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I. iNTRODUCTiON 

When designing a new (possibly virtual) machine, the instruction set 
architects are faced with two sets of design decisions: what should the in- 
structions do, and how should they be encoded. The former decisions are 
still highly intuitive, depending on the skill and experience of the 
designers, but the latter decisions can be approached more methodically. 
it is the purpose of' this paper to present a method for assigning bit pat- 
terns to instructions so that they will be efficient with respect to both 
memory usage and execution speed. 

Tne process of choosing the instruction set can be Dest done itera- 
tively. A tentative instruction set is selected based on the machine's in- 
tended use. Then preliminary compilers are written, and sample programs 
are compiled. Instruction sequences that are heavily used may be combined 
into one instruction. For example, if the sequence 

PUSH X 
PUSH I 

ADD 
POP X 

frequently occurs (on a stack machine), it may well be worth while intro- 
ducing a new instruction iNCREMENT X. The iteration process continues un- 
til there are no more suitable candidates for replacement by a single in- 
struction. 

Let us assume that the set of instructions has now been chosen. At 
this stage of' the design, the assembly language mnemonics (e.g. ADD, JUMP) 
have been decided upon, but the binary bit pattern used to represent each 
one is still an open question. There are two (confiictlng) goals the 
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binary encoding should strive for: 

I. The instructions should be easy to decode quickly. 
2o The instructions should occupy a minimal amount of space. 

The first goal relates to the ultimate execution speed of the program, and 
the second relates to the program's size. 

Most existing computers have a plethora of instruction formats, each 
one comprised of a substantial number of short bit strings, often of 
differing length. The underlying hardware, microprogram or interpreter 
must determine the correct format for each instruction fetched, and then 
must extract all the little bit fields. This approach tends to complicate 
the hardware and microprogram, and slow down execution speed. We consider 
it desirable for all fields within an instruction to be equal to the basic 
storage unit of the computer (usually 8 bits for most minis and micros). 

The second goal is important because memory is still a relatively ex- 
pensive component of computer systems, especially with microcomputers. In 
addition, smaller programs require less (floppy) disk space to store, and 
can be transmitted faster over data communication lines. 

2. ENCODING METHODS 

There are three general methods of encoding the instructions in binary 

form: 

I. Parsed - each field in the instruction is coded independently. 
2. Integrated - the fields are not coded independently. 
3. Mixed - some fields parsed and some integrated. 

In the parsed form, the binary instruction is divided up into fields, one 
for the opcode, and one for each operand. Each field has a fixed size and 
occupies a fixed position within the instruction. For example, the PDP-11 

instruction MOV R0,RI has five fields: 

Bits 12-15: opcode 
Bits 9-11: source addressing mode 
Bits 6- 8: source register 
Bits 3- 5: destination addressing mode 
Bits 0- 2: destination mode 

Parsed instructions are executed by having the microprogram first extract 
the opcode. Depending on the opcode and possibly on the little fields fol- 
lowing it, the operands are then fetched. Finally a branch is made to the 
appropriate microcode routine to carry out the instruction. Usually there 
is a one to one mapping from the opcodes onto the microprogram routines 

that carry out the instructions. 
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Thus the advantage of the parsed form is the relatively small number 
of microprogram routines needed to carry out the interpretation: only one 
per instruction type. The disadvantage is the complexity of manipulating 
all the little bit fields. 

The integrated form, in contrast, does not have separate fields for 
the opcode and the various operands, instead, each combination of opcode 
and operands is simply assigned a binary number. For example, PUSH 2, JUHP 
6, ADD, PUSH 7, and JUMP 10 might be assigned the machine representations 
0, I, 2, 3, and 4 respectively. This method is described in [I]. 

The integrated form has two major advantages over the parsed form. 
First, the microprogram can use the binary instruction to index into a 
table of microroutines, each of which knows what its operands are without 
having to extract any bit fields from the instruction. Second, it is very 
easy to assign shorter codes to the more common opcode-operand combina- 
tions, and longer codes to the less common ones. The principle disadvan- 
tage is the exponential explosion in the number of microroutines needed. 
If there are, say, 64 instruction types, each having a 16 bit address, the 
integrated form requires 64 * 65536 > 4 million microroutines. 

The mixed form attempts to combine the advantages of both systems. 
Some machine instructions correspond to a specific opcode-operand combina- 
tion, while other machine instructions indicate only the opcode, with ex- 
plicit operands following. Others may have some fields coded one way, and 
some fields coded the other way. For example we might have a mixed form 
based on the 8 bit byte as follows: 

First byte # Bytes Meaning 
0 I PUSH 0 
I I PUSH I 
2 I PUSH 2 
3 I POP 0 
4 I POP I 
5 2 PUSH (second byte indicates address, 3-259) 
6 2 POP (second byte indicates address, 2-258) 
7 I ADD 
8 I SUB 
etc. 

The hard part is to determine which instructions should be encoded in the 
integrated form, and which in the separate opcode-operands form. Encoding 
all instructions in the parsed form keeps the number of microroutines 
manageable, but results in a slow machine with large programs. Encoding 
all instructions in the integrated form produces a fast machine with small 
programs, but is obviously infeasible due to the huge microprogram re- 
quired. In [I] the decision to encode some instructions in integrated form 
and others in parsed form was based on intuition; below we show how to in- 
vestigate the possible tradeoffs systematically. 
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3o METRICS FOR CODE SiZE 

Before proceeding with the algorithm, it is useful to first investi- 
gate some theoretical encoding methods, in order to provide a basis for 
evaluating actual instruction sets. When the instructions are encoded us- 
ing the integrated method using a frequency dependent code, the results are 
clearly better than the parsed form with its fixed size fields, so we will 
not consider the latter any further. Assume that there are N opcode- 
operand combinations, In, I~, ... I,~, with known (i.e. measured) occurrence 

! L ~ ~ . 
probabilities ~, P^, ... P... As metrlcs we will consider an information 

theoretic method and Huffman coding. 

According to the noiseless coding theorem [3], a code is minimal if an 
instruction whose probability of occurrence is P is assigned a binary code 
of length log2P bits. Using this method we find the mean instruction 

length to be: 

N 

i~IPi l°g2Pi 

Thus we now have a lower bound against which all coding schemes can be com- 
pared. In practice the noiseless coding theorem does not help much, since 
most instructions will be assigned a fractional number of bits. Rounding 
each one upward to the nearest integer gives a code that is no longer 

minimal. 

To get around the problem of fractional length instructions, we can 
use Huffman's well known encoding method [2]. Although better, this method 
too has problems due to the variability of the instruction lengths. In- 
structions would straddle byte or word boundaries mercilessly, making their 
extraction very painful. Furthermore, analyzing Huffman coded instructions 
to see where the instruction boundaries are requires scanning the bits 
serially looking for patterns. The whole process is so time consuming that 

it is not feasible. 

However, Huffman coding can also be done using radix 256 (or any other 
radix) instead of radix 2. Using radix 256 would result in a code in which 
each instruction was an integral number of bytes. Still, this method too 
has a serious drawback: one microroutine is needed for each of the N in- 
structions. With N normally running in the millions, this method is also 
infeasible. Nevertheless, it too provides a metric against which other 

methods can be compared. 

4. THE TRANSFORMATIONS 

Our algorithm operates in two steps. First, we transform the instruc- 
tion set slightly. Several opcode-operand combinations of an old instruc- 
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tion are split off to form a new instruction, in some cases the new in- 
struction is formed out of a single opcode-operand combination° in other 
cases it will consist of an opcode and a range of operands. Second, we use 
Huffman coding to assign bit patterns to the new instructions, based on the 
total occurrence frequency of these instructions. For instructions with 
operands, the Huffman assigned pattern designates the opcode, with the 
operands following it, i.e. in parsed form. Because Huffman coding is well 
known, we will just discuss the first step. Throughout the text we will 
use 8 bit bytes as an example, since many machines have an addressing 
structure based on 8 bit bytes, but the method works equally well with any 

other size unit. To keep the exposition simple, we also assume that all 
operands fall in the range 0-255. Operands with a greater range can be 
handled by splitting them up, e.g. a 16 bit operand can be replaced by two 
operands- High byte and Low byte. 

We start out with the original instruction set in fully parsed form. 
As we proceed, frequently occurring opcode-operand combinations are grouped 
into new instructions. New instructions are only formed out of instruc- 
tions with the same opcode. Moreover, an instruction must have fewer 
operands than the instruction out of which it is formed. Stated in other 
words: new instructions are formed by integrating at least one operand in 
the opcode. Because we never merge instructions into a new one, we may 
consider all instructions separately. For all instructions we will try to 
find the most profitable transformations. Consider as an example an in- 
struction PUSH with one operand. The frequency distribution of the operand 

is given as follows: 

Value # Occurrences Percentage 

0 366 14 
I 1142 43 
2 540 2O 
3 305 11 
4 153 6 

5 135 5 
6-255 29 I 
M 

total 2680 100 

Initially all PUSH instructions are encoded in at least two bytes: one byte 
for the operand and one or more for the opcode. The most profitable change 
we can make is to consider PUSH 1 as a new instruction without operands and 
an opcode denoted by PUSH:I. 

Now consider the case of a two operand instruction such as MOVE. Sup- 
pose that measurements revealed the following number of occurrences for the 
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mean program. 

operand 2 

operand I 

255 

total 

0 I 2 3 ... 255 

0 200 90 50 ... 0 
110 0 65 20 ... 0 
80 60 0 20 ... 0 
4O 3O 2O 0 ... 0 

0 0 0 0 
, ,i 

250 300 200 100 

total 

420 
200 
170 
100 

0 
i 

1000 

Three different methods may be used to form new instructions: 

I. Combine a specific combination of two operands into a new in- 
struction. For example, MOVE 0,1 can be made into a new in- 

struction with opcode MOVE:0:I. This transformation saves 400 

bytes, two on each of its 200 occurrences since the new in- 

struction is two bytes shorter than the original. 

. Combine an entire column into a new instruction. This instruc- 
tion will have one operand corresponding to the first operand 
in the original instruction. An example of this~is transform- 
ing MOVE * 0 into MOVE:-:0 *, where "-" indicates where the 
remaining operand was in the original, and "*" ind~icates the 

set of all possible operands. 

. Combine an entire row into a new instruction. This instruction 
corresponds to a group all of which have the same first 
operand. For example, MOVE 0 * becomes MOVE:0:- *, with a new 
gain of 220 bytes. If MOVE:0:I had not already been removed 
from the group the gain would have been 420. 

For the above' data, the most profitable 6 transformations to make are as 

follows : 

Old 

MOVE 0 1 

MOVE * 0 
MOVE 0 * 

MOVE 1 2 

MOVE 2 1 

MOVE 3 * 

New 

MOVE:O:I 

MOVE:-:0 * 
MOVE:0:- * 
MOVE:I:2 
MOVE:2:I 
MOVE:3:- * 

Occurrences 

200 

25O 
220 

65 
6O 
6O 

Gain 

400 

25O 
220 

130 
120 
6O 
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All newly created one operand 
transformation, according to 
that originally had one operand. 
transformed as follows: 

instructions are candidates for further 
the same rules given above for instructions 

For example, MOVE:-:0 can be further 

Old 

MOVE:-:0 1 
MOVE:-:O 2 
MOVE:-:0 3 
etc. 

New 

MOVE:I:0 
MOVE:2:0 
MOVE:3:0 

Occurrences 

II0 
80 
40 

Gain 

110 
80 
40 

When all the transformations are sorted in decreasing order of gain, 
the two step transformations will always be possible, since the first one 
will have been performed first. 

Instructions having more than two operands are handled by a straight- 
forward generalization of the above method. 

5. OPTIMAL ENCODING 

By listing all the possible transformations for each opcode, and then 
merging the sorted lists, we arrive at a single list of possible transfor- 
mations arranged in order of decreasing desirability. At this point we 
could take the original M opcodes (all in parsed form) and encode them us- 
ing a radix 256 Huffman code. Alternatively, we could apply the best 
transformation, and then Huffman encode the resulting M+I opcodes. In gen- 
eral we could perform the best K transformations, and then encode the M+K 
opcodes. 

A plot of the mean instruction length vs. K will tend to decrease with 
increasing K until we have performed all possible transformations, i.e. 
have only integrated instructions. Fig. I shows an example of such a curve 
based on actual data. 

In general, such curves are not always strictly monotonic, since when 

the number of opcodes grows from 256 to 257, or from 512 to 513, etc there 
may be a slight temporary increase in mean program length. Of course, as K 
increases, so does the size of the microprogram, since each new opcode 
needs a microroutine to interpret it. As K becomes very large, the saving 
in program size may be more than cancelled out by the increase in micropro- 
gram size. 

We have now reduced the original coding problem to a much simpler one: 
choosing the optimal value for a single parameter, K. If the microarchi- 
tecture is known, it is possible to determine the microprogram size for 

each potential value of K. 
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Thus we get a list of pairs: 

(mean program size, microprogram size). 

These are the feasible tradeoffs, if the relative cost$of main memory and 
microprogram memory are known, the total cost for each of the feasible 
solutions can be found, and thus the global minimum can be found. 
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Fig. I. Mean instruction length as a function of K. M = 94. 

17 


