
Using Peephole Optimization
on Intermediate Code
ANDREW S. TANENBAUM, HANS van STAVEREN, and
JOHAN W. STEVENSON
Vrije Universiteit, Amsterdam, The Netherlands

Many portable compilers generate an intermediate code that is subsequently translated into the
target machine's assembly language. In this paper a stack-machine-based intermediate code suitable
for algebraic languages (e.g., PASCAL, C, FORTRAN) and most byte-addressed mini- and microcom-
puters is described. A table-driven peephole optimizer that improves this intermediate code is then
discussed in detail and compared with other local optimization methods. Measurements show an
improvement of about 15 percent, depending on the precise metric used.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors--compilers;
interpreters; optimization

General Terms: Experimentation, Languages

Additional Key Words and Phrases: abstract machine, intermediate code, peephole optimizer

1. INTRODUCTION

A s t h e c o m p u t e r sc ience f ie ld m a t u r e s , so f twa re de s igne r s a r e c o m i n g to rea l ize
t h a t wr i t i ng a d i s t i nc t c o m p i l e r for e a c h (p r o g r a m m i n g l anguage , m a c h i n e) pa i r
is an e x p e n s i v e w a y to do bus iness . Acco rd ing ly , t h e r e h a s b e e n i nc r e a s ing i n t e r e s t
r e c e n t l y in c o m p i l e r s t h a t can be eas i ly a d a p t e d to p r o d u c e code for a v a r i e t y o f
t a r g e t m a c h i n e s , i n s t e a d o f j u s t one m a c h i n e [2, 3, 5, 9].

A c o m m o n m e t h o d for i m p l e m e n t i n g a g roup of l a n g u a g e s on a co l l ec t ion o f
m a c h i n e s is to h a v e one f ron t e n d p e r l a n g u a g e a n d one b a c k e n d p e r m a c h i n e .
E a c h f ron t end t r a n s l a t e s f rom i ts sou rce l a n g u a g e to a c o m m o n i n t e r m e d i a t e
code, ca l l ed a n U N C O L [11], a n d e a c h b a c k end t r a n s l a t e s f rom t h e c o m m o n
i n t e r m e d i a t e code to a specif ic t a r g e t m a c h i n e ' s a s s e m b l y l a n g u a g e (or o b j e c t
f o r m a t) . T h u s a " c o m p i l e r " cons i s t s o f a f ron t end, a b a c k end, a n d p o s s i b l y
p r o g r a m s t h a t o p t i m i z e t h e i n t e r m e d i a t e code. W h e n th i s m o d e l h a s b e e n
a d o p t e d , a d d i n g a new l a n g u a g e or new m a c h i n e on ly r e q u i r e s wr i t i ng one new
p r o g r a m (f ront end or b a c k end) to m a i n t a i n t h e p r o p e r t y t h a t a l l l a n g u a g e s a r e
a v a i l a b l e on al l m a c h i n e s .

A l t h o u g h squeez ing t h e l a s t d r o p of p e r f o r m a n c e o u t o f t h e C P U is no longe r
t h e d o m i n a n t r e q u i r e m e n t i t once was, t h e r e a r e s t i l l s i t u a t i o n s in w h i c h fas t

Authors' present addresses: A. S. Tanenbaum and H. van Staveren, Department of Mathematics,
Vrije Universiteit, Postbus 7161, 1007 MC Amsterdam, The Netherlands; J. W. Stevenson, Arsycom
BV, Kabelweg 43, Amsterdam, The Netherlands.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/0100-0021 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982, Pages 21-36.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F357153.357155&domain=pdf&date_stamp=1982-01-01

22 • A.S. Tanenbaum, H. van Staveren, and J. W. Stevenson

execution or compact code is important. Consequently, the question of where to
perform the optimization arises. There are three conceptual possibilities:

1. in the front ends;
2. on the intermediate code;
3. in the back ends.

If the first possibility is chosen, many common optimizations will have to be
programmed into each front end, increasing development effort. Similarly, putting
the optimizations in the back ends will also require a duplication of effort.
However, any optimizations that can be performed on the intermediate code
itself only need be done once, with the results being applicable to all front ends
and all machines being used. Although it is not possible to perform all optimiza-
tions on the intermediate code (e.g., making efficient use of target machine
idiosyncracies is hard), it is clear that every optimization that can be performed
on the intermediate code should be, unless it is very difficult or expensive to do
so. Such optimizations are the subject of this paper.

In particular, we discuss performing peephole [8] optimizations on the inter-
mediate code. A peephole optimization is one that replaces a sequence of consec-
utive instructions by a semantically equivalent but more efficient sequence. The
sequences to be matched and their replacements are described in a driving table.

Other researchers [4, 7, 14] have also examined peephole optimization, but
generally on the object code rather than on the intermediate code. We compare
our work to theirs after describing our method and results in detail.

2. THE ARCHITECTURE OF THE INTERMEDIATE CODE MACHINE

The intermediate code produced by our front ends and accepted by our back
ends [12, 13] is the assembly language of a simple stack machine called EM. It
has been designed to be suitable for algebraic languages and byte-addressable
target machines. Front ends exist, are currently being developed, or are at least
being contemplated for ADA, ALGOL 68, BASIC, BCPL, C, FORTRAN, PAS-
CAL, and PLAIN. Back ends will eventually include the Intel 8080 and 8086,
Zilog Z80 and Z8000, Motorola 6800, 6809, and 68000, TI 9900, DEC PDP-11 and
VAX, and IBM 370. These lists are not exhaustive but should give a reasonable
idea of the scope of EM. On the other hand, EM is not especially well suited for
radically different languages {e.g., COBOL, LISP, SNOBOL) or machines that
are not byte addressable {e.g., CDC Cyber, DEC PDP-10, Univac 1108) or are
completely different (e.g., data flow, Turing machine).

Briefly, each procedure invocation creates a frame on the stack. The Local
Base register (LB) points to the base of the current frame, and the Stack Pointer
(SP) points to the top of the frame. The External Base register (EB) points to
the bottom of the outermost stack frame. Variables at intermediate levels of
lexicai nesting are accessed by following the static chain backward.

All arithmetic instructions fetch their operands from the top of the stack and
put their results back on the stack. Expressions are evaluated merely by convert-
ing them to reverse Polish. There are no general registers. Instructions are
provided for manipulating integers of various lengths, floating-point numbers,
pointers, and multiword unsigned quantities {e.g., for representing sets).

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

Using Peephole Optimization on Intermediate Code ° 23

A variety of instructions has been provided for loading operands onto the stack
and popping them off the stack for storage. These instructions have been chosen
to match closely the semantic primitives of common algebraic languages. There
are instructions for use with constants, local variables, parameters, array ele-
ments, record fields, etc.

A list of the most important machine instructions is given in Table I. The
meaning of most of the instructions is provided by the PASCAL fragment
following it. Throughout the definitions, the variable B is used to avoid making
a distinction between LB and EB, since that aspect of the machine has little
significance for the optimizations discussed below. Correspondingly, the distinc-
tion between instructions that access local variables and those that access external
variables has been eliminated.

3. CODE GENERATION STRATEGY

In order to understand the significance of the optimizations, it is necessary to
understand something about typical code sequences produced by front ends for
EM. Various studies [1, 6, 12] have shown that most programs tend to contain
mostly simple expressions and statements. Wulf et al. [14] have pointed out that
in the final analysis the quality of the local code has a greater impact on both the
size and speed of the final program than does any optimization. The conclusion
we draw from these two observations is that the efficient compilation of simple,
commonly occurring source statements is the key to producing good code.

The traditional way to generate good code for commonly occurring statements
is to build a myriad of special cases into all the front ends. For example, the
statement N := N + 1 occurs often in many programs; so EM has a special
INCREMENT VARIABLE instruction. The normal approach would be to have
the front end check all assignments to see if they can use this instruction. It is our
belief that this approach is a mistake and that recognition and replacement of
important instruction sequences should be done by the optimizer. In fact, our
basic intermediate file optimizer performs only this kind of peephole optimization;
data flow and other optimizations can and should be done by other programs,
cascading them in the manner of UNIX "1 [10] filters.

Coming back to the case of assignment statements, in general, assignment
statements can be complicated, such as

A[I + 1].FIELD1 := B [J * K].FIELD2[M]

Although such statements are rare, front ends must be prepared to deal with
them. Consequently, the general strategy used by our front ends is to evaluate
the address of the right-hand side, push this address onto the stack, and then do
a LOAD INDIRECT n instruction, which pops the address and pushes the n-
byte-long object starting at the address. After that, the address of the left-hand
side is also evaluated and pushed onto the stack, and then a STORE INDIRECT
n instruction, which fetches the destination address and n-byte object from the
stack and performs the store, is executed. There are many special cases of the
assignment statement that can be optimized, but the front ends ignore most of
them, leaving the work to the optimizer.

UNIX is a trademark of Bell Laboratories.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

24 A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson

Table I. A Simplified Summary of the EM Instruction Set

Mnemonic Instruction Meaning

ADD Add
ADI k Add immediate
AND 2 And
BEG k Begin procedure
BEQ k Branch equal to
BGE k Branch greater/equal
BGT k Branch greater
BLE k Branch less/equal
BLT k Branch less than
BNE k Branch not equal
BRA k Branch unconditionally
BLM k Block move

CMI Compare

COM 2 Complement
DEC Decrement stack
DEV k Decrement variable
DIV Divide
DUP 2 Duplicate
INC Increment stack
INV k Increment variable
IOR 2 Inclusive or
LAV k Load address of variable
LDF k Load double offsetted
LDV k Load double variable
LOCk Load constant
LOF k Load offsetted
LOI k Load indirect
LOP k Load parameter
LOV k Load variable
MOD Modulo
MUL Multiply
NEG Negate
NOT Boolean complement
RET k Return
ROL Rotate left

t : = p o p ; s : = p o p ; p u s h (s + t)

t : = p o p ; p u s h (t + k)

t := p o p ; s : = p o p ; p u s h (b o o l a n d (s , t))

s p := sp + k

t : = p o p ; s : = p o p ; if s = t then p c : = p c + k

t : = p o p ; s := p o p ; i f s - t thenpc : = p c + k

t : = p o p ; s : = p o p ; i f s > t thenpc : = p c + k

t : = p o p ; s : = p o p ; i f s ~ t thenpc : = p c + k

t : = p o p ; s : = p o p ; i f s < t t h e n p c : = p c + k

t : = p o p ; s : = p o p ; if s ~ t then p c : = p c + k

p c := p c + k
t : f f i pop; s := pop; f o r j := 1 to k div 2 do m [t - 2 + 2 *

j] := m [s - 2 + 2 * j l
t : = p o p ; s :=pop;
i f s < t then p u s h (- 1) else if s = t then p u s h (O) else

p u s h (1)
t : = p o p ; p u s h (b o o l x o r (- 1, t))
t := p o p ; p u s h (t - 1)
m [B + k]':= m [B + k] - 1

t : = p o p ; s : = p o p ; p u s h (s / t)

t := p o p ; p u s h (t); p u s h (t)

t : = p o p ; p u s h (t + 1)
m [B + k] := m [B + k] + 1

t := p o p ; s := p o p ; p u s h (boo l io r (s , t))

p u s h (B + k)

t : = p o p ; p u s h (m [t + k]) ; p u s h (m [t + k + 2])
p u s h (m [B + k]) ; p u s h (m [B + k + 2])
p u s h (k)
t := p o p ; p u s h (m [t + k])
t : = p o p ; f o r j := 1 to k div 2 d o p u s h (m [t - 2 + 2 *j])
p u s h (m [m [B + k]])
p u s h (m [B + k])
t : = p o p ; s : = p o p ; p u s h (s m o d t)

t : = p o p ; s : = p o p ; p u s h (s * t)

t := p o p ; p u s h (- t)
t : = p o p ; if t = 0 then p u s h (1) else p u s h (0)

{Pop k bytes, remove a stack frame, then push the k bytes}
{All bits are left-circularly shifted}

N e x t to a s s i g n m e n t s t a t e m e n t s , i f s t a t e m e n t s a re m o s t c o m m o n . S t a t e m e n t s o f

t h e f o r m i f A = B t h e n . . . occur far m o r e f r e q u e n t l y t h a n o t h e r types ; so t h e

obv ious E M code s e q u e n c e consis ts o f i n s t ruc t i ons to p u s h A and B on to t h e

s t ack fo l lowed by a B N E ins t ruc t ion , w h i c h pops two o p e r a n d s and b r a n c h e s to

t h e e l s e p a r t i f t h e y are unequa l .
A t f i rs t g lance i t wou ld s e e m t h a t six B x x i n s t ruc t i ons wou ld be n e e d e d in t h e

E M a rch i t e c tu r e , for x x = EQ, N E , LT , LE, G T , and GE, b u t in fac t m a n y m o r e

are needed , s ince a c o m p l e t e se t is n e e d e d for s ing le -p rec i s ion in tegers , double -

p rec i s ion in tegers , uns igned in tegers , po in te rs , f l oa t ing -po in t n u m b e r s , sets, etc.

T o avo id th is p ro l i fe ra t ion , E M has one c o m p a r e i n s t r u c t i o n for e a c h d a t a t y p e

(CMx) t h a t pops two o p e r a n d s and r ep laces t h e m w i t h a - 1 , 0, or +1, d e p e n d i n g

on w h e t h e r t he f irs t is less than , equa l to, or g r e a t e r t h a n t h e second. T h e n t h e r e

are six T x x i n s t ruc t i ons for r ep lac ing th i s n u m b e r w i t h t r u e (r ep r e sen t ed by 1)

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

Using Peephole Optimization on Intermediate Code

Table I continued

25

Mnemonic Instruction Meaning

ROR Rotate right {All bits are right-circularly shifted}
SDF k Store double offsetted t := pop; m[t + 2 + k] := pop; m[t + k] := pop
SDV k Store double variable m [B + k + 2] := pop; rn[B + k] := pop

SHL Shift left t := pop; s := pop; for j := l to t do s := s + s; push (s)
SHR Shift right t : = p o p ; s : = p o p ; f o r j : = l t o t d o s : = s d i v 2 ; p u s h (s)
STF k Store offsetted t := pop; m[t + k] := pop

STI k Store indirect t := pop; fo r j := 1 to k d iv 2 do m [t + k - 2 * j] := pop
STP k Store parameter rn[rn[B + k]] := pop
STV k Store variable m [B + k] := pop

SUB Subtract t := pop; s := pop; p u s h (s - t)

TEQ True if equal to t := pop; i f t = 0 t h e n p u s h (l) else push(O)
TGE True if greater/equal t := pop; i f t ___ 0 t h e n p u s h (1) e lse p u s h (0)

T G T True if greater t := pop; i f t > 0 t h e n p u s h (1) e lse p u s h (0)

TLE True if less/equal t := pop; i f t _< 0 t h e n p u s h (l) else push(O)
TLT True if less than t := pop; i f t < 0 t h e n p u s h (1) e lse p u s h (0)
T N E True if not equal t := pop; i f t ~ 0 t h e n p u s h (l) else push(O)
XOR 2 Exclusive or t := pop; s := pop; push(boolxor(s , t))
ZEQ k Branch equal to zero t := pop; i f t = 0 t h e n pc := p c + k

ZGE k Branch greater/equal zero t := pop; i f t _> 0 t h e n p c := pc + k

ZGT k Branch greater zero t := pop; i f t > 0 t h e n pc := p c + k
ZLE k Branch less/equal zero t := pop; i f t _< 0 t h e n pc := p c + k
ZLT k Branch less than zero t := pop; i f t < 0 t h e n "pc := pc + k

ZNE k Branch not equal zero t := pop; i f t ~ 0 t h e n pc := pc + k
ZRV k Zero variable m [B + k] := 0

Notes

1. The offset k is in bytes.
2. rn[k] addresses the word at address k; k must be even.
3. p c is the program counter.
4. sp is the stack pointer.
5. EM uses two's complement arithmetic.
6. p u s h (k) pushes one word onto the stack.
7. pop is a function that removes and returns the top word on the stack.
8. booland, boolior, and boolxor each return the indicated Boolean function.
9. No distinction is made here between local and external variables.

10. No distinction is made here between integers and addresses.
11. No checking and trapping is indicated here.

or false (represented by 0), depending on the relational operator. For example,
the PASCAL statement

i f (I = J) a n d (X < 3.14) and ({FLAG = false) o r (K > 0)) t h e n . . .

is trivially translated to the reverse Polish string

/, J, =, X, 3.14, F L O A T I N G <, and, FLAG, false, --, K, 0, >, or, and

and then to the EM code sequence

LOV I
LOV J
CMI
TEQ
LDV X

; s tack I
; s tack J
; c o m p a r e integer, push ing - 1 , 0, or + 1
; re lat ional operator w a s =
; s tack X (floating-point is double length)

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

26 A.S. Tanenbaum, H. van Staveren, and J. W. Stevenson

LDV cl ; stack floating-point constant 3.14 from memory
CMF ; compare floating, pushing -1, 0, or +1
TLT ; relational operator was <
AND 2 ; "Boolean and" on 2-byte operands
LOV FLAG ; stack FLAG
LOC 0 ; stack false
CMI ; compare integer FLAG and false
TEQ ; test for equality
LOV K ; stack K
LOC 0 ; stack 0
CMI ; compare integer K and 0
TGT ; relational operator was >
IOR 2 ;"inclusive or" on 2-byte operands
AND 2 ; "Boolean and" on 2-byte operands

Here, as in the case of assignment statements, optimizations are possible.
In summary, our approach is to have front ends deal with only a single case,

the most general one, and to let the optimizer convert the often clumsy code
sequence that results into the optimal one.

4. OPTIMIZATION PATTERNS

The optimizer is driven by a pattern/replacement table consisting of a collection
of lines. Each line contains a pattern part and a replacement part. A pattern or
replacement part is composed of a consecutive sequence of EM instructions, all
of which designate an opcode and some of which designate an operand. (By
design, no EM instruction has more than one operand.)

The operands can be constants, references to other operands within the line, or
expressions involving both. For example, consider the three lines (1)-(3):

Pattern Replacement

(1) LOV A INC STV A ~ INV A
(2) LOV A LOV A + 2 ~ LDV A
(3) LOC A NEG ~ LOC - A

In each line the ~ symbol separates the pattern part (left) from the replacement
part (right). Throughout the optimizations we use the symbols A, B, C, etc., as
formal parameters to refer to operands. In line (1), a variable is loaded (pushed)
onto the stack (LOV A), it is incremented by one (INC), and the result is stored
in the variable (STV A). The whole sequence can be replaced by a single
increment variable instruction (INV). The pattern of (1) only matches a sequence
of three EM instructions if the three opcodes are LOV, INC, and STV, in that
order; furthermore, the first and third operands are the same, whatever their
value may be. If the pattern matches, the operand of the resulting INV instruction
is copied from that of the LOV instruction.

In (2) an example of operand arithmetic is given. The pattern only matches if
the address of the second LOV instruction is two higher than that of the first.
The effect of this line is to replace two consecutive one-word pushes by a single
two-word push.
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

Using Peephole Optimization on Intermediate Code 27

The third example shows that loading a constant onto the stack and then
negating it can be replaced by loading the negative of the constant onto the stack
in the first place. The noteworthy feature here is an expression, albeit a simple
one in this case (-A) , in the replacement part.

We can now describe the operation of the optimizer in detail. Initially, an entire
procedure is read into an internal array, one instruction per array element. The
optimizer maintains a pointer to the "current" instruction. Starting at this
position, it tries to find optimizations that begin with the current instruction. If
a pattern match can be found, the replacement part is substituted for the matched
instructions.

It often occurs that the output of one optimization produces a pattern that
itself can be optimized. In fact, this principle has been extensively used in the
design of the optimization table to reduce its size. By repeating the matching
process until no more matches can be found, patterns much longer than the
longest optimization table entry can ultimately be replaced. After a replacement,
the code pointer is moved back a distance equal to the longest pattern to make
sure that no newly created matches are missed.

5. THE OPTIMIZATION TABLE

In this section we present and discuss a major portion of the EM optimization
table. As an aid to the reader, we have divided the optimizations into ten major
groups, as shown in Table II. Each optimization is numbered for reference in the
text. In addition, the occurrence rate of each optimization per 100,000 optimiza-
tions is given in parentheses. The data are based on a collection of about 500
PASCAL programs. Obviously, the front end's code generation strategy has an
effect on these frequencies. The PASCAL front end used for these measurements
used the strategy described above.

The first group, lines 1-21, represent computations that can be performed at
compile time {i.e., optimize time) instead of at run time. Lines 1-13 are all of the
form LOC a; LOC b; operator; so it is straightforward to carry out the operation.
More complicated expressions can also be folded because the pattern scanning
continues until no more matches are found. For example, the source statement
K := 3 * 5 + 6 would initially compile to the EM code sequence

LOC 3
LOC 5
MUL
LOC 6
ADD

Line 3 would replace the first 3 instructions by LOC 15; then optimization 1 would
replace the remaining sequence by LOC 21. Arbitrary constant expressions
involving all the operators can be folded to a single LOC.

Lines 14 and 15 represent the unary operators for two's complement and one's
complement, respectively. Lines 16 and 17 reflect the fact that negation followed
by addition is subtraction, and vice versa. Lines 18 and 19 might have been useful
to convert no t t r ue (1) to false (0) and no t false to t rue , but these never
occurred. The BEG instruction is typically used to advance the stack upon

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

28 A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson

Table II. The Optimizations and Their Replacements

Constant folding
1. (225) LOC A LOC B A D D ~ LOC A + B
2. (181) LOC A LOC B S U B = L O C A - B
3. (125) LOC A LOC B M U L ~ LOC A * B
4. (65) LOC A L O C B D I V ~ L O C A / B
5. (12) LOC A LOC B M O D ~ LOC A M O D B
6. (52) LOC A LOC B A N D 2 =* LOC A A N D B
7. (67) LOC A LOC B I O R 2 =~ L O C A I O R B
8. (0) LOC A LOC B X O R 2 =~ LOC A X O R B
9. (0) LOC A LOC B S H L =~ LOC A S H L B

10. (0) LOC A LOC B S H R =:~ LOC A S H R B
11. (0) LOC A LOC B ROL ~ LOC A ROL B
12. (0) LOC A LOC B R O R ~ L O C A R O R B
13. (191) L O C A LOC B C M I ~ LOC A C M I B
14. (1330) LOC A N E G ~ LOC - A
15. (39) LOC A C O M 2 ~ LOC ~ A
16. (0) N E G S U B ~ A D D
17. (0) N E G A D D ~ S U B
18. (0) LOC 1 N O T ~ LOC 0
19. (0) L O C 0 N O T ~ LOC 1
20. (0) B E G A B E G B ~ B E G A + B
21. (496) A D I A A D I B ~ A D I A + B

Operator strength reduction
22. (85) LOC 2 LOV A M U L ~ LOV A LOC 1
23. (29) LOC 2 M U L ~ LOC 1 S H L
24. (17) L O C 4 M U L ~ L O C 2 S H L
25. (18) LOC 8 M U L ~ LOC 3 S H L
26. (12) L O C 16 M U L ~ LOC 4 S H L
27. (0) LOC 32 M U L ~ L O C 5 S H L
28. (0) LOC - 1 L O V A M U L ~ L O V A N E G

Nul l sequences
29. (4248) A D I 0 ~ - -
30. (1638) B E G 0 ~ - -
31. (12) N E G N E G ~ - -
32. (I) LOC 0 A D D ~ - -

33. (0) LOC 0 S U B ~ - -

34. (4) LOC 1 M U L = ~ -
35. (1) L O C 1 D I V = * -
36. (14) LOC 0 I O R 2 ~ - -
37. (0) L O C 0 X O R 2 =* - -
38. (5) LOV A S T V A =~ - -
39. (9) L D V A S D V A =" - -
40. (5) L O C 0 L O V A A D D =~ LOV A
41. (0) L O C 1 L O V A M U L ~ L O V A
42. (0) L O C 0 LOV A M U L =* L O C 0

43. (0) L O V A LOC 0 M U L ~ L O C 0
44. (454) S T V A LOV A R E T 2 =~ R E T 2
45. (256) S D V A L D V A R E T 4 = , R E T 4
46. (3121) L O C 0 C M I T x x ~ T x x
47. (323) B R A A L A B A =~ L A B A

S H L

procedure entry. In line 20 two consecut ive BEGs axe reduced to one. Typically,
A D I (add immediate) is used to offset from a pointer by a k n o w n distance, for
example, to access a field of a record. If the field is itself a record, the front end
m a y generate two consecut ive ADIs, in which case line 21 can be used to make
one A D I from them.

T h e operator strength reduction group replaces mult ipl icat ions by powers of
two with shifts, and mult ipl icat ions by - 1 with negates.

A C M Transactions on Programming Languages and Systems, Vol. 4, No. 1, J a n u a r y 1982.

Using Peephole Optimization on Intermediate Code

Table II continued

29

C o m b i n e d m o v e s

48. (2555) LOV A LOV A + 2 ~ LDV A
49. (15) LDV A LOV A + 4 ~ L A V A LOI 6
50. (217) LDV A LDV A + 4 ~ L A V A LOI 8
51. {98) L A V A LOI B LOV A + B ~ LAV A LOI B + 2
52. (0) L A V A LOI B LDV A + B ~ LAV A LOI B + 4
53. (89) L A V A LOI B L A V A + B LOI C ~ LAVA LOI B + C
54. (260) L A V A STI B LOC C STV A + B ~ LOC C L A V A
55. (9) L A V A STI B LOV C STV A + B = LOV C LAVA
50. (3) STV A STV A - 2 ~ SDV A - 2
57. (0) S D V A S T V A - 2 ~ L A V A - 2 S T I 6
58. (8) S D V A S D V A - 4 ~ L A V A - 4 S T I 8
59. (0) L A V A S T I B S T V A - 2 = L A V A - 2 S T I B + 2
60. (0) L A V A S T I B S D V A - 4 ~ L A V A - 2 S T I B + 4
61. (385) STV A LOC B STV A + 2 ~ LOC B SDV A
62. (20) STV A LOV B STV A + 2 ~ LOV B SDV A
63. (203) SDV A LOC B STV A + 4 ~ LOC B LAVA
64. (4) L A V A BLM 2 ~ LOI 2 STV A
65. (86) L A V A BLM 4 ~ LOI 4 SDV A
66. (4) LOV A BLM 2 = LOI 2 STP A

Commutative law

67. (68) LOVA L O V A - 2 ADD ~ L D V A - 2 ADD
68. (8) L O V A L O V A - 2 MUL ~ L D V A - 2 MUL
69. (181) LOVA L O V A - 2 CMI T x x ~ L D V A - 2 CMI
70. (0) LOVA L O V A - 2 B x x B ~ L D V A - 2 B z z B

Indirect m o v e s

71. (994) L A V A LOI 2 ~ LOVA
72. (874) L A V A STI 2 ~ STV A
73. (0) L A V A LOF B ~ LOV A + B
74. (0) L A V A STF B ~ STF A + B
75. (2785) LOV A LOI 2 ~ LOP A
76. (1353) LOV A STI 2 ~ STP A
77. (3991) L A V A ADI B ~ L A V A + B
78. (0) LAV A STI B STV A - 2 ~ L A V A STI B + 2
79. (0) L A V A STI B SDV A - 4 ~ L A V A STI B + 4
80. (9834) L A V A LOI 4 ~ Li:)V A
81. (4211) L A V A S T I 4 ~ S D F A
82. (0) L A V A LDF B ~ LDV A + B
83. (0) L A V A SDF B ~ SDV A + B
84. (5988) ADI A LOI 2 ~ LOF A
85. (0) ADI A LOF B ~ LOF A + B
86. (2562) ADI A STI 2 ~ STF A
87. (0) ADI A STF B ~ STF A + B
68. (891) ADI A LOI 4 ~ L D F A
89. (526) ADI A STI 4 ~ SDF A
90. (0) ADI A LDF B ~ LDF A + B
91. (0) ADI A SDF B ~ SDF A + B

STI B + 2
STI B + 2

STI 6

W z z

Note: x x ~ LT, LE, EQ, NE, GE, GT
yy = GE, GT, NE, EQ, LT, LE
z z = GT, GE, EQ, NE, LE, LT

The third group (lines 29-47) eliminates sequences or partial sequences of code
that are redundant. ADI 0 (line 29) is typically generated when accessing the first
field of a record. The front end arranges for the address of the record to appear
on the stack and then increases this address by the relative position of the desired
field in the record, which for the first field is 0.

Upon procedure entry, the stack pointer is advanced to reserve storage for local
variables by emitting BEG SIZE, where SIZE is subsequently defined as the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

30 A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson

Table II continued

Comparison

92. (9625) T x x ZEQ A ~ Zyy A
93. (4824) CMI Zxx A ~ Bxx A
94. (726) T x x TEQ ~ Tyy
95. (0) NOT ZEQ A ~ ZNE A
96. (0) NOT ZNE A = ZEQ A

Special instructions

97. (8546) LOC 1 ADD ~ INC
98. (1504) LOC 1 SUB ~ DEC
99. (5727) LOV A INC STV A = INV A

100. (347) LOV A DEC STV A = DEV A
101. (0) LOC - 1 SUB ~ INC
102. (0) LOC - I ADD = DEC
103. (8) LOC 1 LOV A ADD ~ LOV A
104. (0) LOC - 1 LOV A ADD ~ LOV A
105. (11) LOV A LOC 2 ADD STV A ~ INV A
106. (0) LOC 2 LOV A ADD STV A ~ INV A
107. (5) LOV A LOC 2 SUB STV A ~ DEV A
108. (0) LOC - 1 MUL ~ NEG
109. (0) LOC - 1 DIV ~ NEG
110. (4082) LOC 0 STV A ~ ZRV A
111. (22) LOC 0 B x x A ~ Zxx A
112. (46) LOC 1 BLT A ~ ZLE A
113. (17) LOC 1 BGE A ~ ZGT A
114. (0) LOC - 1 BGT A ~ ZGE A
115. (1) LOC - 1 BLE A = ZLT A

INC
DEC
INV A
INV A
DEV A

D U P instruction

116. (263) STV A LOV A ~ DUP 2 STV A
117. (199) LOV A LOV A ~ LOV A DUP 2

Reordering

118. (53) ADD LOC A ADD ~ LOC A ADD ADD
119. (107) ADD LOC A SUB ~ LOC A SUB ADD
120. (56) SUB LOC A ADD ~ LOC A SUB SUB
121. (27) SUB LOC A SUB ~ LOC A ADD SUB
122. (24) MUL NEG ~ NEG MUL
123. (0) DIV NEG ~ NEG DIV

Note: xx = LT, LE, EQ, NE, GE, G T
yy = GE, GT, NE, EQ, LT, LE
zz = GT, GE, EQ, NE, LE, LT

a m o u n t of s torage needed. I f there are no locals, SIZE will tu rn out to be 0; so
line 30 removes the BEG.

T h e next five lines deal with expressions of the fo rm - (- n), n + 0, n - 0,
n * 1, and n/ l , respectively. These expressions might occur when the constant is
actual ly a manifes t constant . Inclusive and exclusive or-hug a var iable with 0 does
not change it, as indicated in lines 36 and 37.

Lines 38 and 39 el iminate r edundan t load / s to re sequences.
T h e next four opt imizat ions deal with pushing two operands onto the s tack

and then performing an opera t ion on them. In these cases the opera t ion does
nothing; so one push and the operat ion can be deleted.

Lines 44 and 45 concern the way functions re turn values in EM: they push the
values onto the s tack and then execute a R E T instruction. A store into a local
var iable prior to the re tu rn is obviously wasted; so it is el iminated.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

Using Peephole Optimization on Intermediate Code 31

The instruction CMI in line 46 puts a negative number, 0, or a positive number
onto the stack for use by a subsequent T x x , where x x stands for one of the
relational operators LT, LE, EQ, NE, GE, or GT. In this case the comparison
with 0 is redundant, since the operand being compared to 0 can itself be used for
the succeeding test.

Line 47 uses the fact that labels are represented as pseudoinstructions with the
opcode LAB. Thus, if a branch forward to A is followed by A itself, the branch
can be eliminated.

The combined move group tries to combine consecutive push or pop operations
into a single one. When the EM code is to be interpreted, replacing two instruc-
tions by one is always worth doing. Similarly, when EM is translated to some
target machine, combining two moves may be useful, especially if the target
machine has double- or multiple-word moves. If enough moves can be combined,
the optimization is worth doing on all machines, since it gives the back end the
option of using a loop instead of in-line code. In our PASCAL compiler, three
pages of source code initializing various tables are ultimately reduced to a single
move (BLM) instruction.

The basic strategy followed by lines 48-63 is to combine single-word, double-
word, and multiword moves (LOV, LDV, and LOI, respectively) into longer units.
Lines 64-66 convert short BLM instructions into LOIs to permit them to combine
more easily with other instructions (there are many patterns with LOI, but few
with BLM).

Lines 67-70 take advantage of the commutative law. Since the operands of
ADD and MUL can be reversed without damage, they are reversed when doing
so is worthwhile. The operands of CMI can also be reversed (line 69), but only if
the sense of the following T x x is also reversed, where x x again stands for LT, LE,
EQ, NE, GE, or GT, and z z stands for the complementary operators, GT, GE,
EQ, NE, LE, or LT, respectively. For example,

LOV 8 LDV 6
LOV 6 becomes CMI
CMI TGT
T L T

Line 70 uses the same principle as does line 69.
The indirect move group is largely concerned with replacing indirect moves,

generated by the general case of the assignment statement, with more efficient
direct ones. Lines 71-83 fall in this category. The remaining optimizations in the
group combine ADI with the following instruction and improve the code. The
ADIs are often generated by accessing record fields, as mentioned earlier.

Line 92 is one of the most frequent optimizations. T x x normally converts the
output of a compare instruction (-1, 0, or +1) to t r u e (1) or false (0). The ZEQ
following it can be thought of as "branch if false." Instead of first converting the
negative, 0, or positive value on the stack to t r u e or false, the branch uses the
value itself. The code y y stands for GE, GT, NE, EQ, LT, or LE, respectively,
depending on the corresponding x x code: LT, LE, EQ, NE, GE, or GT. This
optimization is used for i f statements with only a single relational operator in the
condition.

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 1, J anua ry 1982.

32 A.S. Tanenbaum, H. van Staveren, and J. W. Stevenson

Line 93 is useful when comparing two integer operands. Instead of comparing
them and then testing the result of the comparison, one can use the B x x

instructions, which compare and branch in one instruction. The optimization on
line 94 replaces two cascaded T x x operations by a single equivalent one. The
remaining two in this group are able to simulate the effect of the PASCAL n o t

operator by changing the sense of the branch.
EM has several one-operand instructions that are actually special cases of two-

operand instructions. Lines 97-104 handle addition and subtraction of +1 or -1 .
Note that the source statement N := N + 1 is reduced to a single INV instruction
in two stages: first, optimization 97 is applied, and then optimization 99. This
replacement may even be useful on target machines lacking an increment instruc-
tion (e.g., on machines that can add a register to memory}. In general we cannot
guarantee that every optimization is useful on every machine, but in practice the
ones listed in Table II are useful on many machines of the class being considered.

Lines 105-107 replace addition or subtraction by two with a pair of increments
or decrements. In retrospect, their inclusion in the table was probably not such
a good idea, since on some target machines they are likely to lead to worse rather
than better code. (A machine lacking an INCREMENT but able to add a register
to memory would probably be better off adding 2 to the variable once than adding
1 to the variable twice.} On the other hand, these patterns are rarely used in
practice. Lines 108 and 109 substitute the one-operand NEG instruction for the
two-operand MUL and DIV instructions where possible.

The optimization on line 110 is intended for source statements of the form
N := 0. The ZRV instruction does the work of two other instructions. The next
line represents six optimizations for comparing an integer operand against zero.
The last four lines are similar but slightly tricky. Line 112 implicitly replaces the
test i f N < 1 t h e n with the equivalent test i f N __ 0 t h e n so that the one-operand
ZLE instruction instead of the two-operand BLT instruction can be used. Lines
113-115 are analogous to line 112.

The DUP group is useful to avoid refetching an operand that is already on the
stack. On many target machines, duplicating the top word or two words on the
stack is a cheaper operation than addressing memory, since no memory address
is required in the former, but it is in the latter.

The reordering group merely reorders the instructions in each pattern without
changing them. The first four move a LOC from the middle of an operation
sequence to the start of it. By moving LOCs forward, the chances of another
optimization becoming possible are increased. For example, the source expression
A := A + S I Z E - 5, where S I Z E is a manifest constant with value 6, normally is
compiled and optimized as follows:

Original 1st opt. 2nd opt. 3rd opt. Final code
(119) (2) (97) (99)

LOV A LOV A
LOC 6 LOC 6
ADD LOC 5
LOC 5 SUB
SUB ADD
STV A STV A

LOV A LOV A
LOC 1 INC
ADD STV A
STV A

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

INV A

Using Peephole Optimization on Intermediate Code 33

Lines 122 and 123 operate in a spirit similar to that of lines 118-121. The NEG
is pushed forward to allow it to combine with a possible LOC preceding it. For
example, the source statement N := 5 / - K in essence is transformed into
N := - 5 / K , which is more efficient since the negation can be carried out at
compile time instead of run time.

We would like to point out that the optimizer is slightly more general than
described so far. Each optimization line may contain a number indicating that it
requires some special processing. This feature is used to specify replacement
parts that are difficult or impossible to express as a pattern. Among these
optimizations are bounds checking of subscripts or subrange variables that can
be evaluated at compile time, comparisons that can be evaluated at compile time,
and branches to other branches or to return instructions. In addition, EM has a
full complement of instructions one of whose operands is taken from the stack
instead of as an immediate operand; for example, AND 2 has the 2 as an
immediate operand, but there is also a form where the size is fetched from the
stack. A collection of optimizations exists to replace the more general form by the
immediate operand form where possible. Together, the optimizations not listed
account for 12.5 percent of all optimizations.

6. MEASURED RESULTS

To measure the effect of the peephole optimizer, we have run two tests. In the
first we compared the number of machine instructions in each optimized EM
program with the number in the unoptimized EM program. Thus, for each
program we have a number between 0.00 and 1.00 giving the number of instruc-
tions in the optimized program as a fraction of the original. This metric was
chosen since it is independent of both the source language and the target machine
and directly measures what the optimizer primarily attempts to do, namely,
eliminate EM instructions. This metric can also be defended on theoretical
grounds. EM code is really just glorified reverse Polish, in other words, the parse
tree linearized into postfix order. Removal of an EM instruction typically corre-
sponds to a removal of a node in the parse tree. Since object code size is typically
proportional to parse tree size, such removal normally has a direct impact on the
final object code size. The measurements presented below bear this out.

The occurrence frequencies per 1000 optimizations are shown in Table III in
the column labeled EM. The median saving is 16 percent: one in six EM
instructions is eliminated.

The second test consisted of translating the optimized and unoptimized EM
code into PDP-11 object code and comparing the number of bytes produced in
each case. These results are given in Table III in the column labeled PDP-11.
The median reduction in the object code is 14 percent, close to the EM result.
This closeness suggests that nearly all the EM optimizations are indeed reflected
in the final object code. In two test programs, the optimized PDP-11 code was
increased by 2 percent over the unoptimized code due to optimization 50; this
was traced to a design error in the (original) EM to PDP-11 back end. (With the
optimization the operands were actually stacked, whereas without it they were
not.) This defect can easily be fixed, however.

On the basis of these results, we believe peepholing the intermediate code to be
worthwhile, since the optimizer need only be written once, for all languages and

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

34 A.S. Tanenbaum, H. van Staveren, and J. W. Stevenson

Table III. Dis t r ibut ion of A m o u n t
of Reduc t ion in Size

Rat io E M PDP-11

<0.60 0 12
0.60-0.64 3 6
0.65-0.69 22 25
0.70-0.74 24 35
0.75-0.79 205 71
0.80-0.84 283 191
0.85-0.89 298 333
0.90-0.94 126 181
0.95-1.00 39 141

>1.00 0 4

Tota l 1,000 999"

a Not 1000 due to roundoff.

all machines, and it in no way inhibits additional, more sophisticated optimizers,
either on the source code, on the EM code, or on the target code. Moreover, the
peephole optimizer is fast: 1140 EM instructions per CPU second on a PDP-11/
45 excluding certain overhead not related to peephole optimization and 650
instructions per CPU second including all overhead. This speed was achieved
without any special effort to tune the program. It could easily be made faster still
by hashing the pattern table instead of examining all patterns starting with the
current opcode.

7. DISCUSSION

Davidson and Fraser [4] have recently described a peephole optimizer that looks
for pairs of consecutive instructions that can be replaced by a single instruction
having the same effect. As an example, they note that the PDP-11 sequence
SUB #2,R3; CLR (R3) can be replaced by CLR -(R3). In essence, during each
compilation the optimizer dynamically "discovers" various pattern/replacement
pairs. Their algorithm is so designed that it is complete in the sense that it
catches all possible object code pairs that can be reduced to one instruction. In
our method, in contrast, the patterns and replacements are determined in advance
and looked up in a table during compilation. The table could be constructed using
their method of examining all instruction pairs, of course. However, in this case
completeness means that all reducible EM pairs, rather than target code pairs,
have been eliminated.

The advantage of computing the pattern/replacement pairs in advance instead
of on-the-fly is faster performance. They quote an optimization speed of i to 10
instructions per second on a PDP-11/70, whereas we have measured a speed of
over 1000 instructions per second on the (considerably slower) PDP-11/45. Their
use of SNOBOL (versus our use of C) no doubt accounts for part of this two or
three order-of-magnitude effect, but even with the same language, computing the
table once and for all in advance is surely much faster than rediscovering it
piecemeal during compilation. Both our method and theirs require driving tables,
as well as code to process them, to be available at run time. The relative sizes of
these are too implementation-dependent to make any general remarks about.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

Using Peephole Optimization on Intermediate Code 35

Another difference is their decision to optimize the object code versus our
decision to optimize the in termedia te code. This difference is s trongly felt when
one is t rying to decide whether two sequences are equivalent or not. For example,
the PDP-11 instruct ion A D D #1 ,RO is not quite equivalent to (the cheaper) INC
RO because the former sets the "car ry" condition code bit and the la t ter does
not. T h e optimizer mus t therefore per form some l ive /dead analysis for each
occurrence of A D D #1 ,RO to see if the carry bit is used later. I f it is, INC cannot
be used. Since the in termedia te code can be designed to be free of such idiosyn-
cracies, opt imizat ions on it can be done wi thout requiring the l ive /dead context
informat ion tha t Davidson and Fraser need (cf. line 97 in Table II).

Another research project t ha t has repor ted work with peephole optimizat ion is
Bl i ss /PQCC at Carnegie-Mellon Univers i ty [7, 14]. In m a n y cases we have done
optimizat ions similar to theirs, only we have done t h e m entirely on the source-
and machine- independent in termedia te code, whereas they have largely done
t h e m on the (machine-dependent) object code.

In the compiler pass called DELAY, they do constant folding, unary-minus
propagat ion, and reordering using the commuta t ive law. We do similar optimi-
zations in lines 1-21, 122-123, and 67-70, respectively. In the pass called FINAL,
they do crossjumping (which we do not present ly do, but easily could), b ranch
chain collapsing, null b ranch removal , and conditional b ranch reversal, all of
which we do do. T h e y also do various special case analyses on the object code
tha t we do on the in termedia te code. In addition, F I N A L per forms certain
inherent ly machine-dependen t optimizations, such as manipula t ing the address-
ing modes and determining whe ther to use shor t or long branches, nei ther of
which is possible on the in termedia te code.

Consequently, some mach ine-dependen t opt imizat ion m a y be required in our
sys tem too. However , we have never claimed tha t optimizing the in te rmedia te
code el iminates the need for all ta rget code optimization, jus t tha t it is desirable
to do as much opt imizat ion as possible on the in te rmedia te code, because tha t
opt imizer can be wri t ten once and for all and used wi thout change as a filter for
subsequent front ends and back ends.

REFERENCES
1. ALEXANDER, W.G., AND WORTMAN, D.B. Static and dynamic characteristics of XPL programs.

Computer 8, 11 (Nov. 1975), 41-46.
2. AMMANN, U. On code generation in a Pascal compiler. Softw. Pract. Exper. 7, 4 (June-July

1977), 391-423.
3. COLEMAN, S.S., POOLE, P.C., AND WAITE, W.M. The mobile programming system: Janus. Softw.

Pract. Exper. 41 (Jan.-March 1974), 5-23.
4. DAVIDSON, J.W., AND FRASER, C.W. The design and application of a retargetable peephole

optimizer. ACM Trans. Program. Lang. Syst. 2, 2 (April 1980), 191-202.
5. JOHNSON, S.C. A portable compiler: Theory and practice. In Conf. Rec., 5th Ann. ACM Syrup.

Principles of Programming Languages, Tucson, Ariz., Jan. 23-25, 1978, pp. 97-104.
6. KNUTH, D.E. An empirical study of FORTRAN programs. Softw. Pract. Exper. 1, 1 (Jan.-

March 1971}, 105-133.
7. LEVERETT, B.W., CATTELL, R.G.G., HOBBS, S.O., NEWCOMER, J.M., REINER, A.H., SCHATZ, B.R.,

AND WULF, W.A. An overview of the production-quality compiler-compiler project. Computer
13, 8 (Aug. 1980), 38-49.

8. MCKEEMAN, W.M. Peephole optimization. Commun. ACM 8, 7 (July 1965), 443-444.
9. RICHARDS, M. The portability of the BCPL compiler. Softw. Pract. Exper. 1, 2 (April-June

1971), 135-146.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

36 A.S. Tanenbaum, H. van Staveren, and J. W. Stevenson

10. RITCHIE, D.M., AND THOMPSON, K. The UNIX time-sharing system. Commun. ACM 17, 7 (July
1974}, 365-375.

11. STEEL, T.B., JR. UNCOL: The myth and the fact. Annu. Rev. Autom. Program. 2 (1960),
325-344.

12. TANENBAUM, A.S. Implications of structured programming for machine architecture. Commun.
ACM21, 3 (March 1978), 237-246.

13. TANENBAUM, A.S., STEVENSON, J.W., AND VAN STAVEREN, H. Description of an experimental
machine architecture for use with block structured languages. Inf. Rapp. 54, Vrije Univ., Amster-
dam, 1980.

14. WULF, W., JOHNSSON, R.K., WEINSTOCK, C.B., HOBBS, C.B., AND GESCHKE, C.M. Design of an
Optimizing Compiler. Elsevier North-Holland, New York, 1975.

Received April 1980; revised January and July 1981; accepted July 1981

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

