
Three Counters
Niklaus Wirth, October 2015

This short paper shows, how a simple counter is implemented on various levels of
a system. The System is based on an FPGA, and it also refers to the software
system Oberon. The paper is intended as a tutorial, explaining the structure and
basic functioning of a whole system. It is almost of a philosophical nature :-).

1. The Counter as a Circuit
The underlying device is not a computer, but a field-programmable gate array
(FPGA). The circuit which it represents can be programmed, that is, changed
according to needs. The FPGA consists of gates, registers, memory blocks, and a
configuration memory. This memory is loaded with a configuration from a host
computer, on which the circuit is specified, typically in a hardware-description
language (HDL), and then compiled (synthesized).
For this purpose we use the language Lola. A circuit description (program) is then
translated from Lola to the language Verilog, from where it can be synthesized and
downloaded.
https://www.inf.ethz.ch/personal/wirth/Lola/index.html

MODULE Counter0 (IN CLK50M, rstIn: BIT;
 IN swi: BYTE; OUT leds: BYTE);
REG (CLK50M) rst: BIT;
 cnt0: [16] BIT; (*milliseconds*)
 cnt1: [10] BIT; (*half seconds*)
 cnt2: [8] BIT;
VAR tick0, tick1: BIT;
BEGIN leds := swi.7 -> swi : cnt2;
 tick0 := (cnt0 = 49999);
 tick1 := tick0 & (cnt1 = 499);
 rst := ~rstIn;
 cnt0 := ~rst -> 0 : tick0 -> 0 : cnt0 + 1;
 cnt1 := ~rst -> 0 : tick1 -> 0 : cnt1 + tick0;
 cnt2 := ~rst -> 0 : cnt2 + tick1
END Counter0.

In fact, this is more than a counter. It describes 3 counters. Assuming that the
FPGA is clocked by a 50 MHz oscillator, the first counter cnt0 generates a pulse
tick0 ,every millisecond. The second counter cnt1 generates the pulse tick1 every
half second. This pulse is used to drive the third counter cnt2 that is displayed on 8
LEDs. All counters are synchronous, driven by the same clock, and they can be
reset by the signal rst.

counters

config mem

2. The Counter as the Program
Here we consider the counter as a program. In order to interpret (execute, run) the
program, we need a computer. Fortunately, the FPGA is flexible enough to
represent an entire computer, a processor. We chose the processor RISC
https://www.inf.ethz.ch/personal/wirth/ProjectOberon/index.html. Now the
configuration memory is used to contain the circuit representing the RISC
processor in place of the counters. The program for the counters is now described
in the programming language Oberon
https://www.inf.ethz.ch/personal/wirth/Oberon/Oberon07.Report.pdf. It is compiled
on a host computer and downloaded. The compiled code now resides in a memory
(a BRAM) in the FPGA, and so do the variables of the program.

MODULE Counter1;
 VAR x, y: INTEGER;
BEGIN y := 0;
 REPEAT LED(y); x := 1000000;
 REPEAT x := x-1 UNTIL x = 0;
 y := y+1
 UNTIL FALSE
END Counter1.

Whereas in the first scenario the configuration memory is reloaded, whenever a
new application is to be launched, in the second scenario the configuration
memory remains untouched, and only the new program is loaded into BRAM. The
RISC interpreter is typically loaded on system reset from a small flash ROM.
As an aside, we here point out the apparent similarity of the hardware program in
the first, and the software program in the second scenario. Indeed, the languages
(formalisms) Lola and Oberon have a similar appearance. This hides the inherent
difference between hardware and software. In the first case all elements work
concurrently, all assignments take place concurrently. In a software process they
occur sequentially, strictly one after the other.
What makes the hardware version "run" lies in the difference between variables
(signals) and registers.. The latter delay a signal by one clock cycle And we
consider synchronous circuits only, in which all registers are ticked by the same
clock signal. Only registers thus make time enter the picture.

3. The Counter as a Program within an Operating Environment
In this third scenario, the FPGA is not only to host an interpreter, but to run under
an entire operating system capable of editing, compiling, and loading programs. As
before, the configuration memory contains the RISC interpreter. The program code
and data require a larger memory. It is typically a RAM located physically external
to the FPGA, but rather on the same board as the FPGA.

RISC
interpreter

config mem

Counter1
(program)

BRAM

variables
(data)

BRAM

Now this memory is supposed to always contain a program loader (boot loader).
Upon system reset, not only is the configuration memory loaded with the RISC
interpreter,also the memory is loaded. But after startup, unlike in the previous
scenario, the BRAM containing the boot loader remains untouched.
If memory is located external to the FPGA, there is no built-in mechanism to load
that memory. We circumvent this problem by retaining one FPGA-internal BRAM
(and map it onto the ordinary address space). Now the start-up process loads the
boot loader into this BRAM, and control is transferred to the loaded program after
the loading is completed.

All this boils down to the fact that system reset is far from a trivial process. Still, on
a Spartan-3 board, loading the entire Oberon OS takes less than 2 seconds.

An Afterthought
Most of the millions of owners of computers work in scenario 2. They always use a
single program, a combination of text editor, slide editor, e-mail handler, and an
Internet browser. They do not program. Evidently, they exploit the flexibility and
capability of their computer only to a small fraction.

RISC
interpreter

config mem

programs
and data

BRAM (on chip)

RAM

boot loader

