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PREFACE

Concurrent programming—the programming tools and techniques for deal-
ing with parallel processes—has traditionally been a topic in operating
systems theory texts. There are several reasons why concurrent program-
ming deserves a book of its own and should be the core of an advanced
computer science systems course:

1. Concurrent programming is what distinguishes operating systems and
real-time systems from other software systems. Computer science stu-
dents who have taken courses in programming, data structures, compu-
ter architecture and probability can easily master the applications of
these disciplines in operating systems, but they need to be introduced to
techniques that will enable them to deal with parallelism.

2. I doubt if many of my students will ever design or construct a multipro-
cessing time-sharing system where algorithms for paging and scheduling
are of prime importance. I am certain that they will be designing and
constructing real-time systems for mini- and microcomputers. A sound
knowledge of concurrent programming will enable them to cope with
real-time systems—in particular with the severe reliability require-
ments that are imposed.

3. There is a trend towards increasing use of abstract concurrency that has
nothing to do with the parallelism of actual systems. Data flow diagrams
used in software engineering are nothing more than networks of concur-
rent processes. Traditionally, such a design must be implemented in a
sequential language, but UNIXT is a programming system which
encourages the use of concurrent processes. Adat, the new language
designed for the U.S. Department of Defense, includes concurrent
programming features as an integral part of the language.

+ UNIX is a trademark of Bell Laboratories.
7 Ada is a trademark of the United States Dept. of Defense.

xiii



xiv. PREFACE

4. Finally, concurrent programming is an important topic in computer
science research. The basic results in the field are still scattered
throughout the literature and deserve to be collected into one volume
for a newcomer to the field.

The book requires no prerequisites as such other than computer science
maturity (to borrow the term from mathematics). The book is aimed at
advanced undergraduate students of computer science. At the Tel Aviv
Univeristy, we arrange the course of study so that a student has four
semesters of computer science courses which include extensive program-
ming exercises. The material is also appropriate for practicing systems and
real-time programmers who are looking for a more formal treatment of the
tools of their trade.

I'have used the material for half of a weekly four-hour semester course
in operating systems—the second half is devoted to the classical subjects:
memory management, etc. I should like to see curricula evolve that would
devote a quarter or trimester to (theoretical) concurrent programming
followed by a project oriented course on operating systems or real-time
systems.

The book is not oriented to any particular system or technique. I have
tried to give equal time to the most widespread and successful tools for
concurrent programming: memory arbiters, semaphores, monitors and
rendezvous. Only the most elementary features of Pascal and Ada are used;
they should be understandable by anyone with experience in a modern
programming language.

Much of the presentation closely follows the original research articles
by E. W. Dijkstraand C. A. R. Hoare. In particular, Dijkstra’s Co-operating
Sequential Processes reads like a novel and it was always great fun to lecture
the material. This book is an attempt to explain and expand on their work.

Verification of concurrent programs is one of the most exciting areas of
research today. Concurrent programs are notorious for the hidden and
sophisticated bugs they contain. Formal verification seems indispensable.
A novel feature of this book is its attempt to verify concurrent programs
rigorously though informally. Hopefully, a student who is introduced early to
verification will be prepared to study formal methods at a more advanced
level.

One cannot learn any programming technique without practicing it.
There are several programming systems that can be used for class exercise.
For insititutions where no such system is available, the Appendix contains
the description and listing of a simple Pascal-S based concurrent program-
ming system that I have used for class exercise.
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1 WHAT IS CONCURRENT
PROGRAMMING?

1.1 FROM SEQUENTIAL TO CONCURRENT PROGRAMMING

Figure 1.1 shows an interchange sort program. The program can be com-
piled into a set of machine language instructions and then executed on a
computer. The program is sequential; for any given input (of 40 integers) the
computer will always execute the same sequence of machine instructions.

If we suspect that there is a bug in the program then we can debug by
tracing (listing the sequence of instructions executed) or by breakpoints and
snapshots (suspending the execution of the program to list the values of the
variables).

There are better sequential sorting algorithms (see Ahoetal., 1974) but
we are going to improve the performance of this algorithm by exploiting the
possibility of executing portions of the sort in parallel. Suppose that (for
n=10) the input sequence is: 4,2,7,6, 1,8, 5,0, 3, 9. Divide the array into
two halves: 4,2,7,6,1and 8, 5,0, 3, 9; get two colleagues to sort the halves
simultaneously: 1, 2, 4, 6, 7 and 0, 3, 5, 8, 9; and finally, with a brief
inspection of the data, merge the two halves:

0
0,1
0,1,2

A simple complexity analysis will now show that even without help of
colleagues, the parallel algorithm can still be more efficient than the sequen-

tial algorithm. In the inner loop of an interchange sort, there are (n—1) +
(n=2)+ ...+ 1=n(n—1)/2 comparisons. This is approx. n>/2. To sort n/2

1



2  WHAT IS CONCURRENT PROGRAMMING?

program sortprogram,

const n=40;

var a: array[1..n] of integer;

k: integer;

procedure sort(low,high: integer);

var i,j, temp: integer,

begin

for i := low to high—1 do

for j := i+1 to high do
if a[j] < 4[] then

begin
temp = afj];
aljl := ali];
ali] := temp
end

end;
begin (* main program *)
for k := 1 to n do read (a[k));
sort (1, n);
for k := 1 to n do write (a[k])
end.

Fig. 1.1.

CHAP. 1

elements, however, requires only (r/2)?/2 = n2/8 comparisons. Thus the
parallel algorithm can perform the entire sort in twice n2/8 = n2/4 compari-
sons to sort the two halves plus another n comparisons to merge. The table in
Fig. 1.2 demonstrates the superiority of the new algorithm. The last column
shows that additional savings can be achieved if the two sorts are performed

simultaneously.
n n%/2 (n?/4)+n (n%/8)+n
40 800 440 140
100 5000 2600 1350
1000 500 000 251 000 126 000

Fig. 1.2.

Figure 1.3 is a sequential program for this algorithm. It can be executed
on any computer with a Pascal compiler and it can be easily translated into

other computer languages.
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program sortprogram;
const n=20;
twon=40;
var a: array[1.twon] of integer;
k: integer;
procedure sort(low, high: integer);
(* as before *)
procedure merge(low, middle, high: integer);
var countl, count2: integer;
k, index1, index2: integer;
begin
countl := low;
count2 1= middle;
while countl < middle do
if a[count1] < a[count2] then
begin
write (a[count1]);
countl := countl+1;
if countl >= middle then
for index2 := count2 to high do
write(alindex2])
end
else
begin
write (a[count2));
count2 := count2+1;
if count2 > high then
begin
for index1 := countl to middle—1 do
write (alindex1]);
countl := middle (* terminate *)
end
end
end;
begin (* main program *)
for k := 1 to twon do read (alk]);
sort(l, n);
sort(n+1, twon);
merge(1, n+1, twon)
end.

Fig. 1.3.



4 WHAT IS CONCURRENT PROGRAMMING? CHAP. 1

Suppose that the program is to be run on a multiprocessor computer—a
computer with more than one CPU. Then we need some notation that can
express the fact that the calls sort(1,n) and sort(n+1, twon) can be executed
in parallel. Such a notation is the cobegin—coend bracket shown in Fig. 1.4.

cobegin py; . .. ; p, coend means: suspend the execution of the main prog-
ram; initiate the execution of procedures p,, . . ., p, on multiple computers;
when all of p;, ..., p, have terminated then resume the main program.

program sortprogram;
( *declarations as before *)
begin (* main program +)
for k := to twon do read(a[k]);
cobegin
sort(1, n);
sort(n+1, twon)
coend,;
merge(1, n+1, twon)
end.

Fig. 1.4.

The programs of Figs. 1.3 and 1.4 are identical except for the
cobegin—coend in Fig. 1.4. There would be no need for both versions if the
definition of cobegin—coend was modified. Instead of requiring that the
procedures be executed in parallel, cobegin—coend becomes a declaration
that the procedures may be executed in parallel. It is left to the implementa-
tion—the system hardware and software—to decide if parallel execution will
be done. Processors may be added or removed from the system without
affecting the correctness of the program—only the time that it would take to
execute the program.

The word concurrent is used to describe processes that have the poten-
tial for parallel execution. We have shown how an algorithm can be
improved by identifying procedures that may be executed concurrently.
While the greatest improvement is obtained only under true parallel execu-
tion, it is possible to ignore this implementation detail without affecting the
superiority of the concurrent algorithm over the sequential algorithm.

1.2 CONCURRENT PROGRAMMING

Concurrent programming is the name given to programming notations and
techniques for expressing potential parallelism and for solving the resulting
synchronization and communication problems. Implementation of parallel-
ism is a topic in computer systems (hardware and software) that is essentially
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independent of concurrent programming. Concurrent programming is
important because it provides an abstract setting in which to study parallel-
ism without getting bogged down in the implementation details. This abs-
traction has proved to be so useful in writing clear, correct software that
modern programming languages offer facilities for concurrent program-
ming.

The basic problem in writing a concurrent program is to identify which
activities may be done concurrently. If the merge procedure is also included
in the cobegin—coend bracket (Fig. 1.5), the program is no longer correct. If
you merge the data in parallel with sorting done by your two colleagues, the
scenario of Fig. 1.6 might occur.

cobegin
sort(1, n);
sort(n+1, twon);
merge(1l, n+1, twon)

coend
Fig. 1.5.
Colleaguel Colleague?2 You

Initially 4,2,7,6,1 8,5 0,39 -
Colleaguel exchanges 2,4,7,6,1 8,5 0,39 -
Colleague2 exchanges 2,4,7,6,1 5 8,0,3,9 -
You merge " » 2
You merge ' ” 2,4
You merge » » 2,4,5

Fig. 1.6.

However, merge could be a concurrent process if there were some way
of synchronizing its execution with the execution of the sort processes
(Fig. 1.7).

while countl < middle do
wait until i of procedure call sort(1,n) is greater than countl and i of
procedure call sort(n+1, twon) is greater than count2 and only then:
if a[countl] < a[count2] then

. s .

Fig. 1.7.

Parallelism is important not only for the improvement that can be
achieved in program performance but also in program quality. Consider the
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following problem:

Read 80-column cards and print them on 125-character lines. However,
every run of n = 1 to 9 blank spaces is to be replaced by a single blank
followed by the numeral n.

This program is difficult to write as a sequential program. There are
many interacting special cases: a run of blanks overlapping the end of a card,
the pair blank-n overlapping the end of a line and so on. One way to improve
the clarity of the program would be to write three separate programs: one to
read cards and write a stream of characters onto a temporary file; a second
program to read this character stream and modify runs of blanks, writing the
new stream onto a second temporary file; and a third program to read the
second temporary file and print lines of 125 characters each.

This solution is not acceptable because of the high overhead of the
temporary files. However, if the three programs could be run concurrently
(not necessarily in parallel) and communications paths could be established
between them, then the programs would be both efficient and elegant.

Sequence Sequence Sequence Sequence
of of

INPUT OUTPUT
cards

Processes Py, P, , Py may execute concurrently

1.3 CORRECTNESS OF CONCURRENT PROGRAMS

Concurrent programming is much more difficult than sequential program-
ming because of the difficulty of ensuring that a concurrent program is
correct. Consider the sequential sort programs of Figs. 1.1 and 1.3: if they
were tested on several sets of input data then we would feel confident that
they are correct. Guidelines for testing would be to include a sorted input, a
reversed input, an input all of whose elements are identical and so on. A
run-of-the-mill bug (such as an incorrect for-loop limit) would seldom
escape detection.

The scenario in Fig. 1.6. illustrates that the concurrent program of Fig.
1.5 is incorrect. However, this program is not a sequential program and
other scenarios exist. If the processors assigned to sort are sufficiently rapid
then merge may always be working on sorted data. In that case, no amount of
testing would detect any problem. One day (perhaps months after the
program has been put into production) an improved component in the
computer system causes the merge to speed up and then the program gives
incorrect answers as demonstrated in 1.6. Of course the natural reaction is:
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“This program worked yesterday so the new component must be at fault.”

A scenario is a description of a possible execution sequence of a pro-
gram and shows how a computer might “‘act out” a program. It is usually
used to show that a program is incorrect: since the computer may execute the
program in a manner that produces the wrong answer, the program cannot
be correct.

Conversely, how can we show that the concurrent program in Fig. 1.4 is
correct? It no longer makes sense to look for and test paths that can be
execution sequences. At times, there may be two such sequences caused by
parallel execution of the algorithm.

Sequential programming has a well-developed proof theory. Assertions
are made about the state of the computer (i.e. the values of the variables and
the program counter) before and after executing an instruction, and these
are then combined into a logical proof. In concurrent programming, this
method needs to be modified because the programs can interfere with each
other.

The correctness assertions for procedures sort and merge of the previ-
ous sections are elementary to state and prove:

sort input assertion: a is an array of integers,

sort output assertion: a is ““sorted”, i.e. a now contains a permutation of
the original elements and they are in ascending order,

merge input assertion: the two halves of a are “sorted”, .

merge output assertion: the elements of @ have been written in ascend-
ing order.

The correctness of the program in Fig. 1.1. is immediate from the
correctness of procedure sort. The correctness of 1.3 is easily obtained by
concatenating the correctness proofs of sort and merge. The correctness of
Fig. 1.4 needs a new technique. We have to be able to express the fact that
the two instances of sort do not interfere with one another. The program in
Fig. 1.5 is incorrect though the procedures comprising it are correct; unfor-
tunately, they interact in a manner which makes the program incorrect. The
program in 1.7 is correct but new ideas are needed to be able to reason about
synchronization.

1.4 INTERLEAVING

Interleaving is a logical device that makes it possible to analyze the correct-
ness of concurrent programs. Suppose that a concurrent program P consists
of two processes P, and P,. Then we say that P executes any one of the
execution sequences that can be obtained by interleaving the execution
sequences of the two processes. It is as if some supernatural being were to
execute the instructions one at a time, each time flipping a coin to decide
whether the next instruction will be from P, or P,.
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We claim that these execution sequences exhaust the possible behaviors
of P. Consider any instructions /; and 7, from P, and P,, respectively. If I, and
I, do not access the same memory cell or register then it certainly does not
matter if /, is executed before I,, after I, or even simultaneously with 1, (if the
hardware so allows). Suppose on the other hand that I; is “Store 1 into
memory cell M and that [, is “Store 2 into memory cell M. If I, and [, are
executed simultaneously then the only reasonable assumption is that the
result is consistent. That is, cell M will contain either 1 or 2 and the computer
does not store another value (such as 3) of its own volition.

If this were not true then it would be impossible to reason about
concurrent programs. The result of an individual instruction on any given
data cannot depend upon the circumstances of its execution. Only the
external behavior of the system may change—depending upon the interac-
tion of the instructions through the common data. In fact, computer
hardware is built so that the result of executing an individual instruction is
consistent in the way just defined.

Thus, if the result of the simultaneous execution of I, and I, is 1 then this
is the same as saying that I, occurred before I, in an interleaving and
conversely if the result is 2.

Interleaving does not make the analysis of concurrent programs simple.
The number of possible execution sequences can be astronomical. Neverthe-
less, interleaved execution sequences are amenable to formal methods and
will allow us to demonstrate the correctness of concurrent programs.

1.5 THE ORIGIN OF OPERATING SYSTEMS

Concurrent programming, though generally applicable, grew out of prob-
lems associated with operating systems. This section outlines the develop-
ment of such systems so that the background to the growth of concurrent
programming can be appreciated.

It is not often that an obsolete technology reappears. Programmable
pocket calculators have resurrected machine language programming: abso-
lute addresses must be used for data and labels. On the other hand, the
owner is not constrained to working during the hours that the computer
center is open.

While the pocket calculator is a marvel of electronics, machine language
programming directly on the computer is slow and difficult. In the 1950s,
when computers were few and expensive, there was great concern over the
waste caused by this method. If you signed up to sit at the computer console
from 0130 to 0200 and you spent 25 minutes looking for a bug, this 25
minutes of computer idle time could not be recovered. Nor was your
colleague who signed up for 0200-0230 likely to let you start another run
at 0158.

If we analyze what is happening in the terms of the previous sections we
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see that the manual procedures that must be performed—mounting tapes,
setting up card decks, or changing places at the console—are disjoint from
the actual computation and can be performed concurrently with the compu-
ter’s processing.

The second generation of computers used a supervisor program to
batch jobs. A professional computer operator sat at the console. Program-
mers prepared card decks which were concatenated into “‘batches” that were
fed into the computer once an hour or so. The increase in throughput (a
measure of the efficiency of a computer; it is the number of jobs—suitably
weighted—that can be run in a given time period) was enormous—the jobs
were run one after another with no lost minutes. The programmers, how-
ever, lost the ability to dynamically track the progress of their programs since
they no longer sat at the computer console. In the event of an error in one
job, the computer simply commenced execution of the next job in the batch,
leaving the programmer to puzzle out what happened from core dumps.
With a turnaround time (the amount of time that elapses between a job
being submitted for execution and the results being printed) of hours or
days, the task of programming became more difficult even though certain
aspects were improved by high-level languages and program libraries.

Despite this improvement in throughput, systems designers had noticed
another source of inefficiency not apparent to the human eye. Suppose that a
computer can execute one million instructions per second and that it is
connected to a card reader which can read 300 cards per minute (= one card
in 1/5 second). Then from the time the read instruction is issued until the
time the card has been read, 200 000 instructions could have been executed.
A program to read a deck of cards and print the average of the numbers
punched in the cards will spend over 99% of its time doing nothing even
though 5 cards per second seems very fast.

The first solution to this problem was spooling. The I/O speed of a
magnetic tape is much greater than that of the card reader and the line
printer that are the interface between the computer and the programmer.
We can decompose the operation of the computer into three processes: a
process to read cards to tape; a process to execute the programs on the tape
and write the results onto a second tape; and a process to print the informa-
tion from the second tape. Since these processes are disjoint (except for the
exchange of the tapes after processing a batch), the throughput can be
greatly increased by running each process on a separate computer. Since
very simple computers can be used to transfer information to and from the
magpetic tape, the increase in cost is not very great compared to the savings
achieved by more efficient use of the main computer.

Later generations of computer systems have attacked these problems
by switching the computer among several computations whose programs
and data are held simultaneously in memory. This is known as multiprog-
ramming. While 1/0O is in progress for program P, the computer will execute
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several thousand instructions of program P, and then return to process the
data obtained for P,. Similarly, while one programmer sitting at the terminal
of a time-sharing systemt is thinking, the computer will switch itself to
execute the program requested by a second programmer. In fact, modern
computer systems are so powerful that they can switch themselves among
dozens or even hundreds of 1/O devices and terminals. Even a minicompu-
ter can deal with a dozen terminals.

The importance of the concept of interleaved computations mentioned
in the previous section has its roots in these multiprogrammed systems.
Rather than attempt to deal with the global behavior of the switched compu-
ter, we will consider the actual processor to be merely a means of interleav-
ing the computations of several processors. Even though multiprocessor
systems—systems with more than one computer working simultane-
ously—are becoming more common, the interleaved computation model is
still appropriate.

The sophisticated software systems that are responsible for multi-
programming are called operating systems. The term operating system is
often used to cover all manufacturer-provided software such as 1/O pro-
grams and compilers and not just the software responsible for the multi-
programming.

While the original concern of operating system designers was to
improve throughput, it soon turned out that the throughput was affected by
numerous system “‘crashes” when the system stopped functioning as it was
supposed to and extensive recovery and restart measures delayed execution
of jobs. These defects in the operating systems were caused by our inadequ-
ate understanding of how to execute several programs simultaneously and
new design and programming techniques are needed to prevent them.

1.6 OPERATING SYSTEMS AND CONCURRENT PROGRAMMING

It you could sense the operation of a computer that is switching itself every
few milliseconds among dozens of tasks you would certainly agree that the
computer seems to be performing these tasks simultaneously even though
we know that the computer is interleaving the computations of the various
tasks. I now argue that it is more than a useful fiction to assume that the
computer is in fact performing its tasks concurrently. To see why this is so, let
us consider task switching in greater detail. Most computers use interrupts

1 A time-sharing system is a computer system that allows many programmers to
work simultaneously at terminals. Each programmer may work under the
illusion that the computer is working for him alone (though the computer may
seem to be working slowly if too many terminals are connected).
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for this purpose. A typical scenario for task switch by interrupts is as follows.
Program P, makes a read request and then has its execution suspended. The
CPU may now execute program P,. When the read requested by P, has been
completed, the I/O device will interrupt the execution of P, to allow the
operating system to record the completion of the read. Now the execution of
either P, or P, may be resumed.

The interrupts occur asynchronously during the execution of programs
by the CPU. By this is meant that there is no way of predicting or coordinat-
ing the occurence of the interrupt with the execution of any arbitrary
instruction by the CPU. For example, if the operator who is mounting a
magnetic tape happens to sneeze, it may delay the “tape ready” signal by
8.254387 seconds. However, if he is “‘slow” with his handkerchief, the delay
might be 8.254709 seconds. Insignificant as that difference may seem, it is
sufficient for the CPU to execute dozens of instructions. Thus for all practi-
cal purposes it makes no sense to ask: “What is the program that the
computer is executing?”’ The computer is executing any one of a vast number
of execution sequences that may be obtained by arbitrarily interleaving the
execution of the instructions of a number of computer programs and I/O
device handlers.

This reasoning justifies the abstraction that an operating system consists
of many processes executing concurrently. The use of the term process
rather than program emphasizes the fact that we need not differentiate
between ordinary programs and external devices such as terminals. They are
all independent processes that may, however, need to communicate with
each other.

The abstraction will try to ignore as many details of the actual applica-
tion as possible. For example, we will study the producer—consumer problem
which is an abstraction both of a program producing data for consumption by
a printer and of a card reader producing data for consumption by a program.
The synchronization and communication requirements are the same for
both problems even though the details of programming an input routine are
rather different from the details of an output routine. Even as new 1/O
devices are invented, the input and output routines can be designed within
the framework of the general producer—consumer problem.

On the other hand, we assume that each process is a sequential process.
It is always possible to refine the description of a system until it is given in
terms of sequential processes.

The concurrent programming paradigm is applicable to a wide range of
systems, not just to the large multiprogramming operating systems that gave
rise to this viewpoint. Moreover, every computer (except perhaps a cal-
culator or the simplest microcomputer) is executing progams that can be
considered to be interleaved concurrent processes. Minicomputers are sup-
plied with small multiprogramming systems. If not, they may embedded in
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real-time systems? where they are expected to concurrently absorb and
process dozens of different asynchronous external signals and operator
commands. Finally, networks of interconnected computers are becoming
common. In this case true parallel processing is occurring. Another term
used is distributed processing to emphasize that the connected computers
may be physically separated. While the abstract concurrency that models
switched systems is now well understood, the behavior of distributed systems
is an area of current research.

1.7 AN OVERVIEW OF THE BOOK

Within the overall context of writing correct software this book treats the
single, but extremely important, technical point of synchronization and
communication in concurrent programming. The problems are very subtle;
ignoring the details can give rise to spectacular bugs. In Chapter 2 we shall
define the concurrent programming abstraction and the arguments that
justify each point in the definition. The abstraction is sufficiently general
that it can be applied without difficulty to real systems. On the other hand it
is sufficiently simple to allow a precise specification of both good and bad
behavior of these programs.

Formal logics exist which can formulate specifications and prove prop-
erties of concurrent programs in this abstraction though we will limit our-
selves to informal or at most semi-formal discussions. The fact that the
discussion is informal must not be construed as meaning that the discussion is
imprecise. A mathematical argument is considered to be precise even if it is
not formalized in logic and set theory.

The basic concurrent programming problem is that of mutual exclusion.
Several processes compete for the use of a certain resource such as a tape
drive but the nature of the resource requires that only one process at a time
actually accessed the resource. In other words, the use of the resource by one
process excludes other processes from using the resource. Chapter 3 pre-
sents a series of attempts to solve this problem culminating in the solution
known as Dekker’s algorithm. The unsuccessful attempts will each point out
a possible “bad” behavior of a concurrent program and will highlight the
differences between concurrent and sequential programs.

Dekker’s algorithm is itself too complex to serve as a model for more
complex programs. Instead, synchronization primitives are introduced. Just
as a disk file can be copied onto tape by a single control language command

I Wheareas a time-sharing system gives the user the ability to use all the
resources of a computer, the term real-time system is usually restricted to
systems that are required to respond to specific pre-defined requests from a
user or an external sensor. Examples would be air-traffic control systems and
hospital monitoring systems.
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or a file can be read by writing read in a high level language, so we can define
programming language constructs for synchronization by their semantic
definition—what they are supposed to do—and not by their implementa-
tion. We shall indicate in general terms how these primitives can be
implemented but the details vary so much from system to system that to fully
describe them would defeat our purpose of studying an abstraction. Hope-
fully, it should be possible for a “casual” systems programmer to write
concurrent programs without knowing how the primitives are implemented.
A model implementation is described in the Appendix.

Chapter 4 commences the study of high level primitives with E. W.
Dijkstra’s semaphore. The semaphore has proved extraordinarily successful
as the basic synchronization primitive in terms of which all others can be
defined. The semaphore has become the standard of comparison. It is
sufficiently powerful that interesting problems have elegant solutions by
semaphores and it is sufficiently elementary that it can be successfully
studied by formal methods. The chapter is based on the producer-consumer
problem mentioned above; the mutual exclusion problem can be trivially
solved by semaphores.

Most operating systems have been based on monolithic monitors. A
central executive, supervisor or kernel program is given sole authority over
synchronization. Monitors, a generalization of this concept formalized by
Hoare, are the subject of Chapter 5. The monitor is a powerful conceptual
notion that aids in the development of well structured, reliable programs.
The problem studied in this chapter is the problem of the readers and the
writers. This is a variant of the mutual exclusion problem in which there are
two classes of processes: writers which need exclusive access to a resource
and readers which need not exclude one another (though as a class they must
exclude all writers).

The advent of distributed systems has posed new problems for concur-
rent programming. C. A. R. Hoare has proposed a method of synchroniza-
tion by communication (also known as synchronization by rendezvous)
appropriate for this type of system. The designers of the Ada programming
language have chosen to incorporate in the language a variant of Hoare’s
system. Anticipating the future importance of the Ada language, Chapter 6
studies the Ada rendezvous.

A classic problem in concurrent programming is that of the Dining
Philosophers. Though the problem is of greater entertainment value than
practical value, it is sufficiently difficult to afford a vehicle for the compari-
son of synchronization primitives and a standing challenge to proposers of
new systems. Chapter 7 reviews the various primitives studied by examining
solutions to the problem of the Dining Philosophers.

Programming cannot be learned without practice and concurrent pro-
gramming is no exception. If you are fortunate enough to have easy access to
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a minicomputer or to a sophisticated simulation program, there may be no
difficulty in practicing these new concepts. If not, the Appendix describes in
full detail an extremely simple simulator of concurrency that can be used for
class exercise. In any case, the Appendix can serve as an introduction to
implementation of concurrency.

The book ends with an annotated bibliography suggesting further study
of concurrent programming.

1.8 PROGRAM NOTATION

The examples in the text will be written in a restricted subset of Pascal-
S, which is itself a highly restricted subset of Pascal. This subset must of
course be augmented by constructs for concurrent programming. It is
intended that the examples be legible to any programmer with experience in
Pascal, Ada, C, Algol, or PL/I.

The implementation kit in the Appendix describes an interpreter for
this language that will execute the examples and that can be used to program
the exercises. The language in the kit contains more Pascal language features
than are used in the text of the book and thus users of the kit are assumed to
be able to program in sequential Pascal. These extra features are necessary
in order to use the kit to solve the exercises, although the exercises them-
selves could be programmed in other languages that provide facilities for
concurrent programming.

The examples in the chapter on monitors are standard and can be
adapted to the many systems that provide the monitor facility such as
Concurrent Pascal, Pascal-Plus, or CSP/k. The examples in the chapter on
the Ada rendezvous are executable in Ada.

We now present a sketch of the language that should be sufficient to
enable programmers unfamiliar with Pascal to understand the examples.

1. Comments are inserted between (* and *).

2. The first line in a program should be
program name;

3. Symbolic names for constants may be declared by the word const
followed by the constant itself:

const twon=40;

4. All variables in each procedure in the main program must be declared
by the word var followed by the names of the variables and a type:
var i, j, temp: integer;
found: boolean;
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The available types are : integer, boolean (with constants true and false)
and arrays:

var a:array[lowindex...highindex] of integer;

. Following the declaration of the variables, procedures and functions
may be declared: procedure name (  formal parameters ); and func-
tion name ( formal parameters ): returntype; . The formal parame-
ter definition has the same form as that of a variable list:

procedure sort (low,high: integer);
function last(index: integer): boolean;

. The body of the main program or of procedures is a sequence of
statements separated by semi-colons between begin and end. The main
program body is terminated by a period and the procedure bodies by
semi-colons. The usual rules on nested scopes apply.

. The statements are:

assignment statement

if boolean-expression then statement

if boolean-expression then statement else statement

for index-variable := lowindex to highindex do statement
while boolean-expression do statement

repeat sequence-of-statements until boolean-expression

The syntactic difference between while and repeat is that while takes a
single statement and repeat takes a sequence of statements (separated
by semi-colons). The semantic difference is that the while tests before
the loop is done and repeat tests afterwards. Thus repeat executes its
loop at least once.

. A sequence of statements may be substituted for ‘“‘statement” in the
above forms by enclosing the sequence of statements in the bracket
begin ... end to form a single “‘compound” statement:

if a[j] < 4[i] then

begin
temp .= a[j];
alj] := a[i];
ali] := temp
end

In detail thisisread: if the boolean expression (a[j] < a[i]) has the value
true, then execute the compound statement which is a sequence of
three assignment statements. If the expression is false, then the (com-
pound) statement is not executed and the execution continues with the
next statement.
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9. Assignment statements are written variable := expression. The vari-
able may be a simple variable or an element of an array: a[{]. The type
(integer or boolean) of the expression must match that of the variable.
Integer expressions are composed of integer variables and constants
using the operators: +, —, #, div (integer divide with truncation) and
mod. Boolean expressions may be formed from relations between
integer expressions: =, <> (not equal), <, >, <= (less than or equal)
>= (greater than or equal). The boolean operators and, or and not
may be used to form compound boolean expressions.

10. For those who know Pascal we list here the additional features that are
defined in the language of the implementation kit some of which will
be necessary if you plan to write any programs using the Kit.

(a) Type declarations. Since there are no scalar, subrange or record
types, this is mostly useful for array types:

type sortarray = array[1..n] of integer
var a: sortarray,

(b) Character constants and variables of type char.

(c) Multidimensional arrays (arrays of arrays).

(d) A parameter may be passed by reference rather than value by
prefixing the formal parameter by var.

(e) Recursive functions and procedures.

(f) I/O may be performed only on the standard textfiles input and
output. To ensure that you do not forget this restriction, the
declaration of external files in the program card has been
removed. read, readin, write, writeln, eoln, eof (all without a file
parameter) function as in Pascal. Only the default field widths may
be used in a wrife, which will, however, accept a ‘string’ as a field to
be printed:

writeln ('the answer is', n).

1.9 EXERCISEST

1.1 Write a two-process concurrent program to find the mean of n numbers.

1.2 Write a three-process concurrent program to multiply 3X3 matrices.

1.3 Each process of the matrix multiply program executes three multiplications
and two additions for each of three rows or altogether 15 instructions. How
many execution sequences of the concurrent program may be obtained by

interleaving the executions of the three processes?

+ Slightly harder exercises are marked throughout the book with an asterisk (*).
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EXERCISES 17

Perform a similar analysis for sortprogram. You will have to make some
assumptions on the number of interchanges that will be done.

Test the concurrent sortprogram of Fig. 1.3.

Test the concurrent sortprogram of Fig. 1.4 which has the merge defined as a
third process. Run the program several times with exactly the same data.

Run the program in Fig. 1.8 several times. Can you explain the results?

program increment,
const m = 20;
var n: integer,
procedure incr;
var i: integer;
begin
fori:=1tomdon:=n+l
end;
begin (* main program *)
n:=0;
cobegin
incr; incr
coend;
writeln (' the sum is ', n)
end.

Fig. 1.8.



2 THE CONCURRENT
PROGRAMMING ABSTRACTION

2.1 INTRODUCTION

Concurrent programming is not the study of operating systems or real-time
systems, but of abstract programming problems posed under certain rules.
Concurrent programming was motivated by the problems of constructing
operating systems, and its examples are abstract versions of such problems.
Most importantly, the rules of concurrent programming are satisfied in many
systems and thus its techniques can be used in real systems. Components of a
system which are not amenable to concurrent programming techniques
should be singled out for extremely careful design and implementation.

Chapter 1 gave the definition of a concurrent program. It consists of
several sequential processes whose execution sequences are interleaved.
The sequential programs are not totally independent — if they were so there
would be nothing to study. They must communicate with each other in order
to synchronize or to exchange data.

The first means of communication that we shall study is the common
memory. This is appropriate for the pseudo-parallel switched computers
where all processes are running on the same processor and using the same
physical memory. It is also used on some truly parallel systems such as the
CDC Cyber computers where even though one CPU and ten PP’s
(peripheral processors) are simultaneously executing separate programs,
synchronization is accomplished by having the PP’s read and write the
CPU’s memory. In our abstraction, common memory will be represented
simply by global variables accessible to all processes.

Common memory can also be used to hold access-restricted proce-
dures. Access to these procedures is, in effect, allocated to a process. This is
the way most third generation operating systems were implemented. The
“system” programs can only be called by special instructions which ensure
that only one process at a time is executing a system program.

18
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With the introduction of distributed computing it is no longer valid to
assume that a common central memory exists. Chapter 5 discusses concur-
rent programming by means of sending and receiving signals instead of
reading and writing a common variable or executing a common procedure.
Synchronization by message-passing has been used on several experimental
systems for single-processor computers but this approach has not been
widely accepted because of the possible inefficiency of message-passing
compared with simpler systems. Of course, distributed systems have no
choice.

2.2 MUTUAL EXCLUSION

Mutual exclusion is one of the two most important problems in concurrent
programming because it is the abstraction of many synchronization prob-
lems. We say that activity A of process P, and activity A, of process P, must
exclude each other if the execution of A, may not overlap the execution of
A,. If P, and P, simultaneously attempt to execute their respective activities,
A,;, then we must ensure that only one of them succeeds. The losing process
must block; that is, it must not proceed until the winning process completes
the execution of its activity A.

The most common example of the need for mutual exclusion in real
systems is resource allocation. Obviously, two tapes cannot be mounted
simultaneously on the same tape drive. Some provision must be made for
deciding which process will be allocated a free drive and some provision
must be made to block processes which request a drive when none is free.
There is an obvious solution: run only one job at a time. But this defeats one
of the main aims of concurrent programming — parallel execution of several
processes.

Meaningful concurrency is possible only if the processes are loosely
connected. The loose connection will manifest itself by the need for short
and occasional communication. The abstract mutual exclusion problem will
be expressed:

remainder
pre-protocol
critical section
post-protocol.

“remainder” will be assumed to represent some significant processing.
Occasionally, i.e. after the completion of remainder, the process needs to
enter a short critical section. It will execute certain sequences of instructions,
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called protocols before and possibly after the critical section. These pro-
tocols will ensure that the critical section is in fact executed so as to exclude
all other critical secitons. Of course, just as the critical section should be
short relative to the main program in order to benefit from concurrency, the
protocols must also be relatively short. The protocols represent the over-
head paid for concurrency. Hopefully, if the critical sections and the pro-
tocols are sufficiently short then the significant processing abstracted as
remainder can be overlapped thus justifying the design of the multipro-
gramming system.

There is another, more important, reason for requiring loose connec-
tion among concurrent processes and that is to ensure reliability. We want to
be assured that if there is a bug in one of the processes, then it will not
propagate itself into a system “crash”. It should also be possible to gracefully
degrade the performance of a system if an isolated device should fail (‘‘fail-
soft””). It would be absurd to have a system crash just because one tape drive
became faulty.

The abstract requirement will be that, if a process abnormally termi-
nates outside the critical section then no other process should be affected.
(For this purpose the protocols are considered to be part of the critical
section.) Since the critical section is where the communication is taking
place, it is not reasonable to require the same of the critical sections. We
might use the following metaphor. If a runner in a relay race fell after he has
passed the baton then the race should not be affected. It is unreasonable to
hope that the race is unaffected if the fall occurred at the critical moments
during the baton exchange.

This restriction is not unreasonable even in practice. Critical sections
such as disk I/O will often be executed by common system routines or by
compiler-supplied routines which have been written by a competent systems
programmer. The probability of a software error in such a routine should be
much smaller than in a run-of-the-mill program.

2.3 CORRECTNESS

What does it mean for concurrent programs to be correct? An ordinary
program is correct if it halts and prints the “right” answer. In general, you
will know a “right”” answer if you see one. This is also true of some concur-
rent programs such as sortprogram.

On the other hand, the single most dlstlngmshmg feature of an operat-
ing system or real-time system is that it must never halt. The only way to halt
a typical operating system is to push the start button on the computer panel.
An operating system prints nothing of its own (except some non-essential
logging and accounting data). Thus when studying operating systems, we
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must revamp our notions of what it means for a program to be correct. Since
most concurrent programming is done within operating systems and real-
time systems, this is the area to be studied in this book.

An obvious truism is that any program must do what its specifications
say that it is supposed to do. This is no less true in the case of concurrent
programs though the specifications are radically different from those of
sequential programs. In our abstraction, we shall distinguish two types of
correctness properties: safety properties and liveness properties.

Safety properties are those required by the static portions of the specifi-
cations. These are often the only requirements explicitly specified. Mutual
exclusion is a safety property: the requirement that critical sections exclude
one another is absolute and does not change during the execution of the
program. The safety property of the producer—consumer problem is that the
consumer must consume every piece of data produced by the producer and
that it must do so in the order in which they were produced.

Safety properties are akin to what is known in the theory of sequential
programs as partial correctness: if the program terminates, the answers must
be “correct”. Safety properties are usually relatively easy to show. They are
explicitly required by the specifications and programs are designed to meet
these specifications. You can always achieve more safety by giving up some
concurrency and letting more segments of the process execute sequentially.

Violation of mutual exclusion is the cause of most operating system
crashes. Dynamic memory allocation is frequently involved: a process may
be convinced that it knows the location of a certain table in memory while in
fact the table has been removed and its memory allocated to another
process.

At a computer center known to the Author, an unscrupulous pro-
grammer managed to insert into the system a program that, on command,
would give his programs the highest priority. However, he did not know that
mutual exclusion protocols were required because the scheduling table was
not fixed in memory. Thus the execution of his command would often write
into some other table of the system causing a crash. Since the crash occurred
many minutes later, the memory dumps gave no clue as to what had hap-
pened. After several weeks, the problem was solved by noting the strange
command on the system log. If such an error had been made in a regular
systems program it would have been even more difficult to catch.

Liveness, on the other hand, deals with dynamic properties. It is akin to
sequential programming’s total correctness: the program terminates and the
answer is “correct”’. In concurrent systems, liveness means that if something
is supposed to happen then eventually it will happen. If a process wishes to
enter its critical section then eventually it will do so. If a producer produces
data then eventually the consumer will consume it.
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The most serious breach of liveness is the global form known as dead-
lock.™ Deadlock means that the computer is no longer doing any (useful)
work. A loop that searches for a free tape drive when none is ever going to be
available is not useful work. If all processes are suspended or in such loops,
then the computer is said to be deadlocked. This system hang is catastrophic
since all users in a multiprogrammed system are affected.

The following deadlock scenario actually occurred in an operating
system. The system had multiple processors. Each job wrote its accounting
data into a common area of memory which was written to a disk file when it
filled. The write procedure ran on whatever processor was free. If all the
processors tried to write accounting data at the same time, there was no free
processor to write to disk. Since no program voluntarily relinquished its
processor, the system deadlocked. A typical solution in this case is to use the
computer console terminal to fool a process into thinking that the memory
area is empty. Of course, some data will be lost but this is usually preferable
to a deadlocked system and restarting all currently running programs.

A local breach of liveness is called lockout or (individual) starvation. In
this case there is always some process which can progress but some identifi-
able process is being indefinitely delayed. Lockout is less serious than
deadlock since the computer is still doing some (presumably) useful work.
On the other hand, lockout is difficult to discover and correct because it can
happen only in complex scenarios where some processes unwittingly ““con-
spire” to deny a resource to a hapless process.

For reasons to be discussed in the next section, we limit our discussion to
qualitative liveness which means that the word “eventually”, used in the
definition of liveness, means exactly that: within an unspecified but finite
length of time.

Between the complete disregard of time by the liveness concept and the
introduction of explicit time, is the concept of fairness: a process wishing to
progress must get a fair deal relative to all other processes. Fairness is more
difficult to define precisely and we will mention it only occasionally. In
addition, many systems will consciously be “unfair”” by designing a priority
scheme to favor some processes over others.

2.4 TIMING

We make no assumptions concerning the absolute or relative speeds at which
the processes are executed. This statement seems rather shocking at first.
However, failure to follow this restriction in systems design can cause

T Deadlock is theoretically considered to be a safety property because it is
something that should never happen. However, absence of deadlock can be
shown by proving that there is always at least one live process.
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serious bugs. The statement is shocking because of the naive preoccupation
with efficiency that most programmers have. After all, we know that a disk is
slower than a CPU and it is tempting to take advantage of that fact in
designing not only the structure of the system but also the synchronization
details.

One reason for ignoring timing is that our intuition is not able to cope
with the scale involved. There are only about § million minutes in a year but
there are a million microseconds in a second. It is folly to state that: process
P, ought to be able to finish its critical section before process P, finishes its
non-critical section, unless such a statement is backed up by a detailed
calculation.

A second reason for ignoring timing is that time-dependent bugs are
extremely difficult to identify and correct. Qualitative treatments as pre-
sented in this book, are insufficient; timing calculations must be included.
Each such bug can mean weeks of work for a team of programmers. We shall
pay any reasonable penalty in efficiency to obtain a reliable system. You
have to save an enormous number of microseconds to make a half-hour
system crash worthwhile.

Finally there is an important practical reason to design a software
system that is independent of timing assumptions and that is the dynamic
nature of a computer configuration. Even if able to carry out the calculations
necessary to ensure reliability in a time-dependent system, one is at the
mercy of any configuration change. Theoretically, the addition of a single
terminal could invalidate the reliability of the system. This is not too far-
fetched. A computer manufacturer once started to market a modernized
component that ran at twice the speed of the original component. The first
customers received a notice that in effect said: “Thanks for buying our
double-speed component but please run it at the original speed for a few
months while we comb the operating system for time dependencies”! A
system may certainly require some time-dependent processing but these
functions should be clearly identified and isolated to ensure the flexibility
and realiability of the system.

The advantages that accrue to a time-independent (asynchronous) sys-
tem can be demonstrated on the hardware level by the architecture of the
DEC PDP-11 computers. Instead of synchronizing access to memory and
I/O devices by a clock, all data in the basic PDP-11 is transferred asyn-
chronously according to a protocol that is not too different conceptually
from what we will be doing. The overhead of the protocol means that for any
given electronic technology, the PDP-11 will be somewhat slower than a
computer built to a synchronous design. On the other hand, the architecture
has proved to be extremely flexible; for example, memory modules of
arbitrary speeds can be freely mixed. If a new technology produces memory
1.267 faster than before, such a module can be added to a current system and
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will respond to the protocol just that much faster. A synchronous system can
generally mix only modules whose speeds are multiples of each other.

In the abstraction, certain assumptions will be made to avoid meaning-
less pathologies. Since infinite delay is indistinguishable from a halt, we will
assume (globally) that, if there is at least one process ready to run, then some
(unspecified) process is allowed to run within a finite time. We also assume
(locally) that if a process is allowed to run in its critical section then it
will complete the execution of the critical section in a finite period of
time.

On the other hand, we allow ourselves to use the adversary approach in
checking for possible bugs. A concurrent program suffers from deadlock if it
is possible to devise a scenario for deadlock under the sole finiteness assump-
tions of the previous paragraph. If someone offers you a concurrent prog-
ram, you can tailor your counterscenario specifically to the given program;
you are an “adversary” allowed to plot against the program,

2.5 IMPLEMENTING PRIMITIVE INSTRUCTIONS

Our solutions to the mutual exclusion problem will always cheat by making
use of mutual exclusion provided on a lower level—the hardware level. Just
as the user of a high level language need not know how a compiler works as
long as he is provided with an accurate description of the syntax and
semantics of the language, so we will not concern ourselves with how the
hardware is implemented as long as we are supplied with an accurate
description of the syntax and semantics of the architecture. Presumably the
same thing happens at lower levels—the computer logic designer need not
know exactly how an integrated circuit isimplemented; the integrated circuit
designer need only concern himself with the electronic properties of semi-
conductors and need not know all the details of the quantum physics that
explain these properties.

In common memory systems there is an arbiter which provides for
mutual exclusion in the access to an individual memory word. The word
“access” is a generic term for read and write or, as they are usually called,
Load and Store corresponding to the assembler instructions for these
actions. The arbiter ensures that in case of overlap among accesses, mutual
exclusion is obtained by executing the accesses one after the other. The
order of the accesses is not guaranteed to the programmer. On the other
hand, the consistency of the access is ensured as described in Chapter 1.

Note that the access to a single word is an action that may not be
apparent in a high level language. Suppose that  is a global variable that is
initially zero and is used as a counter by several processes executing the
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instruction: n := n+ 1. The compiler compiles such a statement into the three
assembler instructions:

Load n
Add 1
Store n

Consider now the following scenario. The value of nis 6. P, executes Load n
and then P, also executes Load n. P, increments the value of n in its internal
register to obtain 7. Similarly, P, obtains the value 7 in its internal register.
Finally, the two processes execute the Store instruction in succession and the
value 7 is stored twice. Hence the final value of n is 7. That is we have
incremented the value 6 twice and have obtained 7.

Common memory arbiters are found both on multiprocessor systems
and on single processor systems whose I/O equipment is connected for direct
memory access (DMA). Normally an I/O device would transfer each data
word to the CPU for the CPU to store in the memory. However, this imposes
an unacceptable overhead on the CPU. Instead, the I/O device is given the
address of a block of memory. It only interrupts the CPU when the transfer
of the whole block is completed. There is an arbiter to ensure that only one
device (or the CPU) has access to the memory at any one time.

In this case we say that DMA is being implemented by cycle stealing.
The memory is assumed to be driven at its maximum access speed, say one
access per microsecond. Each such access is also called a memory cycle. To
implement DMA the CPU is normally allowed to compute and access
memory. When a data word arrives from an 1/O device the right to access
memory is usurped from the CPU and the device is allowed to *‘steal” a
memory cycle. There is no real overhead. The memory cycle is needed
anyway to store the word and with cycle stealing the CPU need not concern
itself with individual words.

The computer hardware will be trusted to function properly. We only
concern ourselves with the correctness of the system software. This is not
always true of course and in practice one must be alert to hardware malfunc-
tion. One of the most spectacular bugs known to the Author was caused by a
hardware fault that resulted in mixing two memory addresses instead of
interleaving them. The net result was a store of data in the mixed-up address,
and the presence of foreign data in these memory addresses was never
explained by software specialists. Fortunately this sort of thing rarely hap-
pens.

Another way of using a common memory system is to define a primitive
procedure call that is guaranteed to exclude other calls of the same proce-
dure. That is, if two processes try to call the same procedure, only one will
succeed and the losing process will have to wait. As usual it is not specified in
which order simultaneous requests are granted.
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In multiprogramming systems, the interrupt facility is used. A critical
procedure is written as an interrupt routine to be executed when a process
causes an interrupt. A hardware flag ensures mutual exclusion by inhibiting
the interrupt—placing the computer in an uninterruptable state. Upon
completion of the interrupt routine, the flag is reset and another process may
now cause an interrupt.

Another method of implementing mutual exclusion is polling. Each
process is interrogated in turn to see if it requires some service that must be
done under mutual exclusion.

We shall allow ourselves the luxury of defining primitive instructions
and, beyond the sketch in this section, we shall not worry about the
implementation. With some experience in computer architecture and data
structures it should not be too difficult to implement any of these primitives.
However, the details differ widely from computer to computer. A study of
the implementation kit may help. In the bibliography we give references to
several descriptions of concurrent programming implementations. In addi-
tion, the serious student should study the architecture of whatever computer
and operating system he is using.

2.6 CONCURRENT PROGRAMMING IN PASCAL-S

Sequential Pascal (and the subset used in this book) must be augmented by
concurrent programming constructs. The concurrent processes are written
as Pascal procedures and their identity as concurrent processes is established
by their appearance in the cobegin . . . coend statement

cobegin P;; P,; .. .; P, coend.

A request for concurrent execution of several processes may appear only in
the main program and may not be nested. The semantics of the cobegin . . .
coend statement are specified as follows:

The cobegin statement is a signal to the system that the enclosed
procedures are not to be executed but are to be marked for concurrent
execution. When the coend statement is reached, the execution of the
main program is suspended and the concurrent processes are executed.
The interleaving of the executions of these processes is not predictable
and may change from one run to another. When all concurrent pro-
cesses have terminated, then the main program is resumed at the
statement following the coend.

An additional notational device that we make use of is the statement
repeat . . . forever which is exactly equivalent in its semantic content with
repeat . . . until false. However, the latter is rather obscure and we prefer the
more transparent notation.
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The use of repeat ... forever emphasizes that these examples are
intended to be prototypes of cyclic programs in operating systems and
real-time systems.

To execute any of the examples in the book on the implementation kit
you will generally have to do the following. (See Fig. 1.5 and, for a larger
example, Fig. 4.18).

1. Replace repeat . .. forever by a for-loop that will execute each
process a fixed number of times or otherwise arrange for termina-
tion.

2. Insert write statements in the main program or in the concurrent
processes to trace the execution of the program.

3. Often, certain procedures have been left unspecified to emphasize
the generality of the algorithms. For example, in the producer—con-
sumer problem, we have invoked procedures named produce and
consume. These procedures must be specified. One possibility is to
produce by incrementing an integer and consume by printing it.

4. Warning The interpreter in the kit is very inefficient, so do not get
carried away with the size of the programs that you intend to
execute.

2.7 SUMMARY
This list summarizes the concurrent programming abstraction.

1. A concurrent program will consist of two or more sequential prog-
rams whose execution sequences are interleaved.

2. The processes must be loosely connected. In particular, the failure of
any process outside its critical section and protocols must not affect
the other processes.

3. A concurrent program is correct if it does not suffer from violation of
safety properties such as mutual exclusion and of liveness properties
such as deadlock and lockout.

4. A concurrent program is incorrect if there exists an interleaved
execution sequence which violates a correctness requirement.
Hence it is sufficient to construct a scenario to show incorrectness; to
show correctness requires a mathematical argument that the prog-
ram is correct for all execution sequences.

5. No timing assumptions are made except that no process halts in its
critical section and that, if there are ready processes, one is eventu-
ally scheduled for execution. We may impose other fairness
requirements.
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6. We shall extend our basic programming language with synchroniza-
tion primitive instructions. As long as the syntax and semantics of
these instructions are clearly defined we do not concern ourselves
with their implementation.

2.8 EXERCISES

2.1 Standing Exercise Write formal specifications of the programs in this book.
For example:
Specification for sortprogram.
Input: A sequence of 40 integers: A={a,, ..., as}.
Output: A sequence of 40 integers: b={b, . . . , by}
Safety property: When the program terminates then (i) b is a permutation of a,
and (ii) b is ordered, i.e. for 1 <=1i < 40, b; <= b;+1.
Liveness property: The program terminates.

2.2 Sranding Exercise Test the example programs in the text.



3 THE MUTUAL EXCLUSION PROBLEM

3.1 INTRODUCTION

A solution to the mutual exclusion problem for two processes P; and P, will
now be developed without introducing any primitive instructions (other than
the common memory arbiter). The purpose of this chapter is not so much to
present Dekker’s elegant solution to this very difficult problem as to present
Dijkstra’s step-by-step development of Dekker’s solution. During the
development we will encounter most of the possible bugs that a concurrent
program can have and thus illustrate the theoretical discussion of the previ-
ous chapter. The serious reader will want to try to analyze each attempted
solution before reading further.
The mutual exclusion problem for two processes is as follows:

Two processes P, and P, are each executing in an infinite loop a program
which consists of two sections, critical sections critl and crit2 and the

e Critical %
TKL: section -
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remainder of the program, non-critical sections rem1 and rem2. The execu-
tion of critl and crit2 must not overlap.

3.2 FIRST ATTEMPT

Let us imagine a “protocol igloo” containing a blackboard (Fig. 3.1). The
igloo itself and the entrance tunnel are so small that only one person can be
in the igloo at any given time. On the blackboard is written the number of the
process whose ‘““turn” it is to enter the critical section. The small size of the
igloo is our metaphor for the memory arbiter.

A process wishing to enter its critical section crawls into the igloo when
it is empty and checks the blackboard. If its number is written, it leaves the
igloo and happily proceeds to its critical section. If the number of the other
process is written then it sadly leaves the igloo to wait for the other process to
finish.

Ideally, the unfortunate process would be able to take a nap until its
turn arrives but we have no way of expressing this in an ordinary program-
ming language. Instead, the process can run laps around the igloo to warm up
(this is doing “nothing”). Periodically it can re-enter the igloo to check the
blackboard. This is known as busy waiting because the energy expended by
the waiting process is just purposeless work.. When a process has completed
its critical section, it writes the number of the other process on the board.
Since only one process is in the igloo at any one time, the board shows either
aone or a two (assuming that neither process malfunctions within the igloo).

program firstattempt,

var turn: integer,

prodecure p,;

begin

repeat
while turn=2 do (* nothing *);
critl;
turn :=2;
rem1
forever

end;

procedure p,;

begin

repeat
while turn=1 do (* nothing *),
crit2;
turn .= 1;
rem?2
forever
end;
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begin (* main program *)
turn 1= 1;
cobegin
P P2
coend
end
Fig. 3.2.

This solution (Fig. 3.2) satisfies the mutual exclusion requirement. A
process P; enters its critical section only if turn = i. Since, by the common
memory assumption, furn will be consistent (will have either a value of 1 or
2), only one process at a time enters its critical section. Since the value of turn
is not changed until the termination of the critical section, a second process
will not be able to infiltrate before termination of the first critical section.

Deadlock is also impossible. Since turn has either the value 1 or the
value 2, exactly one process will always be able to progress or, to put it
another way, it is impossible for both processes to be simultaneously stuck at
the while loops.

Similarly, if every statement of each program takes a finite amount of
time then the process whose turn it is to enter the critical section will always
do so and will eventually allow the other process to enter also. Thus there is
no lockout since neither process can prevent the other from entering its
critical section.

Even though this solution fulfils our requirements for the correctness of
concurrent programs, it does not fulfil one of the design requirements of the
abstraction. The processes are not loosely connected. The right to enter the
critical section is being explicitly passed from one process to the other.

This has two drawbacks. Firstly, if process P, needs to enter its critical
section 100 times per day while P, needs to enter only once per day then P, is
going to be coerced into working at P,’s pace of once per day. When P, has
finished its critical section, then, it chalks up a 2 and until P, decides to
re-enter the critical section, P, will be forced to wait.

The second drawback is as serious. Suppose P, is waiting for P, to
execute a critical section and then change the number written on the board
from 2 to 1. If by chance P, is devoured by a polar bear on its way to the igloo
then not only is P, terminated but P, is hopelessly deadlocked. This is true
even if P, is in rem2 outside the critical section when it terminates, thus
conforming with our assumption that a process may terminate only outside
its critical section.

This explicit passing of control is a programming technique known as
coroutines. By executing an instruction such as resume (p,), P, is able to
request that its execution be suspended in favor of P,. P, then executes until
it in turn returns the control of P, by a resume (p,) statement. Coroutines
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are a useful programming technique but a system of coroutines must be

designed as a single integrated process and are not a substitute for concur-
rent programs.

3.3 SECOND ATTEMPT

Fig. 3.3.

We try to remedy the previous solution by giving each process its own
key to the critical section so if one is devoured by a polar bear then the other
can still enter its critical section. There is now (Fig. 3.3) an igloo (global
variable) identified with each process. It is worth noting that, while in the
solution in Fig. 3.2 the variable furn is both read (Load) and written (Store)
by both processes, the present solution may be easier to implement because
each process reads but does not write the variable identified with the other
process.

If P, (say) wishes to enter its critical section, it crawls into P,’s igloo
periodically until it notes that c, is equal to 1 signifying that P, is currently
not in its critical section. Having ascertained that fact, P, may enter its
critical section after duly registering its entrance by chalking a 0 on its
blackboard—c,. WhenP, has finished, it changes the mark on ¢, to 1 to notify
P, that the critical section is free.

program secondattempt;

var ¢y, Cy: integer,
procedure p;
begin

repeat
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while ¢,=0 do;
¢ = 0
critl;
¢ = 1;
rem]l
forever
end;
procedure p,;
begin
repeat
while ¢,=0 do;
¢, = 0;
crit2;
c, = 1;
rem?2
forever
end;
begin (* main program *)
¢ = 1;
c,:=1;
cobegin
P P>
coend
end.

Fig. 3.4.

This program (Fig. 3.4) does not even satisfy the safety requirement of
mutual exclusion. The following scenario gives a counter-example where the
first column describes the interleaving and the next columns record the
values of the variables.

o

OO O = N

Initially

P, checks ¢,
P, checks ¢,
P, sets cl

P, sets ¢2

P, enters critl
P, enters crit2

OO R Rk =D

Since P, and P, are simultaneously in their critical sections, the program is
incorrect.
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3.4 THIRD ATTEMPT

program thirdattempt,
var Cy, ¢yt integer;
procedure p,;
begin
repeat
¢ :=0;
while c,=0 do;
critl;
¢ =1,
reml
forever
end;
procedure p,;
begin
repeat
¢, =0
while ¢, =0 do;
crit2;
¢ =1,
rem?2
forever
end;
begin (* main program =)
¢ :=1;
c =1
cobegin
P15 P>
coend
end.
Fig. 3.5.

Analyzing the failure of the second attempt, we note that, once P, has
ascertained that P, is not in its critical section, P, is going to charge right into
itscritical section. Thus, the instant that P, haspassed the while statement, P,
is in effect in its critical section. This contradicts our intention that ¢, =0
should indicate that P, is in its critical section because there may be an
arbitrarily long wait between the while statement and the assignment
statement.

The third attempt (Fig. 3.5) corrects this by advancing the assignment
statement so that ¢, = 0 will indicate that P, is in its critical section even
before it checks ¢,. Hence P, is in its critical section the instant that the while
has been successfully passed.
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Unfortunately this program easily leads to system deadlock as seen by
the following scenario:

P, checks ¢,
P, checks ¢,

) C,
Initially 1 1
P, sets ¢; 0 1
P, sets ¢, 0 0
0 0
0 0

The continual checking of the variables can be continued indefinitely and
cannot be considered progress. Thus the program is hopelessly deadlocked.

Even though this program is unacceptable because of the deadlock, it is
instructive to prove that it satisfies the mutual exclusion property. By sym-
metry it is sufficient to show that: (P, in crit1) implies (P, is not in crir2).

1. (When P, entered crit1) then (¢, was not 0).
This follows from the structure of the program, namely the test
on ¢, by P,.

. (c, is not 0) implies (P, is not in crit2).
crit2 is bracketed between assignments to ¢, which ensure that
this statement is always true.

. (When P, entered crirl) then (P, was not in crit2).
This is a logical consequence of (1) and (2).

. (P, in critl) implies (¢, is 0).
critl is bracketed between assignments to ¢;.

. (c; is 0) implies (P, does not enter crit2).
The test will not allow P, through.

. (P, in crit1) implies (P, does not enter crit2).
A logical consequence of (4) and (5).

. As long as (P, is in crit1), (P, will never enter crit2).
This follows from (6). Since (6) refers to an arbitrary instant of
time, then as long as its antecedent (P, in crit1) remains true, so
will its consequent (P, does not enter crit2).

. (P, in crit1) implies (P, is not in crit2).
From (3) and (7).
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Note that the proof has the simple structure of a deduction in the
propositional calculus except for the need to express and deduce time-
related properties such as “‘when”, “‘as long as” etc. There is a formal logic
called temporal logic that can express these properties and can be used to
formally prove properties of concurrent programs. For example, the reason-
ing in this proof can be formalized as an induction on the time that has passed
since P, entered crit1. We are trying to prove that mutual exclusion is never
violated: (3) ensures the basis of the induction; (6) is an induction step:
assuming that P, is now in crit1, we can deduce that P, will not now enter
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crit2 so that upon the conclusion of the current instruction, mutual exclusion
will still not be violated.

3.5 FOURTH ATTEMPT
program fourthattempt;
var ¢y, ¢, integer;
procedure p;;
begin

repeat
¢ =0
while ¢,=0 do
begin
¢ = 1;
(* do nothing for a few moments *)
¢, : =0
end;
critl;
¢, :=1;
reml
forever
end;
procedure p,;
begin
repeat
¢, =0
while ¢,=0 do
begin
¢, :=1;
(* do nothing for a few moments *)
¢ =0
end;
crit2;
¢, =1,
rem?2
forever
end;
begin (* main program *)
c = 1;
¢ =1
cobegin
P15 P2
coend

end.
Fig. 3.6.
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In the previous solution, when P, chalks up 0 on ¢, to indicate its
intention to enter its critical section, it also turns out that it is insisting on its
right to enter the critical section. It is true that setting ¢, before checking ¢,
prevents the violation of mutual exclusion but if P, is not ready to yield then
P, should yield.

In the next attempt (Fig. 3.6) we correct this stubborn behavior by
having a process relinquish temporarily its intention to enter its critical
section to give the other process a chance to do so. P, enters its igloo and
chalks up a 0. If upon checking P,’s igloo, P, finds a 0 there too, it chival-
rously returns to its igloo to erase the 0. After a few laps around the igloo it
restores the signal ¢, = 0 and tries again. The comment is there simply to
remind you that since arbitrary interleaving is permissible, the sequence of
two assignments to the same variable is not meaningless.

First note that the previous proof of mutual exclusion holds here. From
the above discussion, it should now be clear that there is such a thing as too
much chivalry. If both processes continue yielding then neither will enter the
critical section. The scenario is as follows:

o
N

Initially

P, sets ¢,
P, sets ¢,
P, checks ¢,
P, checks ¢,
P, sets ¢,
P, sets ¢,
P; sets ¢,
P, sets ¢,

oo rRrOoOoOOoORD
= e OO0 O O =

It is clear that this could be indefinitely extended and that liveness does not
hold because neither process will ever enter its critical section. However, it is
extremely unlikely ever to occur. Nevertheless we are forced to reject this
solution. The main objection here is not so much that neither process will
ever enter the critical section (it is unlikely that perfect synchronization
continues indefinitely) but that we have no way of giving an a priori bound
on the number of iterations that the loops will execute before they are
passed. Thus we have no way of guaranteeing the performance of such a
system.

Should this bug be classified as deadlock or lockout? On the one hand,
both processes are looping on a protocol which is certainly not useful
computation and the situation is similar to the previous attempt. However,
we prefer to call this lockout to emphasize the following distinction. In the
previous attempt the situation is hopeless. From the instant that the program
is deadlocked, all future executions sequences remain deadlocked. In this
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case however, the slightest aberration of the scenario will free one of the
processes and in practice this will eventually happen. The key notion here is
the conspiracy between the processes and not the hopelessness of the situa-
tion. It is only because we wish to be able to guarantee a worst-case behavior
that we reject the current attempt.

3.6 DEKKER'S ALGORITHM

program Dekker;
var turn: integer;,
¢, c,: integer;
procedure p,;
begin
repeat
¢, =0,
while ¢, = 0 do
if turn = 2 then
begin
¢ = 1;
while turn=2 do;
¢, :=0
end;
critl;
turn := 2;
¢ =1
reml
forever
end;
procedure p,:
begin
repeat
¢, :=.0;
while ¢; = 0 do
if turn=1 then

¢, 1= 1;
while turn=1 do;
¢ =0
end;

crit2;

turn := 1;

c, =1,

rem?2

forever
end;
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begin (* main program =)
¢ =1
c = 1;
turn :=
cobegin
P P2
coend
end.

1;

Fig. 3.7.

Dekker’s solution is an ingenious combination of the first and fourth
attempted solutions. Recall that in the first solution we explicitly passed the
right to enter the critical section between the processes. Unfortunately, the
key to the critical section could be irretrievabley lost if one of the processesis
terminated. In the fourth solution we found that keeping separate keys leads
to the possibility of infinite deferment of one process to the other.

Dekker’s algorithm (Fig. 3.7) is based on the previous solution but
solves the problem of lockout by explicitly passing the right to insist on
entering the critical solution. Each process has a separate igloo so it can go
on processing even if one process is terminated by a polar bear. Note that we
are here using the assumption that no process is terminated in its critical
section (including the protocol).

There is now an “‘umpire”” igloo with a blackboard labelled “turn’, (Fig.
3.8).If P, chalks up a 0 on ¢, and then finds that P, has also chalkedup a 0, it
goes to consult the umpire. If the umpire has a 1 written upon it, then P,
knows that it is its turn to insist and so P, periodically checks P,’s igloo. P, of
course notes that it is its turn to defer and chivalrously chalks up a 1 on ¢,
which will eventually be noted by P,. P, meanwhile waits for P, to terminate

Fig. 3.8.
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its critical section. Upon termination, P, not only frees the critical section by
setting ¢, to 1 but also resets furn to 2 both to free P, from the inner loop and
to transfer the right to insist to P,.

Mutual exclusion is proved exactly as in Section 3.4 since the value of
turn has no effect on the decision to enter the critical section.

Proving liveness is somewhat of a challenge. Symmetrically it is suffi-
cient to prove that, if P, executes ¢, := 0 indicating its intention to enter the
critical section, then eventually it does so. This is done in two parts. First we
prove that if P, attempts to enter its critical section but cannot do so,
eventually the variable turn is permanently held at the value 1. But if turn is
held permanently at 1 then P, can always enter its critical section.

3.7 A PROOF OF DEKKER’S ALGORITHM

Let us now prove the liveness of Dekker’s Algorithm. The algorithm is
shown in flowchart form in Fig. 3.9. The formal statement that we want to
prove is that if the program counter of process P, is at point «, (i.e. P, has left
rem1 and thus expresses a wish to enter the critical section), eventually the
program counter of P, will be at «; (i.e. P, may enter the critical section). Of
course an exactly symmetrical proof will prove the liveness of P,.

Our notation will be more concise: «; will be an abbreviation for the
statement that the program counter of P, is at «;. Similarly for P, and B,.

Remember the assumption that a process is never terminated in its
critical section (including the protocols). Thus if P, is at a, it will eventually
reach ag. If P is at o, it will eventually reach a, or a5 though without further
information we cannot specify which of the two statements will be reached.
To simplify the proof, this assumption is extended to remi (; and B;). In the
exercises we indicate the modifications needed if we allow P, to terminate in
remi.

Note thatif P, is at a; and ¢, = 1, we cannot conclude that eventually P,
is at as. The assumption only guarantees that P, eventually tests the value of
¢,; by then the value of ¢, could have been changed. To conclude that c,
implies eventually as we would have to show that a; and that the value of ¢, is
held at 1 indefinitely. Thus, when by assumption the test is eventually done,
the value of ¢, will in fact be 1.

Since the only assignments to c; are in P;, we can deduce the values of ¢,
from the &’s and the B’s, respectively. We express these facts as invariants,
i.e. statements that are always true.

I1. ¢, = 0if and only if @, or a, or a; or ag or ..
I2. ¢, = 0 if and only if 85 or 8, or 85 or B¢ or ;.
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Theorem (o, and never «;) is false, that is «, implies eventually as.
Proof

1. (e, and never as) and (turn held at 2) imply eventually (c, held at 1).
Since (never «s), P, eventually passes a; and thence to a,. Since
(turn held at 2), P, reaches a, and ag and is then blocked in the
loop at «g. By 11, as long as P, is at a4, ¢; must equal 1.

2. (c, held at 1) and (turn held at 2) imply eventually (turn = 1).
The truth of the two clauses concerning ¢, and turn together with
the assumption that processes are not terminated implies that P,
must eventually reach 8, and assign the value 1 to wurn.
But (furn held at 2) and eventually (furn = 1) means that there
will be a point of time when turn is simultaneously 1 and 2. This
contradicts the consistency of the values in the common memory.
From (a, and never as) and (turn held at 2) we have deduced a
contradiction. Thus it must be that («, and never «s) implies
eventually (furn is not 2). Since turn = 2 or turn = 1 we have
proved.

3. (@, and never as) implies eventually (fturn =1).

4. (@, and never a;) implies (never a;) and (never a,) and (never a,).
The only way to reach «; or a, from a, is to pass through a;. But
we assume that we never reach as.

W

. (a; and never a;) implies eventually (turn held at 1).
Once the value of turn is 1 (as ensured by (3)) the only way that
the value can change back to 2 is to execute «,. By 4 this will
never happen.

=)}

. (a, and never a;) implies eventually (P, loops forever at a;—a,).
By (4) and (5), eventually [(turn held at 1) and (P, is never at as)].
Hence since P, must reach a;—a, from a,, o 01 o it will then loop
forever at as—a,.

~

. (a, and never «;) implies eventually (c, held at 0).
By (6), eventually we loop at a;—a,, which implies by I1 that ¢, will
be held at 0.

o]

. (¢, held at 0) and (turn held at 1) imply eventually (c, held at 1).
Similar to (1): P, must eventually loop at 85. Then by 12, ¢, is held
at 1.

Nel

. (a, and never a;) implies eventually (c, held at 1).
From (5), (7) and (8).
But (8) contradicts (6): if ¢, is held at 1 then P, cannot be looping
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at as—a,. From (@, and never as) we have deduced a contradic-
tion. Thus (a, and never «s) is false.

3.8 CONCLUSION

Mutual exclusion of two processes is about the simplest problem in concur-
rent programming. The difficulty of obtaining a correct solution to such a
simple problem suggests that programming features more powerful than the
common memory arbiter will be needed. In the exercises you can explore
some other solutions of the type given here.

In particular, the solutions of the mutual exclusion problem for n
processes are so difficult that they are of more or less academic interest only,
especially when compared with the trivial solution to the problem given, say,
by semaphores.

There is another defect in the common memory arbiter and that is the
busy wait that is used to achieve synchronization. The solutions all contain a
statement: while condition do (* nothing *). Unless you have a dedicated
computer doing the looping this is a waste of CPU computing power. Even if
there is no CPU waste (as would be the case if the processes were 1/0O
controllers) there is the severe overhead associated with cycle stealing. Thus
the frequent accesses to turn in Dekker’s solution can prevent useful compu-
tation from being done by other processes.

The primitives discussed in the next chapters uniformly suspend the
execution of the blocked processes. This is usually implemented by keeping
a queue of processes, i.e. a queue of small blocks of memory containing
essential information on the blocked processes. Thus the overhead is only a
small amount of memory and the small amount of computation needed to
manage the queue.

A final objection to Dekker’s algorithm is that it uses a common
variable which is written into by both processes. In the exercises we discuss
Lamport’s algorithms which have the advantage that each variable need only
be written by one process. Thus his algorithms are suitable for implementa-
tion on distributed systems where the values of the variables can be trans-
mitted and received but where each variable is written into only on the
computer in which it physically resides.

3.9 EXERCISES
3.1 (Dijkstra) Fig. 3.10 is a solution to the mutual exclusion problem for n processes

that is a generalization of Dekker’s solution.

(a) *Show that mutual exclusion holds.
(b) Show that deadlock does not occur.
(c) Show that lockout is possible.
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program Dijkstra;
const n = ...; (x number of processes *)
var b, c: array [0 . . n] of boolean;
turn: integer;
procedure process(i : integer);
var J: integer;
ok: boolean;
begin
repeat
bli] := false;
repeat
while turn <> i do
begin
di] := true;
if b[turn] then turn := i
end;
¢ [i] := false;
ok := true;
forj:= 1tondo
if j <> i then
ok := ok and c[j]
until ok;
crit;
cli] := true; bli] := true;
turn := 0;
rem
forever
end,;
begin (* main program +)
for turn := 0 to n do
begin
blturn] := rtrue;
cfturn] := true
end;
turn = 0;
cobegin
process(1);
process(2);

process(n)
coend
end.
Fig. 3.10.

3.2 (Lamport) Fig. 3.11 is (what the Author calls) the Dutch Beer version of the
Bakery Algorithm, restricted to two processes.

(a) Show safety and liveness. (Hint The variables are supposed to represent
“ticket” numbers”. The process with the lower ticket number enters its
critical section. In case of a tie, it is arbitrarily resolved in favor of P;.)

(b) Show that the commands n; := 1 are necessary.
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¢) *Extend the algorithm to n processes. (Hint Each process will choose a
g p p

ticket number greater than the maximum of all outstanding ticket numbers.
It will then wait until all processes with lower numbered tickets have
completed their critical sections.)

program dutchbeer;

var

ny, n,: integer;

procedure p;
begin
repeat

nyi=1;

ny 1= nyt1;

while (n, <> 0) and (n, < n;) do;
critl;

ny = 0

reml

forever
end;
procedure p;;
begin

repeat

n,:=1;

n, 1= ny+1;

while (n, <> 0) and (n,; <= n,) do;
crit2;

ny, := 0;

rem?2

forever

end;

begin (* main program *)
ny = 0;

n

2:=0;

cobegin

P15 P2

coend
end.

Fig. 3.11.

3.3 Fig. 3.12 is Lamport’s Bakery Algorithm restricted to two processes.

(2)
(b)
()

Show the safety and liveness of this solution.
Generalize to n processes.
Show that for n > 2 the values of the variables n; are not bounded.

(d) *Suppose we allow a read (i.e. Load) of a variable »; to return any value if it

(e)

takes place simultaneously with a write (Store) of n; by the ith process. Show
that the correctness of the algorithm is not affected. Note, however, that we
require the write to execute correctly. Similarly, all reads which do not
overlap writes to the same variable must return the correct values.
Show that the correctness of the Dutch Beer version of the algorithm is not
preserved under the malfunction described in (d).
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program bakery;

var C1, €3, Ny, Ny integer;
procedure p;;
begin
repeat
= 1;
ny = nyt+l;
¢ = 0;

while ¢, <> 0 do;
while (n, <> 0) and (n, < n;) do;
critl;
n :=0;
reml
forever
end;
procedure p,;
begin
repeat
= 1;
ny, 1= n+1;
¢ =0,
while ¢, <> 0 do;
while (7; <> 0) and (n, <= n,) do;
crit2;
n, := 0;
rem?2
forever
end;
begin (* main program *)
¢, = 0;
¢ = 0;
ny:
Hy 1=
cobegin
P P2
coend
end.

o

oo

s

El

Fig. 3.12.

Fig. 3.13 is a solution to the mutual exclusion problem for two processes. Discuss
the correctness of the solution: if it is correct, then prove it. If not, write scenarios
that show that the solution is incorrect.

Several sychronization primitives that have been used are based on hardware
instructions that enable several assignment statements to be executed as one
(indivisible) primitive instruction. The solutions to the mutual exclusion prob-
lem using these primitives are very simple, but they remain busy wait algorithms
in contrast to algorithms using the primitives to be studied in the next chapter.
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program attempt;
var ¢y, Cy: integer;
procedure p;
begin
repeat
reml;

until ¢, <> 0;
critl;
¢ =1
forever
end;
procedure p,;
begin
repeat
rem2;
repeat
¢ =1-c
until ¢; <> 0;
crit2;
¢, =1
forever
end;
begin (* main program *)
cp:=1;
¢ = 1;
cobegin
P P2
coend
end.

Fig. 3.13.

The IBM 360/370 computers have an instruction called 7ST (Test and Set).
There is a system global variable called ¢ (Condition Code). Executing TST(/)
for local variable / is equivalent to the following two assignments:

l:= ¢

c:= 1.

(a) Discuss the correctness (safety, deadlock, lockout) of the solution of the
mutual exclusion problem shown in Fig. 3.14.

(b) Generalize to n processes.

(c) What would happen if the primitive TST instruction were replaced by the
two assignments?

(d) *Modify the implementation kit to include the 7'ST instruction.
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program testandset,
var c: integer;
procedure p,;
var I: integer;
begin
repeat
reml;
repeat
TST()
until / = 0;
critl;
c:=0
forever
end;
procedure p,;
var I: integer;
begin
repeat
rem2;
repeat
TST()
until / = 0;
crit2;
c:=0
forever
end;
begin (* main program x)
c:= 0;
cobegin
P15 P2
coend
end.

Fig. 3.14.

CHAP. 3

3.6 The EX instruction exchanges the contents of two memory locations. EX(a,b) is
equivalent to an indivisible execution of the following assignment statements:

temp 1= a;
a:=b;
b := temp.

(a) Discuss the correctness (safety, deadlock, lockout) of the solution for

mutual exclusion shown in Fig. 3.15.

(b) Generalize to n processes.

(c) What would happen if the primitive EX instruction were replaced by the

three assignments?

(d) *Modify the implementation kit to include the EX instruction.
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program exchange;
var c: integer;
procedure p;
var I: integer;
begin
[:=0;
repeat
reml,;
repeat
EX (c,))
until / = 1;
critl;
EX (c,D)
forever
end;
procedure p,;
var I: integer;
begin '
l:=0;
repeat
rem2;
repeat
EX (c,))
until / = 1;
crit2;
EX (c,))
forever
end;
begin (* main program *)
c:=1;
cobegin
P15 P2
coend
end.
Fig. 3.15.

3.7*If we allow P, to terminate in rem2, what changes need to be made in the proof
of the liveness of Dekker’s algorithm? (Hint If P, is terminated in rem2, then it
is true by 12 that ¢, is held at 1).



4 SEMAPHORES

4.1 INTRODUCTION

The scientific study of concurrent programs was given a decisive thrust with
the introduction of the semaphore by Dijkstra. Semaphores are easy to
implement and yet sufficiently powerful that they can be used to give elegant
solutions to concurrent programming problems. They can be used to define
or implement more powerful structured primitives.

A semaphore s is an integer variable which can take on only non-zero
values. Once s has been given its initial value, the only permissible opera-
tions on s are to call the procedures wait(s) and signal(s) which are primitive
operations (the original notation is P(s) for wait(s) and V(s) for signai(s),
which are the first letters of the corresponding words in Dutch). The defini-
tion of these operations is as follows:

wait(s): If s > 0 then s := s — 1 else the execution of the process that called
wait(s) is suspended.

signal(s): If some process P has been suspended by a previous wait(s) on this
semaphore s then wake up Pelse s := 5 + 1.

Remark 1 If the semaphore only assumes the values 0 and 1, it is called
a binary semaphore. A semaphore which can take arbitrary non-negative
integer values is called a general semaphore.

Remark 2 wait and signal are the only operations allowed. In particular,
assignments to s or tests of the value of s are prohibited except for an
assignment to s of an initial non-negative value in the main program. (The
implementation kit does not enforce this restriction nor does it distinguish
binary from general semaphores.)

Remark 3 We have defined the procedures as primitive operations.
This means that they exclude one another just as Load and Store to the same

50
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memory word exclude one another. (Semaphore operations on distinct
semaphores need not exclude one another). Hence if a wait and a signal (or
two wail’s or two signal’s) occur simultaneously they are executed one at a
time though we do not know in what order they are executed.

Remark 4 The definition of signal does not specify which process is
woken if more than one process has been suspended on the same semaphore.
For the purpose of constructing a scenario you may assume that any process
you wish is in fact selected. A FIFO semaphore which maintains a first-in,
first-out queue of suspended processes could also be defined. There are
more sophisticated definitions of fairness but that is a slightly more advanced
topic and we suggest that you skip it on the first reading.

(Advanced) Remark 5 The classical (busy-wait) definition of sema-
phores is even weaker:
wait(s): When s > O thens := s —1.
Read this as: whenever the value of s is greater than zero, the process
may execute s := s—1 and continue.
signal(s): s := s+1.
Suppose that process P executes signal(s) when the queue contains the

blocked processes Q,, . . ., Q,. This definition does not guarantee that
any of the Q,, ..., Q, are woken. The interleaving of execution
sequences allows any process (even P) to execute wait(s) and decrement
s before any of Q;, ..., O, have a chance to do so.

Another definition is that of the strongly fair semaphore which is
assumed to have the following property:
If Pis suspended on s and s becomes greater than zero infinitely often
then eventually signal will choose to wake P.
(End of Remark 5).

4.2 MUTUAL EXCLUSION
Figure 4.1 is a solution to the mutual exclusion problem using semaphores.

program rnutualexclusion;
var s: (* binary *) semaphore;
procedure p;;
begin
repeat
wait (s);
critl;
signal(s);
reml
forever
end;
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procedure p,;
begin
repeat
wait(s);
crit2;
signal(s);
rem?2
forever
end;
begin (* main program *)
s:=1;
cobegin
P P2
coend
end.

Fig. 4.1.

All the synchronization is veiled by the powerful features of the
semaphore. That is the way it should be. Language features are defined;
compiler writers and systems programmers figure out how to implement it;
and everyone else uses the feature with a reasonable assurance that it will
work.

Let us examine this algorithm in detail with the aid of the igloo model.
Our igloo (Fig. 4.2) now has in addition to its blackboard a deep-freezer. A
process enters and performs a wait: if there is a 1 on the board it can enter its
critical section; otherwise, it goes into hibernation in the freezer. Note that
once a process enters the freezer it has cleared the interior of the igloo and
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another process can enter even though the first process has not actually
“completed” the execution of the wait. As an implementation detail, the
freezer (= queue of suspended processes) must be large enough to contain
the number of processes in the system or at least the number of processes
that may be waiting on the semaphore s.

Upon completion of the critical section, the signalling process enters the
igloo and releases a process from the freezer. If there are no such processes,
it simply chalks up a one to indicate that the critical section isfree. In the case
of a binary semaphore, a signalling process will always find a zero on the
board (why?). If the blackboard of a general semaphore has any non-zero
number written on it, the process can deduce that the freezer is empty
(why?).

This solution to the mutual exclusion problem is very similar to one of
our earliest attempts in the previous chapter in which we had the processes
pass the key to the critical section back and forth. We are saved from trouble
here by the fact that the testing of s and the setting of s to zero are
encapsulated in one primitive instruction. Thus if P, notes that s is 1, it will
set s to 0 before P, has a chance to test the value of s.

Mutual exclusion and absence of deadlock are easy to show from the
following property of the program: s will have the value zero if and only if
exactly one process is in its critical section. This can be formally proved as
follows. Consider the value of the expression E=s+the number of processes
in a critical section. Certainly E=1 at the start of the concurrent program
since s=1 and no process is in a critical section.

Now use the following inductive argument. Assume that E=1 at any
point in any interleaved execution sequence. The execution sequence con-
tinues by choosing to execute either a step of P, or a step of P,. We argue by
inspecting the program that in any case the truth of E=1is preserved. Hence
by induction, E=1 is always true because any execution sequence is con-
structed starting from the initial state by successively choosing either a step
of P, or of P,. For example, if E=1 because there are no processes in the
critical section and s=1, P, can choose to enter the critical section by
executing wait(s). It leaves s=0 and number of processes in the critical section
=1,ie. E=1.

The formula E=1 is called an invariant of the computation. Invariants
are proved by induction. The initial statc of the computation satisfies the
invariant and every transition between possible states of the computation
preserves the truth of the invariant. To prove this, we assume the truth of the
invariant as an induction hypothesis and then check that the invariant is still
true in the new state resulting from the transition.

Note that, even in this simple case, the full proof is rather tedious since
the induction step must be proved for every pair: (location of P,’s program
counter, location of P,’s program counter). Of course, most steps are trivial.
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The only ones needing any reasoning are executions of the semaphore
instructions.
We are now in a position to prove the liveness of the solution.

Theorem (P, wishes to enter critl) implies eventually (P, enters crifl).
Proof

1. (P, wishes to enter crirl) implies eventually (P, enters critl) or (P, is
indefinitely suspended because s=0).
2. (P, is indefinitely suspended because s=0) implies (P, is in crir2).
This follows from the invariant E=1 and the fact that there are
only two processes P, and P,.
3. (P, is in crir2) implies eventually (P, executes signal(s)).
We assume that no process is terminated in its critical section.
4. (P, executes signal(s)) and (P, is indefinitely suspended because s=0)
implies (P, enters critl).
See the definition of the signal operation.
5. (P, wishes to enter crifl) implies eventually (P, enters critl).
The possibility that P, is indefinitely suspended on s=0 has led to
a contradiction.

Remark Note thatin (4) we have tacitly used the fact that there are only
two processes. Otherwise we could not prove that P, enters its critical section
and not some other process.

(Advanced) Remark (4) of course does not hold under the busy-wait
definition of semaphores. In fact lockout is possible under that definition if
the signalling process executes another wait before the suspended process
notes thats > 0. However, fair semaphores are sufficient to prove absence of
lockout though a proof such as ours would have to be invoked inductively so
that eventually some signal would in fact wake P;.

(End of Advanced Remark).

The mutal exclusion problem for n processes is solved by the identical
program (Fig. 4.3).

procedure mutualexclusion;
const n = ... ; (* number of processes *)
var s: (* binary *) semaphore;
procedure process(i: integer);
begin
repeat
wait(s);
crit;
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signal(s);
rem
forever
end;
begin (* main program *)
s:=1;
cobegin
process(1);
process(2);

process(n)
coend
end.

Fig. 4.3.

In this case lockout is a possibility. Suppose there are three processes
and that the arbitrary choice of a process woken by signal is such that the
process with the lowest index is always chosen. Then P, could be indefinitely
delayed as P, and P, conspire to wake each other up.

(Advanced) Remark Morris has found a lockout-free solution to the
mutual exclusion problem for n processes. The solution is very complex and
uses additional variables and semaphores to set a limit on the size of a
“batch” of processes that may simultaneously wait on the semaphore used
for mutual exclusion. Since every process eventually completes its critical
section and leaves the batch, all these processes will be eventually processed
before a new batch is allowed to compete for mutual exclusion. The solution
depends on the definition of semaphores that requires a signalling process to
wake a waiting process.

(End of Advanced Remark).

Consider the problem of allowing at most k out of the n processes to
simultaneously access the critical section. For example, a computer with two
printers could allow two jobs to be printed simultaneously. The only change
needed is to initialize the semaphore to k. k processes will successfully
decrement s until its value is zero. Then a process must wait until one of these
k processes completes its critical section and signals. We can see here that it
is necessary for signal also to be a primitive instruction. Otherwise if k=3,
s=1 and two processes leave their critical sections simultaneously then the
concurrent execution could leave s=2 even though all processes are now out
of their critical sections.

Can this be done using binary semaphores only? The answer is yes, but
the solution is difficult. In the Exercises you can study the solution found by
Kessels and Martin (1979).
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4.3 THE PRODUCER-CONSUMER PROBLEM

Along with mutual exclusion, the producer—consumer problem is an abstrac-
tion of applications of concurrent programming that are found throughout
operating systems. We choose to introduce this problem here because the
semaphore has a natural interpretation in terms of the producer—consumer
problem and because Dijkstra’s presentation offers another elegant series of
solutions to a concurrent programming problem.

The producer—consumer problem arises because the producer of data
must have somewhere to store it until the consumer is ready and the
consumer must not try to consume data that is not there. It is perfectly valid
to require that a rendezvous between the two must take place. Then the
producer produces if and only if the consumer is ready to consume. If either
process arrives early then it is required to wait. The rendezvous is the
reasonable thing to do unless the two processes have acommon memory. Itis
the basis of the Ada synchronization primitives.

If, however, the data rates of the producer or the consumer vary during
the execution of the program then buffering is necessary. An example is the
type-ahead feature found on most terminal systems. The user is allowed to
produce several commands without waiting for the computer to consume
each command. Similarly, the computer may produce more information
than can be conveniently presented on the terminal screen. A buffer is used
to average out such peak data rates.

A buffer is a segment of memory common to both the producer and the
consumer. If the buffer is large enough to handle peaks of data production,
both producer and consumer maintain a steady high average rate of data
transfer without fearing a malfunction because of occasional peaks. The
operation of a buffer is the same as that of a shock absorber in a car which
stores a peak of energy and then releases it slowly so that both the car and its
occupants can tolerate this input of energy. If a bump is hit which is beyond
the capacity of the shock absorber or if the bumps are produced at a rate too
rapid to allow the shocks to be consumed by a slow release of energy, then
the result is unfortunate for the owner of the car.

A related use of buffers is to accommodate I/O equipment that accepts
only aggregates of data. Disks and tapes can read and write only blocks of

repeat
produce record v;
b(in] := v;
in = in+1
forever;

Fig. 4.4.
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data. Many terminal systems require that complete messages be transmitted
instead of individual characters. Even though both the producer and the
consumer may be working at the same average rate, the artificial imbalance
caused by blocking the data requires that buffering be used.

For now, let us assume that we have an infinite buffer. In programming
notation this can be expressed as an infinite array: b[0],6[1], ... . The
producer can then simply pour his data into the buffer (Fig. 4.4) (in is a
global variable that counts the number of records produced). The consumer
on the other hand must assure that it is not consuming from an empty buffer
(Fig. 4.5) (out is a variable that counts the number of records consumed).
Initially we set in=out=0. Note that we have abstracted away many details
of the actual buffering process, in particular the structure of the records and
the processing to be done with them. However, the main idea of buffering is
captured.

repeat
wait until in > out;
w := blout];
out := out+1;
consume record w
forever;

Fig. 4.5.

Fig. 4.6.

Let s=in—out (Fig. 4.6). s is then the number of records in the buffer.
What values can s take? s is initially 0. s can increase and then decrease
arbitrarily except that if s reaches 0 then the consumer will refuse to reduce s
below 0. Instead it waits until the producer places another value in the
buffer. If we arrange for the producer to force the consumer into immediate
consumption of this new value then 0=in—out=(in+1)—(out+1).

s behaves like a semaphore. In fact the statement wait until in > out in
the consumer can easily be implemented by wait(s) assuming that signal(s) is
added to the producer to wake up the consumer. Thus a solution to the
producer—consumer problem can be written as shown in Fig. 4.7 (where we
have further abstracted the buffer manipulations by append (to buffer) and
take (from buffer)).
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program producerconsumer,
var n: semaphore;
procedure producer;
begin
repeat
produce;
append;
signal(n)
forever
end;
procedure consumer,
begin
repeat
wait(n);
take;
consume
forever
end;
begin (* main program *)
n:=0;
cobegin
producer; consumer
coend
end.
Fig. 4.7.

Thus the semaphore can be viewed as counting the difference between
the number of signals sent by signal and the number of signals received by
wait. It is the mere fact of signalling that is being counted and not the content
of the signal. A semaphore can be implemented by a message passing system
though it is wasteful to use the fixed size message element to transmit a null
message.

4.4 MORE ON THE PRODUCER-CONSUMER PROBLEM

We now describe a series of solutions to the producer—consumer problem
under a different hypothesis than in the previous section. Let us assume that
the statements append and take are critical sections that must not overlap.

(Advanced) Remark A buffering system may be implemented as a
chain of small buffers linked together. Obtaining or releasing a small buffer
is usually a critical section to ensure the consistency of the pool of free
buffers. Another common situation that requires mutual exclusion is the
case of multiple producers or consumers. For example, all the terminalsin a
transaction processing system might place their request in a single queue;
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this would be an instance of multiple producers. If a second processor were
added to the system to improve its performance, we would have multiple
consumers.
(End of Advanced Remark).

In the program in Fig. 4.8, a (binary) semaphore s is used in addition to
the general semaphore n to achieve mutual exclusion.

program producerconsumer,
var n: semaphore;
s: (* binary *) semaphore;
procedure producer;
begin
repeat
produce;
wait(s);
append;
signal(s);
signal(n)
forever
end;
procedure consumer;
begin
repeat
wait(n);
wait(s);
take,
signal(s);
consume
forever
end;
begin (* main program *)
n:=0;
s:=1;
cobegin
producer; consumer
coend
end.
Fig. 4.8.

Suppose that a programming bug was made and that instead of
signal(s); signal(n) was written signal(n); signal(s). This shouldn’t affect the
safety of the solution because the solution must be safe even if the interleav-
ing is such that the two signal’s are executed successively with no intervening
statements from other processes. It is conceivable that the liveness could be
affected since the release of one waiting process out of turn could allow it to
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conspire against other processes. There is an example of this in the lockout-
free algorithm of Morris mentioned earlier. In this case, fortunately, such a
bug does not affect the liveness. The consumer must wait on both
semaphores before consuming. Since a signal is never blocked and there is
only one waiting process, it does not matter in which order the signals are
issued. If the consumer is released from the waif(n) by signal(n) it will still be
prevented from takeing prematurely by wait(s).

On the other hand, exchanging the waits is fatal. Consider the following
simple scenario: the consumer executes wait(s) which is successful (because s
is initially 1) and then it is blocked by wait(n) (because n is initially 0). But
now s is 0 and the producer will never be able to append to the buffer. Thus
the system is deadlocked.

This shows up a serious weakness of semaphores. There is no way to
conditionally enter or leave a wait; nor is there a way to examine the value of
the semaphore without executing a wait and becoming vulnerable to being
blocked. A more powerful primitive which does not have this weakness isthe
conditional critical region. This region evaluates an expression on the ordi-
nary program variables unlike the semaphore variable which is not freely
accessible. For the time being, we continue our discussion of the low level
semaphore and later we return to more powerful primitives.

An advantage of semaphores is that they are easy to implement; in
particular, binary semaphores are simple to implement because we do not
have to worry about the maximum value that needs to be provided for as is
the case with the general semaphore. One bit is enough. The next solution
(Fig. 4.9) to the producer—consumer problem is by binary semaphores only.
Of course we will need an integer variable n to count the number of elements
in the buffer since that information will no longer be stored in the
semaphore. The semaphore delay will block the consumer if the buffer is
empty.

program producerconsumer;
var n: integer;
s: (* binary *) semaphore;
delay: (* binary *) semaphore;
procedure producer;
begin
repeat
produce;
wait(s);
append;
n:=n+l;
if n=1 then signal(delay);
signal(s)
forever
end;
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procedure consumer;
var m: integer; (* a local variable *)
begin
wait(delay);
repeat
wait(s);
take,
n:=n—1;
m:= n;
signal(s);
consume;
if m=0 then wait(delay)
forever
end; ‘
begin (* main program *)

n:=0;
s:=1;

delay 1= 0;
cobegin
producer; consumer
coend
end.

Fig. 4.9.

Note the initial wait(delay) so that the consumer does not begin to
execute while the buffer is empty. Also, if the processes are running at more
or less the same speed, neither is ever blocked on the semaphore delay. This
is because wait(delay) is executed only if the buffer is emptied which need
not occur frequently. The wait(delay) has been taken out of the wait(s) . . .
signal(s) bracket to avoid the previously discussed deadlock.

The new feature in the solution is the use of the local variable m to allow
the consumer to test the value of # as it was inside the criticial section. If the
statement in the consumer had read: if n=0 then wait(delay) then the
following scenario shows that a superfluous signal can occur which leads to
consumption from an empty buffer—a flagrant breach of safety. Define a
cycle of the producer (consumer) as execution of the statements of the
producer (consumer) process from one occurrence of the produce (con-
sume) to the next.

In the line marked (*) the consumer has skipped the wait in the state-
ment if n=0 then wait(delay) because even though it noted that n=0, the
producer has meanwhile incremented . The notation n=—1 means that the
consumer has just consumed an element that is not there: —1=n=in—outso
out=in+1, i.e. the consumer has consumed its (in+1)st element while the
producer has produced only in elements.
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Action n delay
Initially 0 0
Producer cycles 1 1
Consumer executes to consume 0 0
Producer cycles 1 1
Consumer cycles 0 1(*)
Consumer cycles -1 0

Using the local variable m, this bug will not occur (Check!). It is true
that the consumer is making a decision based on stale information: it could
be the case that, meanwhile, the producer has produced a new element.
Then the consumer will execute wait(delay) and immediately pass it if the
producer has already signalled. The overhead of a superfluous wait is cer-
tainly preferable to a violation of safety.

4.5 THE SLEEPING BARBER

There is another slight improvement that can be made to this program. The
point of this discussion is not so much the improvement itself which may or
may not be significant. What is interesting is how a careful analysis of the
synchronization requirement in a problem can lead to a different and better
solution. The moral of the story will be that before you decide to wait on a
semaphore, you must clearly understand what you are waiting for.

Suppose we have the (common) case where the producer and consumer
are running at roughly the same speed. The scenario could be:

Producer: append, signal, produce; . . . ; append; signal; produce; . . .
Consumer: consume; . . . ; take;, wait, consume; . . . ; take; wait; . . .

The producer always manages to append a new element to the buffer and
signal during the consumption of the previous element by the consumer.
This is not unreasonable since the processing to be done with the data is
assumed to be significant compared with the buffer manipulation and the
synchronization. The producer is always appending to an empty buffer and
the consumer is always taking the last element in the buffer; hence the
execution of signal and wait on every cycle. Thus even though the consumer
will never block on the semaphore, the processes nevertheless are executing
a large number of calls to the semaphore mechanism which does involve
non-negligible overhead.

In the program in Fig. 4.10, we allow 7 to have the value —1 which is to
mean that not only is the buffer empty but that the consumer has detected
this fact and is going to block until the producer supplies fresh data.
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program sleepingbarber;

var n: integer,

s: (* binary *) semaphore;
delay: (* binary *) semaphore;

procedure producer;
begin
repeat
produce;
wait(s);
append;
n:=n+l;

if n=0 then signal(delay);

signal(s)
forever
end;
procedure consumer;
begin
repeat
wait(s);
n:.=n—1;
if n=—1 then
begin
signal(s);
wait(delay);
wait(s)
end;
take;
signal(s);
consume
forever
end;
begin (* main program *)
n:= 0;
s:=1;
delay := 0;
cobegin
producer; consumer
coend
end.

Fig. 4.10.

THE SLEEPING BARBER

63

Before the consumer waits on delay it is careful to release mutual
exclusion by signalling s to allow the producer to append a new element to
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the buffer. The structure of the consumer shows an alternative programming
construct to the use of a local variable as in the previous program. The test on
n is made inside the critical section and the waiting outside. Since the test is
made inside, there is no chance for the producer to change the value of n
between the decrement of n and the test.

Once the delay is completed we are careful to ask for the return of
mutual exclusion, hence the extra wait(s). If we try the scenario sketched at
the beginning of this section we find that even if there was only a single
element in the buffer, after n := n —1 the value of n will be zero so the
consumer falls through to consume. If the producer can append a new
element fast enough, the consumer need never execute the wait(delay).

\

\

\

|
f.é_,_, -
g )

Fig. 4.11.

The two solutions can be illustrated by the model of the Sleeping
Barber. A barber has a two-room shop as shown in Fig. 4.11. One room with
the barber-chair and a waiting room. The three doors shown are: from the
street to the waiting room, from the waiting room to the chair and from there
back to the street. The doors are assumed to be narrow and allow at most one
person to pass at a time (the common memory arbiter). Let us now model the
stream of customers as a data elements which the barber must ‘“‘consume’.
The waiting room is the buffer. We now write algorithms for both the barber
and the customers.
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Algorithm 4.1

Barber When you have finished with a customer, show him out and
check the waiting room. If there is a customer, escort him to the chair;
otherwise, go to sleep in the chair.

Customer When you enter the waiting room: if there are other custom-
ers then join them. If not, open the door to see if the barber is busy; if so,
close the door and wait your turn. If the barber is asleep then wake him.

In Algorithm 4.1, if the rate at which customers enter matches the rate
of the barber’s work then every customer will find himself alone in the
waiting room and will vainly open the door only to find the barber at work.
This corresponds to the more obvious solution to the producer—consumer
problem.

Algorithm 4.2

Barber As before, except that if the waiting room is empty then go to
sleep on the bench in the waiting room. _

Customer If there are other customers or if the waiting room is empty
then wait your turn. If the barber is sleeping in the waiting room then wake
him. :

In Algorithm 4.2, a customer will wait without opening the door to no
avail. Eventually the barber will finish with the previous customer and invite
the new one in. Only if the barber is actually waiting (sleeping) will a
customer have to wake him.

4.6 THE BOUNDED BUFFER

An infinite buffer is not realistic. There are two basic techniques to bound
the size of a buffer. The first is the circular buffer where the index of the array
b is computed modulo the finite size of the array. That s, the data is wrapped
around from the end of the array to its start. The code for a circular buffer is
shown in Fig. 4.12 where n is the size of the array b. See Fig. 4.13 to
understand the boolean conditions that define empty and full buffers.

(* producer *)

produce;

wait until ( (in>=out) and (in—out<n)
or- (in<out) and (out—in>1) );

append;

if in=n then in := 1 else in := int+1;

(* consumer *)

wait until (in <> out);

take;

if out=n then out := 1 else out := out+1;

consume;

Fig. 4.12.
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(a)

IN ouT

(b)
Fig. 4.13.

There is always at least one free space in b so that in=out can be
unambiguously identified as an empty buffer, not a full one.

The other method of bounding the size of buffers is to use two or more
distinct buffers, usually of the same size. When one is filled by the producer it
is passed on to the consumer which for its part promises to return the empty
buffers to the producer for re-use. The circular buffer is very easy to program
and very thrifty of space since there is only one buffer element of overhead.
The multiple buffers need to be programmed with some care since a mutual
exclusion mechanism must be invoked during the transfer of a buffer from
one process to another. Multiple buffers can waste space. Suppose the
producer has filled b, but the consumer still has a few elements left to
consume in buffer b, (Fig. 4.14). Then the producer must wait for the
consumer even though almost half of the overall buffer space is currently
empty.

Producer "~ Consumer

IN —»
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Multiple buffering is used in several situations. 1/0 equipment that uses
direct memory access may not have the ability to work with a circular buffer.
Typically such equipment accepts commands that consist of an address and a
length of a memory segment into which the data is to be written. This
translates nicely into a discrete buffer to be filled and passed to the program.
Another important use for multiple buffers is in communication systems
where the buffer requirements are highly variable in time. Rather than
allocate a large circular buffer permanently to each terminal, it is better to
construct a “pool”” of many small buffers. An inactive terminal need not be
assigned any buffers; active terminals can be assigned a large number of
buffers from the pool to be returned once the data transfer is completed.

To change the producer—consumer problem to handle bounded buffers
is very simple. Just as the general semaphore n counts the number of
elements of the buffer currently filled by data, the program in Fig. 4.15 uses
another semaphore e to count the number of empty spaces! When e reaches
zero there are no empty spaces and the producer blocks until the consumer
removes some of the data. The solution has a pleasantly symmetric form.

program boundedbuffer;
const sizeofbuffer = . ..,
var s: (* binary *) semaphore;
n: semaphore;
e: semaphore;
procedure producer;
begin
repeat
produce;
wait(e);
wait(s);
append,;
signal(s);
signal(n)
forever
end;
procedure consumer;
begin
repeat
wait(n);
wait(s);
take,
signal(s);
signal(e);
consume
forever
end;
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begin (* main program *)

s:=1;
n:= 0;
e := sizeofbuffer;
cobegin

produce; consume
coend

end.

Fig. 4.15.

4.7 EXERCISES

4.1

4.2

4.3

4.4

4.5

4.6
4.7

4.8

Write several tests until you thoroughly understand the difference between
Figs. 4.9 and 4.10.

Conway’s Problem: Write a program to read 80-column cards and write them
as 125-character lines with the following changes. After every card image an
extra blank is inserted. Every adjacent pair of asterisks ##* is replaced by A.

Of course Conway’s problem can be solved by a single sequential pro-
gram. However, it is difficult to be sure that you have taken care of all of the
special cases such as pairs of asterisks at the end of a card and so on.

The problem has an elegant solution as three concurrent processes. One
process read reads the cards and passes characters through a one character
buffer to a process squash. read also passes the extra blank at the end of every
card image; squash, which knows nothing about 80-column cards, simply
looks for double asterisks and passes a stream of modified characters to a
process print. print takes the characters and prints them as 125-character lines.

Write a program to solve Conway’s problem with the additional requirement
that there be a 10-character buffer between each pair of processes: read and
squash; squash and print. Use mutual exclusion on the bounded buffer as
shown in Fig. 4.15.

In Fig. 4.12, simplify the condition in the producer’s wait until clause.

Write a scenario that shows that signal must be a primitive instruction and not
simply s := s+1.

Add a semaphore to program increment (Fig. 1.5) so that it always prints 40.
Write sortprogram so that merge is a third concurrent process.

Write a scenario showing lockout for the semaphore solution to mutual
exclusion of three processes.
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If you want to pass a semaphore as a parameter, should it be passed as a value
parameter or a reference parameter (var in Pascal), or does it not make any
difference? If you think that there is a difference, what happens if you make
the wrong choice?

Why is the program in Fig. 4.16 not a solution to the problem of allowing at
most k processes into a critical region (using binary semaphores only)?

(a) Show that if k=2 and n=4 it is possible to have delay=2 contrary to the
requirement that delay is a binary semaphore.
(b) *Show this even for k=2 and n=3.

program ruutualexclusion;

const n = ...; (* number of processes *)
k = ...; (* number in critical section *)
var count: integer;

s: (* binary *) semaphore;
delay: (» binary *) semaphore;
procedure process (i: integer);
var o integer;
begin
repeat
wait(s);
count := count —1;
m := count,
signal(s);
if m <= —1 then wait(delay);
crit;
wait(s);
count := count +1,;
if count <= 0 then signal(delay);
signal(s)
forever
end;
begin (* main program *)
count := k,
s:=1;
delay := 0;
cobegin
process(1);
process(2);

process(n)
coend
end.

Fig. 4.16.

(Kessels and Martin) A split binary semaphore is a pair of binary semaphores
x and y such that the formula 0 <= x+y <= 1 is always true (i.e., is an
invariant). Study the simulation (Fig. 4.17) of general semaphore s by the split
binary semaphore.
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A program using the general semaphore s should now declare s as an
integer, assign it an initial non-negative value and then use the procedures
genwait(s) and gensignal(s) below to simulate wait and signal for a general
semaphore. The program must also declare and initialize global variables as
shown.

count: integer; (* initially 0 *)

x: (* binary *) semaphore; (* initially 1 *)

y: (* binary *) semaphore; (* initially 0 *)
procedure genwait(var s: integer);

begin
wait(x);
while s <= 0 do
begin
count 1= count +1;
signal(x); wait(y);
count := count —1;
if count=0 then signal(x) else signal(y);
wait(x)
end;
s:=s5—1
if count=0 then signal(x) else signal(y)
end;
procedure gensignal(var s: integer);
begin
wait(x);
s:=s5 +1;
if count=0 then signal(x) else signal(y)
end,

Fig. 4.17.

4.12 (Manna and Pnueli) Write a concurrent program to compute the binomial
coefficient (n k)=n(n—1)...(n—k+1) / 1(2) ... (k), for 0 <=k <= n. Let
process P; multiply # then n—1 then n—2 and so on into a global variable x
while process P, multiplies 1 and 2 and so on into a local variable y. Synchron-
ize P, and P, so that P, executes x := x div y when y, in fact, divides x. (Hint
i! always divides j(j+1) ... (j+i—=1).)

4.13 *(Roussel) Write a concurrent program to test if two binary trees have the
same leaves. There will be three processes: P, i=1, 2, will find the next leaf of
tree i. When two ‘“‘next” leaves have been found, P; will test them for
equality. The trees can be declared in Pascal-S as follows:

const maxnodes=40;
leftson=0;
rightson=1;
nodevalue=2;
type node=array[0 . . 2] of integer;

treetype=array| . . maxnodes] of node;
var tree: array[1l .. 2] of treetype;
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4.14 *Study the implementation kit and describe the changes that must be made so

4.15

that the kit will catch misuse of a semaphore: tests and assignments (except in
the main program). What changes must be made to differentiate general from
binary semaphore?

(Parnas) Figure 4.18 is a solution to a problem called the Cigarette Smoker’s
problem. Each one of the three agents supplies two of three possible
resources. There are three smokers each of which needs exactly the pair of
resources supplied by one of the agents. Study (and test) the solution and
answer the following questions.

(a) What is the function of the helper processes?

(b) Explain how termination of the tasks is accomplished. What is the
purpose of ¢ := 0 in procedure forcetermination?

(c) Even though the program terminates, there are certain bugs that may
occur on the final execution of each process. Write examples for these
bugs and a better program that terminates correctly.

(d) Do you see a problem that might occur with the semaphores s{1], s[2],
s[4]? How can this problem be solved?

program cigarette;
const trips =20;
var resource: array[1 .. 3] of (* binary *) semaphore;
s: array[1 .. 6] of semaphore,
mutex, sem: (* binary *) semaphore;
t: integer;
finished: array[1 .. 3] of boolean;
procedure forcetermination;
var i: integer;
begin
t:=0;
for i := 1 to 3 do signal(resourcelil);
for i := 1 to 6 do signal(s[i])
end;
procedure agent(n, resl, res2: integer);
var i: integer;
begin
for i := 1 to trips do
begin
wait(sem);
signal(resource[res1]);
signal(resource[res2]);
writeln( ' agent ' , n)
end;
finished[n] := true
end;
procedure helper(n, increment: integer);
begin
repeat
wait(resource[n));
wait(mutex);
t .=t + increment,
signal(s{t]);
signal(mutex)
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until finished[1] and finished[2] and finished[3];
forcetermination
end;
procedure smoker(n, index: integer);
begin
repeat
wait(s[index]);
t:=0;
writeln ('smoker', n);
signal(sem)
until finished[n]
end;
begin (* main program *)
for t := 1 to 3 do resource[t] := 0;
for ¢t := 1 to 6 do s[f] := 0;

for ¢ := 1 to 3 do finished[i] := false;
t:=0;

mutex = 1;

sem := 1;

cobegin

agent(1,2,3); helper(1,1); smoker(1,6);
agent(2,1,3); helper(2,2); smoker(2,5);
agent(3,1,2); helper(3,4); smoker(3,3)
coend;
writeln('smoking is dangerous’)
end.

Fig. 4.18.

CHAP. 4



5 MONITORS

5.1 INTRODUCTION

While the semaphore is an elegant low level synchronization primitive, an
operating system built on semaphores alone is subject to disaster if even one
occurrence of a semaphore operation is omitted or mistaken anywhere in the
system. We should like to have a more structured synchronization tool. In
sequential programming, one can write procedures out of simple statements
and (hopefully) use the procedures by external specification only—by know-
ing the name and parameters of the procedure. The monitor is designed to
allow concurrency while retaining the advantage of a structured construct.

The monitor grew out of two distinct ideas that are in common use. The
first is the monolithic monitor used in current operating systems. Most of
these systems are in effect single programs that centralize all critical func-
tions. If a message must be passed from P, to P, then P, passes it to “‘big
brother” monitor M with a request to forward it to P,, or at least P, requests
permission to pass the message. Similarly, resource allocation is centralized
in M. Such monitors are supported by hardware facilities that ensure the
privileged position of the monitor: M runs in an uninterruptable mode thus
guaranteeing mutual exclusion; only M can access certain areas of memory;
only M can execute certain instructions such as I/O instructions.

The monitors we study are decentralized versions of the monolithic
monitor. Each monitor will be entrusted with a specific task and in turn it will
have its own privileged data and instructions. Thus if M, is the only monitor
that can access variable v, then we are ensured of mutual exclusion of access
to v, because M, will be uninterruptable or as we say in the abstraction: entry
to a monitor by one process excludes entry by any other process. In addition,
since the only processing that can be done on v, is the processing prog-
rammed into the monitor, we are assured that no other assignments or tests

73
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are accidently made on v,. We can design different monitors (or even
different instances of the same monitor) for different tasks. Thus the system
is both more efficient because execution of distinct monitors can be done
concurrently, and more robust because a change in one monitor cannot
surreptitiously change a variable in another monitor.

The other idea behind monitors is that of structuring data and structur-
ing accesses to data in a programming language. Pascal was the first language
specifically designed to structure data by typing. The purpose of data typing
is to prevent indiscriminate mixing of data that have no purpose being mixed
even though their representation may be identical. For example, even
though it might occasionally be convenient to add a number to a character
(and PL/Iwill be happy to do so), Pascal takes the view that such a statement
is almost certainly in error and refuses to compile the statement. If this is
what you really want then you must placate the compiler by writing an
explicit conversion.

While typing is successful as far as it goes, it applies only to the data
itself. There is no way in Pascal to define a type which consists of integers
that may only be added or subtracted. There is no way of asking the compiler
to flag a multiplication as unreasonable (in an accounting system, it might
not make sense to multiply two sums of money—only to add and subtract
them or to multiply a sum by an interest rate or a time period). The idea of
typing by the operations performed is found in the language Simula 67. A
class in Simula 67 is a data declaration together with a set of procedures
which define the only legal operations that may be performed on the data.
The Simula class has been combined with the Pascal data type in the Ada
package feature which provides a carefully designed mechanism that allows
the programmer to structure his program to reflect his knowledge of the
properties of the data.

A monitor is a class that can be executed in turn by several processes.
For example, even though the buffer is an array, there is no reasonable thing
to do with a buffer except to append a new element or extract an old one. A
random access to a buffer array is probably a mistake. To sort the elements of
a buffer simply contradicts the definition of a buffer as an area of memory
from which data is extracted in the same order that it was appended. In the
monitor notation, once the buffer monitor has been written, there is no way
to even express such a mistake. The compiler will refuse any access by a
process to a buffer except through procedures append and take.

In this chapter we formally define the monitor as a programming
primitive and give examples of its use. We show how to implement monitors
on a system with semaphores. Monitors have been used very successfully
in concurrent programming languages such as Concurrent Pascal and
CSP/k.
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5.2 DEFINITION OF MONITORS

A monitor is written as a set of (global) variable declarations followed by a
set of procedures (which may be parameterized). The monitor has a body
(begin . . . end) which is a sequence of statements that is executed immedi-
ately when the program is initiated. The body is used to give initial values to
the monitor variables. Thereafter, the monitor exists only as a package of
data and procedures.

The variables in the monitor are directly accessible only within the
monitor procedures. Communication between a monitor and the outside
world is through the parameters of the procedures. In the usual vocabulary
of programming languages, the scope of the monitor variables is the monitor
(= set of monitor procedures). Since the monitor is a static object: variable
declarations and procedure declarations, the only way to execute the
monitor is for a process to call a monitor procedure.

program producerconsumer;
const sizeofbuffer = . . .;
moniter boundedbuffer;
b: array [0 . . sizeofbuffer] of integer;
in, out: integer;
n: integer;
procedure append (v: integer);
begin
if n = sizeofbuffer+1 (* the buffer is full *)
then “wait until not full”,

blin] := v;
in:=in+1;
if in = sizeofbuffer+1 then in := 0;
n:=nt+l;
““signal that the buffer is not empty”
end;
procedure take (var v: integer);
begin

if n=0 (* the buffer is empty *)
then “wait until not empty’’;
v := blout];
out := out+1;
if out = sizeofbuffer+1 then out := 0;
n:=n-1;
“signal that the buffer is not full”
end;
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begin (* monitor body *)

in = 0;

out := 0;

n:=20
end;

(* end of monitor boundedbuffer )
procedure producer;

var v: integer;
begin
repeat
produce (v);
append (v)
forever
end;
procedure consumer,
var v: integer;
begin
repeat
take (v);
consume (V)
forever
end;
begin (* main program =)
cobegin
producer; consumer
coend
end.

Fig. 5.1.

Figure 5.1 shows a solution to the producer—consumer problem using a
bounded buffer. It consists of a program—producerconsumer—which con-
tains a monitor—boundedbuffer—and two concurrent processes—producer
and consumer. When the program is initiated, the monitor body is first
executed. Then the main program is executed which causes the initiation of
the concurrent processes. The monitor procedures append and take sit
passively until called from a process.

If a producer wishes to append an element v to the buffer, all it need do
is call the monitor procedure append(v). Similarly, the consumer can call
take(v) to obtain the next element. We require that entry to a monitor be
done under mutual exclusion. Thus either the producer is executing append
or the consumer is executing take (or neither). Then the operations on the
variable n by both processes do not interfere with each other.

This solution has certain advantages over the unstructured semaphore
solution aside from the mere fact of the protection of the variables from
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outside interference and the structuring of the accesses. Since the mutual
exclusion is automatically guaranteed by the monitor, there is no counter-
part to a bug caused by omitting a signal to release mutual exclusion. If you
forget the end statement of monitor procedure, that is a compilation error
just as it would be in an ordinary program. In addition, the waiting and
signalling is programmed within the monitor. The users of the monitor need
only call a procedure. Thus once a monitor is correct, it will be correct for
every instance used by every set of processes. In the case of the unstructured
semaphore, the correctness depends upon semaphore operations that must
be explicitly programmed into every process.

For synchronization we need some sort of wait—signal commands.
The semaphore commands served two purposes. One is to provide a
block-wakeup facility and the other to maintain a count. Since the counts
can now be explicitly contained as integer variables in the protected monitor
data, it is sufficient to provide a block-wakeup facility. Just as several
semaphores may be needed in one program, so one monitor may need
several wait-signal pairs. We define a new type of variable called a condition
variable. If ¢ is a condition variable then there are two commands that can be
applied to c¢: wait(c) and signal(c) (these will now be defined for monitors;
they are not to be confused with the commands of the same name for
semaphores—alternatively call the semaphore commands P and V):

wait(c) The calling process is blocked and is entered on a queue of pro-
cesses blocked on this condition, i.e. have also executed wait(c)
commands. Unlike semaphores we assume that the queues are
FIFO.

signal(c) If the queue for c is not empty then wake the first process on the
queue.

Executing signal(c) when there are no processes waiting in the queue for ¢ is
a no-operation and leaves no traces (again unlike the semaphore). The
commands may be worded: “I am waiting for ¢ to occur” and “I am
signalling that ¢ has occurred”. Of course it is the responsibility of the
monitor programmer to ensure that ¢ has occurred when the signal is issued.

The execution of wait(c) releases the mutual exclusion on the entry to
the monitor. That this must be true is obvious. If P, is blocked waiting for cto
occur, some process P, must do the signalling. If P, is not assumed to release
the mutual exclusion then P, can never enter and the system is deadlocked. If
we model the monitor as an igloo, the blocked processes can be considered
to be in a deep-freezer in the basement. They do not take up room in the
igloo so other processes can move around. Of course when a process signals,
we must arrange either for the signalling process to leave the igloo immedi-
ately or for the blocked process to wait temporarily until the signalling
process does leave. This ensures that there is only one process at a time in the
igloo.
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In the meantime we make the restriction that there be at most one signal
per procedure and that it be the last statement in the procedure. Thus the
signalling process leaves the monitor immediately after the signal. This
evades the question raised in the last paragraph; we shall return to it in the
last section.

Immediate Resumption Requirement Let a process execute signal(c)
and suppose that there are processes in the queue for ¢ as well as processes
waiting to enter the monitor by a normal procedure call. Then the process on
the head of the queue for c is the next process to enter the monitor; in
particular it has priority over the processes which are trying to enter the
monitor by procedure call.

Let us see why this requirement is needed. Suppose that process P, has
noted that the condition is fulfilled and signals. If a process P; is allowed to
enter the monitor (by a procedure call) before a process P, (which is waiting
on condition c¢), then conceivably P; could cause ¢ to become false. For
example, if P, is a producer signalling buffer-not-empty and both P, and P,
are consumers, then it would be fatal if the interloper P, consumed the single
data element before the awakened process P, is altowed to proceed. Under
the Immediate Resumption Requirement, however, P, can assume that
whatever P, checked immediately before issuing the signal is still true
because no interloper could falsify it between the signal and the resumption
of the first blocked process.

Finally, to complete the bounded buffer example, we must declare two
conditions in the variable declaration part of the monitor:

notempty, notfull: condition,
and replace the phrases in quotes by the commands:

wait(notfull)
signal(notempty)
wait(notempty)
signal(notfull),

respectively.

5.3 SIMULATION OF THE SEMAPHORE

The second example we describe is the implementation of a binary
semaphore by a monitor. This is important theoretically since it shows that
we have not lost any expressive power in the transition from semaphores to
monitors. Practically, systems based on monitors are relatively common. If
you have a ready-made semaphore algorithm you might want to run it as is
on the monitor-based system.
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The monitor (Fig. 5.2) will use a boolean variable busy which will
indicate whether or not a wait operation has been completed on the
semaphore (and hence that the critical section is “‘busy”’). If the semaphore is
busy, we must wait until it is not busy so according to the wording of the
monitor operations we might as well call the condition notbusy. The two
procedures will be called P and V to avoid confusion here with the monitor
operations.

program rutualexclusion;
monitor semaphoresimulation;
var busy: boolean;
notbusy: condition;
procedure P;
begin
if busy then wait(notbusy);
busy := true
end;
procedure V;
begin
busy := false;
signal(notbusy)
end;
begin (* monitor *)
busy := false
end;
procedure p,;
begin
repeat
P;
critl;
v
reml
forever
end;
procedure p,;
begin
repeat
P;
crit2;
v
rem?2
forever
end;
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begin (* main program *)
cobegin
P P2
coend

end.
Fig. 5.2.

Let us check that the various requirements are fulfilled. There is at most
one signal in every procedure and when it does occur, it is the last statement
in V. If a signal is executed when there are blocked processes then it is
executed when busy is false; hence, a blocked process which is awakened
need not check that busy is now false and can proceed to setit true. Note how
the mutual exclusion of the monitor entry prevents the bugs we once had
when two processes simultaneously checked a variable such as busy and then
set it.

This implementation of a semaphore is the strongest implementation
possible because of the FIFO assumption on the queue of processes blocked
on a condition. The semaphore definition does not require FIFO but it
certainly does not forbid it as a scheduling strategy. Thus any semaphore
algorithm proved correct under a weaker assumption is still correct.

A condition variable does not have a value in the usual sense of the word
and hence no initialization is needed. To be more precise, every condition
variable is implicitly initialized to the empty queue of processes blocked on
it.

It seems that we need a different monitor for each semaphore. In
practice, systems using monitors allow one to declare multiple instances and
even parameterized sets of monitors. If the monitor procedures are written
as re-entrant’ procedures (Pascal procedures are automatically re-entrant),
it is sufficient to allocate new instances of the global variables for each
instance of a monitor. In the case of the semaphore monitor, this means a
new boolean variable busy and a new queue for the condition notbusy. But
that is exactly the amount of storage needed for a semaphore under the
direct definition!

5.4 THE READERS AND WRITERS PROBLEM

A generalization of the mutual exclusion problem is the problem of the
readers and writers. The prototype for the abstract problem is an on-line

+ A procedure is called reentrant if its code can be used simultaneously by several
processes. This is accomplished by writing pure code: code which is not self-modifying
and which accesses all its data indirectly from an address usually kept in a register.
Thus by merely changing the address in the register and remembering the current
location of the program counter, the same code can be switched among several
programs. In Pascal, procedures are always pure code and data is accessed by stack
pointers. Hence by changing the stack pointers, a procedure can be forced to work on a
different set of data.
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transaction system such as a banking system not requiring mutual exclusion
among several processes which only read the data. However, an update or
any operation that writes data must be considered to be a critical section to
avoid the type of bugs which should be thoroughly familiar by now. A
monitor to solve this problem is given in Fig. 5.3.

program readersandwriters;
monitor readwrite;
var readers: integer;
writing: boolean;
oktoread, oktowrite: condition;
procedure startread;
begin
if writing or nonempty (oktowrite)
then wait(oktoread),
readers := readers+1,;
signal(oktoread)
end;
procedure endread;
begin
readers := readers—1;
if readers = 0 then signal(oktowrite)
end;
procedure startwrite;
begin
if readers <> 0 or writing
then wait(oktowrite);
writing := true
end;
procedure endwrite;
begin
writing := false;
if nonempty(oktoread)
then signal(oktoread)
else signal(oktowrite)
end;
begin (* monitor *)
readers := 0;
writing := false
end;
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procedure readprocess,
begin
repeat
startread,
readthedata;
endread
forever

end;

procedure writeprocess;

begin

repeat
startwrite;
writethedata,
endwrite
forever
end;
begin (* main program *)
cobegin
readprocess; readprocess; (* . . . *)
writeprocess; writeprocess; (* . . . *)
coend

end. Fig. 5.3.

We have introduced a new primitive procedure into the monitor abs-
traction: nonempty(condition) which is a boolean valued function that
returns true if and only if the queue for condition has blocked processes. If
you examine the definition of signal(condition) you can see that it needs such
an auxiliary function anyway so it is not unreasonable to require the imple-
menter of monitors to provide the function for the programmer to use.

The number of readers that are reading or wish to read is counted by
readers. Some process is writing if and only if writing is true. The two
conditions are intended to mean literally what they say, e.g. ‘I am waiting for
it being OK to read”. We assume, of course, that the reading and the writing
take a finite amount of time and that the processes do not accidentally
terminate during reading and writing.

With the exception of the signal in startread, the monitor should not now
be difficult to understand. The task of this signal is to perform what is known
as a cascaded wake-up. If no readers are waiting when the signal is executed,
then by definition it has no effect.

On the other hand, suppose that several readers Ry, R, . . . are blocked
on oktoread because they began to execute startread during a write (and thus
they found that the variable writing was true). When the write terminates, it
will execute endwrite which signals oktoread. Since R, is at the head of the
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queue, it will be awakened and complete procedure startread. Obviously at
this time, no one is writing and we might as well let in R, and all the other
readers to exccute concurrently with R,. To accomplish this, R, executes
signal (oktoread) which wakes R,. But the same consideration applies to R,
which proceeds to wake R;. This cascade of signals thus wakes all the readers
in the queue for oktoread. The final reader will execute a signal on an empty
queue but of course this has no effect.

The problem of the readers and the writers leaves much room for
imaginative variations on the question of priority. Consider the following
possible sequence of requests: Ry, R,, W, R, ... Obviously R, and R, can
read concurrently and W, has to wait for the termination of the reads, but
what about R,;? It seems a pity to have R; wait both for the readers to finish
and for the writer W, to finish. Thus we might let R; have priority over
waiting writers (W;) and let it read concurrently with R; and R,. But now
suppose that the scenario continues with a long sequence of readers: Ry, R,
.... If new readers arrive in rapid succession, W, will be indefinitely
delayed. This is what we have called lockout.

In the current solution the rule is:

1. If there are waiting writers then a new reader is required to wait for the
termination of a write.

2. If there are readers waiting for the termination of a write, they have
priority over the next write.

The test on the condition nonempty(oktowrite) in startread ensures that if
there are waiting writers (even if no-one is actually writing) then the new
readers are blocked.

The if statement in endwrite ensures that if there are waiting readers at
the termination of a write, they are given priority and awakened. The
cascaded wakeup in startread will then wake up all currently waiting readers
as required by the second clause of the rule. By the monitor requirement of
immediate resumption, all the waiting readers will be awakened before any
new readers are even allowed to enter the monitor. When new readers enter
then they will block if there are waiting writers.

The selection of a priority scheme must be dictated by the application
and no one scheme can be unreservedly recommended. In the exercises you
can study programs which implement other schemes.

5.5 PROVING PROPERTIES OF MONITORS

Let us now give semi-formal proofs of some of the properties of this solution
to the problem of the readers and the writers. Let R be the number of
processes currently reading and let W be the number of processes currently
writing.
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When no process is currently executing a monitor procedure, the fol-
lowing formulae are true (i.e. the formulae are invariant outside the
monitor).

(a) R = readers;

(b) W > 0 if and only if writing = true;

(c) nonempty(oktoread) only if (writing or nonempty(oktowrite));
(d) nonempty(oktowrite) only if (readers = 0 or writing);

Each of these statements isinitially true and it must be checked (Exercise 5.7
(a)) that, if a statement is true upon entry into a monitor procedure, it is still
true when the process exits the procedure.

Points to remember are: execution of a wait is also a way of exiting a
monitor procedure; if a statement is true immediately before the execution
of a signal then, by the immediate resumption of an awakened process, the
truth of the statement is transfered to the resumed process.

The basic safety property required of a solution to the problem of the
readers and the writers will be proven if we can show that the following
formula I is invariant:

If R > 0 then W=0 and if W > 0 then (W=1 and R=0).

In words: if there are (active) readers then there are no writers, and if there
are (active) writers then there is only one writer and no readers.

I is initially true since R=W=0. We show that I is always true by
showing that any attempt to describe an execution sequence which falsifies I
is unsuccessful.

1. Suppose R > 0 and W=0 (so that Lis true) and then Iis falsified by some
process starting to write (so W will become 1).

By (a), R > 0 implies readers >0 so the process that wishesto write will
wait in procedure startwrite. The only way this scenario could falsify L is if a
signal(oktowrite) occurs. The signal in endread is executed only if readers=0,
contrary to assumption. The signal in endwrite will also not be executed since
there are no writers by the assumption W=0.

2. Suppose R=0and W > 0 and then some process starts reading so that
R=1, falsifying I.

W >0 implies writing = true by (b), so any process executing startread
will wait on oktoread. Since R=0, there are no readers so signal(oktoread) is
not executed in endread. Now Iis assumed true so W > 0 implies W=1. Thus
executing signal(oktoread) in endwrite upon termination of writing occurs
when W=0 contradicting the assumption of this scenario.

3. W=1, R=0 and then some process starts writing to falsify the second
clause of 1.



SECT. 5.5 PROVING PROPERTIES OF MONITORS 85

This is impossible by the code in startwrite. The only signal possible is
the one from endwrite, but then R=W=0 so I is not falsified.

The liveness properties of the solution are: if P wishes to read (or write)
then eventually it will be allowed to do so. Let us prove the liveness of
reading and leave the proof for writing as an exercise (see Exercise 5.7 (b)).

If P wishes to read then, it must successfully complete the execution of
startread. If it cannot do so, it must become enqueued indefinitely on
oktoread. We prove that oktoread is signalled indefinitly often. Since the
queue is FIFO and the number of processes P, . . . , P, ahead of P is finite,
eventually P must be awakened and allowed to read.

By (c) above, either writing=true or nonempty(oktowrite). 1f writing
= true then by (b), W>0 so some process Q is writing.

(i) (Q is writing) implies eventually (Q executes endwrite) by the assump-
tion on critical sections that writing terminates.

(ii) (Q isin endwrite) implies eventually (Q executes signal(oktoread)), by
the assumption that P is indefinitely enqueued on oktoread so that
nonempty(oktoread) is true.

(iii) (Q executes signal(oktoread)) implies eventually (P, executes
signal(oktoread)), by the immediate resumption of a waiting process
and the code in startread.

(iv) (P, executes signal(oktoread)) implies eventually (P, executes
signal(oktoread)), by immediate resumption and the code in startread.

(v) (Q is writing) implies eventually (P, executes signal(oktoread)), by
(i)—(iv) and induction.

It easily follows that eventually P must successfully complete startread and
commence reading.

Suppose now that writing=false but nonempty(oktowrite)=true. By (d)
and the assumption that writing=false, readers=0 and thus by (a) there must
be P, ..., P, currently reading.

(i) (P,, ..., P,are all the reading processes) implies eventually ((some P
executes endread) and (Py, ..., P, Py, ..., P, are all the reading
processes)), since reading terminates and nonempty(oktowrite) blocks
new readers.

(ii) (P, ..., P, are all the reading processes) implies eventually ((some P
executes endread) and (there are no reading processes)), by induction.
(iii) (P,, ..., P, are all the reading processes) implies eventually (P

executes signal(oktowrite) and then writing=true), using immediate
resumption and nonempty(oktowrite)=true.

This reduces to the previous case for which we have already shown liveness.
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5.6 THE SIMULATION OF MONITORS BY SEMAPHORES

We now give an algorithm for transforming a program using monitors into a
program that uses semaphores. This will show that monitors are no more
powerful than semaphores and hence that the decision to use monitors can
be made solely on the basis of their contribution to the clarity and reliability
of the resulting system. This transformation is concerned only with the
dynamic behavior of the concurrent system. The static protection of monitor
variables should still be implemented, if possible, by a facility such as the
Simula 67 class or the Ada package.

The mutual exclusion of the monitor procedures is easily simulated by a
binary semaphore. There will be a semaphore s (initially 1) for each different
monitor and each procedure of a monitor will commence with wait(s) and
terminate with signal(s) just as we solved the critical section problem with
semaphores. For each condition cond we need an integer variable condcount
to count the number of waiting processes and a binary semaphore condsem
to actually block the waiting processes. The initial value of condcount is 0.
That of condsem is also 0 because a process executing the monitor wait
always blocks. Each command wait(cond) of the monitor is now coded:

condcount := condcount +1;
signal(s);

wait(condsem);

condcount := condcount —1;

The signal on the semaphore s is to release the mutual exclusion on the entry
to the monitor in order to allow other processes to enter, including (hope-
fully) one which will eventually signal.

Remember that we have restricted the signal(cond) to be the last
command of a procedure. Hence the release of a blocked process from the
semaphore condsem can be combined with the release of the mutual exclu-
sion in the following code:

if condcount > 0 then signal (condsem) else signal(s)

This implements our restriction that, if there are processes waiting on a
condition, they have priority over processes waiting at the monitor entry
points. The blocked processes are waiting on condsem; the processes wishing
to enter are waiting on s. So only if there are no blocked processes (cond-
count=0) is the monitor entry freed. Note that the signalling process must
have passed a wait(s) semaphore upon entry. Thus the awakened process
inherits the outstanding mutual exclusion from the signalling process. The
debt is made good when the awakened process terminates and executes
signal(s). Of course it could avoid this by awakening still another process.
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It is interesting that, according to our definition of semaphores, the
value of the semaphore condsem is never 1. It is initially 0 and signal(cond-
sem) is only executed if some process is waiting on condsem. Thus condsem is
never incremented.

The only feature of the monitor that we cannot implement is the FIFO
assumption on the queue because the semaphores are not FIFO.

In Fig. 5.4, we show how this translation can be carried out for the
producer—consumer program in Fig. 5.1.

program producerconsumer;

const sizeofbuffer= . . .,

var b: array[0 . . sizeofbuffer] of integer;
in, out: integer;
n: integer,

s: (* binary *) semaphore; (* for mutual exclusion *)
notemptysem, notfullsem: (* binary *) semaphore;
notemptycount, notfullcount: integer;
procedure append (v: integer);
begin
wait(s);
if n=sizeofbuffer+1 then
begin
notemptycount := notemptycount+1;
signal(s);
wait(notemptysent);
notemptycount := notemptycount—1
end;

if notfullcount > 0 then signal(notfullsem)
else signal(s)
end;
procedure take(var v: integer);
begin
wait(s);
if n=0 then
begin
notfullcount := notfullcount+1;
signal(s)
wait(notfullsemy;
notfullcount := notfullcount—1;
end;

if notemptycount > 0 then signal(notemptysem)
else signal(s)
end;
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procedure producer;
procedure consumer;

begin (* main program *)
in:= 0;out:=0;n:=0;
s:=1;
notemptycount := 0; notfullcount := 0;
notemptysem .= 0; notfullsem := 0;
cobegin
producer; consumer
coend

end. .
Fig. 5.4.

5.7 UNRESTRICTED SIGNALS

If we allow signal(c) to appear anywhere in a monitor procedure then we
face the following dilemma. A primary advantage of the monitor is the
immediate resumption of a signalled process while the condition is guaran-
teed. This saves needless looping and re-testing that is characteristic of
semaphore algorithms. Thus we cannot let a signalling process continue after
the signal because it might change the condition or execute another signal
causing a third process to be immediately resumed.

On the other hand, the signalling process is not waiting for anything so it
seems a pity to block it. Nevertheless, immediate resumption is so central to
monitor programming that we retain it and instead block the signalling
process. However, the signalling process is kept close at hand so that when
the awakened process releases the monitor (by exiting or executing another
wait) it has priority over other processes wishing to enter. Of course, nothing
prevents the awakened process itself from signalling and thus joining the
previous signaller.

In the igloo model (see Fig. 5.5), the igloo has only room for one process
at a time. It has deep freezers in the basement for processes to wait on
conditions. We add a closet with a spring loaded door.

Entering and exiting the igloo is on the basis of mutual exclusion—one
at a time. If a process waits then it enters the freezer for the appropriate
condition. If a process signals, it invites a frozen process to enter the igloo.
The signalling process itself enters the closet so as not to interfere with the
privacy of the awakened process. When the igloo is cleared, either because
the process has exited or entered another freezer, the spring-loaded door
flies open, thrusting the signaller into the igloo before a new process can
enter. If awakened processes signal, they will be stacked in the closet on top
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of the previous processes.

We can now appreciate the simplification obtained by restricting the
signal to being the last statement in a procedure. In the more general model,
the signaller would emerge from the closet only to exit immediately. The
signaller might just as well exit immediately after the signal and we need not
build the closet into the igloo.

The simulation of the unrestricted monitor by semaphores is more
complicated (Fig. 5.6). We need a new variable urgent and a new semaphore
usem to count and block the signallers. In the simulation of wait(cond) and
exit, the release of the monitor now checks urgent to see if there are waiting
signallers. urgent > 0 will signify that there is some waiting signaller that is
demanding to be released (by signal(usem)) before any new processes can be
allowed to enter (by signal(s)).

In the simulation of signal(cond), condcount > 0 signifies that there isin
fact a process waiting for this condition. The process is awakened (by
signal(condsem)) and then the signaller suspends itself (by wait(usem)).

entry: wait(s);
wait(cond): condcount := condcount+1;

if urgent > 0 (* if waiting signallers *)
then signal(usem) (* free a signaller *)
else signal(s); (* let a new process in *)
wait(condsem);

condcount .= condcount—1;
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signal(cond) : urgent := urgeni+1;

if condcount > 0 then

begin (* if someone is waiting *)
signal(condsem); (* let him in *)
wait(usem) (* suspend yourself *)
end;
urgent := urgent—1;

exit : if urgent > 0 (* if a waiting signaller *)
then signal(usem) (* free a signaller *)
else signal(s); (* let in a new process *)

Fig. 5.6.

5.8 EXERCISES

5.1

5.2

5.3

5.4

Suppose that signals are not restricted but that some particular signal is in fact
the last statement in its procedure. Code a simplification to simulation of
monitors by semaphores for this case.

Show that even if the implementation of the semaphore is FIFO, the simula-
tion of the monitor by semaphores is not.

Translate the monitor solution to the problem of the readers and the writers
(Fig. 5.3) to a semaphore solution.

(Courtois et al.) Fig. 5.7 is a solution to the problem of the readers and the
writers using semaphores. It is easy to see that r counts the number of readers,
s guarantees mutual exclusion to variable r and wsem guarantees mutual
exclusion to writing.

(a) Discuss the priority scheme of this solution.
(b) Suppose that you have a FIFO implementation of semaphores. How
would that affect the answer?

program readersandwriters;
var r: integer;
s, wsem: (* binary *) semaphore;
procedure readprocess;
begin
repeat
wait(s);
r = r+1; if r=1 then wait(wsem);
signal(s);
readthedata,
wait(s);
r := r—1; if r=0 then signal(wsem);
signal(s)
forever
end;
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procedure writeprocess,
begin
repeat
wait(wsem);
writethedata;
signal(wsem)
forever
end;
begin (* main program *)
r:= 0
s:=1;
wsem := 1,
cobegin
readprocess; (* . . . *)
writeprocess; (* . . . ¥)
coend
end.
Fig. 5.7.

5.5 (Courtois et al.) The solution in Fig. 5.8 uses a somewhat symmetrical code for
both the readers and the writers except that in the writer, wsem is used to
guarantee mutual exclusion in the execution of the write itself while, in the
reader, rsem is used only by the writer to prevent readers from entering the
critical section bracketed by s;.

(a) Discuss the priority scheme of this solution.

(b) How would the solution change if the semaphores were FIFO?

(c) What would happen if s; were omitted? (Hint Show that s; ensures that
rsem=0 implies that there is exactly one process waiting for signal(rsem)).

program readersandwriters;
var r,w: integer;
S1, S, 830 (* binary *) semaphore;
wsem, rsem: (* binary *) semaphore;
procedure readprocess;
begin
" repeat
wait(ss);
wait(rsem);
wait(s,);
r:=r+1;
if r=1 then wait(wsem);
signal(s,);
signal(rsem);
signal(ss);
readthedata;
wait(s,);
r:=r—-1;
if =0 then signal(wsem),
signal(s,)
forever
end;
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5.6

57

procedure writeprocess,
begin
repeat
wait(s,);
w = w+1; if w=1 then wait(rsem);
signal(s,);
wait(wsem);
writethedata;
signal(wsem);
wait(s,);
w:= w—1; if w=0 then signal(rsem);
signal(s,)
forever
end;
begin (* main program *)
r:=0;w:= 0;
s = 1;8,:=1; 85 1=
rsem := 1; wsem := 1;
cobegin
readprocess; (* . . . *)
writeprocess; (* . . . *)
coend
end.

1;

Fig. 5.8.

For each of the priority schemes (Section 5.4 and Exercises 5.4 and 5.5) try to
think of an application in which that scheme is the reasonable one to require.

Complete the semi-formal proof of the solution to the problem of the readers
and the writers.

(a) Prove the invariants (a)-(d).

(b) Prove the liveness of writing.

(¢) *Prove the following statement S which expresses the priority scheme
claimed for the solution.

S: If (Q enters startwrite before P enters startread) then (Q writes before P

reads).

Hint How to prove precedences:

Let p and g be any two properties of programs. Then (p before q) is equivalent

to (p is now true) or (g is now false and after executing a step of the program

then (p before ¢)). Similarly, the negation of (p before q) is equivalent to (p is

now false) and (g is now true or after a step then (p before g) is false).

Show that the negation of S is inductive, that is, if § is assumed false then after

executing a step of the program S must still be false. Deduce that (Q enters

startwrite) but never (Q writes) thus contradicting the liveness of writing

shown in (b).
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6.1 INTRODUCTION

The semaphore and the monitor are centralized facilities. A process execu-
ting a monitor procedure has access to the single copy of the monitor
variables and thus there must be an arbiter to enforce mutual exclusion.
While these requirements are natural in a single computer (or any common
memory system), they are difficult toimplement in a distributed system. By a
distributed system we mean a set of totally independent computers whose
only connection is by sending and receiving messages. There may be no
synchronization between sending and receiving a message. Messages may
“pass” each other in transit. What we need is some sort of self-enforcing
protocol. A process will decide to wait on its own initiative as in the busy wait
algorithms of Chapter 3.

In those algorithms, each process agrees to enter a while loop if it needs
to block itself. Each process decides by itself when to leave. This contrasts
with the semaphore and the monitor signals which are required to wake
another process.

Lamport’s bakery algorithms discussed in the exercises of Chapter 3 are
designed for distributed systems. Each process writes only into a single local
variable. The test n, > n, in process P, can be interpreted as follows. Send a
request to process P, to read the value of n,. Wait until P, replies. Compare
the received value with the current value of the local variable n;.

Each process needs to be augmented with polling statements that
periodically search for requests for data values from other processes. Alter-
natively this can be done by interrupts. The receipt of a message from the
communication line will trigger an interrupt in the receiving process. This
process will then identify the message and route it for appropriate action.

If we examine the protocol suggested in the last paragraph we find that
the essential idea is the transfer of information at a predetermined point in
each process. We call this a rendezvous of the two processes. The essence of

93
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any rendezvous is that the party which arrives earlier isrequired to wait. The
alternative to a rendezvous is a buffered message system but aside from
questions as to the size and number of buffers, we now have the question of
who owns the buffers.

In classical systems the buffers belong to the “system”, but in a distri-
buted system, we do not want to single out any process as the boss. If that is
what we want then the monitor formalism is sufficient. Since message
passing systems are an obvious task for concurrent programming, we prefer
to base the programs on an independent primitive such as a rendezvous.

The rendezvous was suggested by Hoare in a paper which is entitled
“Communicating sequential processes” to contrast with Dijkstra’s “Co-
operating sequential processes” on which Chapters 3 and 4 are based.
Instead of presenting Hoare’s original work we choose to discuss the version
that is used in the Ada programming language. Ada was designed specifi-
cally for real-time systems programming which inherently uses concurrency.
The Ada facilities will probably become the dominant style for concurrent
programming.

The examples will be written as executable Ada programs. However,
we will try to use only Pascal-like features when possible and we will note the
essential differences where necessary. This chapter is not a tutorial on Ada
nor even on the full range of concurrent programming facilities in Ada. It is
intended as an introduction to the rendezvous concept as used in Ada. Ada
programmers can regard the previous chapters as a description of the scien-
tific climate under which the Ada concurrent programming primitives were
developed.

6.2 THE “ACCEPT” STATEMENT

The monitor has no life of its own. It is simply a collection of data and
procedures that sit waiting to be invoked. In our model, the monitor is an
igloo which is accessible to all processes that need it but which is just a
building that does nothing on its own. Let us now imagine a story that will
give us a feel for the rendezvous.

Several processes, P;, are riding around in the snow on their dog sleds
(Fig. 6.1). Process Q owns a lodge “Ada’s Place” which happens to be
strategically placed at an intersection of all the tracks followed by the P,.
Periodically, the P, reach the lodge and wish to enter for a snack. If P; arrives
before Q has arrived to open the lodge then P, crawls into his sleeping bag to
wait for Q. When Q arrives they open the lodge, go inside and P, exchanges
the fresh meat he has bagged for ready-to-eat meat sandwiches that Q
prepares.

Unfortunately, Q’s investment capital was too small and the lodge can
only hold two processes and one load of meat and bread. Thus, if several
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Fig. 6.1.

processes arrive at the same time or if several processes arrive when a
transaction is in progress, then only one process P, can be in the lodge with
Q. The others must wait until P, leaves the lodge to resume his hunt and Q
leaves the lodge to ride his sled to the Bakery to replenish his supply of
bread. When Q returns he can complete a similar transaction with the other
processes.

Suppose now that a sudden blizzard has delayed the arrival of the P;.
Then Q must wait. Since it seems pointless to waste energy by heating the
lodge when there are no customers, the lodge stays locked and Q keeps
warm in a sleeping bag outside.

The essential features to be abstracted from this story are:

(i) the symmetrical waiting of the rendezvous—whoever arrives first is
required to wait;

(i) the completion of a single transaction during the rendezvous;

(iii) the mutual exclusion of the transaction conducted in the confinements
of the lodge; and

(iv) the two-way exchange of information that is the method of communica-
tion between the processes in the rendezvous. Let us now examine the
Ada program for this story (Fig. 6.2).

The accept statement has the syntax of a local procedure (without local
data declarations) which can appear embedded within executable state-
ments. The call to the accept statement is syntactically identical to a proce-
dure call. This is done intentionally so that an operation can be implemented
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as a sequential procedure or a concurrent program without informing the
user. However, unlike a monitor procedure, the accept statement belongs to
process Q. Q must accept something in order to continue execution. As
described in the story, if some P; executes a call before Q executes the accept
then P, is blocked pending the rendezvous. Conversely, if O executes the
accept and there are no waiting processes P, then Q is blocked pending the
rendezvous. Once Q and some P; have executed the pair accept lodge and
lodge then we say that the rendezvous has occurred.

procedure Adalodge is
numberofprocesses: constant := . . . ;
task type process;
task Q is
entry lodge(meat: in food; sandwiches: out food);
end Q;
task body process is
walrus, victuals: food,
begin
loop
walrus := huntwalrus;
lodge(walrus, victuals);
eat(victuals);
end loop;
end process;
task body Q is
bread: food,
begin
loop
bread := visitbakery;
accept lodge(meat: in food; sandwiches: out food) do

cook(meat);
sandwiches := meat+bread,
end /odge;
end loop;
end Q;
P: array(1 . . numberofprocesses) of process;
begin
null;

end Adalodge;
Fig. 6.2.

Remark To run this program, you will have to supply the value of
numberofprocesses; a representation for food; subprograms for huntwalrus,
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eat, visitbakery, cook, and finally, the loop should be terminating and some
trace should be printed. (End of remark.)

The rendezvous is considered to be in force during the execution of the
statements between the do of the accept statement and the corresponding
end. In particular, the calling process is blocked for the duration of the
rendezvous to prevent it from changing the values of the parameters until the
exchange of information is complete. Thus the body of the accept acts like a
critical section. Once the accept statement has terminated, the rendezvous
has been completed and a fresh accept statement must be issued—during the
next cycle of the loop—to effect another rendezvous (with the same process
or with another). Of the two parameters, one is used to pass a value from the
calling process and the other to return a value to the calling process. This is
the two-way exchange of information between the processes.

That the rendezvous is suitable for distributed systems can be seen by
the following sketch of how it might be implemented. P; executes lodge by
sending a signal to Q that it requests a rendezvous. P; then suspends itself
pending a reply from Q. The processor running Q registers the signal from P,
by an interrupt or by polling. Q eventually executes the accept statement and
notes that P, has registered a signal. Q replies to P, that rendezvous has
occurred and remains blocked until P; acknowledges the reply with a mes-
sage containing the parameters of the call. Q receives the parameters,
executes the statements following the do and then returns the result para-
meters. Upon receiving the results, P; can unblock and continue computa-
tion. The program can even be implemented in a distributed manner because
once the number and type of the parameters are agreed upon, the processes
can be independently designed and programmed.

Let us now see how the binary semaphore can be simulated by a
rendezvous (Fig. 6.3). Here it is important to note that while the mutual
exclusion problem for two processes was solved by invoking passive
semaphore procedures, with the rendezvous we need to create a new
semaphore process to mediate between P, and P,. On the other hand, P, and
P, no longer need to access the same variable or queue.

procedure mutualexclusion is
task semaphore is
entry wait;
entry signal;
end semaphore;
task body semaphore is
begin
loop
accept wait;
accept signal;
end loop;
end semaphore;
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task P;;
task body P, is
begin
loop
reml;
wait;
critl;
signal;
end loop;
end P;

task P,;

task body P, is

begin

loop
rem?2;
wait,
crit2;
signal;
end loop;
end P,;
begin
null;
end mutualexclusion; .
Fig. 6.3.

When a process P; executes the call to wait, it must block until the
semaphore process executes its accept statement and the rendezvous is
achieved. There are no parameters to be passed and no statements to be
executed within the critical section of the accept statement. Once P, has
terminated the rendezvous, it is free to enter its critical section.

P, however will block when it tries to call wait because the semaphore
process is waiting for a rendezvous with a signal call. Thus until some process
(i.e. P,) executes a call to signal, the semaphore process is blocked and hence
sois P,. When P, completes its critical section, it accomplishes a rendezvous
with the semaphore process at accept signal. Then the semaphore process
can commence its next ¢ycle and accomplish a rendezvous with P,.

Since the queues for the accept statements are required to be
implemented as FIFO queues, this implements a FIFO semaphore: even if
P, overtakes P, after completing the critical section, it will be placed after P,
on the queue of the same accept wait statement. Note that the queues are
FIFO in terms of time of arrival at the processor executing the accept
statement. Thus, in a physically distributed system, closer processes may be
able to overtake more remote ones. Lockout is not a problem, however,



SECT. 6.2 THE “SELECT” STATEMENT 99

because once a process does enter the queue, it need only wait for the finite
number of processes ahead of it to complete.

We have shown how to implement a single semaphore. If the system is
to have several semaphores we will need multiple copies of the semaphore
process so that calls to wait and signal can be parameterized to indicate which
semaphore process to call. In Ada a task type can be defined and multiple
instances created by ordinary variable declarations. Thus an array of
semaphore tasks can be declared and accessed by a simple array index.

Ada language notes

1. Ada uses a “main” procedure where Pascal uses program.

2. The token var is not used before variable declarations.

3. loop . . . end loop is our repeat . . . forever.

4. Processes are called tasks. A task must have a specification part which
declares the entrys: the name of the rendezvous, if any. The body is
defined separately and contains the data and code local to the task.

5. An in parameter is read-only. For simple parameters this can be
implemented by call-by-value: the actual parameter is evaluated and a
copy of the value is passed to the procedure, or in this case the body of
the accept statement. An out parameter is write-only. It can be used to
copy a value from the procedure to a variable in the calling program.

6. To declare several identical tasks, we declare a task type. Then multiple
instances may be declared in an array, as we have done.

7. The declaration of a task automatically initiates it. Thus the main
program body is null. No cobegin . . . coend is necessary, since the token
task calls for concurrent execution.

6.3 THE “SELECT’ STATEMENT

Turning to the-bounded buffer problem, we find that the accept statement
is insufficient. We might attempt a solution with the program fragments of
Fig. 6.4, using a buffer process between the producer and the consumer.

Producer:
loop
append(v);
end loop;
Consumer:
loop
take(v);
end loop;
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Buffer:
loop
accept append(v: in integer);
accept take(v: out integer);

end loop; Fig. 6.4

The only execution sequence possible is append, take, append, take. This is
the same as no buffer at all and we could just as well make the rendezvous
directly between the producer and the consumer.

Producer:
loop append(v); end loop;
Consumer:
loop
accept append(v: in integer);
end loop;

If you examine the bounded buffer solutions by semaphores and
monitors you find that what is needed is some way of conditionally achieving
a rendezvous. If the buffer is full, the rendezvous must only be with the
consumer; if empty, only with the producer. If the buffer is neither full nor
empty then the rendezvous can be with whichever of the processes is cur-
rently waiting for the rendezvous. If both are waiting then we do not really
care with whom the rendezvous is made as long as the buffer process is not
unfair. With this background it should be possible to follow the Ada solution
to the bounded buffer (Fig. 6.5). The program shows just the buffer task; the
producer and consumer are straightforward loops.

task boundedbuffer is
entry append(v: in integer);
entry take(v: out integer);
end boundedbuffer;
task body boundedbuffer is
size: constant := . . . ;
b: array(0 . . size) of integer;
inptr, outptr: integer;
n: integer;
begin
n ;= 0; inptr := 0; outptr := 0;
loop
select
when n <= size =>
accept append(v: in integer) do
b(inptr) := v;
end append,;
n:=n+l1;
inptr := (inptr+1) mod size;
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or
when n > 0 =>
accept take(v: out integer) do
v := b(outptr);

end fake;
n:=n—1;
outptr := (outptr+1) mod size;
end select;
end loop;

end boundedbuffer; Fig. 6.5.

Before we discuss the new features of the select command, note that the
critical section of the accept command does not encompass the entire buffer
processing but only the physical exchange of data. The updating of the
internal pointers need not block the producer nor the consumer who have no
access to these local variables.

The select statement allows one to select between several alternatives
separated by or. The alternatives are prefixed by when-clauses called guards.
The guards are boolean expressions which establish what conditions must be
true for an alternative to be a candidate for execution.

The execution of a select statement begins by evaluating all the guards.
Then one of the open alternatives—alternatives with true guards—is
selected for execution. In the bounded buffer if one of the guards is not true
then the other must be (n <= 0 implies n <= size and conversely, n > size
implies n > 0) so there is always an open alternative. If the buffer is empty,
only the first alternative can be selected. This is the alternative that receives
data from the producer. Similarly if the buffer is full, only the second
alternative is open to allow the consumer to remove data from the buffer. In
either case, of course, the buffer process will block waiting for the relevant
rendezvous. Nothing is lost by not rechecking a closed alternative since the
only way to empty a full buffer is by consuming.

The difference between the select statement and an if statement is seen
in the case that both guards are open. Then if both the consumer and the
producer are waiting for a rendezvous, we don’t care which rendezvous is
accomplished. An if statement must specify which statement is to ‘be
executed in this case.

But the select statement is even smarter than that. Suppose that the
buffer is neither empty nor full, but that only the consumer is waiting for a
rendezvous. If a choice is made between both open alternatives then we
could blunder into blocking on an accept append statement for which no
producer process is waiting. Thus if both alternatives are open but only one
accept statement has a process blocked on it waiting for a rendezvous, the
select will choose to execute the alternative that leads to an immediate
rendezvous.

There is another possibility, namely that both alternatives are open but
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that neither process is ready. Rather than endlessly checking the guards
(whose truth will not change) or arbitrarily blocking on one of the accept
statements, the select statement will block simultaneously on both accept
statements and execute the first rendezvous to be accomplished.

This is the essence of the “guarded commands” style of programming:
avoid over-specification (as in an if statement) by allowing the computer as
much freedom of choice as possible consistent with the correctness require-
ments of the program.

We now give a more formal description of the general select statement.

select
when conditionl => accept entryl do statements end;
other statements
or
when condition2 => accept entry2 do statements end,;
other statements

else statements
end select;

Remark 1 The else clause is optional (see below).
Remark 2 A guard may be identically true in which case the when
true => can be omitted.

Semantics of the select statement:

Evaluate all the guards to determine which alternatives are open.

2. If there are open alternatives, determine which accept statements in
open alternatives have processes currently waiting for rendezvous.

3. If there are such processes, execute one of these alternatives. If there
are several open alternatives with processes waiting for rendezvous, the
selection among them is done arbitrarily.

4. If there are no open alternatives or no waiting processes, execute the
else clause if there is one.

5. If there are no waiting processes and no else clause, wait for the first
process to attempt a rendezvous with an accept clause in one of the open
alternatives.

6. In the absence of an else clause, it is an error for there to be no open
alternative.

[awry

We can demonstrate the general select statement by assuming in our
story that the owner of “Ada’s Place” has independent suppliers of both
bread and meat and that his only task is to make sandwiches. Then if there
are no processes waiting at the lodge, he can profitably use the time to
prepare sandwiches (Fig. 6.6).

The guards are exhaustive (at all times at least one is true) and disjoint
(no two are ever simultaneously true) so exactly one is open. The else clause
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is used to do some useful work if the second accept statement is open but
does not have a process waiting for the rendezvous. If the P, are fast eaters,
they will have to wait but if they are often held up in blizzards, they can count
on fast service when they do return to the lodge.

procedure Adalodge is

task type process;,

task hunter;

task bakery;

task Q is
entry delivermeat(mt: in food);
entry deliverbread(br: in food);
entry lodge(snack: out food);

end Q;

task body process is
victuals: food,
begin
loop
explore;
lodge(victuals);
eat(victuals);
end loop;
end process,

task body hunter is
walrus: food,
begin
loop
hunt(walrus);
delivermeat(walrus);
end loop;
end hunter;

task body bakery is
rolls: food;
begin
loop
bake(rolls);
deliverbread(rolls);
end loop;
end bakery;

task body Q is
bread, meat, sandwiches: food;
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procedure makesandwiches is

begin
cook(meat);
sandwiches := bread+meat;
bread := 0;
meat .= 0;
end makesandwiches;
begin
bread := 0;
meat := 0,
sandwiches := 0,
loop
select

when bread = 0 =>
accept deliverbread(br: in food) do
bread := br
end deliverbread,
or
when meat = 0 =>
accept delivermeat(mt: in food) do
meat 1= mit,
end delivermeat,
or
when ((bread <> 0) and (meat <> 0)) or
(sandwiches <> 0) =>
accept lodge(snack: out food) do
if sandwiches=0 then
makesandwiches; end if;
snack := sandwiches,
sandwiches := 0;
end lodge;

else
if (bread <> 0) and (meat <> 0)
and (sandwiches=0)
then makesandwiches; end if;
end select;
end loop;
end Q;

P: array(1 . . numberofprocesses) of process;
begin
null;

end Adalodge;
Fig. 6.6.

CHAP. 6
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6.4 PROVING PROPERTIES OF THE RENDEZVOUS

The development of a satisfactory proof theory for synchronziation by
communication is an area of current research. The concepts of invariants and
eventuality propositions that have been so successful in proving synchro-
nization by cooperation may need modification when applied to the rendez-
vous.

An important goal is to try to make the proofs distributed: the proof of
one process ought not to require knowledge of the internal details of another
process. It ought to be possible to construct communicating proofs: “If you
promise to send me a message M, (I do not care how or why you do so) then I
promise to send you a message M,.”

Let us look at the bounded buffer task of Fig. 6.5. First note that, since
the guards are exhaustive, there is no deadlock. Since the execution of one
alternative makes true the guard of the other alternative, there is no lockout
if we assume fair selection among open alternatives. Another way of show-
ing eventuality is to note that if the producer produces indefinitely without
the consumer consuming, the buffer must fill and the producer’s guard is
falsified. The proof of liveness can thus be done by reasoning internal to the
buffer task.

The safety property is that the elements must be consumed in the same
order that they are produced. The internal behavior of the buffer task is very
simple; what must be shown is that a value that is produced must become the
newest element of the buffer and that the oldest element of the buffer is that
which is consumed.

Suppose that the producer executes append(v). Upon achieving the
rendezvous, we can conclude that the value of the actual parameter has been
communicated to the formal parameter v of the accept statement. Upon
completion of the rendezvous (completion of the accept statement), this
value has been transferred to b[inptr] and has become the newest element of
the buffer.

The general rule is the transfer of information at the point of-the
rendezvous. For an in parameter v, whatever was true of v in the calling
process before the rendezvous is true within the accept statement upon
achieving rendezvous. For an out parameter (such as the v in take), whatever
is true of v upon completion of the accept statement (such as that v is the
oldest buffer element) is true of the actual parameter in the calling task.

6.5 EXERCISES
6.1 Solve Conway’s problem in Ada.

6.2 Write programs for the reader—writer algorithms we have given.
6.3 Simulate a general semaphore in Ada.

6.4 Simulate a rendezvous by semaphores or monitors.
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6.5 In Fig. 6.7 are two possibilities for a monitor-like wait/signal facility. Specify
the behavior of these solutions. Which is more like a monitor?

6.6 Discuss the priority scheme of the solutions to the problem of the readers
and the writers shown in Fig. 6.8 and compare them with the solutions in
Chapter 5.

6.7 Prove the correctness of the programs in Figs. 6.2 and 6.6.

6.8 (Dijkstra) Write a program for partition by communication. Two disjoint sets
of numbers S and T are given. If s and ¢ are the number of elementsof Sand 7,
respectively, then upon completion of the program, § should contain the s
smallest numbers in § U T and T should contain the ¢ largest numbersin S U T.
A solution using two processes is outlined in Fig. 6.9. Prove its correctness.
Note The termination of the task upper is not specified. If you program this
solution in Ada, either learn about the terminate option in Ada or introduce
explicit signals for termination.

task monitorfacilityl is
entry wait;
entry signal;
end monitorfacilityl,
task body monitorfacilityl is
received: boolean;
begin
received := false;
loop
select
accept signal;
received = true;
or
when received =>
accept wait;
received := false;
end select;
end loop;
end monitorfacilityl;

task monitorfacility? is
entry wait;
entry signal,
end monitorfacility2;
task body monitorfacility? is
begin
loop
accept signal,;
select
accept wait;
else null;
end select;
end loop;
end monitorfacility2;
Fig. 6.7.



EXERCISES

task readersandwriters1 is
entry startread;
entry endread;
entry startwrite;
entry endwrite;
end readersandwriters1;
task body readersandwritersl; is
readers: integer,
begin
readers .= 0;
loop
select
accept startread,
readers := readers+1;
or
accept endread,
readers := readers—1;
or
when readers = 0 =>
accept startwrite;
accept endwrite;
end select;
end loop;
end readersandwriters1;

task readersandwriters2 is
entry startread;
entry endread;
entry startwrite;
entry endwrite;
end readersandwriter?;
task body readersandwriter? is
readers: integer;
begin
readers := 0;
loop
select
when startwrite' count = 0 =>
accept startread;
readers := readers+1,;
or
accept endread,
readers := readers—1;
or
when readers = 0 =>
accept startwrite;
accept endwrite;
loop
select
accept startread;
readers := readers+1;
else goto /;
end select;

107
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end loop;
{1 end select;
end loop;
end readersandwriters2;
Fig. 6.8.

Ada Language Notes

1. startwrite’count is a predefined function {called an attribute in Ada) that returns
the number of tasks currently waiting to rendezvous with the entry startwrite.
2. (I is a statement label that is the target of the corresponding gote.

task lower is

entry sendmax(xx: in integer);
end lower;
task upper is

entry sendmin(yy: in integer);
end upper;

task body lower is
X, mx: integer;

begin
mx := the maximum value in s;
loop
sendmax(mx);

remove mx from S;

accept sendmin(xx: in integer) do
X := XX
end sendmin;

add x to S;

mx .= the maximum value in S;

exit when x=mx;

end loop;
end lower;

task body upper is
mn: integer;
begin
loop
accept sendmax(yy: in integer) do
add yy to T;
end sendmax;
mn := the minimum value in T,
sendmin(mn);
remove mn from T;
end loop;
end upper;
Fig. 6.9.



7 THE DINING PHILOSOPHERS

7.1 INTRODUCTION

The problem of the dining philosophers (posed by Dijkstra) is of great
importance in concurrent programming research. The problem allows all of
the pitfalls of concurrent programming to be demonstrated in a vividly
graphical situation. It is a challenge to proposers of new primitives for
concurrent programming. As a test of your understanding of concurrent
programming principles we present several solutions using the various
primitives we have learned.

The problem is set in a monastery whose five monks are dedicated
philosophers. Each philosopher would be happy to engage only in thinking
were it not occasionally necessary to eat. Thus the life of a philosopher is an
endless cycle: repeat think; eat forever.

Fig. 7.1.
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The communal dining arrangement is shown in Fig. 7.1. In the center of
the table is a bowl of spaghetti that is endlessly replenished; there are five
plates and five forks. A philosopher wishing to eat enters the dining room,
takes a seat, eats and then returns to his cell to think. However, the spaghetti
is so hopelessly entangled that two forks are needed simultaneously in order
to eat. (It has been pointed out that thisrequirement is rather forced and that
it would be more natural to set the problem in the Orient with a bowl of rice
and chopsticks.)

The problem is to devise a ritual (protocol) that will allow the
philosophers to eat. Each philosopher may use only the two forks adjacent to
his plate. The protocol must satisfy the usual requirements: mutual exclusion
{no two philosophers try to use the same fork simultaneously) and freedom
from deadlock and lockout (absence of starvation—literally!) An additional

safety property is that if a philosopher is eating then he actually has two
forks.

7.2 FIRST ATTEMPT

program diningphilosophers;

var fork: array [0 . . 4] of (* binary *) semaphore;
i: integer;
procedure philosopher(i: integer);
begin
repeat
think;

wait( fork[i] );
wait( fork[(i+1) med 5] );
eat;
signal( fork{i] );
signal( fork[(i+1) mod 5] )
forever
end;
begin (* main program *)
for i := 0to 4 do fork[i] := 1;
cobegin
philosopher(0);
philosopher(1);
philosopher(2);
philosopher(3);
philosopher(4)
coend
end.
Fig. 7.2.



SECT. 7.3 SECOND ATTEMPT 111

The idea of the program in Fig. 7.2 is very simple. The binary
semaphores ensure mutual exclusion in accessing the forks. The safety
property is satisfied because eating is done only after two fork-semaphores
have been successfully completed.

Unfortunately the solution deadlocks. Under perfect sychronization if
the philosophers enter the protocol simultaneously and take the left forks
then the state of the program is that all forks are 0 and all the philosophers
are trying to complete wait(fork[i+1]). Since there is no process that can
signal, the program is deadlocked.

7.3 SECOND ATTEMPT

program diningphilosophers;
monitor  forkmonitor;

var fork: array[O . . 4] of integer;
oktoeat: array[0 . . 4] of condition;
i: integer;

procedure takefork(i: integer);

begin

if fork[i] <> 2 then wait(oktoeat[i]);
fork[(i+1) mod 5] := fork[(i+1) mod 5]—1;
Jork[(i—1) mod 5] := fork{(i—1) mod 5]—1
end;
procedure releasefork(i: integer);
begin
fork[(i+1) mod 5] := fork[(i+1) mod 5]+1;
fork{(i—1) mod 5] := fork[(i—1) mod 5]+1;
if fork[(i+1) mod 5]=2 then signal(oktoeat[(i+1) mod 5]);
if fork[(i—1) mod 5]=2 then signal(oktoeat[(i—1) mod 5])
end;
begin (* monitor )
for i := 0 to 4 do fork[{] := 2
end;
procedure philosopher(i: integer);
begin
repeat
think,
takefork(i);
eat;
releasefork (i)
forever
end;
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begin (* main program *)
cobegin
philosopher(0);
philosopher(1);
philosopher(2);
philosopher(3);
philosopher(4)
coend
end.
Fig. 7.3.

The previous solution failed because a philosopher is allowed to blindly
take a free fork. In the present solution (Fig. 7.3), the array fork is now
intended to represent the number of free forks available to a philosopher.
Only if both forks are available will the philosopher take them (by complet-
ing procedure takefork). The mutual exclusion among monitor procedures
and the immediate resumption of a signalled process ensure that the
intended meaning holds since (i) no other process can access fork aslong as a
process is in the monitor, and thus (ii) the process that notes that two forks
are available can update the status of fork[i—1] and fork[i+1] before its
neighbors can continue.

Freedom from deadlock can be shown as follows. Let eating = the
number of philosophers eating. Then when no process is in a monitor
procedure, it is easy to see that

4
I=(3 fork[i]=10-2 *eating)
irl

is invariant.

1. Initially eating = 0 and Y fork[i]=10.

2. Y fork[i] is decreased by 2 and eating is incremented by 1 by every
process completing takefork.

3. Y fork[i] is increased by 2 and eating is decremented by 1 by every
process completing releasefork.

For deadlock to occur, we must have all processes waiting, and so
eating=0. By I, ¥ fork[{]=10. Thus the last process, say j, to execute
takefork and wait must have found fork[j]= 2 and would not have waited,
contrary to the assumption.

Consider now the scenario in Fig. 7.4.

Philosopher 2 is going to starve to death because philosophers 1 and 3
are conspiring to cause a lockout. By our rules, if there is even one scenario
that leads to lockout, the solution must be rejected. Note that we do not
assume that a philosopher eats indefinitely as eating has the status of a
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critical section. However, we can assume that two philosophers think very
fast and eat very slowly.

Action fork[0] fork{1] fork{2] fork(3] fork{4]
Initially 2 2 2 2 2
takefork[1] 1 2 1 2 2
takefork[3] 1 2 0 2 1
takefork[2]

and wait 1 2 0 2 1
releasefork{1] 2 2 1 2 1
takefork[1] 1 2 0 2 1
releasefork[3] 1 2 1 2 2
takefork[3] 2 2 0 2 1

Fig. 7.4.

7.4 A CORRECT SOLUTION

program diningphilosophers;
var fork: array [0 . . 4] of (* binary *) semaphore;
room: semaphore;
it integer;
procedure philosopher(i: integer);
begin
repeat
think;
wait(room);
wait( forkli] );
wait( fork[(i+1) mod 5] );
eat;
signal( forkli] );
signal( fork[(i+1) mod 5] );
signal(room)
forever
end;
begin (* main program *)
room := 4,
for i := 0 to 4 do fork[i] := 1,
cobegin
philosopher(0);
philosopher(1);
philosopher(2);
philosopher(3);
philosopher(4)
coend

nd.
¢ Fig. 7.5.
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The solution in Fig. 7.5 is similar to the first attempted solution except
for the additional enclosing semaphore room. The safety properties hold as
before. Deadlock is not a problem since room ensures that at most 4
philosophers are attempting to access forks. By a simple application of the
“pigeon-hole principle” any attempt to distribute the five forks in the circle
among the 4 philosophers must result in at least one philosopher having two
forks. The semaphore invariant for the room is: room+ (number of processes
between wait(room) and signal(room) )=4.

Let us now prove a series of lemmas that imply that this solution is
starvation-free.

Lemma 7.1 If P, executes wait(fork[i]), eventually it will complete the wait.

Proof

If P, does not complete the wait it is only because fork[i{]=0 which implies
that P,_, is eating (since this is P,,’s right-hand fork which was taken just
before eat). Eventually P, , finishes eating and executes signal(fork[i]) allow-
ing P, to proceed.

(Advanced) Remark We must assume some definition of semaphores
(such as Morris’) stronger than the weak definition to avoid elementary
semaphore lockout even among two processes. What we are interested in is
showing that lockout cannot be caused by conspiring processes. The previ-
ous attempt suffered from lockout even though the monitor uses the strong
FIFO assumption on its queues.

Lemma 7.2 If P, is waiting indefinitely on fork[i+1] then P,.; is waiting
indefinitely on fork[i+2].

Proof

Only P, and P, , “compete’ for the semaphore fork[i+1]. If P, is termi-
nated in think then fork[i+ 1] cannot block P,. Similarly, P, and P,,, cannot
be simultaneously blocked on the same semaphore fork[i+1] (think of the
semaphore invariant). Thus if P, is blocked on fork[i+1] and P, is assumed
never to signal that semaphore, the only possibility left is for P, to be
blocked indefinitely on the other semaphore: fork[i+2].

Lemma 7.3 If P, executes wait(fork[i+1]), eventually it will complete the
wait (and eat).

Proof
By four successive applications of Lemma 7.2 we have that if P; waits

indefinitely on fork[i+1] then P, waits indefinitely on fork[i+j+1],
j=1, ..., 4 but this contradicts the semaphore invariant for room.
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7.5 CONDITIONAL CRITICAL REGIONS

A solution to the dining philosophers problem using semaphores is difficult
to write because of the limited semantic content of the semaphore opera-
tions. A process can only test if an integer variable is zero and if so the
process is suspended. Thus we have no way of making a compound test on
the value of two ““forks™.

A synchronization primitive that does not suffer from this limitation is
the conditional critical region. A critical region is a primitive for mutual
exclusion. region r begin s, . . . , s, end executes the sequence of statements
$;, ..., S, as a critical section. If several processes try to enter the critical
region r simultaneously, then only one successfully enters and the others
must wait on a queue. When a process leaves a critical region, another
process from the queue is allowed to enter. Similarly, if a process attempts to
enter a region while another process is within the region, the new process
must join the queue.

Several regions can be declared to allow distinct critical sections to be
entered simultaneously, just as several semaphores or monitors may be
declared.

The solution to the mutual exclusion problem is immediate (Fig. 7.6).

program mutualexclusion;
procedure p;;
begin
repeat
reml;
region r begin critl end
forever
end;
procedure p,;
begin
repeat
rem2;
region r begin crit2 end
forever
end;
begin (* main program *)
cobegin
P15 P2
coend
end.
Fig. 7.6.
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To solve more difficult problems, the conditional critical region is used.
Competition for entry to the critical region is allowed only if an entry
condition is satisfied. These are similar to the Ada guards.

The syntax is: await b region r begin s,; . . . ; 5, end. The semantics are: b
is first evaluated. If b is true then the process may enter the competition to
enter the critical region (and of course, succeed in entering if the region is
free). If b is false, the process must enter the queue of waiting processes.

Whenever a process exits a critical region, all the processes waiting on
its queue are released. Those processes having entry conditions must re-
evaluate them. Processes with true conditions (including processes with no
conditions) then compete to enter the critical region. The implementation
should ensure that this competition is “fair”’, though FIFO is not specified as
it is in the monitor.

We let each process evaluate its own condition—thus allowing expres-
sions of arbitrary complexity, including those using local variables and
procedures. The price we pay for this flexibility is the overhead of evaluating
such expressions repeatedly as the process competes for entry into the
critical section.

If we compare conditional critical regions with monitors, we see that the
monitor has the flexibility of evaluating arbitrary expressions, but since the
“condition” is named and explicitly signalled there is no busy wait overhead
incurred by repeated evaluation.

Semaphores can be easily simulated:

wait(sem): await sem> ( region r begin sem := sem—1 end.
signal(sem): region r begin sem := sem+1 end.

In Fig. 7.7 is a solution to the problem of the dining philosophers using
conditional critical regions. The solution is similar to the monitor solution
(Fig. 7.3). The conditional critical region primitive is here exactly what is
needed to accomplish the compound test, something we could not do with
semaphores.

program diningphilosophers;

var forks: array[O . . 4] of integer;
it integer;
procedure philosopher(i: integer);
begin
repeat
think;

await forks[i]=2
region r begin
forks[(i+1) mod 5] := forks[(i+1) mod 5]—1;
forks[(i—1) mod 5] := forks[(i—1) mod 5]—1
end;
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eat;
region r begin
forks[(i+1) mod 5] := forks[(i+1) mod 5]+1;
forks[(i—1) mod 5] := forks[(i—1) mod 5]+1
end
forever
end;
begin (* main program *)
for i := 0 to 4 do forks[i] := 2;
cobegin
philosopher(0);
philosopher(1);
philosopher(2);
philosopher(3);
philosopher(4)
coend

end.
Fig. 7.7.

Conditional critical regions do not have the theoretical appeal of the

elementary semaphores. Practitioners have overwhelmingly preferred to
implement the monitor. The effort involved is fully repaid by the flexibility
of the concept and by the benefits obtained by the structuring of the data and
procedures within a monitor. The Ada programming language, though it
uses a different primitive, also encourages encapsulation of data and proce-
dures in packages and tasks.

7.6

7.1
7.2

7.3

7.4

7.5

EXERCISES

Prove in greater detail the safety properties of the various algorithms.

Write one (or several) of the solutions in the chapter using the Ada rendez-
vous.

Program the following algorithm (in any formalism): a philosopher wishing to
cat picks up his left fork; if his right fork is available, he picks it up and
commences eating else he releases his left fork and repeats this cycle. Discuss
the correctness of this algorithm.

All the solutions in this chapter are symmetrical, that is, all the philosophers
execute the same code parameterized by the process number and furthermore
no process explicitly uses its process number in the code. Try to find asymmet-
rical solutions: program them and discuss correctness. For example: change
the first attempted solution so that one of the processes executes
wait(fork[i+1]) and then wait(fork[i]) instead of conversely.

*Discuss the solution sketched in Fig. 7.8. We have deviated from Ada by
allowing a select statement with no accept clause. The effect is that of a
non-deterministic choice between the two possibilities.
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task body fork is
begin
loop
select
(* become i’s left fork *)
leftfork(i);
accept releaseleftfork(i);
or
(* become i+1’s right fork *)
rightfork(i+1); )
accept releaserightfork(i+1);
end select;
end loop;
end;

task body philosopher is
begin
loop
think;
select
accept leftfork(i);
accept rightfork(i);
or
accept rightfork(i);
accept leftfork(i);
end select;
eat;
releaseleftfork(i);
releaserightfork(i);
end loop;
end.

Fig. 7.8.

CHAP. 7



APPENDIX: IMPLEMENTATION KIT

A.1 INTRODUCTION

Soon, perhaps, every student of computer science will have his own
minicomputer and sufficient time to learn its hardware thoroughly so that he
may exercise concepts of concurrent programming by building a real-time or
operating system from scratch. Until then, the accepted solution to class
exercise of concurrent programming is to simulate concurrent execution.

There are several serious implementations which are noted in the
references. This appendix contains the listing and documentation of a very
simple system which can exercise concurrent execution with synchronization
by semaphores. This system can thus be used by any instructor who does not
have access to one of the more serious systems. The system is not efficient
and is not intended to be used for extensive concurrent programming but it
has been successfully used to demonstrate (the hard way) to students the
difficulties of concurrent programming. Note that even though the system is
written in Pascal, it uses only a subset of the language that could easily be
translated into any block structured language. Similarly, the machine
dependencies (such as record packing to save space) are clearly noted and
easily changed. This appendix, however, presumes a knowledge of Pascal.

The program in the listing (Section A.8) is a simplification and modifi-
cation of the Pascal-S interpreter originally written by N. Wirth. Pascal-S
compiles a subset of Pascal into pseudo-code (P-code) for a hypothetical
machine and then proceeds to interpret (simulate the execution of) this
code. The general structure of Pascal-S is shown in Fig. A.1.

program pascals;
var code: array [1 .. codemax] of instructions;
procedure block;

119
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begin
Compile the Pascal-S program and store the compiled instructions in
the array code.
end;
procedure interpret,
var stack: array [1 .. stackmax] of integer;
begin
Simulate the instructions in code.
The array stack serves as the memory of the simulated computer.
end;
begin (* main program *)
initialize;
block;
interpret;
end.
Fig. A.1.

The object language P-code is for a stack machine. By this is meant that

there are no registers or accumulators as on most computers. Instead, all
operands are contained on a stack. A command such as Add needs no
further specification since it automatically refers to the operands on the
stack: Add the top two elements and replace them with the result as the top
element in the stack. This architecture has actually been used on real
computers (such as the Burroughs 6700) and even on pocket calculators (of
the HP series).

In a stack machine A := B + Cis compiled into the following sequence

of instructions:

1.

2.
3.
4

A.2

P

Load the address of A onto the stack.

Load the value of B onto the stack.

Load the value of C onto the stack.

Add: remove the top two elements from the stack. Add them together
and store the result as the top element on the stack.

Store the top element in the address that appears just below it on the
stack. Remove these two elements.

THE COMPILER

The subset of Pascal compiled is:

Simple data types: integer, boolean, char.

Structures: arrays (including multidimensional arrays)

Strings: Only in the form: write(# this is a title #).

Operators: integer (+, —, *, div, mod); boolean (not, and, or).
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5. Relations: =, <>, >, <, >=, >=.
6. Declarations: const, type, var, procedure, function.

7. Statements:
assignment;
if b then s;
if b then s, else s,;
while 5 do s;
repeat s, . . .; s, until b;
for i := ¢, to e, do s;
8. Block structure: procedures and functions may be nested under the
usual block structuring rules of Pascal. They may have both variable
and value parameters.

9. Concurrency: in the main program, a single compound statement of
the form cobegin s;; . . . ; s, coend is allowed to indicate concurrent
execution of s,, ..., s, which must be global procedure calls.

10. wait(s) and signal(s) are predefined semaphore operations looking for
integer variables. The initial value of the semaphore should be set by
an assignment statement in the main program. For pedagogical
reasons, a semaphore type is provided. However, it is synonymous with
integer and provides no protection.

The compilation is by top-down recursive descent. A similar compiler is
extensively described in the book Structured System Programming by Welsh
and McKeag (1980) and thus we do not discuss it further except as needed to
understand the concurrent interpreter. The only point we feel obliged to
note is the use of a simpler data structure for the identifiers. They are keptin
an array tab; the entry for an identifier contains a link field which contains
the index of the previous identifier in the same level of block nesting.

A.3 THE P-CODE

The P-code instructions consist of an instruction field and possibly two
operand fields x and y. x is used to point to the static level as described below
and y is used to pass operands to the instructions. The interpreter uses the
following data passed to it by the compiler.

btab—the block table, discussed below.

atab—the array table which has an entry for each array. The entries
contain the following fields:
low, high: the limits on the array index,
elsize: the size of an array element.
The following fields are used only by the compiler and will not
concern us further:
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size: the total size of the array,

eltyp, inxtype: the types of the elements and the index,
elref: a pointer to an entry in atab if the elements of the array are
themselves arrays.

code—the compiled P-code.

stab—a table containing all the strings in the program. A string is
identified by a starting index in stab and the number of characters.

The “memory” of the interpreter is the array s which is treated as a
stack. All data are stored as integers. Characters may be stored and retrieved
using Pascal functions ord and chr. For booleans we have written functions
booleantointeger and integertoboolean.

The pseudo-instructions are summarized in the following table: x and y
refer to the operand fields of the instruction and ¢ is an index in s for the top
of the stack. Instructions 0-7, 18-19, 32-33 will be further discussed later;
the others are straightforward.

15:
18:
19:
21:

22:
23:
24:
27:
28:
29:

Load Address

Load Value

Load Indirect

Update Display

Cobegin

Coend

Wait

Signal

End of Line and End of File

Jump to address y

Jump to address y if s[¢] is false

Precedes the code of s in the for-loop:

for i := e, to e, dos.

y=the uddress of the instruction after the loop
s[f]=e,; s[t—1]=e,; s[t—2] = address of i

Follows the code of s in the for-loop. y=address of s
Markstack

Procedure Call

Select an element of array atab[y] and push it onto the stack.
s[f]=value of the index

Push y words from address s[¢] onto the stack

Copy y words from address s[¢] to address s[t—1]
Push the literal y onto the stack

Read a value of type y into the variable whose address is s[f]
Write s[f] characters from stab[y]

Write s{¢]

APPENDIX
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31: Halt

32: Return from procedure

33: Return from function

34: s[t] is an address; replace it by its value

38: Store s[f] at address s[t—1]

35-36, 45-59: Arithmetic and boolean operations

62, 63: Readln, Writeln

Others: omitted in the simplification from Wirth’s Pascal-S

In a block-structured language the address of a variable is denoted by a pair
(Level, Address) where Level is the depth of nesting of blocks when the
variable was declared and Address is the offset of this variable within the
memory segment associated with this level. Note that the rules of block
structuring require that blocks be nested. Thus the memory segments can be
stacked. To access a non-local variable, one simply follows the links which
define the nesting until the proper level is reached (Fig. A.2, where s is a
local procedure of r which in turn is local to main program p). These links are
called static links.
1 |

arg
Dynamic [ l — 2
links '
o Static | 1
r V
* 0
C | ' Display
arp
| -
Stack

Fig. A.2.

If, however, we are going to execute the P-code, we need some faster
way of accessing a variable. This is done by using a display which is an array
indexed by levels whose elements point to the memory segments represent-
ing the current situation of block nesting. This is the same as saying that the
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display holds the current static links. The address of a variable is calculated
by computing display[x]+y where (x, y,)=(Level, Address).

Instructions 0, 1, 2, in the interpreter can now be understood as 0: Load
an address; 1: Load a value; and 2: Indirect loading of a value. 2 is used in the
case of a var parameter where what is passed to the procedure is the address
of the address of a variable.

There is a price that must be paid for the elegance of the display. Any
change in the current block structure, i.e. a procedure or function call must
update the display. Hopefully, this occurs infrequently relative to accesses to
the variables.

A.4 PROCEDURE CALLS

During the normal execution of a program by the interpreter, the two main
pieces of dynamic information that must be maintained are pc (program
counter) which points to the next instruction to be executed, and ¢ which
points to the current top of the stack. In addition, we maintain b which points
to the bottom of the current stack segment and stacksize which points to the
limit of the area allocated for the stack. Finally display keeps track of the
addressing by nesting level.

Each time a procedure or function is called we need to allocate memory
for the local variables as well as for certain additional information, such as
the return address to jump to upon completion of the procedure. It is
convenient to allocate this memory on the same stack that is used for the
operands and to do the necessary adjustments upon the procedure call and
return. The memory allocated upon procedure call is called an activation
record.

In Pascal-S an activation record has a fixed part of five words:

ar[0]=Function result;
ar[1]=Return address;
ar[2]=Static link;
ar[3]=Dynamic link;
ar[4]=Table pointer.

When a function call is completed, the value of the function is left in
place of the entire activation record. Conveniently, then, the effect of a
function call is to push its result onto the stack just as if it were a normal
operand. The return address contains the address of the instruction to be
executed upon procedure exit. The table pointer contains the index into the
identifier table tab for the procedure name. The tab field adr contains the
index into the code table of the procedure code and ref contains the index
into the block table to be described shortly.
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If a procedure p has called a procedure g then the dynamic link of ¢
pofnts to the start of the activation record of p. It is used upon procedure exit
to reset the various stack pointers. The static link points to the start of the
activation record of the procedure which textually encloses the called proce-
dure. This defines the block structure of the language and can be either used
directly to access variables or reflected in the display.

To understand the difference between a static and a dynamic link look
at Figs. A.2 and A.3 which show the activation records at two points during
the execution of the following program.

program p;
procedure g,
begin . . . end;
procedure r;
procedure s;
begin ... q ... end;
begin . . . s . . . end;
begin (* main program *) ... r ... end.

arg
Static
Dynamic links

links & [

Display

|r

Stack

Fig. A.3
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In Fig. A.2, p has called r (which is local to p) and then r has called s
(which is local to r). The dynamic links show the sequence of the calls. The
static links are the same since s can access the variables of r (which called it)
and in turn r can access the variables of p (which called it). The display
reflects the nesting levels 0, 1, 2.

In Fig. A.3, s has now called g, which is local to p and g cannot access the
variables of r and s. This is indicated by the static pointer of the activation
record of g which is now pointing to the activation record of p. Note that
though the sequence of calls is longer, the display is now shorter.

As a check to see if you understand these concepts, draw the links for
some recursive procedure rec. There will be a large number of different
dynamic links—one for each recursive call of rec—but the static links will all
point to the same activation record: that of the procedure in which rec is
embedded.

We now describe the mechanics of a procedure call.

A procedure or function call is compiled into:

18: Markstack;
Compile the parameters;
19: Call;
3: Update Display (if necessary).

The activation record consists of:

(1) the five word fixed area;
(2) an area for the actual parameters (whether values or addresses), and
(3) an area for the local variables of the procedure.

The array btab contains an entry for each procedure with fields: psize
which is the sum of the lengths of areas (1) and (2) and vsize which is the sum
of psize and the length of area (3). vsize is thus the total size of the activation
record for this procedure. (There are also two fields last = pointer to the last
identifier in this procedure and lastpar = pointer to the last parameter in this
procedure. These are used only during the compilation and not during the
simulation). btab[1] is an entry for the “environment” block containing
predefined identifiers like integer. btab[2] is thus the entry for the main
program.

The instruction Markstack is passed the index of the procedure name in
the identifier table tab. Since the actual parameter evaluation may involve
arbitrarily complicated computation, the main purpose of the Markstack
instruction is to advance the stack pointer by five words so as to leave room
on the stack for the fixed area. Then the evaluation of the parameters may
freely use the stack above the fixed area.
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In addition, Markstack performs the following services. Since the pro-
cedure name is seen and compiled before the actual parameters, the proce-
dure name (via a pointer to the indentifier table) is conveniently passed at
this point to the interpreter. Markstack stores this operand in ar{4] for
subsequent use by the Call. Markstack also checks that there is sufficient
room in the stack for the activation record (vsize) and temporarily stores
vsize in the slot to be used by the dynamic link. .

Now the actual parameters can be computed. The compiler has deter-
mined that when this has been completed, the stack pointer ¢ will point to
psize words beyond the start of the activation record and in fact psize
(actually (v/p)size — 1 is stored to use as an offset) is passed as the operand to
Call. The stack at the beginning of Call is shown in Fig. A.4.

ot —— [
Parameters
+4 Index ,
+3| btab[ |.vsize—1 biab[ ] psize
+2
+1
+0
-« ((before Markstack)
Local variables
of
main program
4 [ Bab 2] Jdast brab[2] vsize
3
2
1
h—»—

Fig. A.4.

With a slightly more descriptive notation than the bare listing, the code
of Call is shown in Fig. A.5. Fig. A.6. shows the stack following the comple-
tion of the procedure call. Procedure exit is relatively simple (Fig. A.7).
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oldb := b;
b:=t—-y;
inx := s[b+4];
t:=s[b+3]+b;
level .= tablinx].lev;
s[b + 2] := display[levell;
display|level+1] := b;
s[b + 3] := oldb;

sib + 1] := pc;
pc := tablinx].adr;

APPENDIX

(* Save the previous bottom of stack for
the dynamic link *)

(* New bottom stack is computed from
psize as passed in y *)

(* Retrieve index of procedure in tab as
left by Markstack *)

(* Compute new top of stack from vsize
left by Markstack *)

(* Get nesting level in which procedure
is defined *)

(* Static link is the bottom of the stack
segment of the level of definition *)

(* The procedure executes one level up,
so update the display *)

(* Set the dynamic link *)

(* Return address *)

(* Jump to the procedure code *)

Fig. A.5.
stacksize —w|
1 — | A
variables
Parameters
. size  vsize

+4 Index b
+3 Dynamic link Fig. A.6.
+2 Static link
+1 Return address

b —» for function result
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t:=5b—1; (* Restore the old top of the stack. For
a function exit this is ¢ := b; *)

pc:=sb + 1]; (* Restore return address *)

b :=s[b + 3]; (* Restore bottom of stack from the

dynamic link *)

Fig. A.7.

There is one more problem that must be solved. If the procedure call is
to a procedure on a lower static level than that of the calling procedure, the
display will not be correct upon exit. In Fig. A.3 when the execution of ¢
terminates, only display[0] pointing to the activation record of the main
program will be correct. display[1] and display[2] must be made to point to
the activation records of r and s, respectively. This is done by the interpreter
instruction (3): Update display(x, y) which updates display[y] down to
display[x] by following the static links. In this case; the compiler must insert
Update display(1, 2) which will cause b—currently pointing to the bottom of
the activation record of s to be stored in display[2] and then obtain from the
static link the index of the bottom of the activation record of r to store in
display[1].

This completes our discussion of Pascal-S as applied to sequential
programs. Before reading further you might want to think of the problems
that will be encountered in extending the system to concurrent execution.

A.5 CONCURRENCY

To execute several processes concurrently we need to maintain: a stack for
each process which will be used for the local data of the process (including
the data of any procedures called by the process) and a set of register images
for each process. To execute a particular process, its images are loaded into
the physical registers before execution.

In the case of Pascal-S ‘“‘registers” are pc, the stack pointers b, ¢ and
stacksize and display. We maintain a table ptab? with one entry for each
process containing this information as well as two further pieces of informa-
tion: active indicating whether this process is active (as opposed to termi-
nated) and a pointer suspend which points to a semaphore if the process is
suspended on a semaphore. The register images are “loaded” into the
interpreter by the with ptab[curpr] statement which makes all references to
the above variables take their values from the entry for the current pro-
cess—curpr.

+ The constant pmax controls the size of ptab and hence the number of concur-
rent processes allowed. For most efficient use of central memory, it is best to
tailor a version of the kit for each class exercise. Conway’s problem (Exercise
4.2) runs with pmax = 3 but Parnas’ problem (Exercise 4.15) needs pmax=9.
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Similarly we should have a set of stacks—one for the main process
(which contains all the global variables) and one for each concurrent pro-
cess. If this is done, however, the interpreter would have to be passed an
index to the stack table on each memory access. A simpler solution is to
divide the single physical stack (the array s) into several logical seg-
ments—one for each process. Then as long as the displays are correct, all
accessing is done normally. See Fig. A.8.

stacksize[2]
2]
’1—\
—— 2
stacksize[1] 0
display [2]
t[1]
-—————— 2
b[1] = 1
stacksize[0] 0
display [1]
t[0]
_-\
-l | —— 1
b [O] ——— 0
display [0]
Fig. A.8.

For simplicity, the stacks are pre-allocated. The use of dynamic alloca-
tion does not involve any conceptual difficulties but for our purposes it
seems unnecessary. Various versions of this system can be tailored to suit
each assigned exercise.
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arg
F |
arg arg
\
S — — T
ary, ary,

arg

ary, ary,

arp arp

— | — Fig. A.9. — |

program p;
procedure g;
begin . . . end;
procedure 7;
begin . .. g . . . end;
procedure r,; Fig. A.10.
procedure s;
begin . .. g . .. end;
begin ... s ... end;
begin (* p *)
cobegin r,; r, coend
end.
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The semantics of cobegin . . . coend are as follows: The concurrent
processes are prepared for execution: Their parameters are evaluated and
stored in the stack segments and the values of their register images are
computed. Upon execution of the coend statement, the main process is set to
inactive and the concurrent processes are activated. When all the concurrent
processes have terminated (become inactive) the main process is reacti-
vated.

This is accomplished by preferring the execution of the main processiif it
is active (if ptab[0].active then curpr := O else . . . ) and by having coend set
the main process to inactive. At this point the choice of the current process to
execute will always be made among the concurrent processes. The exit
procedure instruction performed for a concurrent process will decrement
the number of active processes and if this count reaches zero the main
process is set to active.

The implementation of cobegin is to have it set a flag (pflag) which is
used during the calling sequence to decide whether this is a concurrent
process call. If so, the Markstack instruction allocates a ptab entry (by
incrementing npr) and marks the stack segment assigned for the new pro-
cess. This stack segment was defined during initialization of ptab. During the
actual parameter evalution, pflag ensures that the stack segment upon which
the parameters are pushed is in fact this new segment (if pflag then . . . ). In
the Call, the only difference is that the initialized activation record happens
to belong to the called process and not the main process. Upon execution of
the coend, pflag is reset so that if a concurrent process calls a procedure, the
normal calling sequence is done.

Exit procedure uses a dummy return address to detect that this is the
termination of a concurrent process. It deactivates the process and if this is
the last concurrent process, it reactivates the main process.

Figure A.9 shows the stack at two instances during the execution of the
program in Fig. A.10.

A.6 SEMAPHORES

The interpreter allows easy implementation of semaphores because the
entire operation can be done as one pseudo-instruction and does not require
that the testing and incrementing be done as separate operations. wait(s) and
signal(s) are compiled as standard procedures being passed the address of
the parameter. waitis implemented as: if s > O thens := s — 1 else suspend : =
address of s. signal is implemented as : Search for a ptab entry with suspend
= address of s. if found then suspend := 0 else s := s + 1.

Remark This is the definition of semaphores suggested by Morris and
is the one that has the most natural implementation.
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A.7 RANDOMIZATION

A random number generator is used to give the illusion of concurrency.
chooseproc searches from a random starting point in ptab for a process which
is active and not suspended. If there are no such processes, you can let the
interpreter run to the computer’s time limit or, as shown, explicitly declare a
deadlock to the student.

Randomization is also used in signal to ensure that the awakened
process will not be predetermined. stepcount is used to reduce the number of
executions of chooseproc by allowing a process to execute a (random)
number of consecutive steps before a process switch is done. Note that if a
process becomes inactive or suspended, then stepcount is zeroed to force a
process switch.

A.8 PROGRAM LISTING

program pascals(input, output);

(*author: N. Wirth, E. T. H. ch—8092 Zurich, 1. 3. 76%)

(*modified: M. Ben-Ari, Tel Aviv Univ., 1980%)

label 99;

const nkw=26; (*no. of key words*)
alng=10; (*no. of significant chars in identifiers*)

ling=121; (*inputline length*)
kmax=15; (*max no. of significant digits*)
tmax=70; (*size of tablex)
bmax=20; (+size of block-table*)
amax=10; (*size of array tablex)
cmax=500; (*size of code*)
Imax=T7, (*maximum level*)
smax=150; (*size of string-table*)
omax=63; (*highest order code*)

xmax=131071;
nmax=281474976710655;
lineleng=132;
linelimit=400;
stmax=1400;

stkincr=200;

pmax=3;

(*2#%17 — 1%)
(*2%%48-1%)
(*output line length+)
(*max lines to print*)
(xstacksize*)

(*stacksize for each process*)
(*max concurrent processes*)
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type symbol=(intcon, charcon, string,
notsy, plus, minus, times, idiv, imod, andsy, orsy,
eql, neq, gtr, geq, Iss, leq,
Iparent, rparent, lbrack, rbrack, comma, semicolon,
period,
colon, becomes, constsy, typesy, varsy, functionsy,
proceduresy, arraysy, programsy, ident,
beginsy, ifsy, repeatsy, whilesy, forsy,
endsy, elsesy, untilsy, ofsy, dosy, tosy, thensy);

index=—xmax . . +xmax;,
alfa=packed array [1 . . alng] of char;
object=(konstant, variable, typel, prozedure, funktion);
types=(notyp, ints, bools, chars, arrays);
er=(erid, ertyp, erkey, erpun, erpar, ernf, erdup, erch, ersh, erin);
symset=set of symbol;
typset=set of types;
item=record

typ: types; ref: index;

end;

order=packed record

f: —omax . . +omax;

x: —Imax . . +imax;

y: —amax . . +nmax;

end;

var sy: symbol; (*last symbol read by insymbolx)
id: alfa; (xidentifier from insymbol*)
inum: integer; (xinteger from insymbol*)
rnum: real; (xreal number from insymbolx)
sleng: integer; (*string lengthx)
ch: char; (*last character read from source programx)
line: array [1 . . ling] of char;
cc: integer; (*character counterx)
lc: integer; (*program location counter)
Il: integer; (*length of current linex)

errs: set of er;

errpos: integer,

progname: alfa;

skipflag: boolean;

constbegsys, typebegsys, blockbegsys, facbegsys, statbegsys:
symset;

key: array [1 . . nkw] of alfa;

ksy: array [1 . . nkw] of symbol;

sps: array [char] of symbol,; (*special symbols*)
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t,a, b, sx, ¢, c,: integer; (* indices to tablesx)
stantyps: typset;
display: array [0 . . Imax] of integer;

tab: array [0 . . tmax] of (*identifier tablex)
packed record
name: alfa; link: index;
obj: object; typ: types;
ref: index; normal: boolean;
lev: 0 . . Imax; adr: integer;
end;
atab: array [1 . . amax] of (*array-tablex)
packed record
inxtyp, eltyp: types;
elref, low, high, elsize, size: index;
end;
btab: array [1 . . bmax] of (*block-tablex*)
packed record
last, lastpar, psize, vsize: index
end;
stab: packed array [0 . . smax] of char; (#string tablex)
code: array [0 . . cmax] of order;

procedure errormsg;
var k: er;
msg: array [er] of alfa;
begin
msglerid] := #identifier# ; msglertyp] 1= #type #;
msglerkey] = #keyword #; msglerpun] := #punctuatio#;
msglerpar] := #parameter #; msglernf] := #not found #;
msglerdup] := #duplicate# ; msglerch] := #character #;
msglersh] := #too short #; msglerin] := #too long #;
message(# compilation errors#);
writeln; writeln(# key words#);
for k := erid to erin do if k in errs then
writeln(ord(k), # # ,msglk])
end (*errormsgx);

procedure endskip;
begin (*underline skipped part of input*)
while errpos < cc do
begin write(#—#); errpos := errpos+1
end;
skipflag .= false
end (*endskipx);
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procedure nextch; (*read next character; process line endx)
begin if cc=I/ then
begin if eof(inpur) then
begin writeln;
writeln(# program incomplete#);
errormsg; goto 99
end;
if errpos <> 0 then
begin if skipflag then endskip;
writeln; errpos 1= 0

end;
write(lc:5, # #);
Il:=0;cc =0

while not eoln(input) do
begin Il := ll+1; read(ch); write(ch); line[ll] := ch
end;
writeln; Il := ll+1; read(line[ll])
end;
cc := cc+1; ch := line[cc];
end (*nextch*);

procedure error(n: er);
begin if errpos = 0 then write(# **xx#);
if cc > errpos then
begin write(# #: cc—errpos, #'#, ord(n):2);
errpos 1= cc+3; errs 1= errs+[n]
end
end (*error);

procedure fatal(n: integer);
var msg: array [1 .. 6] of alfa;

begin writeln; errormsg;
msg[ 1] := #identifier#; msg[ 2] := #procedures#;
msg[ 3] := #strings #; msg[ 4] := #arrays #;
msg[ 5] := #levels #; msgl 6] := #code #;
writeln(# compiler table for #, msgln)], # is too small#);
goto 99 (* terminate compilation*)

end (xfatal*);

(* insymbol-*)

procedure insymbol; (xreads next symbolx)
label 1,2,3;
var i, j, k, e: integer;
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begin (xinsymbolx)
1: while ch=# # do nextch;
case ch of
#ait, #b#, Hc#, #d#, He, #fH#, #g#, #h#, #i#,
Hi#, #k#, #1#, #m# | #n#, #o#, #p#, #q¥#, #r#,
Hst, Hi#, Hu#, #v#, Ewh, #x#, #y#, #z#:
begin (*identifier or wordsymbol*) k := 0; id := # #;
repeat if k < alng then
begin k := k+1; id[k] := ch
end;
nextch
until not (ck in [#a#. . #z#, #0#. . #9#));
i:=1;j:= nkw; (*binary search*)
repeat k := (i+j) div 2;
if id <= keylk] then j .= k-1;
if id >= key[k] then [ := k+1

until ; > j;
if i—1 > j then sy := ksy[k] else sy := ident
end;

#OH#, #1H#, #2#, #3#, #4#, #5#, #6#, #7#, #8#, #9#:
begin (xnumber+) k := 0; inum := 0; sy := intcon,
repeat inum := inum*10 + ord(ch) — ord(#0#);
k := k+1; nextch
until not (ch in [#0#. . #9#1]);
if (k > kmax) or (inum > nmax) then
begin error(erin); inum := 0; k := 0
end;
end;

#:#, col: begin nextch;
if ch = #=# then
begin sy .= becomes; nextch
end else sy := colon
end;
#<# : begin nextch;,
if ch = #=# then begin sy := leq; nextch end else
if ch = #># then begin sy := neq; nexich end else
sy 1= Iss
end;
#># . begin nextch;
if ch = #=7# then begin sy := geq; nextch end else
sy = gtr
end;
#.# : begin nextch;
if ch = #.# then
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begin sy := colon; nextch
end else sy := period
end;
####: begin k := 0;
2:  nextch;
if ch = #### then
begin nextch; if ch <> #### then goto 3
end; ‘
if sx+k = smax then fatal(3);
stab[sx+k] := ch; k := k+1;
if cc = 1 then
begin (*end of line*) k := 0;
end
else goto 2;
3:" ifk = 1 then
begin sy := charcon; inum := ord(stab[sx])
end else
if £ = 0 then
begin error(ersh); sy := charcon; inum := 0
end else
begin sy := string; inum := sx; sleng := k; sx := sx+k
end
end;
#(#: begin nextch;
if ch <> #=*# then sy := Iparent else
begin (*comment*) nextch;
repeat
while ch <> ##+# do nexich,
nextch
until ch = #)#;
nextch; goto 1
end
end;
H+#, #—#, #x#, ), #=H#, # #, #[#, #1#, #;#
begin sy := sps[ch]; nextch
end;
HS#H, #HVH, H@#, #\H#, #:H, HH, BWE, B H,AH, B&HE, #IE
begin error(erch); nextch; goto 1
end
end
end (*insymbol*);

(* enter ---*)
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procedure enter (x,: alfa; x,: object;
X,: types; x5: integer);
begin ¢ := t+1; (*enter standard identifier+)
with zab[¢] do
begin name := x,; link := t—1; obj := xy;
typ 1= x,; ref := 0; normal := true;
lev := 0; adr := x,
end
end (*enterx);
procedure enterarray(ip: types; lh: integer);
begin if [ > & then error(ertyp);
if (abs()>xmax) or (abs(h)>xmax) then
begin error(ertyp); [ := 0; h := 0;
end;
if @ = amax then fatal(4) else
begin a := a+1;
with atab[a] do
begin inxtyp := tp; low := I; high := h
end
end
end (*enterarray*);

procedure enterblock;

begin if b = bmax then fatal(2) else
begin b := b+1; brab[b]. last := 0; btab[b]. lastpar := 0
end

end (*enterblock*);

procedure emir(fct: integer);
begin if Ic = cmax then fatal(6);
codellc). f := fet; Ic 1= lc+1
end (*emitx);
procedure emitl(fct, b: integer);
begin if lc=cmax then fatal(6);
with code[lc] do
begin f := fct; y := b end;
lc:=lc+1
end (*xemitlx);
procedure emit2(fct, a, b: integer);
begin if lc = cmax then fatal(6);
with code[lc] do
begin f := fct; x 1= a; y := b end,;
le :=lc+1
end (*emit2*);
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(> block --*)

procedure block(fsys: symset; isfun: boolean; level: integer);

type conrec =
record 1p: types; i: integer end;

var dx: integer; (*data allocation indexx*)
prt: integer; (xt-index of this procedure*)
prb: integer; (*b—index of this procedurex)
x: integer; .

procedure skip(fsys: symset; n: er);

begin error(n); skipflag := true;
while not (sy in fsys) do insymbol;
if skipflag then endskip

end (*skip*);

procedure fest(s,, s,: symset; n: er);

begin if not (sy in s,) then
skip(s,+s,, n)

end (xtest);

procedure festsemicolon;

begin
if sy = semicolon then insymbol else error(erpun);
test([ident]+blockbegsys, fsys, erkey);

end (*testsemicolon*);

procedure enter(id: alfa; k: object);
var j, I: integer;
begin if 1 = tmax then fatal(1) else
begin tab[Q]. name := id;
j := btabldisplayllevel]]. last; | := j,
while tab[j]. name <> id do j := tabl[j]. link;
if j <> 0 then error(erdup) else
begin 1 := t+1;
with zab[t] do
begin name := id; link := I,
obj := k; typ := notyp; ref := 0; lev := level; adr := 0
end;
btab[displayllevel]). last := t
end
end
end (*enter*);
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function loc(id: alfa): integer;
var i, j: integer; (*locate id in tablex)
begin i := level; tab[0]. name := id; (*sentinel*)
repeat j := btab[display[i]]. last;
while tab[j]. name <> id do j := tablj]. link;
i=i-1;
until (i<0) or (j<>0);
if j = O then error(ernf); loc := |
end (*loc*);

procedure entervariable;
begin if sy = ident then
begin enter(id, variable); insymbol
end
else error(erid)
end (*entervariable*);

procedure constant(fsys: symset; var c: conrec);
var x, sign: integer;
begin ¢. tp 1= notyp; c.i := 0;
test(constbegsys, fsys, erkey);
if sy in constbegsys then
begin
if sy = charcon then
begin c. tp := chars; c. i := inum; insymbol
end
else
begin sign := 1;
if sy in [plus, minus] then
begin if sy = minus then sign := —1,
insymbol
end;
if sy = ident then
begin x := loc(id);
if x <> 0 then
if tab[x]. obj <> konstant then error(ertyp) else
begin c. tp := tab[x]. typ;
c. i := sign*tablx]. adr
end;
insymbol
end
else
if sy = intcon then

141



142 IMPLEMENTATION KIT APPENDIX

begin c. tp := ints ; c. i := sign*inum; insymbol end
else skip(fsys, erkey)
end;
test(fsys, [], erkey);
end
end (*constant+);

procedure typ(fsys: symset; var p: types; var rf, sz: integer);
var x: integer;
eltp: types; elrf. integer;
elsz, offset, t,, t,: integer;

procedure arraytyp(var aref,arsz: integer);
var eltp: types;
low, high: conrec;
elrf, elsz: integer;
begin constant([colon, rbrack, ofsy]+fsys, low);
if sy = colon then insymbol else error(erpun);
constant([rbrack, comma, ofsyl+fsys, high);
if high. tp <> low. tp then
begin error(ertyp); high. i := low. i
end;
enterarray(low. tp, low. i, high. i); aref := a;
if sy = comma then
begin insymbol; eltp := arrays; arraytyp(elrf,elsz)

end else
begin
if sy = rbrack then insymbol else error(erpun);

if sy = ofsy then insymbol else error(erkey);
typ(fsys, eltp, elrf, elsz)

end;

with atablaref] do

begin arsz := (high—low+1)*elsz; size := arsz;
eltyp .= eltp; elref .= elrf, elsize := elsz

end;

end (*arraytyp*);

begin (*typ*) tp := notyp; rf := 0; sz 1= 0;
test(typebegsys, fsys, erid);
if sy in typebegsys then
begin
if sy = ident then
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begin x := loc(id);
if x <> 0 then
with tab[x] do
if obj <> typel then error(ertyp) else
begin tp := typ; rf .= ref, sz := adr;
if tp = notyp then error(ertyp)
end;
insymbol
end else
if sy = arraysy then
begin insymbol;
if sy = lbrack then insymbol else error(erpun);
tp 1= arrays; arraytyp(rf, sz)
end else
test(fsys, [ ], erkey);
end
end (x1yp*);

procedure parameterlist; (*formal parameter list*)
var Ip: types;
rf, sz, x, t,: integer;
valpar: boolean;
begin insymbol; tp := notyp; rf := 0; sz := 0;
test([ident, varsy], fsys+[rparent], erpar);
while sy in [ident, varsy] do
begin if sy <> varsy then valpar := true else
begin insymbol; valpar := false
end;
t, .= t; entervariable;
while sy = comma do
begin insymbol; entervariable;
end;
if sy = colon then
begin insymbol;
if sy <> ident then error(erid) else
begin x := loc(id); insymbol,
if x <> 0 then
with tab[x] do
if obj <> typel then error(ertyp) else
begin tp := typ; rf := ref;
if valpar then sz := adr else sz := 1
end;
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end;
test([semicolon, rparent], [comma, ident]+fsys, erpun)
end
else error(erpun);
while t, < t do
begin ¢, := t,+1;
with rab[¢,] do
begin typ := tp; ref := rf;
normal := valpar; adr := dx; lev := level;
dx 1= dx + sz
end
end;
if sy <> rparent then
begin if sy = semicolon then insymbol else error(erpun);
test([ident, varsy], [rparent]+fsys, erkey);
end
end (*while*);
if sy = rparent then
begin insymbol,
test([semicolon, colon], fsys, erkey);
end
else error(erpun)
end (+parameterlist+);

procedure constantdeclaration;
var c: conrec;
begin insymbol,
test([ident], blockbegsys, erid);
while sy=ident do
begin enter(id, konstant); insymbol,
if sy=eql then insymbol else error(erpun);
constant([semicolon, comma, ident]+fsys, c);
tab(t). typ := c. tp; tab[t]. ref := 0;
tab(t]. adr := c. i,
testsemicolon
end
end (*constantdeclaration*);

procedure typedeclaration,;
var tp: types; rf, sz, t,: integer;
begin insymbol;
test([ident], blockbegsys, erid);
while sy=ident do
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begin enter(id, typel); t, := t; insymbol,
if sy=eql then insymbol else error(erpun);
typ([semicolon, comma, ident]+fsys, tp, rf, sz);
with tab[t,] do
begin typ := tp; ref := rf; adr := sz
end;
testsemicolon
end
end (*typedeclaration*);

procedure variabledeclaration,
var t,, t,, rf, sz: integer;
Ip: types;
begin insymbol,
while sy = ident do
begin ¢, := t; entervariable;
while sy = comma do
begin insymbol; entervariable;
end;
if sy = colon then insymbol else error(erpun);
t =t
typ(lsemicolon, comma, ident)+fsys, tp, rf, sz);
while ¢, < ¢, do
begin ¢, := t,+1;
with zab[t,] do
begin typ := tp; ref := rf;
lev := level; adr := dx; normal := true;
dx .= dx+sz
end
end;
testsemicolon
end
end (*variabledeclaration=);

procedure procdeclaration;
var isfun: boolean;
begin isfun := sy = functionsy; insymbol,
if sy <> ident then
begin error(erid); id := # #
end;
if isfun then enter(id, funktion) else enter(id, prozedure);
tab[t]. normal .= true;
insymbol; block([semicolon]+fsys, isfun, level+1);
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if sy=semicolon then insymbol else error(erpun);
emit(32+ord(isfun)) (xexitx)
end (*proceduredeclaration*);

(* statement--*)

procedure statement(fsys: symset);
var i: integer; x: item;
procedure expression(fsys: symset; var x: item); forward;

procedure selector(fsys: symset; var v: item);
var x: item; a, j: integer;
begin
if sy <> Ibrack then error(ertyp);
repeat insymbol,
expression(fsys+[comma, rbrack], x);
if v. typ <> arrays then error(ertyp) else
begin a := v. ref;
if atab[a]. inxtyp <> x. typ then error(ertyp) else
emitl(21, a);
v. typ := atabla). eltyp; v. ref := atab[a]. elref
end
until sy <> comma;
if sy = rbrack then insymbol else error(erpun);

test(fsys, | ], erkey);
end (*selectorx);

procedure call(fsys: symset; i: integer);
var x: item;
lastp, cp, k: integer;
begin emit1(18, i); (*markstack+)
lastp := btab[tabli]. ref]. lastpar; cp := i,
if sy = Iparent then
begin (*actual parameter list*)
repeat insymbol,
if cp >= lasip then error(erpar) else
begin cp := cp+1; :
if tab{cp]. normal then
begin (*value parameter*)
expression(fsys+[comma, colon, rparent], x);
if x. typ=tab[cp]. typ then
begin
if x. ref <> tab[cp]. ref then error(ertyp) else
if x. typ = arrays then emit1(22,atab(x. ref]. size)
end else if x. typ<>notyp then error(ertyp);
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end else
begin (*variable parameterx)
if sy <> ident then error(erid) else
begin k := loc(id); insymbol,
if Kk <> 0 then
begin if tab[k]. obj <> variable then error(erpar);
x. typ := tablk]. typ; x. ref := tablk]. ref;
if tab[k]. normal then-emit2(0, tablk]. lev, tablk].
adr)
else emir2(1, tablk]. lev, rab[k]. adr);
if sy=Ibrack then
selector(fsys+[comma, colon, rparent], x);
if (x. typ<>tab[cp]. typ) or (x. ref<>tab[cp]. ref)
then error(ertyp)
end
end
end
end;
test((comma, rparent], fsys, erkey);
until sy <> comma,
if sy = rparent then insymbol else error(erpun)
end;
if cp < lastp then error(erpar); (xtoo few actual parameters+)
emit1(19, btab[tabli]. ref]. psize-1);
if tab[i]. lev < level then emit2(3, tabli]. lev, level)
end (xcall*);

function resulttype(a, b: types): types;
begin
if (a>ints) or (b>ints) then
begin error(ertyp); resulttype := notyp
end else
if (a=notyp) or (b=notyp) then resuittype := notyp else
resulttype := ints
end (*resulttypex);

procedure expression;
var y: item; op: symbol,

procedure simpleexpression(fsys: symset; var x: item);
var y: item; op: symbol;

procedure term(fsys: symset; var x: item);
var y: item; op: symbol; ts: typset;
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procedure factor(fsys: symset; var x: item);
var i, f: integer;

begin (*factor+) x. typ := notyp; x. ref := 0;
test(facbegsys, fsys, erpun);
while sy in facbegsys do
begin
if sy = ident then
begin i := loc(id); insymbol;
with tab[i] do
case obj of
konstant: begin x. typ := typ; x. ref 1= 0;
emit1(24, adr)
end;
variable: begin x. typ := typ; x. ref := ref;
if sy = Ibrack then
begin if normal then f:= O else f := 1;
emit2(f, lev, adr);
selector(fsys, x);
if x. typ in stantyps then emit(34)
end else
begin
if x. typ in stantyps then

if normal then f := 1 else f := 2
else
if normal then f := 0 else f := 1;

emit2(f, lev, adr)
end
end,
typel, prozedure: error(ertyp);
funktion : begin x. typ .= typ;
if lev <> 0 then call(fsys, i)
else emit1(8, adr)
end
end (*case, with*)
end else
if sy in [charcon, intcon] then
begin if sy = charcon then x. typ := chars
else x. typ := ints;
emitl (24, inum);
x. ref := 0; insymbol

end else
if sy = Iparent then
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begin insymbol; expression(fsys+[rparent], x);
if sy = rparent then insymbol else error(erpun)
end else
if sy = notsy then
begin insymbol; factor(fsys, x);
if x. typ=bools then emit(35) else
if x. typ<>notyp then error(ertyp)
end;
test(fsys, facbegsys, erkey);
end (*whilex)
end (*factor*);

begin (xterm=)
factor(fsys+[times, idiv, imod, andsy], x);
while sy in [times, idiv, imod, andsy] do
begin op := sy; insymbol,;
factor(fsys+[times, idiv, imod, andsy], y);
if op = times then
begin x. typ := resulttype(x. typ, y. typ);
if x. typ = ints then emit(57)
end else
if op = andsy then
begin if (x. typ=bools) and (y. typ=>bools) then
emit(56) else
begin if (x. typ<>notyp) and (y. typ<>notyp)
then error(ertyp);
X. typ 1= notyp
end
end else
begin (*op in [idiv, imod]*)
if (x. typ=ints) and (y. typ=ints) then
if op=idiv then emit(58)
else emit(59) else
begin if (x. typ<>notyp) and (y. typ<>notyp) then
error(ertyp);
X. typ := notyp
end
end
end
end (*term+);

begin (*simpleexpression*)
if sy in [plus, minus] then
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begin op := sy; insymbol;
term(fsys+[plus, minus], x);
if x. typ > ints then error(ertyp) else
if op = minus then emit(36)
end else
term(fsys[plus, minus, orsy], x);
while sy in [plus, minus, orsy] do
begin op := sy; insymbol;
term(fsys+[plus, minus, orsy], y);
if op = orsy then
begin
if (x. typ=Dbools) and (y. typ=>bools) then emit(51) else
begin if (x. typ<>notyp) and (y. typ<>>notyp) then

error(ertyp);

X. typ := notyp
end
end else

begin x. typ := resulttype(x. typ, y. typ);
if x. typ = ints then if op = plus then emit(52)
else emit(53)
end
end
end (*simpleexpression*);

begin (*expression*);
simpleexpression(fsys+[eql, neq, Iss, leq, gtr, geq], x);
if sy in [eql, neq, Iss, leq, gtr, geq] then
begin op := sy; insymbol; simpleexpression(fsys, y);
if (x. typ in [notyp, ints, bools, chars])
and (x. typ = y. typ) then
case op of
eql: emit(45);
neq: emit(46);
Iss: emit(47);
leq: emit(48);
gtr: emit(49);
geq: emit(50);
end
else error(ertyp);
x. typ := bools
end
end (*expression*);
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procedure assignment(lv, ad: integer);
var x, y: item; f: integer;
(xtab[i]. obj in [variable, prozedure]*)
begin x. typ := tab[i]. typ; x. ref := tabli]. ref;
if tab[i]. normal then f := 0 else f := 1;
emit2(f, lv, ad);
if sy = Ibrack then
selector([becomes, eql]+fsys, x);
if sy = becomes then insymbol else error(erpun);
expression(fsys, y);
if x. typ = y. typ then
if x. typ in stantyps then emit(38) else
if x. ref<> y. ref then error(ertyp) else
if x. typ = arrays then emit1(23, atab[x. ref]. size)
else error(ertyp)
end (*assignment*);

procedure compoundstatement,
begin insymbol;
statement([semicolon, endsy]+fsys);
while sy in [semicolon]+statbegsys do
begin if sy = semicolon then insymbol else error(erpun);
statement{[semicolon, endsy]+ fsys)
end;
if sy = endsy then insymbol else error(erkey)
end (xcompoundstatement*);

procedure ifstatement;
var x: item; lc,, Ic,: integer;
begin insymbol,
expression(fsys—+[thensy, dosy], x);
if not (x. fyp in [bools, notyp]) then error(ertyp);
ley := Ic; emit(11); (xjmpcx*)
if sy = thensy then insymbol else error(erkey);
statement(fsys+[elsesy]);
if sy = elsesy then
begin insymbol; Ic, := Ic; emit(10);
code[lc,}. y := Ic; statement(fsys); codellc,]. y := lc
end
else codellcl]. y := Ic
end (xifstatement*);

procedure repeatstatement;
var x: item; lcy: integer;
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begin Ic;, := Ic;
insymbol; statement([semicolon, untilsy]+fsys);
while sy in [semicolon]+statbegsys do
begin if sy = semicolon then insymbol else error(erpun);
statement([semicolon, untilsy]+fsys)
end;
if sy = untilsy then
begin insymbol; expression(fsys, x);
if not (x. typ in [bools, notyp]) then error(ertyp);
emitl(11, Ic))
end
else error(erkey)
end (xrepeatstatement*);

procedure whilestatement;
var x: item; lc,, Ilc,: integer;
begin insymbol; lc, := Ic;
expression(fsys+[dosy], x);
if not (x. typ in [bools, notyp]) then error(ertyp);
le, 1= Ic; emit(11);
if sy = dosy then insymbol else error(erkey);
statement(fsys); emit1(10, lc,); codellc,]. y := Ic
end (*whilestatementx);

procedure forstatement;
var cvt: types; x: item;
i, ley, Ic,: integer;
begin insymbol,
if sy = ident then
begin i := loc(id); insymbol,
if i =0 then cvt := ints else
if tab[i]. obj = variable then
begin cvt := tabli]. typ;
if not tab[i]. normal then error(ertyp) else
emit2(0, tabli]. lev, tabli]. adr);
if not (cvt in [notyp, ints, bools, chars]) then error(ertyp)
end else
begin error(ertyp); cvt := ints
end
end else skip([becomes, tosy, dosyl+fsys, erid);
if sy = becomes then
begin insymbol; expression([tosy, dosy]+fsys, x);
if x. typ <> cvt then error(ertyp);
end else skip([tosy, dosy]+fsys, erpun);
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if sy = tosy then
begin
insymbol; expression([dosyl+fsys, x);
if x. typ <> cvt then error(ertyp)
end else skip([dosy]+fsys, erkey);
le, := Ic; emit(14);
if sy = dosy then insymbol else error(erkey);
le, 1= lc; statement(fsys);
emitl1 (15, lc,); codellc). y := Ic
end (*forstatement*);

procedure standproc(n: integer);
var i, f: integer;
x, y: item;
begin
case n of
1, 2: begin (*read*)
if sy = Iparent then
begin
repeat insymbol,;
if sy <> ident then error(erid) else
begin i := loc(id); insymbol,
if i <> 0 then
if tab[i]. obj <> variable then error(ertyp) else
begin x. typ := tab[i]. typ; x. ref := tabli]. ref;
if tab[i]. normal then f := 0 else f := 1;
emit2(f, tabli]. lev, tabli]. adr);
if sy = Ibrack then
selector(fsys+[comma, rparent], x);
if x. typ in [ints, chars, notyp] then
emit1(27, ord(x. typ)) else error(ertyp)
end )
end;
test([comma, rparent], fsys, erkey)
until sy <> comma,
if sy = rparent then insymbol else error(erpun)
end;
if n = 2 then emit(62)
end;
3, 4: begin (*write*)
if sy = Iparent then
begin
repeat insymbol;
if sy = string then
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begin emit1(24, sleng); emit1(28, inum); insymbol
end else
begin expression(fsys+[comma, colon, rparent], x);
if not (x. typ in stantyps) then error(ertyp);
emit1 (29, ord(x. typ))
end
until sy <> comma;
if sy = rparent then insymbol else error(erpun)
end;
if n = 4 then emit(63)
end;
5, 6: (*wait, signal*)
if sy <> Iparent then error(erpun) else
begin insymbol; if sy <> ident then error(erid) else
begin i := loc(id); insymbol,
if i <> 0 then if tab[i]. obj <> variable
then error(ertyp)
else
begin x. typ := tab[i]. typ; x. ref := tabli]. ref;
if tabli]. normal then f := O else f:= 1;
emit2(f, tabli]. lev, tabli]. adr);
if sy = Ibrack then selector(fsys+[rparent], x);
if x. typ = ints then emit(n+1) else error(ertyp)
end
end;
if sy = rparent then insymbol else error(erpun)
end; '
end (*case*)
end (*standproc*);

begin (*statement+)
if sy in statbegsys-+[ident] then
case sy of
ident: begin i := loc(id); insymbol;
if i <> O then
case tab[i]. obj of
konstant, typel: error(ertyp);
variable: assignment(tab[i]. lev, tabli]. adr);
prozedure:
if tab[i]. lev <> O then call(fsys, i)
else standproc(tabli]. adr);
funktion:
if tab[i]. ref = display|level] then
assignment(tab[i]. lev+1, 0) else error(ertyp)
end
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end;

beginsy: if id = #cobegin # then
begin emit(4); compoundstatement; emit(5) end
else compoundstatement;

ifsy: ifstatement;

whilesy: whilestatement;

repeatsy: repeatstatement;

forsy: forstatement;

end;
test(fsys, [ 1, erpun)

end (*statement+);

begin (*block*) dx := 5; prt .= I,
if level > Imax then fatal(5);
test([Iparent, colon, semicolon), fsys, erpun);
enterblock; display[level] := b; prb := b;
tab[prt). typ := notyp; tablprt]. ref := prb;
if (sy = Iparent) and (level > 1) then parameterlist;
btab[prb). lastpar := t; btab[prb]. psize := dx;
if isfun then
if sy = colon then
begin insymbol; (*function typex*)
if sy = ident then
begin x := loc(id); insymbol,
if x <> O then
if tab[x]. obj <> typel then error(ertyp) else
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~if tab[x]. typ in stantyps then tab[prt]. typ := tab[x]. typ

else error(ertyp)
end else skip([semicolon]+fsys, erid)
end else error(erpun);
if sy = semicolon then insymbol else error(erpun);
repeat
if sy = constsy then constantdeclaration;
if sy = typesy then typedeclaration;
if sy = varsy then variabledeclaration;
btab{prb]. vsize := dx;
while sy in [proceduresy, functionsy] do procdeclaration;
test([beginsy], blockbegsys-+statbegsys, erkey)
until sy in statbegsys;
tab[prt]. adr := Ic;
insymbol; statement([semicolon, endsyl+[sys);
while sy in [semicolon]+statbegsys do
begin if sy = semicolon then insymbol else error(erpun);
statement([semicolon, endsy]+fsys)
end;
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if sy = endsy then insymbol else error(erkey);
test(fsys+[period], [ ], erkey);

~end (*block*);

(* interpret---x)

procedure interpret;

label 97, 98,
const
stepmax = §; (*max steps before process switch*)
tru = 1; (xinteger value of truex)
fals = 0; (*integer value of falsex)
charl = 0; (xlowest character ordinal*)
charh = 63; (*highest character ordinal*)
type ptype = 0. . pmax; (*index over processes*)
var ir: order; (*instruction buffer*)
ps: (*processor status*)
(run, fin, divchk, inxchk, stkchk, linchk, Ingchk, redchk, deadlock);
Incnt, (*number of lines*)
chrent: integer; (*number of characters in line*)
hy, h,, hy, hy: integer; (*local variables*)
s: array[l. . stmax] of integer; (*the stack+)

(*process table—one entry for each process«)
ptab: array|ptype] of record

t,b, (*top, bottom of stack*)

pc, (*program counterx)

stacksize: integer; (xstack limit+)

display: array[l. . Imax] of integer;

suspend: integer; (*0 or index of semaphore*)

active: boolean (*procedure active flagx)
end;
npr, (*number of concurrent processes*)
curpr: ptype; (*current process executing*)
stepcount: integer; (*number of steps before switch+)
seed: integer; (*random seedx)
pflag: boolean; (*concurrent call flag*)

procedure setran(seed: integer); extern;
function ran: real; extern;
procedure chooseproc;

(*from a random starting point search for a process that is active and not

suspended. d aborts the interpreter if a deadlock occurs.*)
var d: integer;
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begin d := pmax+1;
curpr := (curpr+trunc(ran+*pmax)) mod (pmax+1);
while ((not ptab[curpr]. active)
or (ptab[curpr]. suspend<>0))
and (d >= 0) do
begin d := d—1; curpr := (curpr+1) mod (pmax+1) end;
if d < O then
begin ps := deadlock; goto 98 end
else stepcount := trunc(ran * stepmax)
end;

(*functions to convert integers to booleans and conversely*)
function itob(i: integer): boolean;

begin if i=tru then itob: =true else itob: =false end;
function broi(b: boolean): integer;

begin if b then btoi: =tru else btoi: =fals end;

begin (xinterpret+)
s[1] := 0; s{2] := 0; s[3] := —1; s[4] := btab[1]. last;
with ptab[0] do begin
b := 0; suspend := 0 display[1] := 0;
t := btab[2]. vsize — 1; pc := tab|s[4]]. adr;
active:=true; stacksize := stmax — pmax#*stkincr
end;

for curpr :=1 to pmax do with ptab[curpr] do

begin active := false; display[1] := 0; pc := 0; suspend := 0;,

b := ptab| curpr—1]. stacksize+1; stacksize := b+stkincr—1;

t:=b-1

end;
npr:=0; curpr:=0; pflag:=false;
seed := clock; setran(seed); stepcount:=0;
ps 1= run; lncnt := 0; chrent 1= 0;
repeat
if ptab[0]. active then curpr := 0

else if stepcount = O then chooseproc

else stepcount := stepcount — 1;
with ptab[curpr] do begin ir := code[pc]; pc := pc + 1 end;
if pflag then
begin if ir. f = 18 (*markstack+*) then npr := npr + 1;
curpr := npr
end;

with ptab[curpr] do

case ir. f of
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0:

W

10:
11:

begin (*load address*) t := t+1;
if ¢ > stacksize then ps := stkchk
else s[¢] := displaylir.x] + ir. y
end;

: begin (*load value*) t := t+1;

if ¢ > stacksize then ps := stkchk
else s[¢] := s[display[ir. x] + ir. y]
end;

: begin (*load indirect*) t 1= t+1;

if t > stacksize then ps := stkchk
else 5[] := s[s{displaylir. x] + ir. y]]
end;

: begin (*update display*)

h,:=ir.y; hy = ir. x; hy 1= b;

repeat display[h,] := hy; hy := hy—1; hy := s[h;+2]
until 2, = A,

end; '

: (xcobeginx) pflag := true;
: (*coend*) begin pflag := false; ptab[0]. active := false end,;
: begin (*wait*)

hy:=sltt:=1t—-1;

if s[h;] > O then s[h,] := s[h,] — 1

else begin suspend := h,; stepcount := 0 end
end;

: begin (*signal*)

hy :=s[t]; t := t—1; h, := pmax+1; hy := trunc(ran*h,);
while (h, >= 0) and (ptablh;). suspend <> h,) do

begin k4, := (h;+1) mod (pmax+1); h, := h; —1 end;

if 7,<<0 then s[h,] := s[h,]+1 else ptab{h,]. suspend := 0
end;

: case ir. y of

17: begin ¢ := t+1;
if 1 > stacksize then ps := stkchk
else s[f] := broi(eof(input))
end;
18: begin t := t+1;
if ¢ > stacksize then ps := stkchk
else s[t] := broi(eoln(input))
end;
end;
pc i= ir. y; (xjump*)
begin (*conditional jump*)
if s[¢] = fals then pc = ir. y; t := t—1
end;
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15:

18:

19:

21:

22:

23:
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: begin (*forlup*) h, := s[t—1];
if 1, <= s[¢] then s[s[t—2]] := h, else
begin ¢t 1= t—3; pc:=ir. y
end
end;
begin (*for2up*) h, := s(t=2]; hy := slh,] + 1;
if h, <= s[t] then
begin s[h,) := h, ; pc :=ir. y end
else ¢ := t—3;
end;
begin h, :=btab[tablir. y]. ref]. vsize;
if t+h, > stacksize then ps := stkchk else
begin t := 1+5; s{t—1]) := hy—1;s[t] :=ir. y
end
end;
begin active 1= true; h, := t—1ir. y;
h, := s[h,+4]; (*h, points to tab*)
hy := tab[h,]. lev; display[h;+1] := hy;
hy := s[h,+3] + hy;
s{h,+1] := pc; sTh,+2] := display[hs];
if pflag then s[h,+3] := ptab[0]. b else s[h;+3] := b;
for h, := t+1 to h, do s[h,] = 0;
b := hy;t:= hy; pc := tablh,]. adr
end;
begin (*index*) h, := ir. y; (*h, points to atab*)
h, 1= atablh,]. low; hy 1= s[t];
if h, < h, then ps := inxchk else
if 4, > atab[h,]. high then ps := inxchk else
begin ¢ := t—1; s[¢] := s{f] + (h;—h,)*atab[h,]. elsize
end
end;
begin (*load block) hy := s[t]; t := t—1;
h, := ir. y + t; if h, > stacksize then ps := stkchk else
while ¢t < h, do
begin ¢ := t+1; s[t] := s[h,]; by 1= By +1
end
end;
begin (*copy block*) h, := s[t—1];
h, := s[t]; hy := hy + ir. y;
while /4, < A, do
begin s(h,] := s[hyl; by := hy+1; hy i= hy+1
end;
t:=1t-2
end;
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24: begin (xliteral*) t := t+1;
if ¢ > stacksize then ps := stkchk else s[f] := ir. y
end;
27: begin (xread+)
if eof(input) then ps := redchk else
case ir. y of
1: read(s{s[¢]]);
3: begin read(ch); s[s(t]] := ord(ch) end;
end;
t:=1-1
end;
28: begin (*xwrite string*)
hy = s[t]; hy i=ir. y; t 1= 1—1;
chrent 1= chrent+hy; if chrent > lineleng then ps = Ingchk;
repeat write(stablh,)); h, := h,—1; h, := h,+1
until 2, = 0
end;
29: begin (*writel*)
ifir.y = 3 then h, := 1 else i, := 10;
chrent := chrent+hy;
if chrent > lineleng then ps .= Ingchk else
case ir. y of
1: write(s[t]);
2: write(itob(s[1]));
3: if (s{£]<charl) or (s[t]>charh) then ps := inxcl.«
else write(chr(s[t]))

end;
t:=1t—1
end;
31: ps := fin;

32:t:=b - 1; pc := s{b+1];
if pc <> 0 then b := s[b+3] else
begin npr := npr —1; active := false;
stepcount := 0; ptab[0]. active := (npr = 0)
end
end;
33: begin (*exit function*)
t:= b; pc := s[b+1]; b := s[b+3]
end;
34: s{1] := s[sle]];
35: 5[] := broi(not(itob(s[t])));
36: s[t] := —s[t];
38: begin (*storex) s[s[¢—1]] := s[t]; ¢ := t—2 end;



SEC. A8

45:
46:
47.
48:
49
50:
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57:
58:

59:

62:
63:
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begin ¢ :
begin  :
begin ¢ :
begin ¢ :
begin ¢ :
begin ¢ :
begin 7 :
begin ¢ :
begin ¢ :
begin ¢ :
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t—1; s[£] := broi(s[t] = s[t+1]) end;
t—1; s[t] := btoi(s[t] <> s[t+1]) end;
t—=1; s[t] := broi(s{t] < s[t+1]) end;
t—1; s{t] := btoi(s[t] <= s[t+1]) end;

t—1; s[¢] := broi(s[t] > s[t+1]) end;

t—1; 5[] : = btoi(s[t] >= s[t+1]) end;

t—1; s[t] := btoi(itob(s{t]) or itob(s[t+1]) ) end;
t—1; s[t] := s[f] + s[t+1] end;

t—1; s[t] := s[¢] — s[t+1] end;

t—1; s[t] := btoi(itob(s(t]) and itob(s[t+1])) end;
t—1; s[t] := s[t] * s[t+1] end;

t—1;

if s[t+1] = O then ps := divchk else
s[£] - = s[f] div s[¢+1]

end;

begin ¢t := r—1;
if s[r+1] = O then ps := divchk else
s[t] := s[¢] mod s[t+1]

end;

if eof(input) then ps := redchk else readin;
begin writeln; Incnt := Incnt + 1; chrent 1= 0;
if Incnt > linelimit then ps := linchk

end

end (*case*);
until ps <> run;

98: writeln,

if ps <> fin then
begin
with ptab[curpr] do

write(#0halt at#, pc:5,# in process#, curpr:4, # because of #);

case ps of

deadlock: writeln(# deadlock#);

divchk: writeln(#division by 0#);

inxchk: writeln(#invalid index#);

stkchk: writeln(#storage overflow#);

linchk: writeln(#too much output#);

Ingchk: writeln(#line too long#);

redchk: writeln(#reading past end of file#);
end;

writeln(# Oprocess active suspend pc#);

for /1, := 0 to pmax do with ptab[h,] do
writeln(#0#, hy: 4, active, suspend, pc);

writeln(#0global variables#);
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(*

for h,

1= btab[1]. last + 1 to tmax do

with tab[h,] do if lev <> 1 then goto 97

else if obj = variable then if typ in stantyps then

case typ of

ints: writeln(name,# = # sladr]);
bools: writeln(name,# = #, itob(s[adr]));

chars: writeln(name,# = #, chr(sladr] mod 64));

end;
97: writeln

end (*interpret*);

APPENDIX

begin (*main*)

message(#— concurrent pascal-s#);

key[ 1] := #and
key[ 3] := #begin
key[ 5] := #coend
key[ 7] := #div
key[ 9] := #Helse
key[11] := #for
key[13] := #if

key[15] :
key[17] :
key[19] :
key[21] :
key[23] :
key[25] :
ksyl[ 1]:
ksy[ 3]:
ksy[ 5]:
ksy[ 7]:
ksy[ 9]:
ksy[11] :
ksy[13] :
ksy[15] :
ksy[17] :
ksy[19] :
ksy[21] :
ksy[23] :
ksy[25] :

il

If

It

I

#not
#or
#program
#then
#type
#var
andsy;
beginsy;
endsy;
idiv;
elsesy;

forsy;

ifsy;

notsy;

orsy;
programsy;
thensy;
typesy;
varsy;

#;

e we we we

-

e e ows we o

R

e

key[ 2]

key[ 6]

_ key[ 8]

key[10]
key[12]
key[14]
key[16]
key[18]
key[20]

key[22] :
1= Huntil

1= #while
1= arraysy;
ksy[ 4] :
1= constsy;
:= dosy;

1= endsy;

ksy[12] :
ksy[14] :
= ofsy;
:= proceduresy;
1= repeatsy;
ksy[22] :
ksy[24] :
ksy[26] :=

key[24]
key[26]
ksy[ 2]

ksy[ 6]
ksyl 8]
ksy[10]

ksy[16]
ksy[18]
ksy[20]

:= #array
key| 4] :
1= Hconst

1= #do

:= #end

:= #Hfunction
1= #mod

1= #of

1= #procedure
1= #repeat

= #cobegin

= #to

beginsy;

= functionsy;
= imod,

Il

tosy;
untilsy;
whilesy;

main----+)

e we o we W owe

- - PINRVEN

“s

-
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-
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sps|#+#) := plus; sps[# —#] := minus;
sps|#(#] := Iparent; sps[#)#] := rparent;
sps|#=#) := eql; sps[#,#] := comma,
sps{#[#] 1= lbrack; sps{#1#] .= rbrack;
sps[#"#] 1= neq; sps[#&#] := andsy;
sps|#;#] := semicolon; sps[#*#] := times,

constbegsys := [plus, minus, intcon, charcon, ident];
typebegsys := [ident, arraysy];
blockbegsys := [constsy, typesy, varsy, proceduresy, functionsy,
beginsy];
facbegsys := [intcon, charcon, ident, Iparent, notsy];
statbegsys := [beginsy, ifsy, whilesy, repeatsy, forsyl;
stantyps := [notyp, ints, bools, chars];
lc:=0;ll:=0;cc:=0;ch:=# #;
errpos 1= 0; errs := [ ]; insymbol;
t:=-1;a:=0;b:=1;5x := 0; ¢, := 0
display[0] := 1;
skipflag := false;
if sy <> programsy then error(erkey) else
begin insymbol,
if sy <> ident then error(erid) else
begin progname := id; insymbol; end

end;
enter(# #, variable, notyp, 0); (*sentinel*)
enter(# false #, konstant, bools, 0);
enter(#true #, konstant, bools, 1);
enter(# char #, typel, chars, 1);
enter(#boolean #, typel, bools, 1);
enter(#integer  #, typel, ints, 1);
enter(# eof #, funktion, bools, 17);
enter(#eoln #, funktion, bools, 18);
enter(#read #, prozedure, notyp, 1);
enter(#readln  #, prozedure, notyp, 2);
enter(# write #, prozedure, notyp, 3);
enter(#writeln  #, prozedure, notyp, 4);
enter(#wait #, prozedure, notyp, 5);
enter(#signal #, prozedure, notyp, 6);
enter(# #, prozedure, notyp, 0);

with btab[1] do
begin last := t; lastpar := 1; psize := 0; vsize := 0
end;
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block(blockbegsys—+statbegsys, false, 1);
if sy <> period then error(erpuny);
if btab[2]. vsize > stmax—stkincr * pmax then error(erin);
emit(31); (*halt+)
if not eof(input) then readin;
if errs = [ ] then interpret else errormsg;
99: writeln
end.
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TEXTBOOKS

Concurrent programming is an abstraction of the type of programming that is
common in operating systems, and in fact its study is rooted in the difficulties that
were encountered in programming operating systems. Thus it is not surprising that
other books on this subject deal with operating systems and conversely that books on
operating systems usually have a short chapter on concurrent programming. Excep-
tions are the texts by Holt ef al. (1978) and Brinch Hansen (1973). The text by Holt
describes the construction and use of the CSP/k system for exercising concurrency.
CSP/k uses monitors. The text contains a good description of monitor programming
and of implementation of concurrency. Its treatment of other synchronization primi-
tives is sketchy. :

Brinch Hansen’s text is addressed to about the same level as this book. His
discussion emphasizes the conditional critical region.

Books on operating systems are those by Tsichritzis and Bernstein (1974) at an
elementary level, by Brinch Hansen (1973) and Habermann (1976) at an intermedi-
ate level, and by Coffman and Denning (1973) at an advanced level.

One of my favorite books is Brinch Hansen (1977) which contains a description
of the language Concurrent Pascal (which uses monitors) and the design and listing of
three operating systems.

For an introduction to Pascal, the original reference manual is that by Jensen
and Wirth (1975); there are numerous newer texts such as that by Welsh and Elder
(1979). An introduction to preliminary Ada is provided by Wegner (1980). There is
a newer text by Pyle (1981). Far the design and construction of programs see Welsh
and McKeag (1980). ‘

SOURCES

The preliminary report on the Ada language is Ichbiah (1979). The manual of the
revised language is available from the U.S. Superintendent of Documents, Washing-
ton, D.C. Most of the test of the text is based on the excellent articles by Dijkstra
(1968b) and Hoare (1974) both of which should be read. The dining philosophers
are discussed in Dijkstra (1971) and Hoare and Perrott (1972).
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Conway’s problem is in Conway (1963) and appears again later in Hoare
(1978). While Hoare’s system CSP was the basis for the Ada synchronization
primitives, CSP is different and worth learning. Most current theoretical work is
being done on CSP rather than Ada: Francez (1980) and Apt, Francez and de
Roever (1980). Guarded commands were invented by Dijkstra (1975). Another
formalism for distributed synchronization has been published by Brinch Hansen
(1978).

Lamport’s bakery algorithms are described and proved in his papers of 1974,
1977 and 1979. The exercise attributed to Roussel is found in Kowalski (1979).
The appendix is based on a program that the Author has used for class exercise for
several years. A short description of a preliminary version was published in Ben-Ari
(1981). The Pascal-S report has been reprinted in Barron (1981). More sophisticated
systems are described in Holt et al. (1978) and Kaubisch et al. (1976). If you have
access to Concurrent Pascal (Brinch Hansen, 1977), that is preferable.

The proofs of the programs in the text are semi-formal expositions of formal
proofs I have been working on using temporal logic. If this interests you, places to
start are Manna and Pnueli (1979) for sequential programs and Pnueli (1981) for
concurrent programs. Compare the proof of Dekker’s Algorithm given in this book
with that in the article by Francez and Pnueli (1978). For another approach to
proving concurrent programs see Owicki and Gries (1976).

To test your knowledge of concurrent programming, make the effort needed to

understand the mutual exelusion algorithm in Morris (1979).
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