049 080 218 108 Q02 076 000 119 218
075 181 073 034 087 000 064 014 080 004 019 245 004 095 119 114
105 087 000 064 014 080 002 076 006 019 245 004 095 119 115 105
D87 000 064 014 071 006 076 009 OY6 003 019 245 004 095 119 114
102 087 000 064 014 080 014 019 245 004 095 119 114 098 087 000
064 014 019 245 004 095 119 108 110 162 242 003 218 100 GO0 152
164 245 005 095 109 097 105 110 000 001 156 242 006 D87 D00 064
242 006 064 D00 019 245 004 095 105 110 105 157 242 007 073 037
242 008 165 247 005 049 053 046 057 054 255 069 242 008 107 002
0r5 076 099 115 00C 075 087 000 064 006 019 245 004 116 101 115
116 162 242 007 000 242 006 151 002 250 255 255 014 255 087 000
076 OO0 019 245 004 095 104 108 116 163 004 040 255 163 005 255
153

The portable EM-1 Lload format for this example program, as produced by the EM-1
assembler/loader 1is as follows. The words of the load file are printed in oc-
tal. The first two lines form the 16 word header. The Llibrary routines are
appended to the program proper.

007254 000021 GCODOO 0000C2 00COCO 000000 000000 0000OC
002636 000015 00GO34 000007 000050 000000 000000 000000
141774 112010 144201 066777 012303 155402 002271 101451
100407 134732 013222 001715 113671 014222 146670 134405
160002 021271 160572 001271 024332 101664 004543 145050
024023 062042 001645 125675 141420 024433 100434 000344
027271 152047 113671 132631 000047 000511 172671 061642
024411 011610 000256 141732 024037 004757 121051 155601
022000 125401 141416 023440 066743 033456 152155 114627
033665 000155 000511 162001 134555 021303 067770 104051
067770 003450 172211 113557 002012 002256 067770 105456
067770 143614 071370 064034 141616 111045 146032 134405
061442 002317 174271 103553 000770 177617 106405 000013
000172 177407 023776 023320 060134 000563 (00334 001444

170052
000344
007234
023115
001002
(00002
060333
110450
050447
023623
023770
023447
121332
021004
000137
024252
006354
001234
020361
002054
001754
124002
000573
0005706
0oo570
005453
061403
003354
003400
050042
027337
074000
060460
G27042
021010
166173
174030
001656
125000
21305
166335
153334
023770
143423
012656
46162
151047
023770
022000
174326
023447
100044
162777
023664
116047

121025
116047
040044
132122
072044
024664
001444
011653
050044
023526
143623
007234
000050
000146
000570
025162
000135
153734
000736
036000
000047
061413
061453
034162
005453
132204
156010
116050
177377
001650
003354
126000
074000
000141
060460
0661006
061447
177707
174010
100460
125402
623770
143627
124226
024307
024406
174307
025235
125403
111447
021121
162400
151047
002725
023416

122445 024010
154402 015653
071252 000437
166333 024437
060010 033042
003730 177307
170052 057015
000047 143400
162400 040044
101125 023664
023774 023720
121332 000050
166524 174021
000573 151047
024162 000137
000137 000570
000163 027442
026562 000137
001047 0DGO716
006361 125005
027173 101055
114021 000004
000621 000003
002634 034332
021305 100460
166335 125402
000137 000563
155001 005253
021253 000047
050042 172335
026442 000141
026430 166173
060000 004044
000170 004301
074000 125400
071400 126000
G26011 004543
061405 156010
071047 003505
000052 177402
024027 005355
061452 025010
023770 001135
025002 172333
004354 023770
143631 023770
006447 023626
101051 025334
000016 001044
010653 174307
162777 125042
002361 060042
023642 000124
021356 116047
023526 002523

000242
023115
000402
007234
036000
023115
071400
050447
125000
003325
050447
170124
111047
177707
000570
023515
001252
000570
012054
000411
156664
170474
177402
156664
00GG50
024027
155664
112451
143400
025625
000170
061006
167457
167057
000023
021002
072400
132050
112451
132377
026442
072400
114451
113224
044562
113013
022121
005757
170051
116447
002245
075400
162003
162016
036000

162003
132121
001044
170044
001761
156174
132001
100044
005406
003757
177442
024035
051447
061437
021047
132122
155450
027562
036000
000455
124437
025403
153377
016754
177402
000137
015354
072400
040777
004143
167057
071400
125402
000016
002044
060460
112452
166735
025707
153334
000052
112451
172307
007656
(24405
050447
oooo20
121041
056413
023770
044042
176307
023400
023400
002354

126000
166333
024400
071252
126002
023115
166332
162400
153242
023401
021345
053047
000007
156010
162740
000715
010253
003001
012361
012054
017002
001645
010543
036162
132377
000570
155051
002403
004543
003543
021010
126000
025430
002044
170053
074000
172307
024021
156706
005453
177402
024307
024624
172307
143631
010044
023636
174326
071400
143623
075400
050447
023525
023526
122405

000403
024421
003730
001042
022003
001234
174003
021754
023770
002725
125252
001400
166074
076072
060042
075450
025226
036000
002542
036000
025735
000047
000137
000137
153332
162001
075450
036000
025736
007256
060460
021002
003357
170053
026422
125400
003624
100044
005453
132204
132377
153242
127264
003224
023770
117000
143722
111447
121000
150047
050447
167444
101124
002725
022411

76

053047
056370
124517
112235
003543
161520
003543
031601
50234
125400
001046
013653
006343
047562
015757
161664
031520
005743
153063
075414
170454
161401
154051
000417
027060
000016
000630
020072
067562
020156
100004
000000
000600
000004
000602
000002
000012
000006
000002
060006

002245
002600
021003
167660
015256
000414
015256
001000
000063
126025
004715
071051
162055
115710
112364
021015
052000
075463
071063
031605
031020
125413
0oooo2
100003
000065
100007
000002
000000
071562
067563
031455
060546
160001
001415
001626
000631
002100
001544
001643
002613

064042
117001
155516
001011
000315
115635
073622
177777
167524
000435
116402
000117
031403
000013
116413
100460
004756
100406
060117
126326
047562
000475
G01103
000601
032461
047111
100035
062457
000600
071165
033462
071554
027061
00GG0oGs
000coo
006602
000010
000010
00oc0o2
000006

075400
177710
003363
002344
116401
136007
005665
161664
061453
112235
166660
161403
047562
167124
061667
005543
071001
153063
167524
021034
052000
153062
000224
000143
034456
052520
020072
061564
074170
062543
034066
000145
000060
001423
000224
000544
001660
001562
001736
002626

174307
024410
162001
116401
003633
022354
133635
153014
000014
166660
115641
026014
052000
071044
127011
074000
116117
075463
031416
031461
002357
047562
162161
000002
000066
000124
600000
070057
074170
066040
000000
000050
000004
000012
000004
000602
000004
006006
000614

100134
001355
071004
133224
166260
115764
132257
003301
000163
112027
146411
003361
003755
116117
146432
125400
153117
034442
001000
122326
030042
112310
000002
160003
100003
052517
064546
057543
005170
067151
100006
160001
000000
001212
0006253
000470
001535
001553
002107

001005
001363
161517
000315
g71110
005407
006743
025653
005543
116413
(00000
0264463
071001
031120
115400
071052
047562
033650
10rvT?
102403
153062
074622
001103
027064
000002
050124
062554
072162
000000
020145
071164
027060
000002
000004
000002
000002
000002
000006
000012

144236
021051
000413
112364
116117
134235
030042
047562
074000
000267
003044

001400

153117
052000
127411
116117
031710
030042
161664
001744
116062
071000
000004
000070
Verrey
052125
000040
071145
067440
060000
062565
031460
000006
001575
000427
001773
001727
001603
002071

77

