
-106

Does anybody out there want to write HALE of a compiler ?

Andrew S . Tanenbaum
Ed Keize r

Hans van Stavere n

Vakgroep Informatic a
Vrije Universitei t

Postbus 716 1
1007 MC Amsterdam, The Netherland s

University researchers love nothing better than to invent a new programmin g

language . The trouble is, unless the language is only intended for mental exercise ,
the next step is writing a compiler for the new language, which is a lot of work .

Typically one makes a prototype compiler that runs slowly and produces awful cod e

for one particular CPU that happens to be available . Once the project succeeds ,

there is often a need for a better quality compiler or compilers for other machines .
This step is even more work and even less fun . Over the past few years we hav e

developed a set of tools that greatly eases the job of producing good quality port -
able compilers quickly .

	

The purpose of this paper is to discuss the system,

	

tel l

what its current status is,

	

and encourage other university researchers to tak e
advantage of it .

The system, called the Amsterdam Compiler Kit (ACK) has been described in som e

detail in [1-4] . We will just give a brief overview here . The tool kit has 8 com-
ponents :

- The preprocessor (does macro expansion, conditional compilation, etc .)

- The front ends (translate from source code to our intermediate code, EM I

- The peephole optimizer (does local optimization on the EM code)
- The global optimizer (does data flow analysis and global optimization on EM)
- The back end (translates from EM to target assembly code)
- The target machine optimizer (does machine-dependent peephole optimization)

- The assembler-linker (assembles target program to binary with libraries)
- The utility package (test programs, libraries, documentation, etc .)

The first seven parts are cascaded in the manner of UNIX* filters, with source pro -
grams coming in the front and binary programs coming out the back . The nice thin g

about the tool kit is that it uses the same intermediate code for all languages an d

machines, which means that once one has developed the driving tables for the bac k

end and assembler for some set of machines, e .g ., POP-11, VAX, 8086/8088, and 68000 ,
by writing one new front end, the new language automatically has good quality com-

pilers for all four machines . Also, the peephole and global optimizers are bot h
language- and machine-independent, which means that they can be used with an y

language and machine combination .

Basically, EM is an UNCOL, which is an old idea .

	

What we have done is work ou t
all the details to produce a highly efficient and useable system .

	

The state of th e

system as of April 1984 is as follows :

*UNIX is a Trademark of Bell Laboratories .

SIGPLAN Notices, V19 #8, August 1984

http://crossmark.crossref.org/dialog/?doi=10.1145%2F988241.988252&domain=pdf&date_stamp=1984-08-01

-107 °

PDP-11/44 with Version 7 UNIX .

VAX-11/750 with Berkeley 4 .1 UNI X

68000 systems from Altos, Bleasdale and Philips with UNIX System II I

It probably can be easily booted to other systems . We intend to try to squeez e

onto an IBM PC-XT in the future .

A UNIX tar tape containing all the programs and tables that are marked "fin-

ished " above, all the documentation and instructions for installing everything (a

total of 6 megabytes!) is now being licensed to universities holding a UNIX sourc e

license from Western Electric .

	

We hope that researchers involved in programmin g

language design and compiler construction will find this useful for their work . I n

particular, we hope that other people will make new front ends and tables for th e

back end and assembler, thus increasing the mass and utility of the whole kit .

Our experience is that making a new front end is the hardest part,

	

typicall y

taking about 6-12 man-months .

	

Any standard compiler writing tools, such as Yacc ca n

he used .

	

The front end writer ' s job is considerably eased by the design of the E M

code, which is a simple stack machine, with no registers, condition codes etc . (O f

course the back end has to worry about these things, but back end tables for th e

most popular machines are already finished or in progress .) A back end table for a
new machine is typically about 2 man-month ' s work .

	

A table for the universal assem -

bler should take a good programmer less than a week . (The record is the 6502 asse m

bier, which was done in less than a day .) The quality of the object code produced i s

roughly comparable to that of pcc on the PUP-11 and cc on the VAX (which is actuall y

pcc in sheep ' s clothing) .

For information about how to obtain the tool kit, contact us .

	

(Inquiries fro m

companies are also welcome .)

Acknowledgment s

We would like to thank Henri Dal, Ceriel Jacobs, and Johan Stevenson for thei r

contributions to the project .

Reference s

(1] Tanenbaum, A .S ., Van Staveren, H ., Keizer, E .G ., and Stevenson, J .W . : "A Practi-

cal Tool Kit for Making Portable Compilers," EACH, vol . 26, pp . 654-660, Sept .

1983 .

(2] Tanenbaum, A .S ., van Staveren, H ., Keizer, E .G ., and Stevenson, J .W . : " Descrip-

tion of a Machine Architecture for Use with Block Structured Languages," Repor t

IR-81, Wiskundig Seminarium, Vrije Universiteit, 80 pp ., Aug . 1983 .

(3] Tanenbaum, A .S ., van Staveren, H . and Stevenson, J .W . : "Using Peephole Optimiza-

tion on Intermediate Code," ACM Trans . Prog . Lang . and Syst ., vol . 4, pp . 21-36 ,

Jan . 1982 .

[4] Tanenbaum, A .S . : " Implications of Structured Programming for Machine Architec-

ture, " CALM, vol . 21, pp . 237-246, March 1978 .

-108-

Preprocessor : finished (standard UNIX C preprocessor)

Front ends :

Pascal : finished (2-byte integers)
C : finished (2- or 4-byte integers)

Basic : in final test phas e

Plain : in progress (in collaboration with Prof . A . I . Wasserman, UCSF)

Algol 68 : in progress (being done by Charles Lindsey, Manchester)

DAS : (Delft Ada Subset- being done by Jan van Katwijk at TN Delft)

Various other languages are currently under discussio n

Peephole optimizer : finishe d

Global optimizer : almost finishe d

Back end : Program is finished (new version with more checking in progress)

DEC POP-11 table : finished

DEC VAX table : finishe d

Intel 8080 table : in progres s

Intel 8086/8088 table : finishe d

Mostek 6502 table : in final test phas e

Motorola 6809 table : in progres s

Motorola 68000 table : finishe d

National Semiconductor 16032 table : to be started shortl y

Zilog Z80 table : in progres s
Zilog Z8000 table : in final test phas e

Target optimizer : Scheduled to be started in May 198 4

Universal Assembler/Linker : Program is finishe d

Intel 8080 table : finishe d

Intel 8086/8088 table : finishe d

Mostek 6502 table : finished

Motorola 6800 table : finished

Motorola 6809 table : finished

Motorola 68000 table : finished

National Semiconductor 16032 table : in final test phas e

Signetics 2650 : finished

Zilog Z80 table : finishe d

Zilog Z8000 table : finishe d

EM Interpreters :

DEC POP-11 : finished

Motorola 68000 : in progres s

Zilog Z80 : finishe d

Miscellaneous :

EM assembler (translates EM to binary for interpretation) : finished

EM, Pascal, and C test programs : finished

Various libraries and utility programs are also provide d

The tool kit is highly modular, for example, the assemblers can be used separatel y

as general cross-assemblers without any front end, etc .

	

Except for the Pascal fron t
end, which is in Pascal, the tool kit is written almost entirely in Yacc and C .

	

I t

is known to run on the follow systems :

