
Efficient Encoding of ~lachine instructions

by

Johan W. Stevenson
and

Andrew S. Tanenbaum

Wiskundig Seminarium
Vrije Universiteit

Amsterdam, The Netherlands

I. iNTRODUCTiON

When designing a new (possibly virtual) machine, the instruction set
architects are faced with two sets of design decisions: what should the in-
structions do, and how should they be encoded. The former decisions are
still highly intuitive, depending on the skill and experience of the
designers, but the latter decisions can be approached more methodically.
it is the purpose of' this paper to present a method for assigning bit pat-
terns to instructions so that they will be efficient with respect to both
memory usage and execution speed.

Tne process of choosing the instruction set can be Dest done itera-
tively. A tentative instruction set is selected based on the machine's in-
tended use. Then preliminary compilers are written, and sample programs
are compiled. Instruction sequences that are heavily used may be combined
into one instruction. For example, if the sequence

PUSH X
PUSH I

ADD
POP X

frequently occurs (on a stack machine), it may well be worth while intro-
ducing a new instruction iNCREMENT X. The iteration process continues un-
til there are no more suitable candidates for replacement by a single in-
struction.

Let us assume that the set of instructions has now been chosen. At
this stage of' the design, the assembly language mnemonics (e.g. ADD, JUMP)
have been decided upon, but the binary bit pattern used to represent each
one is still an open question. There are two (confiictlng) goals the

I0

http://crossmark.crossref.org/dialog/?doi=10.1145%2F859470.859472&domain=pdf&date_stamp=1979-06-15

binary encoding should strive for:

I. The instructions should be easy to decode quickly.
2o The instructions should occupy a minimal amount of space.

The first goal relates to the ultimate execution speed of the program, and
the second relates to the program's size.

Most existing computers have a plethora of instruction formats, each
one comprised of a substantial number of short bit strings, often of
differing length. The underlying hardware, microprogram or interpreter
must determine the correct format for each instruction fetched, and then
must extract all the little bit fields. This approach tends to complicate
the hardware and microprogram, and slow down execution speed. We consider
it desirable for all fields within an instruction to be equal to the basic
storage unit of the computer (usually 8 bits for most minis and micros).

The second goal is important because memory is still a relatively ex-
pensive component of computer systems, especially with microcomputers. In
addition, smaller programs require less (floppy) disk space to store, and
can be transmitted faster over data communication lines.

2. ENCODING METHODS

There are three general methods of encoding the instructions in binary

form:

I. Parsed - each field in the instruction is coded independently.
2. Integrated - the fields are not coded independently.
3. Mixed - some fields parsed and some integrated.

In the parsed form, the binary instruction is divided up into fields, one
for the opcode, and one for each operand. Each field has a fixed size and
occupies a fixed position within the instruction. For example, the PDP-11

instruction MOV R0,RI has five fields:

Bits 12-15: opcode
Bits 9-11: source addressing mode
Bits 6- 8: source register
Bits 3- 5: destination addressing mode
Bits 0- 2: destination mode

Parsed instructions are executed by having the microprogram first extract
the opcode. Depending on the opcode and possibly on the little fields fol-
lowing it, the operands are then fetched. Finally a branch is made to the
appropriate microcode routine to carry out the instruction. Usually there
is a one to one mapping from the opcodes onto the microprogram routines

that carry out the instructions.

iI

Thus the advantage of the parsed form is the relatively small number
of microprogram routines needed to carry out the interpretation: only one
per instruction type. The disadvantage is the complexity of manipulating
all the little bit fields.

The integrated form, in contrast, does not have separate fields for
the opcode and the various operands, instead, each combination of opcode
and operands is simply assigned a binary number. For example, PUSH 2, JUHP
6, ADD, PUSH 7, and JUMP 10 might be assigned the machine representations
0, I, 2, 3, and 4 respectively. This method is described in [I].

The integrated form has two major advantages over the parsed form.
First, the microprogram can use the binary instruction to index into a
table of microroutines, each of which knows what its operands are without
having to extract any bit fields from the instruction. Second, it is very
easy to assign shorter codes to the more common opcode-operand combina-
tions, and longer codes to the less common ones. The principle disadvan-
tage is the exponential explosion in the number of microroutines needed.
If there are, say, 64 instruction types, each having a 16 bit address, the
integrated form requires 64 * 65536 > 4 million microroutines.

The mixed form attempts to combine the advantages of both systems.
Some machine instructions correspond to a specific opcode-operand combina-
tion, while other machine instructions indicate only the opcode, with ex-
plicit operands following. Others may have some fields coded one way, and
some fields coded the other way. For example we might have a mixed form
based on the 8 bit byte as follows:

First byte # Bytes Meaning
0 I PUSH 0
I I PUSH I
2 I PUSH 2
3 I POP 0
4 I POP I
5 2 PUSH (second byte indicates address, 3-259)
6 2 POP (second byte indicates address, 2-258)
7 I ADD
8 I SUB
etc.

The hard part is to determine which instructions should be encoded in the
integrated form, and which in the separate opcode-operands form. Encoding
all instructions in the parsed form keeps the number of microroutines
manageable, but results in a slow machine with large programs. Encoding
all instructions in the integrated form produces a fast machine with small
programs, but is obviously infeasible due to the huge microprogram re-
quired. In [I] the decision to encode some instructions in integrated form
and others in parsed form was based on intuition; below we show how to in-
vestigate the possible tradeoffs systematically.

12

3o METRICS FOR CODE SiZE

Before proceeding with the algorithm, it is useful to first investi-
gate some theoretical encoding methods, in order to provide a basis for
evaluating actual instruction sets. When the instructions are encoded us-
ing the integrated method using a frequency dependent code, the results are
clearly better than the parsed form with its fixed size fields, so we will
not consider the latter any further. Assume that there are N opcode-
operand combinations, In, I~, ... I,~, with known (i.e. measured) occurrence

! L ~ ~ .
probabilities ~, P^, ... P... As metrlcs we will consider an information

theoretic method and Huffman coding.

According to the noiseless coding theorem [3], a code is minimal if an
instruction whose probability of occurrence is P is assigned a binary code
of length log2P bits. Using this method we find the mean instruction

length to be:

N

i~IPi l°g2Pi

Thus we now have a lower bound against which all coding schemes can be com-
pared. In practice the noiseless coding theorem does not help much, since
most instructions will be assigned a fractional number of bits. Rounding
each one upward to the nearest integer gives a code that is no longer

minimal.

To get around the problem of fractional length instructions, we can
use Huffman's well known encoding method [2]. Although better, this method
too has problems due to the variability of the instruction lengths. In-
structions would straddle byte or word boundaries mercilessly, making their
extraction very painful. Furthermore, analyzing Huffman coded instructions
to see where the instruction boundaries are requires scanning the bits
serially looking for patterns. The whole process is so time consuming that

it is not feasible.

However, Huffman coding can also be done using radix 256 (or any other
radix) instead of radix 2. Using radix 256 would result in a code in which
each instruction was an integral number of bytes. Still, this method too
has a serious drawback: one microroutine is needed for each of the N in-
structions. With N normally running in the millions, this method is also
infeasible. Nevertheless, it too provides a metric against which other

methods can be compared.

4. THE TRANSFORMATIONS

Our algorithm operates in two steps. First, we transform the instruc-
tion set slightly. Several opcode-operand combinations of an old instruc-

13

tion are split off to form a new instruction, in some cases the new in-
struction is formed out of a single opcode-operand combination° in other
cases it will consist of an opcode and a range of operands. Second, we use
Huffman coding to assign bit patterns to the new instructions, based on the
total occurrence frequency of these instructions. For instructions with
operands, the Huffman assigned pattern designates the opcode, with the
operands following it, i.e. in parsed form. Because Huffman coding is well
known, we will just discuss the first step. Throughout the text we will
use 8 bit bytes as an example, since many machines have an addressing
structure based on 8 bit bytes, but the method works equally well with any

other size unit. To keep the exposition simple, we also assume that all
operands fall in the range 0-255. Operands with a greater range can be
handled by splitting them up, e.g. a 16 bit operand can be replaced by two
operands- High byte and Low byte.

We start out with the original instruction set in fully parsed form.
As we proceed, frequently occurring opcode-operand combinations are grouped
into new instructions. New instructions are only formed out of instruc-
tions with the same opcode. Moreover, an instruction must have fewer
operands than the instruction out of which it is formed. Stated in other
words: new instructions are formed by integrating at least one operand in
the opcode. Because we never merge instructions into a new one, we may
consider all instructions separately. For all instructions we will try to
find the most profitable transformations. Consider as an example an in-
struction PUSH with one operand. The frequency distribution of the operand

is given as follows:

Value # Occurrences Percentage

0 366 14
I 1142 43
2 540 2O
3 305 11
4 153 6

5 135 5
6-255 29 I
M

total 2680 100

Initially all PUSH instructions are encoded in at least two bytes: one byte
for the operand and one or more for the opcode. The most profitable change
we can make is to consider PUSH 1 as a new instruction without operands and
an opcode denoted by PUSH:I.

Now consider the case of a two operand instruction such as MOVE. Sup-
pose that measurements revealed the following number of occurrences for the

14

mean program.

operand 2

operand I

255

total

0 I 2 3 ... 255

0 200 90 50 ... 0
110 0 65 20 ... 0
80 60 0 20 ... 0
4O 3O 2O 0 ... 0

0 0 0 0
, ,i

250 300 200 100

total

420
200
170
100

0
i

1000

Three different methods may be used to form new instructions:

I. Combine a specific combination of two operands into a new in-
struction. For example, MOVE 0,1 can be made into a new in-

struction with opcode MOVE:0:I. This transformation saves 400

bytes, two on each of its 200 occurrences since the new in-

struction is two bytes shorter than the original.

. Combine an entire column into a new instruction. This instruc-
tion will have one operand corresponding to the first operand
in the original instruction. An example of this~is transform-
ing MOVE * 0 into MOVE:-:0 *, where "-" indicates where the
remaining operand was in the original, and "*" ind~icates the

set of all possible operands.

. Combine an entire row into a new instruction. This instruction
corresponds to a group all of which have the same first
operand. For example, MOVE 0 * becomes MOVE:0:- *, with a new
gain of 220 bytes. If MOVE:0:I had not already been removed
from the group the gain would have been 420.

For the above' data, the most profitable 6 transformations to make are as

follows :

Old

MOVE 0 1

MOVE * 0
MOVE 0 *

MOVE 1 2

MOVE 2 1

MOVE 3 *

New

MOVE:O:I

MOVE:-:0 *
MOVE:0:- *
MOVE:I:2
MOVE:2:I
MOVE:3:- *

Occurrences

200

25O
220

65
6O
6O

Gain

400

25O
220

130
120
6O

15

All newly created one operand
transformation, according to
that originally had one operand.
transformed as follows:

instructions are candidates for further
the same rules given above for instructions

For example, MOVE:-:0 can be further

Old

MOVE:-:0 1
MOVE:-:O 2
MOVE:-:0 3
etc.

New

MOVE:I:0
MOVE:2:0
MOVE:3:0

Occurrences

II0
80
40

Gain

110
80
40

When all the transformations are sorted in decreasing order of gain,
the two step transformations will always be possible, since the first one
will have been performed first.

Instructions having more than two operands are handled by a straight-
forward generalization of the above method.

5. OPTIMAL ENCODING

By listing all the possible transformations for each opcode, and then
merging the sorted lists, we arrive at a single list of possible transfor-
mations arranged in order of decreasing desirability. At this point we
could take the original M opcodes (all in parsed form) and encode them us-
ing a radix 256 Huffman code. Alternatively, we could apply the best
transformation, and then Huffman encode the resulting M+I opcodes. In gen-
eral we could perform the best K transformations, and then encode the M+K
opcodes.

A plot of the mean instruction length vs. K will tend to decrease with
increasing K until we have performed all possible transformations, i.e.
have only integrated instructions. Fig. I shows an example of such a curve
based on actual data.

In general, such curves are not always strictly monotonic, since when

the number of opcodes grows from 256 to 257, or from 512 to 513, etc there
may be a slight temporary increase in mean program length. Of course, as K
increases, so does the size of the microprogram, since each new opcode
needs a microroutine to interpret it. As K becomes very large, the saving
in program size may be more than cancelled out by the increase in micropro-
gram size.

We have now reduced the original coding problem to a much simpler one:
choosing the optimal value for a single parameter, K. If the microarchi-
tecture is known, it is possible to determine the microprogram size for

each potential value of K.

16

Thus we get a list of pairs:

(mean program size, microprogram size).

These are the feasible tradeoffs, if the relative cost$of main memory and
microprogram memory are known, the total cost for each of the feasible
solutions can be found, and thus the global minimum can be found.

6. REFERENCES

[I] Tanenbaum, "Implications of Structured Programming for Machine Archi-
tecture," CACM, vol. 21, pp. 237-246, March 1978.

[2] Huffman, D., "A Method for the Construction of Minimum Redundancy
Codes," Proc. IRE, vol. 40, pp. 1098-1011, Sept. 1952.

[3] Ash, R. B., information Theory, Wiley, New York, 1965.

2.O

o
-,-I

(D

o I I ~ I

o 5 '0 I o o I S o 2 .oo
K-)

Fig. I. Mean instruction length as a function of K. M = 94.

17

