A backend table for the 6500 microprocessor

Jan van Dalen

ABSTRACT
The backend table is part of the Amsterdam Compiler Kit (ACK). It trandates the

intermediate language family EM to a machine code for the MCS6500 microprocessor fam-
ily.

Dec 1984

THE MCS6500 MICROPROCESSOR.

A backend table for the 6500 microprocessor

Jan van Dalen

1. Introduction

Why a back end table for the MCS6500 microprocessor family. Although the MCS6500 microprocessor
family has an simple instruction set and internal structure, it is used in a variety of microcomputers and home-
computers. This is because of is low cost. As an example the Apple I, a well known and width spread
microprocessor, uses the MCS6502 CPU. Also the BBC homecomputer, whose popularity is growing day by
day uses the MCS6502 CPU. The BBC homecomputer is based on the MCS6502 CPU although better and
stronger microprocessors are available. The designers of Acorn computer Industries have probably choosen for
the MCS6502 because of the amount of software available for this CPU. Since its width spreaded use, a variaty
of software will be needed for it. One can think of games!!, administration programs, teaching programs, basic
interpreters and other application programs. Even do it will not be possible to run the total compiler kit on a
MCS6500 based computer, it is possible to write application programs in a high level language, such as Pascal
or C on aminicomputer. These application programs can be tested and compiled on that minicomputer and put
in a ROM (Read Only Memory), for example, cso that it an be executed by a MCS6500 CPU. The strategy of
writing testprograms on a minicomputer, compile it and then execute it on a MCS6500 based microprocessor is
used by the development of the back end. The minicomputer used is M68000 based one, manufactured by
Bleasdale Computer Systems Ltd.. The micro- or homecomputer used is a BBC microcomputer, manufactured
by Acorn Computer Ltd..

2. The MOS Technology M CS6500

The MCS6500 is as a family of CPU devices developed by MOS Technology [1]. The members of the
MCS6500 family are the same chips in a different housing. The MCS6502, the big brother in the family, can
handle 64k bytes of memory, while for example the MCS6504 can only handle 8k bytes of memory. This
difference is due to the fact that the MCS6502 is in a 40 pins house and the MCS6504 has a 28 pins house, so
less address lines are available.

3. The MCS6500 CPU programmable registers
The MCS6500 series is based on the same chip so all have the same programmabl e registers.

3.1. Theaccumulator A.

The accumulator A is the only register on which the arithmetic and logical instructions can be used. For
example, the instruction ADC (add with carry) adds the contents of the accumulator A and a byte from memory
or data.

3.2. Theindex register X.

As the name suggests this register can be used for some indirect addressing modes. The modes are
explaned below.

3.3. Theindex register Y.

This register is, just as the index register X, used for certain indirect addressing modes. These addressing
modes are different from the modes which use index register X.

3.4. Theprogram counter PC
Thisisthe only 16-bit register available. It isused to point to the next instruction to be carried out.

3.5. Thestack pointer SP

The stack pointer is an 8-bit register, so the stack can contain at most 256 bytes. The CPU always
appends 00000001 as highbyte of any stack address, which means that memory locations 0100 through O1FF are
permanently assigned to the stack.

3.6. Thestatusregister

The status register maintains six status flags and a master interrupt control bit.
These are the six status flags:

Carry (©
Zero (¢4)
Overflow (0)
Sign (n)

Decimal mode (d)
Break (b)

The bit (i) is the master interrupt control bit.

4. The M CS6500 memory layout.
In the MCS6500 memory space three area’ s have special meaning. These area’s are:

1) Toppage.
2) Zero page.
3) Thestack.

MCS6500 memory is divided up into pages. These pages consist 256 bytes. So in a memory address the
highbyte denotes the page number and the lowbyte the offset within the page.

4.1. Top page.

When a MCS6500 is restared it jumps indirect via memory address FFFC. At FFFC (lowbyte) and
FFFD (highbyte) there must be the address of the bootstrap subroutine. When a break instruction (BRK) occurs
or an interrupt takes place, the MCS6500 jumps indirect through memory address FFFE. FFFE and FFFF
thus, must contain the address of the interrupt routine. The former only goes for maskeble interrupt. There aso
exist a nonmaskeble interrupt. This cause the MCS6500 to jump indirect through memory address FFFA. So
the top six bytes of memory are used by the operating system and therefore not available for the back end.

4.2. Zero page.

This page has a special meaning in the sence that addressing this page uses special opcodes. Since a page
consists of 256 bytes, only one byte is needed for addressing zero page. So an instruction which uses zero page
occupies two bytes. It also uses less clock cycle's while carrying out the instruction. Zero page is also needed
when indirect addressing is used. This means that when indirect addressing is used, the address must reside in
zero page (two consecutive bytes). In this case (the back end), zero page is used, for example to hold the local
base, the second local base, the stack pointer etc.

4.3. The stack.
The stack is described in paragraph 3.5 about the MCS6500 programmabl e registers.

5. Thememory adressing modes

MCS6500 memory reference instructions use direct addressing, indexed addressing, and indirect address-
ing.

5.1. direct addressing.

Three-byte instructions use the second and third bytes of the object code to provide a direct 16-hit
address: therefore, 65.536 bytes of memory can be addressed directly. The commonly used memory reference
instructions also have a two-byte object code variation, where the second byte directly addresses one of the first
256 bytes.

5.2. Base page, indexed addressing.

In this case, the instruction has two bytes of object code. The contents of either the X or Y index registers
are added to the second object code byte in order to compute a memory address. This may be illustrated as fol-
lows:

Base page, indexed addressing, as illustrated above, is wraparound - which means that there is no carry. If the
sum of the index register and second object code byte contents is more than FF , the carry bit will be dicarded.
This may beillustrated as follows:

5.3. Absolute indexed addressing.

In this case, the contents of either the X or Y register are added to a 16-hit direct address provided by the
second and third bytes of an instruction’s object code. This may beillustrated as follows:

5.4. Indirect addressing.

Instructions that use simple indirect addressing have three bytes of object code. The second and third
object code bytes provide a 16-hit address; therefore, the indirect address can be located anywhere in memory.
Thisis straightforward indirect addressing.

5.4.1. Pre-indexed indirect addressing.

In this case, the object code consists of two bytes and the second object code byte provides an 8-bit
address. Instructions that use pre-indexed indirect addressing add the contents of the X index register and the
second object code byte to access a memory location in the first 256 bytes of memory, where the indirect
address will be found:

When using pre-indexed indirect addressing, once again wraparound addition is used, which means that when
the X index register contents are added to the second object code byte, any carry will be discarded. Note that
only the X index register can be used with pre-indexed addressing.

5.4.2. Post-indexed indirect addressing.

In this case, the object code consists of two bytes and the second object code byte provides an 8-bit
address. Now the second object code byte indentifies a location in the first 256 bytes of memory where an
indirect address will be found. The contents of the Y index register are added to thisindirect address. This may
beillustrated as follows:

Note that only the Y index register can be used with post-indexed indirect addressing.

6. What the CPU has and doesn’t has.

Although the designers of the MCS6500 CPUs family state that there is nothing very significant about the
short stack (only 256 bytes) this stack caused problems for the back end. The designers say that a 256-byte
stack usually is sufficient for any typical microcomputer, this is only true if the stack is used only for return
addresses of the JSR (jump to subrouting) instruction. But since the EM machine is suppost to be a stack
machine and high level languages need the ability of parameters and locals in there procedures and function, this
short stack is unsufficiant. So an software stack is implemented in this back end, requiring two additional sub-
routines for stack handling. These two stack handling subroutines slow down the processing time of a program
since the stack is used heavely.

Since parameters and locals of EM procedures are offseted from the localbase of that procedure, indirect
addressing is havily used. Offsets are positive (for parameters) and negative (for local variables). As explaned
before the addressing modes the MCS6500 have a post indexed indirect addressing mode. This addressing
mode can only handle positive offsets. This raises a problem for accessing the local variables | have chosen for
the next solution. A second local base is introduced. This second local base is the real local base subtracted by
a constant BASE. In the present situation of the back end the value of BASE is 240. This means that there are
240 bytes reseved for local variables to be indirect addressed and 14 bytes for the parameters.

THE CODE GENERATOR.

1. Description of the machine table.
The machine description table consists of the following sections:
The macro definitions.

Constant definitions.

Register definitions.

Token definitions.

Token expressions.

Coderules.

Move definitions.

Test definitions.

Stack definitions.

© o N o O~ wWDPRE

1.1. Macro definitions.

The macro definitions at the top of the table are expanded by the preprocessor on occurence in the rest of
the table.

1.2. Constant definitions.
There are three constants which must be defined at first. The are;

EM_WSIZE: Number of bytes in a machine word. This is the number of bytes a simple loc instruction will put
on the stack.

EM_PSIZE: Number of bytesin a pointer. Thisisthe number of bytesalal instruction will put on the stack.

EM_BSIZE: Number of bytes in the hole between AB and LB. The calling sequence only saves LB on the
stack so this constant is equal to the pointer size.

2. Register definitions.

The only important register definition is the definition of the registerpair AX. Since the rest of the
machine’ s registers Y, PC, ST serve specia purposes, the code generator cannot use them.

2.1. Token definitions

There is a fake token. This token is put in the table, since the code generator generator complains if it
cannot find one.

2.2. Token expression definitions.

The token expression is also afake one. This token expression is put in the table, since the code generator
generator complainsiif it cannot find one.

2.3. Coderules.

The code rule section is the largest section in the table. They specify EM patterns, stack patterns, code to
be generated, etc. The syntax is:

code EM pattern’| stack pattern’| code’| stack replacement | EM replacement |

All patterns are optional, however there must be at least one pattern present. If the EM pattern is missing
the rule becomes a rewriting rule or a coer cion to be used when code generation cannot continue because of an
invalid stack pattern. The code rules are preceeded by the word CODE:.

2.3.1. TheEM pattern.
The EM pattern consists of alist of EM mnemonics followed by a boolean expression. Examples:

loe

will match asingle loe instruction,
loc loc cif $1==2 & & $2==

is a pattern that will match

loc 2
loc 8
cif

and
lol inc stl $1==
will match for example

lol 6

inc

stl 6

A missing boolean expession evaluates to TRUE.

The code generator will match the longest EM pattern on every occasion, if two patterns of the same
length match the first in the table will be chosen, while all patterns of length greater than or equal to three are
considered to be of the same length.

2.3.2. Thestack pattern.

The only stack pattern that can occur is R16, which means that the registerpair AX contains the word on
top of the stack. If thisis not the case a coersion occurs. This coersion generates a"jsr Pop", which means that
the top of the stack is popped and stored in the registerpair AX.

2.3.3. Thecode part.

The code part consists of three parts, stack cleanup, register allocation, and code to be generated. All of
these may be omitted.

2.3.3.1. Stack cleanup.

When generating something like a branch instruction it might be needed to empty the fake stack, that is,
remove the AX registerpair. Thisisdone by the instruction remove(ALL)

2.3.3.2. Register allocation.

If the machine code to be generated uses the registerpair AX, thisis signaled to the code generator by the
allocate(R16) instruction. If the registerpair AX resides on the fake stack, this will result in a"jsr Push", which
means that the registerpair AX is pushed on the stack and will be free for further use. If registerpair AX is not
on the fake stack nothing happens.

2.3.3.3. Codeto begenerated.
Code to be generated is specified as alist of items of the following kind:

1) A stringindouble quotes("Thisisastring"). Thisis copied to the codefile and anewline (' 0) is appended.
Inside the string all normal C string conventions are allowed, and substitutions can be made of the follow-
ing sorts.

a) %1, $2 etc. These are the operand of the corresponding EM instructions and are printed according to
theretype. To put area '$ inside the string it must be doubled (' $$').

b) %[1], %[2.reg], %[b.1] etc. these have there obvious meaning. If they describe a complete token
(%[1]) the printformat for the token is used. If they stand fo a basic term in an expression they will
be printed according to their type. To put area %' inside the string it must be doubled (* %%').

c) %(arbitrary expression %). This allows inclusion of arbitrary expressions inside strings. Usually
not needed very often, so that the akward notation is not too bad. Note that %(%[1]%) is equivalent
to %[1].

2.3.4. stack replacement.

The stack replacement is a possibly empty list of items to be pushed on the fake stack. Three things can
occur:

1) %[1] isusedif the registerpair AX was on the fake stack and is to be pushed back onto it.
2) %[a] isused if theregisterpair AX isallocated with allocate(R16) and is to be pushed onto the fake stack.
3) Itcanalsobeempty.

2.3.5. EM replacement.
In exeptional cases it might be useful to leave part of the an EM pattern undone. For example, a sdl

instruction might be split into two stl instructions when there is no 4-byte quantity on the stack. The EM
replacement part allows one to express this. Example:

stl $1 stl $1+2

The instructions are inserted in the stream so they can match the first part of a pattern in the next step. Note that
since the code generator traverses the EM instructions in a strict linear fashion, it is impossible to let the EM
replacement match later parts of a pattern. So if there is a pattern

loc stl $1==

and theinput is

locOsdl 4

the loc O will be processed first, then the sdl might be split into two stl

2.3.6. Movedefinitions.

This definition is afake. This definition is put in the table, since the code generator generator complains if
it cannot find one.

2.3.7. Test definitions.
Test definitions aren’'t used by the table.

2.3.8. Stack definitions.

When the generator has to push the registerpair AX, it must know how to do so. The machine code to be
generated is defined here.

3. Someremarks.

The above description of the machine table is a description of the table for the MCS6500. It uses only a
part of the possibilities which the code generator generator offers. For a more precise and detailed description
see[2].

THE BACK END TABLE.

1. Introduction.
The coderules are divided in 15 groups. These groups are:

1 Load instructions.

2. Storeinstructions.

3. Integer arithmetic instructions.

4. Unsigned arithmetic instructions.

5. Floating point arithmetic instructions.
6. Pointer arithmetic instructions.

7. Increment, decrement and zero instructions.
8. Convert instructions.

9. Logical instructions.

10. Set manipulation instructions.

11. Array instructions.

12. Compare instructions.

13. Branchinstructions.

14. Procedure call instructions.

15. Miscellaneous instructions.

From all of these groups one or two typical EM pattern will be explained in the next paragraphs. Com-
ment is placed between /* and */ (/* Thisisacomment */).

2. Theinstructions.

2.1. Theload instructions.

In this group a typical instruction is lol A lol instruction pushes the word at local base + offset, where
offset is the instructions argument, onto the stack. Since the MCS6500 can only offset by 256 bytes, as
explaned at the memory addressing modes, there is a need for two code rules in the table. One which can offset
directly and one that must explicit calculate the address of the local.

2.1.1. Thelal instruction with indirect offsetting.
In this case an indirect offsetted load from the second local base is possible. The table content is:

lol IN($2) ||
allocate(R16) [* dlocate registerpair AX */
"ldy #BASE+$1" /* load Y with the offset from the second

local base */
"Ida (LBI),y" [* load indirect the lowbyte of the word */
"tax" /* moveregister A to register X */
"iny" /* increment register Y (offset) */

"Ida (LBI),y" /* load indirect the highbyte of the word */
|%[a] || /* pushthe word onto the fake stack */

2.1.2. Thelol instruction whose offset isto big.

In this case, the library subroutine "Lol" is used. This subroutine expects the offset in registerpair AX,
then calculates the address of the local or parameter, and loadsiit into registerpair AX. The table content is:

lol ||

allocate(R16) [* dlocate registerpair AX */
"lda#{$1].h" * load highbyte of offset into register A */
"ldx #$1].I" /* load lowbyte of offset into register X */
"jsr Lol" /* perform the subroutine */

|%[a] || /* push word onto the fake stack */

2.2. Thestoreinstructions.

In this group atypical instruction isstl. A stl instruction poppes aword from the stack and stores it in the
word at local base + offset, where offset is the instructions argument. Here also isthe need for two code rulesin
the table as aresult of the offset limits.

2.2.1. Thestl instruction with indirect offsetting.
Inthis caseit an indirect offsetted store from the second local base is possible. The table content is:

st IN($1) | R16 | /* expect registerpair AX on top of the
fake stack */
"ldy #BASE+1+$1" /* load Y with the offset from the
second local base */
"sta (LBI),y" [* store the highbyte of the word from A */

"txa" /* moveregister X to register A */
"dey" /* decrement offset */
"sta (LBI),y" [* store the lowbyte of the word from A */

2.2.2. Thestl instruction whose offset isto big.

In this case the library subroutine’StI" isused. This subroutine expects the offset in registerpair AX, then
calculates the address, poppes the word stores it at its place. The table content is:

st]

allocate(R16) [* dlocate registerpair AX */
"lda#{$1].h" * load highbyte of offset in register A */
"ldx #$1].I" I* load lowbyte of offset in register X */
"jsr StI" /* perform the subroutine */

2.3. Integer arithmetic instructions.

In this group typical instructions are adi and mli. These instructions, in this table, are implemented for 2-
byte and 4-byte integers. The only arithmetic instructions available on the MCS6500 are the ADC (add with
carry), and SBC (subtract with not(carry)). Not(carry) here means that in a subtraction, the one's complement
of the carry is taken. The absence of multiply and division instructions forces the use of subroutines to handle
these cases. Because there are no registers left to perform on the multiply and division, zero page is used here.
The 4-byte integer arithmetic isimplemented, because in C there exists the integer typelong. A user isfreely to
use the type long, but will pay in performance.

2.3.1. Theadi instruction.

In case of the adi 2 (and shi 2) instruction there are many EM patterns, so that the instruction can be per-
formed in linein most cases. For the worst case there exists a subroutine in the library which deals with the EM
instruction. In case of aadi 4 (or shi 4) there only is asubroutine to deal withit. A table content is:

lol ol adi (IN($1) && IN($2) && $3==2) || /* isitinrange*/
allocate(R16) [* dlocate registerpair AX */
"ldy #BASE+$1+1" /* load Y with offset for first operand */

“Ida (LBI),y" [* load indirect highbyte first operand */
"pha’ /* save highbyte first operand on hard_stack */
"dey" /* decrement offset first operand */

"Ida (LBI),y" /* load indirect lowbyte first operand */
"ldy #BASE+$2" /* load Y with offset for second operand */

"clc" /* clear carry for addition */

"adc (LBI),y" [* add the lowbytes of the operands */
"tax" /* store lowbyte of result in place */

"iny" /* increment offset second operand */

"pla"’ /* get highbyte first operand */

"adc (LBI),y" [* add the highbytes of the operands */
|%[a] || /* pushthe result onto the fake stack */

2.3.2. Themli instruction.

The mli 2 instruction uses most the subroutine 'Mlinp’. This subroutine expects the multiplicand in zero
page at locations ARTH, ARTH+1, while the multiplier is in zero page locations ARTH+2, ARTH+3. For a
description of the algorithms used for multiplication and division, see [3]. A table content is:

lol ol mli (IN($1) && IN($2) & & $3==2) | |

allocate(R16) [* dlocate registerpair AX */

"ldy #BASE+$1" /* load Y with offset of multiplicand */
“Ida (LBI),y" /* load indirect lowbyte of multiplicand */
"sta ARTH"/* store lowbyte in zero page */

"iny" /* increment offset of multiplicand */

"Ida (LBI),y" /* load indirect highbyte of multiplicand */
"staARTH+1" /* store highbyte in zero page */

"ldy #BASE+$2" /* load Y with offset of multiplier */

"Ida (LBI),y" /* load indirect lowbyte of multiplier */
"staARTH+2" /* store lowbyte in zero page */

"iny" /* increment offset of multiplier */

"Ida (LBI),y" /* load indirect highbyte of multiplier */
"staARTH+3" /* store highbyte in zero page */

"jsr Mlinp" /* perform the multiply */

|%[a] || /* pushresult onto fake stack */

2.4. Theunsgned arithmetic instructions.

Since unsigned addition an subtraction is performed in the same way as signed addition and subtraction,
these cases are dealt with by an EM replacement. For mutiplication and division there are special subroutines.

2.4.1. Unsigned addition.
Thisisan example of the EM replacement strategy.

lol lol adu [1]]1ol $1 1ol $2 adi $3 |

2.5. Floating point arithmetic.
Floating point arithmetic isn't implemented in thistable.

2.6. Pointer arithmetic instructions.

A typical pointer arithmetic instruction is adp 2. This instruction adds an offset and a pointer. A table
content is:

adp [1]]loc$ladi 2|

2.7. Increment, decrement and zero instructions.

In this group a typical instruction isinl , which increments a local or parameter. The MCS6500 doesn’t
have an instruction to increment the accumulator A, sothe’ ADC'’ instruction must be used. A table content is:

inl IN($1) | |

allocate(R16) [* dlocate registerpair AX */

"ldy #BASE+$1" /* load Y with offset of the local */
"clc" /* clear carry for addition */

“Ida (LBI),y" /* load indirect lowbyte of local */
"adc#1" /* increment lowbyte */

"sta (LBI),y" [* restore indirect the incremented lowbyte */
"beec 1f* /* if carry isclear then ready */
"iny" /* increment offset of local */

“Ida (LBI),y" /* load indirect highbyte of local */
"adc #0" /* add carry to highbyte */
"sta (LBI),y\nl:" /* restore indirect the highbyte */

If the offset of the local or parameter is to big, first the local or parameter is fetched, than incremented,
and then restored.

2.8. Convert instructions.

In this case there are two convert instructions which really do something. One of them isin line code, and
deals with the extension of a character (1-byte) to an integer. The other one is a subroutine which handles the
conversion between 2-byte integers and 4-byte integers.

2.8.1. Thein line conversion.
The table content is:

locloc cii $1==1 & & $2==2 | R16 |

"txa"' /* seeif sign extension is needed */
"bpl 1f" /* there is no need for sign extension */
"lda#0FFh" /* sign extension here */

"bne2f" /* conversion ready */

"1: lda#0\n2:" /* no sign extension here */

2.9. Logical instructions.

A typical instruction in this group is the logical and on two 2-byte words. The logical and on groups of
more than two bytes (max 254) is also possible and uses a library subroutine.

2.9.1. Thelogical and on 2-byte groups.
The table content is:

and $1==2 | R16 | * one group must be on the fake stack */
"staARTH+1" /* temporary save of first group highbyte */
"stx ARTH"/* temporary save of first group lowbyte */

"jsr Pop" /* pop second group from the stack */

"and ARTH+1" /* logical and on highbytes*/

"pha’ /* temporary save the result’s highbyte */
"txa"' /* logical and can only be donein A */
"and ARTH" /* logical and on lowbytes */

"tax" [* restore results lowbyte */

"pla’ /* restore results highbyte */

[%[1] || /* pushresult onto fake stack */

2.10. Set manipulation instructions.

A typical EM pattern in thisgroup isloc inn zeq $1>0 & & $1<16 && $2==2. This EM pattern works on
sets of 16 hits. Sets can be bigger (max 256 bytes = 2048 bits), but than a library routine is used instead of in
line code. The table content of the above EM pattern is:

locinn zeq $1>0 & & $1<16 & & $2==2 | R16 |

"ldy #$1+1"/* load Y with bit number */

"stx ARTH"/* cannot rotate X, so use zero page */
"L lsrd [* right shift A */

"ror ARTH" [* right rotate zero page location */
"dey" /* decrement Y */

"bnelb" /* shift $1times*/

"bcc $1" /* no carry, so bit iszero */

2.11. Array instructions.

In this group atypical EM pattern is lae lar defined(rom(1,3)) | ||| lae $1 aar $2 loi rom(1,3). This pat-
tern uses the aar instruction, which is part of atypical EM pattern:

lae aar $2==2 & & rom(1,3)==2 && rom(1,1)==0 | R16 | /* registerpair AX contains the index in the array */
"pha’ /* save highbyte of index */

"txa"' /* move lowbyte of index to A */

"adl a [* shift left lowbyte == 2 times lowbyte */
"tax" [* restore lowbyte */

"pla"’ /* restore highbyte */

"rol a" [* rotate left highbyte == 2 times highbyte */

| %[1] | adi 2 | /* push new index, add to lowerbound array */

2.12. Compareinstructions.

In this group all EM patterns are performed by calling a subroutine. Subroutines are used here because
comparison is only possible byte by byte. This means alot of code, and since compare are used frequently alot
of in line code would be generated, and thus reducing the space left for the software stack. These subroutines
can be found in the library.

2.13. Branch instructions.
A typical branch instruction isbeg. The table content for it is:

beq | R16 |

"sta BRANCH+1"/* save highbyte second operand in zero page */
"stx BRANCH" /* save lowbyte second operand in zero page */
"jsr Pop" /* pop thefirst operand */

"cmp BRANCH+1" [* compare the highbytes */

"bne 1f" /* there not equal so go on */

"cpx BRANCH" /* compare the lowbytes */

"beq $1\nl:" * lowbytes are also equal, so branch */

Another typical instruction in this group iszeq. The table content is:

zeq | R16 |

"tay" /* move A toY for setting testhits */

"bmi $1" /* highbyte s minus so branch */

"txa' /* move X to A for setting testhits */

"beq $1\nl:" * lowbyte also zero, thus branch */

2.14. Procedure call instructions.

In this group one code generation might seem alittle akward. It isthe EM instruction cai which generates
a’'jsr Indir'. Thisis because there is noindirect jump_subroutine in the MCS6500. The only solution is to store
the address in zero page, and then do a’jsr’ to a known label. At this label there must be an indirect jump
instruction, which perform a jump to the address stored in zero page. In this case the labdl is Indir, and the

address is stored in zero page at the addresses ADDR, ADDR+1. Thetabel content is:

cai |R16 |

"stx ADDR" [* store lowbyte of address in zero page */
"staADDR+1" /* store highbyte of address in zero page */
“jsr Indir" /* use theindirect jump */

2.15. Miscellaneousinstructions.
In this group, as the name suggests, there is no typical EM instruction or EM pattern. Most of the
MCS6500 code to be generated uses alibrary subroutine or is straightforward.

PERFORMANCE.

1. Introduction.

To measure the performance of the back end table some timing tests are done. What to time? In this case,
the execution time of several Pascal statements are timed. Statements in C, which have a Pascal equivalence are
timed also. The statements are timed as follows. A test program is been written, which executes two nested
for_loops from 1 to 1.000. Within these for_loops the statement, which is to be tested, is placed, so the state-
ment will be executed 1.000.000 times. Then the same program is executed without the test statement. The
time difference between the two executions is the time neccesairy to execute the test statement 1.000.000 times.
The total time to execute the test statement requires thus the time difference divided by 1.000.000.

1. Testing Pascal statements.
The next statements are tested.
1) intl:=0;
2) intl:=int2-1;
3) intl:=intl+1;
4) intl:=iconl-icon2;
5) intl:=icon2diviconl,
6) intl:=int2* int3;
7) bool :=(intl < 0);
8) booal :=(intl < 3);
9) bool :=((int1 > 3) or (intl < 3))
10) caseintl of 1: bool ;= false; 2: bool := true end;
11) ifintl=0thenint2:=3;
12) whileintl>0dointl:=intl- 1,

13) m:=4gKk];
14) let2:=['a..’c'];
15) P3(x);

16) dum := F3(x);
17) s.overhead := 5400;
18) with sdo overhead := 5400;
These statement were tested in a procedure test.

procedure test;
vari,j, ... : integer;
bool : boolean;
let2 : set of char;
begin
fori:=1to 1000
for j := 1to 1000

STATEMENT
end;

STATEMENT is one of the statements as shown above, or it is the empty statement. The assignment of
used variables, if neccesairy, is done before the first for_loop. In case of the statement which uses the procedure
call, statement 15, adummy procedure is declared whose body is empty. In case of the statement which uses the

function, statement 16, this function returns its argument. for the timing of C statements a similar test program
was written.

main()
inti,j, ...
for (i = 1; i <=1000; i++)
for (j = 1;j <= 1000; j++)
STATEMENT

2. Theresults.

Here are tables with the results of the time measurments. Times are in microseconds (10°-6). Some state-
ments appear twice in the tables. In the second case an array of 200 integers was declerated before the variable
to be tested, so this variable cannot be accessed by indirect addressing from the second local base. This results
in a larger execution time of the statement to be tested. The column 68000 contains the times measured on a
Bleasdale, M68000 based, computer. The times in column pdp are measured on a DEC pdpl1/44, where the
times from column 6500 come from a BBC microcomputer.

Pascal timing results

statement 68000 pdp 6500
intl:=0; 4.0 5.8 16.7
4.0 4.2 97.8
intl:=int2-1; 7.2 7.1 27.2
6.9 7.1 206.5
intl:=intl+ 1; 6.9 6.8 27.2
6.4 6.7 106.5
intl:=iconl+icon2; 6.2 6.2 25.6
6.2 6.0 106.6
intl :=icon2 div iconl; 14.9 14.3 372.6
14.9 14.7 453.7
intl:=int2* int3; 115 12.0 558.1
11.3 11.6 728.6
bool := (intl < 0); 7.2 6.9 122.8
7.8 8.1 453.2
bool := (intl < 3); 7.3 7.6 126.0
7.2 8.1 232.2
boal := ((intl > 3) or (intl < 3)) 101 12.0 307.8
10.2 119 440.1
case intl of 1: bool := false; 2: bool := true 18.3 17.9 165.7
end;
if intl=0thenint2:=3; 9.5 85 133.8
whileintl>0dointl:=intl- 1; 6.9 6.9 126.0
m := gk]; 7.2 6.8 134.3
let2:=['a..’'c]; 38.4 38.8 447.4
P3(x); 18.9 18.8 180.3
dum := F3(x); 26.8 27.1 343.3
s.overhead := 5400; 4.6 4.1 16.7
with s do overhead := 5400; 4.2 43 16.7
C timing results
statement 68000time pdptime 6500time
intl=0; 41 3.6 17.2
41 41 97.7
intl=int2 - 1; 6.6 6.9 27.2
6.1 6.5 206.4
intl=intl+ 1; 6.4 7.3 27.2
6.3 6.2 206.4
intl =int2* int3; 114 12.3 522.6
9.6 10.1 721.2
intl = (int2 < 0); 7.2 7.6 126.4
7.4 7.7 232.5
intl = (int2 < 3); 7.0 75 126.0
7.8 7.8 232.6
intl = ((int2 > 3) || (int2 < 3)); 11.8 12.2 1934
115 13.2 245.6
switch (intl) { case 1: intl = 0; break; case 28.3 29.2 164.1
2:intl =1; break; }
if (intl==0)int2=3; 4.8 4.8 194
while (int2 > 0) int2 = int2 - 1; 5.8 6.0 125.9
int2 = g[int2]; 4.8 5.1 192.8

P3(int2); 18.8 18.4 180.3

int2 = F3(int2); 27.0 27.2 309.4
s.overhead = 5400; 5.0 41 16.7

3. Pascal statements which don’t have a C equivalent.

At first, the two statements who perform an operation on constants are left out. These are left out while
the C front end does constant folding, while the Pascal front end doesn’t. So in C the statements intl = iconl +
icon2; and intl = iconl / icont2; will use the same amount of time since the expression is evaluated by the front
end. The two other statements (let2 := ['a’..’c’]; and with s do overhead := 5400;), aren’t included in the C
statement timing table, because there constructs do not exist in C. Although in C there can be direct bit manipu-
lation, and thus can be used to implement sets | have not used it here. The with statement does not exists in C
and there is nothing with the slightest resemblance to it.

At first sight in the table , it looked if there is no much difference in the times for the M68000 and the
pdpl1/44, in comparison with the times needed by the MCS6500. To verify this impression, | calculated the
correlation coefficient between the times of the M68000 and pdpl11/44. It turned out to be 0.997 for both the
Pascal time tests and the C time tests. Since the correlation coefficient is near to one and the difference between
the times is small, they can be considered to be the same as seen from the times of the MCS6500. Then | have
tried to make a grafic of the times from the M68000 and the MCS6500. Well, there was't any correlation to
been seen, taken al the times. The only correlation one could see, with some effort, was in the times for the
first three Pascal statements. The two first C statements show also a correlation, which two points always do.

Also the three Pascal statements case, if , and while have a correlation coefficient of 0.999. Thisis prob-
ably because the case statement uses a subroutine in both cases and the other two statements if and, while gen-
erate in line code. The last two Pascal statements use the same time, since the front end wil generate the same
EM code for both.

The independence between the rest of the test times is because in these cases the object code for the
MCS6500 uses library subroutines, while the other processors can handle the EM code with in line code.

It is clear that the MCS6500 is a slower device, it needs longer execution times, the need of more library
subroutines, but there is no constant factor between it execution times and those of other processors.

The slowing down of the MCS6500 as result of the need of a library subroutine is illustrated by the muli-
plication statement. The MCS6500 needs a library subroutine, while the other two processors have a machine
instruction to perform the multiply. This results in a factor of 48.5, when the operands can be accessed indirect
by the MCS6500. When the MCS6500 cannot access the operands indirectly the situation is even worse. The
dlight differences between the MCS6500 execution times for Pascal statements and C statements is probably the
result of the front end, and thus beyond the scope of this discussion.

Another timing test is done in C on the statement k =i + j + 1983. This statement is tested on many
UNIX* systems. For a complete list see appendix A. The slowest one is the IBM XT, which runs on a 8088
microprocessor. The fasted one is the Amdahl computer. Here is short table to illustrate the performance of the
MCS6500.

machine short int
IBM XT 53.4 53.4
Amdahl 0.5 0.3

MCS6500 150.2 150.2

The MCS6500 is three times slower than the IBM XT, but threehundred times slower than the Amdahl. The
reason why the times on the IBM XT and the MCS6500 are the same for short’s and int’s, is that most C com-
pilers make the types short and integer the same size on 16-bit machines. In this project the MCS6500 is
regarded as a 16-bit machine.

4. Length tests.

| have also compiled several programs written in Pascal and C to see if there is a resemblance between the
number of bytes generated in the machine’'s language. In the tables:

length: The number of bytes of the source program.
68000: The number of bytes of the a.out file for a M68000.

* UNIX isaTrademark of Bell Laboratories.

pdp: The number of bytes of the a.out file for a pdpl11/44.
6500: The number of bytes of the a.out file for a MCS6500.
These are the resullts:

Pascal programs
length 68000 pdp 6500
19946 14383 16090 26710
19484 20169 20190 35416
10849 10469 11464 18949
273 4221 5106 7944
1854 5807 6610 10301

C progams
length 68000 pdp 6500
9444 6927 8234 11559
7655 14353 18240 26251
4775 11309 15934 19910
639 6337 9660 12494

In contrast to the execution times of the test statements, the object code files sizes show a constant factor
between them. After calculating the correlation coefficient, | have calculated the line fitted between sizes.

Pascal programs
processor corr. coef. fitted line
68000-pdp 0.996
68000-6500 0.999 1.76x + 502*

pdp-6500 0.999 1.80x - 1577
C programs
processor corr. coef. fitted line
68000-pdp 0.974
68000-6500 0.992 1.80x + 502*
pdp-6500 0.980 1.40x - 1577

As seen from the tables above the correlation coefficient for Pascal programs is better than the ones for C
programs. Thus the line fits best for Pascal programs. With the formula of the best fitted line one can now esti-
mate the size of the object code, which a program needs, for a MCS6500 without having the compiler at hand.
One also can see from these formula that the object code generated for a MCS6500 is about 1.8 times more than
for the other processors. Since the number of bytes in the source file havily depends on the programmer, how
many spaces he or she uses, the size of the indenting in structured programs, etc., there is no correlation between
the size of the source file and the size of the object file. Also the use of comments has its influence on the size.

* X isthe number of bytes

SUMMARY.

1. Summary
In this chapter some final conclusions are made.

In spite of its simplicity, the MCS6500 is strong enough to implement a EM machine. A serious deficy of
the MCS6500 is the missing of 16-bit general purpose registers, and especially the missing of a 16-bit stack-
pointer. As pointed out before, one 16-bit register can be simulated by a pair of 8-hit registers, in fact, the accu-
mulator A to hold the highbyte, and the index register X to hold the lowbyte of the word. By lack of a 16-hit
stackpointer, zero page must be used to hold a stackpointer and there are also two subroutines needed for mani-
pulating the stack (Push and Pop).

As seen at the time tests, the ssimple instruction set of the MCS6500 forces the use of library subroutines.
These library subroutines increas the execution time of the programs.

The sizes of the object code files show a strong correlation in contrast to the execution times. With this
correlatiuon one canestimate the size of aprogram if it isto be used on a MCS6500.

1. REFERENCES.

1

Osbhorn, A., Jacobson, S., and Kane, J. The Mos Technology MCS6500. An Introduction to Microcom-
puters, Volume |1, Some Real Products (june 1977) chap. 9.

A hardware description of some real existing CPU’s, such as the Intel Z80, MCS6500, etc. is given
in this book.

van Staveren, H. The table driven code generator from the Amsterdam Compiler Kit. Vrije Universiteit,
Amsterdam, (July 11, 1983).

The defining document for writing a back end table.
Tanenbaum, A.S. Structured Computer Organization. Prentice Hall. (1976).

In this book computers are described as a hierarchy of levels, with each one performing some well-
defined function.

