
A Laboratory for a Digital Design Course Using FPGAs

Stephan Gehring Stefan Ludwig Niklaus Wirth

Institute for Computer Systems, Federal Institute of Technology (ETH)
CH−8092 Zurich, Switzerland

{gehring ludwig wirth}@inf.ethz.ch

Abstract. In our digital design laboratory we have replaced the
traditional wired circuit modules by workstations equipped with an
extension board containing a single FPGA. This hardware is
supplemented with a set of software tools consisting of a compiler for
the circuit specification language Lola, a graphical layout editor for
design entry, and a checker to verify conformity of a layout with its
specification in Lola. The new laboratory has been used with
considerable success in digital design courses for computer science
students. Not only is this solution much cheaper than collections of
modules to be wired, but it also allows for more substantial and
challenging exercises.

1 Introduction

In order to demonstrate that what had been learnt in the classroom can actually be
materialized into useful, correctly operating circuits, digital circuit design courses are
accompanied by exercises in the laboratory. There, students select building elements
from an available collection and assemble circuits by plugging them together, by
wire_wrapping, or by soldering. We have replaced this setup by workstations used in
programming courses [1] and equipping them with an FPGA on a simple extension
board. Not only is this replacement substantially less expensive, but it allows for the
implementation of considerably more realistic and challenging designs. This is due to
the large number of available building elements in the form of FPGA cells. Instead of
plugging units together, cells are configured and connected using a graphical circuit
editor. Indeed we consider this laboratory as the application of SRAM_based FPGAs,
where their inherent flexibility is not merely an advantage, but a simple necessity.
After all, a design is not only changed for correction or improvement, but also
discarded upon successful completion, whereafter the FPGA is reused for a next
exercise. Our experience also shows that learning effect and motivation surpass our
expectations, and that simulation by software can no longer be justified as a
substitute for actual circuit implementation. Furthermore, the concurrent design of
test programs on the host computer helps to bridge the perceived gap between
hardware and software, and is a strongly motivating factor, in particular for
Computer Science students.

Whereas the construction of the FPGA_board was a rather trivial matter, most of
the project's efforts were spent on the design of adequate software tools. They
comprise not only a graphical layout editor, but also a small circuit specification
language called Lola and its compiler (Sect. 2). A typical exercise starts with the
formulation of the informally described circuit in terms of this (textual) notation.
The second step consists of mapping it onto the FPGA, i.e. of finding a layout and
entering it with the aid of the layout editor (Sect. 3). Before testing the circuit with
test programs, a second tool, the Checker is applied to verify the consistency of the
layout with the circuit's specification in terms of Lola (Sect. 4).

We stress the fact that these tools have not only proved most useful in digital
design courses, but also adequate and effective in practice.

2 The Circuit Specification Language Lola

In the design of Lola we have made a deliberate effort to let the basic notions of
digital circuits be expressed as concisely and as regularly as possible, making use of
constructs of programming languages, while omitting unnecessary and redundant
features and facilities. The similarity of its appearance (syntax) with that of
structured programming languages is intentional and facilitates the learning process.
However, the reader is reminded that "programs" describe static circuits rather than
algorithmic processes. Although the entire language is defined in a report of some six
pages only, we here choose to convey its "flavor" by showing a few examples rather
than by presenting a comprehensive tutorial.

2.1 Declarations, Expressions, and Assignments

Every variable (signal) is explicitly declared. Its declaration specifies a type (binary,
tri_state, open_collector) and possibly a structure (array dimension). Variables occur
in expressions defining new signal values. The available operators are those of
Boolean algebra: not (˜), and (*), or (+), and xor (−). Expressions are assigned to
variables, thereby defining their value depending on other variables. The frequently
encountered multiplexer operation is defined as

MUX(s: x, y) = ˜s * x + s * y

The following basic operators allow the specification of storage elements and
registers, and thereby of (synchronous) sequential circuits.

SR(s', r') set_reset flipflop
LATCH(g, d) transparent latch
REG(en, d) D_type register with enable and implied clock

2.2 Type Declarations

If a certain subcircuit appears repeatedly, it can be defined as an explicit circuit type
(pattern), whereafter it can be instantiated by a simple statement. Declaration and
instantiation resemble the procedure declaration and call in programming languages.
Inputs appear in an explicit list of parameters. Outputs do not. Instead, they are
treated like local variables, with the difference, however, that they can also be
referenced in the context of the instantiation, namely by their name qualified by the
instance's identification.

Of particular value is the easy scalability of declared types. This is achieved by
supplying a declaration with numeric parameters, typically used to indicate array
dimensions. This kind of parametrization embodies the most essential advantage of
textual specifications over circuit schematics.

2.3 Examples

The first example is a binary adder consisting of N identical units of type ASElement.
Input cin denotes the input carry, and s controls whether z is the sum of x and y or
their difference (Fig. 1).

ci
s

y

x

u

h

v
w

z

cout.1
,
,

.0,
,.0,

,12
,
, .

12
,
, .

12
,
, .

Fig. 1. Add_Subtract Element

TYPE ASElement;
IN x, y, ci, s: BIT;
OUT z, co: BIT;
VAR u, h: BIT;

BEGIN u := y − s; h := x − u; z := h − ci; co := (x * u) + (h * ci)
END ASElement;

TYPE Adder(N);
IN cin, sub: BIT;

x, y: [N] BIT;
OUT cout: BIT;

z: [N] BIT;
VAR AS: [N] ASElement;

BEGIN AS.0(x.0, y.0, sub, sub);
FOR i := 1 .. N−1 DO AS.i(x.i, y.i, AS[i−1].co, sub); z.i := AS.i.z END ;
cout := AS[N−1].co

END Adder

The second example shows a multiplier with N_bit inputs x and y and a 2N_bit output
z. The circuit consists of a matrix of identical adder elements (Fig. 2). The first
parameter is the product of multiplicand and multiplier.

0

0

0

0

0 0 0 0

MMMM

M M M M

MMMM

M M M M

z7 z6 z5 z4 z3

z2

z1

z0

y3 y2 y1 y0

x3

x2

x1

x0

KKK K

K K K K

KKKK

K K K K

K

K

K

Fig. 2. Multiplier

TYPE AddElement;
IN x, y, ci: BIT;
OUT z, co: BIT;

BEGIN z := (x−y) − ci; co := (x * y) + ((x−y) * ci)
END AddElement;

TYPE Multiplier(N);
IN x, y: [N] BIT;
OUT z: [2*N] BIT;
VAR M: [N][N] AddElement;

BEGIN
FOR j := 0 .. N−1 DO M.0.j (x.0 * y.j, '0, '0) END ;
FOR i := 1 .. N−1 DO

M.i.0 (x.i * y.0, M[i−1].1.z, '0);
FOR j := 1 .. N−2 DO M.i.j (x.i * y.j, M[i−1][j+1].z, M[i][j−1].co) END ;
M[i][N−1] (x.i * y[N−1], M[i−1][N−1].co, M[i][N−2].co)

END ;
FOR i := 0 .. N−2 DO z.i := M.i.0.z; z[i+N] := M[N−1][i+1].z END ;
z[N−1] := M[N−1].0.z; z[2*N−1] := M[N−1][N−1].co

END Multiplier

Our last example is a binary up/down counter with the three control inputs en
(enable, carry input), clr' (clear), and up (indicating the counting direction).

TYPE UpDownCounter(N); (*with load, enable and clear*)
IN ld', en, clr', up: BIT; x: [N] BIT;
OUT Q: [N] BIT;
VAR cu, cd: [N] BIT;

BEGIN
Q.0 := REG(MUX(ld': x.0, Q.0 * clr' − en)); cu.0 := Q.0 * en; cd.0 := ˜Q.0 * en;
FOR i := 1 .. N−1 DO

Q.i := REG((MUX(ld': x.i, Q.i − MUX(up: cd[i−1], cu[i−1]))) * clr');
cu.i := Q.0 * cu[i−1]; cd.i := ˜Q.i * cd[i−1]

END
END UpDownCounter

2.4 The Compiler

Unlike a compiler for a programming language, which generates executable code, the
Lola compiler generates a data structure representing the circuit that is most
appropriate for further processing by various design tools, ideally by an automatic
layout generator. Other tools are timing analyzers, fanout checkers, and simulators.
In our case, the most important tool is the Checker, which verifies a given layout
rather than generating one. The data structure generated by the compiler consists of a
binary tree for each variable occurring in the design. Hence the compiler flattens the
structured description. It also applies obvious simplification rules. They take effect,
for example, at the edges of the matrix of the second example above, where some of
the input parameters are zeroes.

3 The Layout Editor

A graphical editor is used to enter and modify circuit specifications implemented on
an FPGA. It presents the FPGA at a low level, as close to the real hardware as
possible. We first present the used FPGA architecture and then give a description of

the editor's mode of operation and its implementation.

3.1 The Hardware

In our laboratory, an extension board containing an FPGA of Atmel (formerly
Concurrent Logic Inc.) is used [2]. The AT6002 chip in an 84_pin package consists of
a matrix of 32 by 32 identical cells. A cell implements two functions of up to three
inputs (A, B, and L). These functions can be combinational and sequential (i.e.
involving a register). Two outputs (A and B) of a cell are connected to the inputs of
its four neighbors (north, south, east, and west). In addition to the neighbor
connections, there is a bussing network connecting bus inputs and outputs of eight
cells in a row or column. These so_called local busses are used to transport signals
over longer distances between cells. They can be connected to other local busses or to
additional express busses via repeaters at 8_cell boundaries. Surrounding the array of
cells are 16 programmable IO pads on each side. These connect to the bus of the host
workstation and to components on the extension board, such as an SRAM and an
RS−232 line driver.

3.2 Design Representation and Modification

The editor presents the gate array in a viewer as an excerpt of the 1024 cells (Fig. 3).
Every eight cells, a repeater column or row is displayed, and surrounding the array,
the programmable pads are shown. Each component's contents reflect the
implemented function as closely as possible _ e.g. an Exclusive_Or in a cell with a
constant one input is displayed as a Not_gate. To show the signal flow, connections
between cells and to and from local busses, and connections with repeaters are
displayed as arrows. By giving neighboring connections a different color (yellow)
than local (green) and express busses (red), a visual feedback on the speed of a
specific connection is suggested. Inside a cell, the same picture is displayed
regardless of the source and destination direction of signals. For instance, even if
signals enter a cell from below and flow to the top, the picture inside the cell
suggests a flow from top to bottom. The reason for this will be explained in Sect.
3.3.2. To give signals a meaningful name − and to enable a link to a Lola description
of a circuit (see Sect. 4) − textual labels can be placed at cell and pad outputs.

Fig. 3. Editor View with Cells, Pads, Repeaters, and Labels

The mouse is used as the primary input device to change a design. Cells, pads, and
repeaters can be edited using popup menus (Figs. 4, 5). The top row of the menu in
Fig. 4 shows the six different routing modes possible in a cell, and the four items on
the left of the bottom row show the state of a cell [2]. The two multiplexers on the
right are an often used combination of routing mode Mux and states Xor or Xor with
register. Similarly, all possible configurations for repeaters (Fig. 5) and pads (not
shown) are presented through a menu. The current configuration of the edited
resource is highlighted in the menu with a frame. Connections between cells must be
entered manually as no automatic router is provided. Thus, students learn about the
problems of placement and routing in FPGAs. Fast replication of data path elements
is available by selecting and copying bit slices of the layout. Cells can also be moved
or copied across viewer boundaries in which a different design or a different excerpt
of the same design is shown.

Fig. 4. Cell Menu

Fig. 5. Repeater Menu

3.3 Implementation

The editor consists of five modules comprising roughly 65KB of object code. The
following sections discuss some of the finer points of the implementation.

3.3.1 Data Structures

We use a straight_forward data structure to represent the various resources on the
FPGA. A two_dimensional array of cell records represents the matrix of cells. This
allows for fast iteration over the data structure when displaying it. Similarly, the
repeaters and pads are represented as arrays of records. The labels, however, are a
linked list of records containing the position and caption of a label. Designs are
saved to disk using a portable data format. A simple run_length encoding of empty
cells, pads, and repeaters compresses typical files to 23% of their original size. Even
large designs take up only 8KB, whereas smaller designs remain well under 1KB.

3.3.2 Drawing Operations

For drawing the contents of a cell, we use a special font containing only the patterns
of signals flowing from top to bottom. Thereby, we get fast drawing of a design
without having to distinguish between the 384 possible signal flow directions, but at
the cost of a fixed aspect ratio and non_optimal print output. Making the distinction
and drawing a cell's contents with multiple lines and dots slows down the
performance by 50% and increases the program size by 100%. Repeaters are drawn
using a font as well, but here, a special pattern exists for each possible signal flow.
Despite the disadvantages when using a font, the chosen solution works well in
practise. A special display option can be set where only used cells and busses are
drawn. Not only does this improve display speed, but it also avoids a cluttered view.

3.3.3 Editing Operations and Undo

The problem of displaying three different menus has an elegant solution using a
generic procedure. This procedure takes two procedure variables as parameters, one
for displaying the contents of each menu item, and one for updating the data
structure according to the chosen item. Thereby, the code for configuring cells, pads,
and repeaters remains the same, only the procedure variables and the number of
rows and columns in the menu change.

Each editing operation can be undone. This is accomplished by backing up the
data structure before executing the operation. Then, a simple swap between the
backup and the primary data structure implements the undo (and redo) operation.

3.4 Command Module and Queries

Operations that are not frequently used are provided through a command module
[3]. Clock and reset lines are set with commands. Labels, cells according to their
coordinates, and whole arrays according to a prefix, can be located in a design.
Statistics on the design are also provided, with which different implementations of
the same specification can be compared against each other (according to bus
utilization and the number of cells used for routing, logic, and registers).

3.5 Downloading to the Extension Board

Once a design is finished, it can be downloaded onto the FPGA in a few
milli_seconds. Only during this step, simple electrical consistency checks are
performed, such as multiple sources writing to a bus unconditionally, and
incompletely configured cells.

3.6 Discussion

For the intended purpose the chosen implementation worked out very well. The fast
adaption of all users to our system was encouraging and the positive feedback very
rewarding. In the future, we will provide configurability of the editor to support
various chip sizes and IO configurations. Research_wise, we intend to develop design
automation tools that support a seamless integration between the specification of a
circuit and the automatically laid out design.

4 The Checker and Analysis Tools

4.1 The Checker

In a digital design laboratory, a typical design cycle might look as in Fig. 6. After
initial design entry with the editor, the designer downloads the design onto the
FPGA. By configuring the FPGA, the circuit is implemented and can be tested
subsequently. If the test fails, the design is corrected, downloaded, and tested anew.

Done

No

Yes
OK?

Design
Correct

Circuit
Test

Design
Download

Design
Enter >

<
:

> > >

Fig. 6. Design Cycle

While downloading and testing a design is usually a matter of seconds or minutes,
correcting a faulty design can be very tedious. Mostly, this comes from the fact that,
while it is easy to detect an error, it is hard to find its location in the design. In
traditional laboratories with electronic components being plugged together, the
designer must verify manually that each component is properly wired. Our
software_based approach, by contrast, offers the opportunity to construct a circuit
checker program that helps the designer not only to detect, but also to locate
implementation errors.

4.1.1 Representing and Checking Designs

A digital circuit is characterized by its inputs, outputs, and a set of Boolean functions
combining the inputs. Each circuit output is associated with the result of such a
function. The function can be represented as a binary tree with nodes consisting of
Boolean constants, operators, variables, and units composed of several operators
(e.g. multiplexers, registers). Each output forms the root of such a binary tree. A

complete circuit can thus be represented as a set of trees, one for each output. Inner
tree nodes represent operators with edges pointing towards the node's inputs, while
leaf nodes represent constants and input variables.
Fig. 7 illustrates the equivalence between a Boolean function represented as a set of
interconnected gates, a binary tree, and a Boolean formula.

en

x

e

.1
,
,

.0,
,u

v

z

D Q

e x

↑

u v

*

+

z

z := u*v + REG(e, x)

Schematic Tree Lola

Fig. 7. Circuit Representations

Since the above representations of a circuit are equivalent, both a circuit layout and a
Lola program can be transformed into a set of trees. Corresponding trees can then be
compared to detect inconsistencies. Under the assumption that the Lola program
describes the circuit correctly, i.e. it properly reflects a circuit specification,
inconsistencies between corresponding pairs of trees are interpreted as errors in the
layout, i.e. the circuit implementation.

The checker strives to find a structural equivalence between the specification and
the implementation trees. It starts at the roots of two respective trees and, in parallel,
traverses both trees from the roots towards the inputs. At each pair of nodes, the
checker verifies that the two nodes match. If they match, the nodes' subtrees are
checked for equivalence recursively. The procedure terminates when all nodes have
been visited or a mismatch is detected.

Existing verifiers, such as automated theorem_provers [4], attempt to find an
equivalence between Boolean equations by transforming them until equivalence (or
its opposite) is inferred. This scheme is more flexible than matching for structural
equivalence and allows for different levels of abstraction between the specification
and the implementation. While such verifiers are well suited to detect inconsistencies,
they typically fail in pinpointing the fault in the layout. The information needed for
this purpose is either left out or lost during the transformations applied to the
Boolean equations. This loss makes it impossible to locate an implementation error
automatically and leaves the designer with the labor of locating it in the layout
manually.

The checker, by contrast, keeps the information required to locate a part in the
layout within each node. With this information available, an implementation error
can not only be detected but also located in the faulty layout.

4.1.2 Using the Checker

The first step in the checking process is writing a Lola specification for the circuit.
This program is compiled by the Lola compiler which generates a set of trees as its
output. The trees can be viewed in a textual format as a set of Boolean equations. The
output can be used as a reference in the next step when entering the design with the
editor. The checker is then invoked to check the implementation for compatibility
with the specification. Inconsistencies between the two are displayed textually and

graphically in the layout. The checker can check complete layouts but may also be
used during design entry to check partial layouts (e.g. for checking bit slices of a data
path).

4.1.3 Implementation

In order to make the implementation of the checker simple and extensible, the
architecture_dependent extraction part is decoupled from the architecture_
independent matching part. The extractor converts the FPGA_dependent re_
presentation of circuits used by the editor into an architecture_independent set of
trees. The matcher then verifies compatibility with the set of trees generated by the
Lola compiler. This separation allows easy adaption to a new FPGA architecture by
simply exchanging the extractor component. The extractor follows the signals from
the output towards the inputs. Extraction stops at labels and constants found in the
layout. When returning from the leaf nodes, the tree is constructed. Already during
extraction certain checks are performed, such as detecting unconditional outputs to a
tri_state bus or reading from an undefined source. The extractor also recognizes
certain combinations of gates and converts them to more abstract operators, such as

q := ˜(s' * ˜(r' * q)) _> q := SR(s', r')

q := MUX(en: q, x) _> q := LATCH(en, x)

Once the trees are extracted, the matcher checks corresponding pairs of trees for
compatibility. The trees generated by the Lola compiler are used as a reference while
the trees extracted from the circuit are examined.

Earlier, we mentioned that the checker searches for a structural match between
two corresponding trees. Demanding an exact structural match would require the
designer to specify the circuit exactly the same way as it is later implemented. As this
is too restrictive, the checker allows a number of transformations being applied to
the trees. Since the goal is still to locate detected errors in the layout automatically,
transformations must preserve the information needed for this purpose. The
structural matching rules are relaxed and allow the following transformations:

1. Inverters. Architectural constraints imposed by FPGAs sometimes require the
designer to connect parts of a circuit through successive inverters. For example, if
an AND gate is implemented with a NAND gate, an inverter must follow the
NAND gate, hence there are two inverters in series. The checker allows an
arbitrary number of inverter nodes between any two nodes.

x = ˜(˜x)

2. DeMorgan's Laws. The checker applies the laws of DeMorgan when necessary.
For instance, the AT6002 FPGA cell lacks an OR gate. An OR gate is therefore
usually implemented as a NAND gate with inverted inputs. This
architecture_dependency should, however, not reflect in the specification where
the OR operator is used instead.

x + y = ˜(˜x * ˜y) x * y = ˜(˜x + ˜y)

3. Commutativity. The representation of a dyadic Boolean operator as a node of a
binary tree introduces an inherent order, by which its subtrees are compared
(e.g. "compare left specification subtree with left implementation subtree"). For
commutative operators (AND, OR, XOR), this order cannot be determined
beforehand and the checker potentially matches both possibilities. Since the trees
generated by the Lola compiler have a typical height of less than five, there is no
apparent performance penalty associated with commutativity.

x * y = y * x x + y = y + x x − y = y − x

4. Associativity. As with commutativity, associativity is an inherent property of
binary trees. The checker supports only simple cases of associativity.

y * (x * (u + v)) = (u + v) * (x * y)

5. MUX selectors. For greater flexibility, multiplexers may be implemented with an
inverted selector signal and accordingly exchanged input signals.

MUX(s: x, y) = MUX(˜s: y, x)

6. OR/AND with MUX. It is sometimes more convenient to implement OR gates or
AND gates using multiplexers. The checker recognizes the MUX representations
as equivalent.

x + y = MUX(x: y, '1) x * y = MUX(x: '0, y)

All of these transformations can be applied to trees without losing information
needed to locate errors in the layout after a mismatch.

Combined, the transformations make the checker a flexible and efficient tool for
checking layouts. Its speed and its capability to check only parts of a design make it
well suited for interactive use during design entry.

Microcontroller 770 240 < 4 s

8x8 Multiplier 440 230 < 2 s

UART 240 100 < 1 s

Design AT6002 Cells Used Lola Variables Total Checking Time

Table 1. Checking Performance (80486, 33MHz)

4.2 The Timing Analyzer

Once a circuit is designed with the editor and its correct layout verified with the
checker, the question about the circuit's performance arises. To determine the
maximum operating speed of a given synchronous circuit a timing analysis tool is
required. We have developed a timing analyzer which is capable of analyzing
combinational and sequential circuits efficiently. It can be used interactively from
within the editor during design entry but also provides a simple programming
interface which can be used by future design automation tools. It provides
commands to determine the maximum input delay between a given output and all of
its inputs or only a specific input. If a circuit contains parts with fan_outs greater than
one ("common subexpressions") their input delays are calculated only once to save
computation time.

5 Conclusions

We presented an FPGA system consisting of an extension_board with an Atmel
AT6002 FPGA and a set of simple and efficient software tools used to develop circuits
for the board. The software consists of a compiler for the Lola language, a small
hardware description language for synchronous digital circuits, an easy_to_use
graphical editor with which layouts are entered with simple mouse manipulations,
and a loader to configure the FPGA with layouts entered with the editor. Additionally,
a circuit checker was implemented which performs a consistency check between a
circuit specification in the form of a Lola program and its implementation within the
editor. Inconsistencies are not only detected but also located within the layout
displayed in the editor.

The software part was designed and implemented in Oberon [3] by three people in
three months and consists of 13 modules containing about 6500 lines of code. Two
weeks were spent developing the extension_board.

We have been using the system successfully in a laboratory for introductory
courses in digital design. Due to its simplicity, the students learned to use the system
quickly and were able to solve the given exercises. The exercises range from simple
binary counters to a UART. At the Institute, we use the same system for experiments
with programmable hardware.

All in all, we can only recommend using FPGAs in education. Their flexibility and
quick reprogrammability allow interesting and diverse problem statements. By using
real hardware instead of a simulator, the students also have to cope with the "real"
problems of digital design such as good placement, economical routing, timing, and
synchronization between components. Last, but not least, the chosen solution is an
order of magnitude more cost effective than conventional laboratories using discrete
MSI components and physical wiring.

Acknowledgements

We wish to thank I. Noack for implementing and testing the extension board.

References

1. B. Heeb, I. Noack, Hardware Description of the Workstation Ceres−3, Technical
Report 168, Institute for Computer Systems, ETH Zurich, Switzerland, October
1991

2. Atmel Corporation, San Jose, CA. Field_Programmable Gate Arrays, AT6000 Series.
1993

3. M. Reiser. The Oberon System − User's Guide and Programmer's Manual.
Addison_Wesley, Reading, MA. 1991.

4. R.S. Boyer, J. Strother Moore, Proof_Checking, Therorem_Proving, and Program
Verification, Contemporary Mathematics, Vol. 29, American Math. Society, 1984,
119_132

