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1. Introduction 

The hardware description language Lola (Logic Language) was designed in 1990 as an effort to 
present a simple and effective textual description of digital circuits. At that time, the conventional 
style was still graphical (circuit charts), and it was not evident that textual descriptions would 
replace them entirely within 20 years. Also, there were no means available to automatically transfer 
them into physical circuits of electronic components. 

However, field-programmable gate arrays (FPGA) appeared, and although they were far too 
restrictive (small) for most practical purposes, they seemed to be a promising gateway towards 
introducing textual specifications with the hope of future automatic generation of real circuits. That 
this hope was well-founded is now evident. 

The difficult part of implementation in 1990 was not the compilation of the textual descriptions into 
net lists of gates and wires. It was rather the placement of components and routing of wires. And 
this still remains so. But even if this task is achieved, the compiled output is to be down-loaded into 
the FPGA. For this purpose, the format of the data, the bit-stream format, must be known. Whereas 
at the time we obtained this information from two FPGA manufacturers, it is now strictly proprietary 
in the case of the dominating manufacturers, a severe case of interface secrecy. 

In the course of reviving activities of 25 years ago around Oberon, also the hardware description 
language (HDL) Lola reappeared. Now textual descriptions of hardware are common place, the 
preferred languages being Verilog and VHDL. With the view of a teacher, I have the same grave 
objections against them as for the wide-spread programming languages: they are by far too 
complex. Thereby they make it difficult and pitfall-prone for beginners, apart from causing 
headaches for teachers. I felt that Lola could play the same role for HDLs as Oberon for PLs, 
easing learning for beginners and relieving teachers from headaches. 

The solution to make Lola also practically usable now, was not to strive for a straight translation into 
FPGA configurations, but to translate Lola into Verilog (or VHDL), in the same way as many PLs 
are translated not into binary code, but into the language C. This way, unfortunately, does not let us 
avoid the usage of Verilog (or VHDL) compilers with all their idiosyncracies, but it lets us rely on far 
stricter (type) checking and on restriction to "safe" constructs. But the main advantage offered is the 
better structured language with fewer and simpler design rules. 

Another goal was to exhibit the similarities of HDLs and PLs. Common are the concepts of 
declarations and assignments, of variables, expressions and assignments. Module types take over 
the role of procedure declarations, and instantiations that of procedure calls. Recursion is evidently 
impossible. There are also genuine, inherent differences. Whereas the principal idea of programs 
(software) was sequential execution, i.e. reuse of (hardware) facilities for every consecutive 
instruction, the intrinsic property of hardware is parallelism, the concurrent activity of all circuit 
elements. 

As HDLs express static designs, every variable can be attributed (assigned) a value exactly once. 
This makes HDLs amenable to the functional style. Restricting our view to synchronous circuits, the 
concept of time is eliminated like in PLs (in the first place). Time reappears in the difference 
between variables and registers. The latter represent the input value assigned in the previous clock 
cycle, whereas variables appear only in the role of names for expressions. 
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1. The language Lola-2 
This HDL is structured in the style of Oberon, a descendant of Algol and Pascal. It features 
declarations of constants, types, variables and registers. Expressions contain logical and arithmetic 
operators and relations. Expressions are assigned to variables and registers by statements. But 
unlike in Oberon, all assignments are static, and their order is irrelevant. The language is defined in 
https://www.inf.ethz.ch/personal/wirth/Lola/Lola2.pdf 

There are two constructs in Lola which have no counterparts in Oberon; They are the constructor 
and the range, and they are inspired by Verilog. Both form sequences of bits (bitstrings), and they 
breach the otherwise strict typing rules. The range denotes a subsection of a bitstring variable. If x 
is a bitstring (of type [N] BIT, x[n:m] denotes the subrange of bits x[n] ... x[m] with a length of n-m+1. 
(n >= m). A constructor consists of a sequence of elements (fields), each denoting a bit sequence. 
An example, where x and y are variables (of 8 bits each), is 

{x, y[3:0], 10'4, x!2} 

It has a length of 8 + 4 + 4 + 2*8 = 32. 10'4 denotes the integer 10 represented by 4 bits (4'b1010 in 
Verilog), and !2 indicates that x is to occur twice. The high-order fields are listed first. Integers within 
constructors must always be followed by a length indication. 

Two brief examples show the style of Lola: The first is a 4-bit binary counter expressed solely by 
logical expressions.  

MODULE Counter0 (IN clk: BIT; OUT d: [4] BIT); 
 REG R: [4] BIT; 
BEGIN 
 R := {R.3 ^ R.3 & R.2 & R.1 & R.0, (*R.3*) 
   R.2 ^ R.2 & R.1 & R.0, (*R.2*) 
   R.1 ^ R.1 & R.0, (*R.1*) 
   ~R.0}; (*R.0*) 
 d := R 
END Counter0. 

This results in the following translation to Verilog: 

`timescale 1ns / 1 ps 
module Counter0(   // translated from Lola 
input clk, 
output [3:0] d); 
reg [3:0] R; 
assign d = R; 
always @ (posedge clk) begin R <= {(R[3] ^ (((R[3] & R[2]) & R[1]) & R[0])), (R[2] ^ ((R[2] & R[1]) &      
R[0])), (R[1] ^ (R[1] & R[0])), ~R[0]}; 
end 
endmodule 

The second example is also a 4-bit counter, but with reset and enable signals and expressed using 
the addition operator. 

MODULE Counter1 (IN clk, rst, enb: BIT; OUT d: [4] BIT); 
 REG R: [4] BIT; 
BEGIN 
 R := rst -> 0 : enb -> R + 1 : R; 
 d := R 
END Counter1. 

Its translation is 
`timescale 1ns / 1 ps 
module Counter1(   // translated from Lola 
input clk, rst, enb, 
output [3:0] d); 
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reg [3:0] R; 
assign d = R; 
always @ (posedge clk) begin R <= rst ? 0 : enb ? (R + 1) : R; 
end 
endmodule 

Lola allows to specify modules in the form of types. They can be instantiated as variables. If, for 
example, a type is declared as 

TYPE Counter  := MODULE (IN clk, rst, enb: BIT; OUT d: [4] BIT); 
 REG R: [4] BIT; 
BEGIN 
 R := rst -> 0 : enb -> R + 1 : R; 
 d := R 
END Counter 

the variable declarations 

C0, C1, C2: Counter 

instantiate three such counters. They are assigned "values" by assignments such as 
C0(clk, rst, enb0); C1(clk, rst, enb1); C2(clk, rst, enb2) 

where clk, rst, enb0, enb1, enb2 are declared variables. 

As an aside, the type declaration is in analogy to the procedure (type) declaration in programming 
languages, and the instantiations to procedure calls. This facility allows the construction of arrays 
and even matrices of modules, implying the replication of circuits upon compilation. A top-level 
module appears as a module type declaration merged with a single instance. 

The generator facility of Verilog has been omitted from Lola-2 (although it was present in Lola). 
Whether this is an asset or a hindrance is unclear. In any case, it was no impediment to expressing 
a complete processor and its environment . 

https://www.inf.ethz.ch/personal/wirth/ProjectOberon/PO.Computer.pdf 

There is a single generic statement in Lola. It expresses a tri-state port. Early designs of FPGAs 
contained tri-state gates as circuit elements. In more recent desihns, they have been elininated 
(except for ports), because erroneous programming could lead to physical destruction of the entire 
FPGA due to short circuits. A tri-state port io is specified by the symbol INOUT in the module's 
parameter list. Ihe connections are specified by the statement 

 TS(io, in, out, ctrl) 

where 

 io tri-state parameter, 
 in input to the circuit from the port 
 out output from the circuit to the port 
 ctrl control: 0 for input, 1 for output 

 

3. The Lola-2 compiler 
The design of the Lola translator follows quite strictly the principles described in Compiler 
construction (http://www.inf.ethz.ch/personal/wirth/CompilerConstruction/index.html). The main 
module (LSP) is the parser. It relies on the scanner (LSS) translating input character sequences 
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into language symbols. The parser, a top-down, recursive-descent algorithm, requests symbols 
from the scanner by calling procedure Get. The output, generated while reading source text, is not 
another text, but a binary tree. A generator module (LSV), described later, subsequently traverses 
this tree. 

 
The relevant commands are LSC.Compile @  and LSV.List filename. 

The structure of the elements of the tree is defined in a base module (LSB). This is in order to let 
modules generating translations access this tree without having to refer to the parser. The tree's 
elements (nodes) are called Items. Elements that carry a name are defined as extensions of Items, 
and they are called Objects. Every item has a type defined by Type and its extensions ArrayType 
and UnitType. There is the basic type BIT, from which arrays and arrays of arrays can be 
constructed. The list of all declared objects is anchored in the global variable root. 

TYPE Item = POINTER TO ItemDesc; 
 Object = POINTER TO ObjDesc; 
 Type = POINTER TO TypeDesc; 
 ArrayType = POINTER TO ArrayTypeDesc; 
 UnitType = POINTER TO UnitTypeDesc; 
 
 ItemDesc = RECORD 
  tag: INTEGER; 
  type: Type; 
  val, size: INTEGER; 
  a, b: Item 
 END ; 

 ObjDesc = RECORD (ItemDesc) 
  next: Object; 
  name: ARRAY 32 OF CHAR; 
  marked: BOOLEAN 
 END  

 TypeDesc = RECORD len, size:  INTEGER; typobj: Object END ; 
  ArrayTypeDesc = RECORD (TypeDesc) eltyp: Type END ; 
  UnitTypeDesc = RECORD (TypeDesc) firstobj: Object END ; 

 VAR root: Object; 

New items and objects are generated by the function procedures New(tag, a, b) and 
NewObject(class). The main attributes of an item are a tag, typically representing an operator, and 
a data type. The item's branches are a and b. The additional attributes of objects are their name 
and a link next which is used to form lists of variables and registers. 

An item is generated for each occurrence of an operator. For example, the parser routine 
SimpleExpression, (here simplified) analyzes two terms x and y, and calls New: 
 PROCEDURE SimpleExpression(VAR x: LSB.Item); 
  VAR y, z: LSB.Item; 
 BEGIN ... term(x); 
  WHILE sym = LSS.plus DO 
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   LSS.Get(sym); term(y); z := New(add, x, y); CheckTypes(x, y, z); x := z 
  END 
 END SimpleExpression; 

Tag values are 
const = 1;  typ = 2; var = 3; lit = 4; sel = 7; range = 8; cons = 9; 
repl = 10; not = 11; and = 12; mul = 13; div = 14; or = 15; xor = 16; add = 17; sub = 18; 
eql = 20; neq = 21; lss = 22; geq = 23; leq = 24; gtr = 25; 
then = 30; else = 31; next = 32; 

As an example, the following simple piece of text is translated into the tree shown below. 
MODULE M (IN x: BIT; OUT y: BIT); 
 REG z: BIT; 
BEGIN z := x + 1; y := z 
END M. 

 
Apart from parsing the source text and generating the tree, a primary task of module LSP is type 
checking. Every item and object has a data type, and for each operation the compatibility of the 
operand types must be verified and the result type determined. For relations the result type is 
always BIT. Checking for compatibility is done by CheckTypes(x, y, z) in expressions, and by 
CheckAssign(x, y) for assignments. 

These two routines are relatively complex, althouth the rules are quite simple. A complication arises 
from the circumstance that the types of a varibale and the size (no. of elements) are stored in the 
associated type descriptor. However, every integer (literal), every constructor, and every range 
intrinsically defines its own - not explicitly declared - type. As we do not wish to allocate a specific 
type descriptor for each such occurence, the type information (size) is stored in the item 
representing the variable itself. This makes it necessary to access the size in a different - more 
direct - way in the case of integers, constructors, and ranges, requiring case discriminations in the 
checking routines. 

The module type construct is not completely implemented by this translator, but rather tailored to the 
target language Verilog, which does not feature local modules, but instead imports sparately declared 
modules. Here we simply replace a module's body by an arrow sign (^). For example: 

MODULE Counter0 (IN clk: BIT; OUT d: [4] BIT) ^ ; 

This heading suffices to generate instantiations with proper type checking. 

As a consequence of this compiler structure, the generation of target code is entirely separated 
from the parser. Actually, we first designed a module (LSP) visualizing the tree, and only later a 
module (LSV) producing Verilog text. This method eases the construction of generators for other 
target languages. Here are shown the results of translating the two sample modules shown at the 
beginning of chapter 1. 
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`timescale 1ns / 1 ps 
module Counter0(   // translated from Lola 
input clk, 
output [3:0] d); 
reg [3:0] R; 
assign d = R; 
always @ (posedge clk) begin 
R <= {(R[3] ^ (((R[3] & R[2]) & R[1]) & R[0])), (R[2] ^ ((R[2] & R[1]) & R[0])), (R[1] ^ (R[1] & R[0])), ~R[0]}; 
end 
 
endmodule 
 
`timescale 1ns / 1 ps 
module Counter1(   // translated from Lola 
input clk, rst, enb, 
output [3:0] d); 
reg [3:0] R; 
assign d = R; 
always @ (posedge clk) begin 
R <= rst ? 0 : enb ? (R + 1) : R; 
end 
endmodule 

The generator procedure LSV.List traverses the list of declared objects, starting from the global variable 
root, three times. In the first pass procedure ObjList0 visits variables (including parameters) and outputs 
their declarations in the syntax of Verilog. For this purpose, type information is accessed. 

In the second pass, assignments to variables are processed. For simple variables and arrays, the form 
v := x is converted into Verilog's  assign v = x; Also, module instantiations are processed. For example, 
given variable declarations 

clock, reset, enable: BIT; data [4] BIT; 

the Lola instantiation 
C0 (clock, reset, enable, data) 

is transposed into the Verilog statement 
Counter C0 (.clk(clock), .rst(reset), .enb(enable), .d(data)) 

Thereby type compatibility between formal and actual parameters is checked and enforced in the same 
way as for assignments. 

In the third pass, assignments to registers are handled. If no clock is explicitly specified, a default 
variable or parameter clk is assumed. For exmple, the assignments 

R0 := x; R1 := y 

are converted into 
always @ (posedge clk) begin 
  R0 <= x; R1 <= y; 
end 

If a clock is specified, it appears in the always clause.. For example, given the declaration 

REG (clk50) R 

the assignments are converted into 
always @ (posedge clk50) begin 
  R0 <= x; R1 <= y; 
end 

The structure of module LSV is less regular than one might wish. This is mostly due to some 
peculiarities of the syntax of Verilog. For example, the declaration of a matrix A, in Lola simply specified 
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as A: [m] [n] BIT; is declared in Verilog as [n-1:0] A [m-1:0], requiring the last dimension to be treated 
differently from the others. Another example is that parameter lists use commas to separate elements, 
whereas in variable declaration semicolons are used. 

To show the viability of Lola, the entire RISC processor, including its environment and device 
interfaces, has successfully been expressed in Lola: 

(www.inf.ethz.ch/personal/wirth/Lola/index.html) 


