
---~inc
KalM IYIU.)' aR...,, „.., ,.,..,.,,,,

•••••••••••••••merno•••••••••••••••
To: Development Tools Group, Operating Sy·stems Group, Numerics Group, Eric

Herslem, Lerry Tesler, Pete Creuman, steve Luckau, Paul Williams, Berry
Haynes, Susan Keohan, Chris Espinosa, Ceroline Rose, Jerome Coonen

From: Katie Withey, x 3596

Date: 1' Fet>ruery 64

Re: Internals Documentation

•••••••••••••••••••••••••••••••••••

Attatched is the fint draft of the Lisa Development S}1stem Jnternals Documentation.
Please note that this is a living document; changes will be made, end no pert of it js
guarenteed to be accurate. If you have any changes or corrections_, PLE ASE don't just
merk them in your copy; tell me about them. Suggestions for inclusions in the next
release ere also welcome.

Preface

lhe purpose of thh document is to explain/the internal itruct.ures and algorithms used
by the Ltsa's run-time erwironment and development tools, and the internal library
units (such as OBJIOLIB and SULIB) that ere related only to Lisa systems software. lt
is actually a collection of documenh and memos, any or which cen be used
separately, all relating to different aspects of the sytt.em.

lhis is a reference document for programmen working on the following:

• Maintaining or enhancing exirting Lisa development software.

• Writing compilers or utilities for the Lisa Workshop, elther on contract with Apple
or as third-party independanh.

• Writing auembly-le.nguage programs that will interf ace with our compiled code.

How will they benef it from thb document?

• lt will save the people maintaining tools the trouble of looking through the code
themselves to find inf ormatior..

• lt will save out.dde programmen, who don't have acceu to the code, from ce.lling
us to ask questions about things that we have to look up in the code.

• Parts of it will be included as a ref erence section in technical contracb that we
assign to outside programmers.

• lt will provide assembly-language programmers with such specifics e.s register
conventions, pm-ameter-passing techniques, and memory layouh used by the
compiler f or different types of arrays and structures.

• lt can be uied to train new syitems ioftware programmen on the existing internah
of the system.

16-JanuBJ'}„-84 Preface

Contents

Lisa Development Software Dcicurnentation: A Road Map

Pascal Compiler Directives
Pascal Code-Cruncher' s He.ndbook

Tt1e Last Whole Eexth Text File Format

Pascal's Packing Algorithrn
PASLIB Procedure Interface

PaslibCall Unit
PPaslibC Unit.: Privil eged PASLIB Calls

Floating-Point Libraries

Standard Unit

Execution Environment of the Pascal Compiler
Intrinsic Unit.s Mechanism (overview)

IUManager (old and "spring release" versions)

Objec:t File Formats
Interface to OBJIOLIB

Format of .SYMBOLS File

Using LisaBug
Shell-VJriter's Guide

Contents

JrUoduction

Lisa Development Software
Documentation:

A Road Map

This road map was designed to help you to find your Wt!f!I around the verious
documents describing pro gram development f or the Lisa lt will help you decide
which softwere you need to learn more about, which softwere you ce.n ignore f'or the
moment, and how you should proceed in studying the rest of the technical
documentatiora.

General CNerview rl the EnJironmems Available

There are as many ways of writing programt as there are creative programmen.
However, Apple supports only three general styles of programs that you can write for
the Uia: those written f or 1) the Workshop environment, 2) the QuickPort
environment, and 3) the ToolKit environment. Programs written f'or any of these
environments can use most of the same unib and libraries, but. there are some
importent diff erences of which you should be aware.

The Workshop (Figure 1) provides a simple non-window, chsracter and graphic
environment within which a program may run. Prograrns writt.en to run in thh
environment may use Pescal's built-in 1/0 for both files end textual display to the
console's terminal emulatcr, or they may directly utilize the Lisa OS's file system
primitives. They may also use the QulckDraw unlt ror drawing bitmap graphics and
displaying text in a variety of fonts with various attributea, and mS)' ut.ilize a variety
of other useful librery routines. These prograrm are not able to use the Lisa Desktop
libraries dealing with windows, menus, and die.log boxes, nor do they have easy access
to Lisa Office System documenb.

In addition to pravidlno these run-time fecilities, the Workshop also includes a
command shell which makes available __ to usen an extensive set of facilities for: 1)
lnteractive program development in Pascal, Assembly, BASIC, and COBJL; 2) File and
device manipulation; and 3) Interactive end bat.eh program execution and control.

t;luick.Port (Figure 2) provides the simplest Desktop erwironment, at least from the
programmer's viewpoint. In most respects, writino a program rm the QuickPort
environment is identical to writing one for the Workshop err-Jironment. Using Pascal'$
built-in 1/0 racilities, programs written for QulckPort may do textual display to a
variety of window-based terminal emulaton, and may also display graphics using
QutckDraw. These programs do not directly use the Lisa Desktop Ubrerles, and ere, in
fact, unaware of such things as the window err-Jironment, the mouse, and menus. They

14-FebrUBl}P-84 Road l'lap-1

Internsls II Conf'i dent i sl

may, however, exche.nge information with Lisa Office System documents via the
Cut/Paste mechanism.

lhe To.oJKit (Figure 3) provides the most complete access to the Desktop facilities.
From the programmer's viewpoint, it also requires the most knowledge of these
facilities. Programs writ.ten using the ToolKit ute the Generic Application and may
use any or the ToolKit building blocks, which provide easy, controlled e.cceu to the
Lisa Desktop libraries, the mause, and menus. They may also exchange information
with Lisa Office System documents vie. the Cut/Paste mechanism.

Olerview fl the Pieces

(/uiclcPal't is e. set of units that ere USEd end linked with e program which is to be
run in the Desktop environment. QuickPort then provides the proaram with a
'terminal window", to which the program's console 1/0 mey be directed through the
use of Pascal's built-in Text 1/0 facilities. The program simply makes Readln and
Writeln calls to dbplay text or receive keybom-d input. QuickPort code hides from
the proaram such issues as cuttino end pasting inf ormatior1 from other Desktop
epplications, communicating with the Desktop shell, growing end shrinking the window,
covering and uncovering the window, end activating or deactivating the prograrn. For
e. program using QuickPort, such iuues are of no concern.

The Tooll<Jt 1s a set of libraries that provides stendard Lisa application behe:vior,
including windows that can be moved, resized, and scrolled, pull-down menus with
st.anderd functions such es saving and printing„ and the Cut/Paste mechanism. The
ToolKit defines the parts of an applice.tion common to all Lita applice.tions. The
object-oriented structure of the ToolKit allows you to implement your application as
extensions to the "Generic Application".

The U111 ~lllinfl ~ provides the progre.m with an environment in which
multiple processes can coexist, with the ability to communicate end share data. lt
provides a device-independent file system f or I/O e.nd inf ormation storage, and handles
exceptions (softwere interrupts) and memor~ management for both code and data
iegments.

PASLIB is the Pascal run-time support librmy. Most or the routines in PASLIB
support the Pascal built-in facilities, including routines rar initialization, integer
arithmetic, data and st.ring manipulation, sets, range checkino, the heap, end IJO.

Flolltillfl PoiM U/Jrllri• provide numeric routines which implement the proposed IEEE
Floating Point. Standard (Standard 7~ f or Binary Floating-Point Arithmetic), and
higher-level mathematical algorithrm. FPUb provides Sinole (32-bit), Double (64-bit),
end Extended (80-bit) floating-point dsta types, a 64-bit Integer data type, convenion
trom one arithmetic type to another (or to ASCII), arithmetic operations,
transcendental functions, end tools tor handling exceptiona. Mltti..ib provides, among
othen, algorithms such as extra element.ary functions, smting, extended convenion
routines, f inencial analysis, zeroi o1 functions, e.nd linear elgebre..

(f1ulcldJnlw ls a unit for doing blt-mapped graphlcs. lt comlsts of procedures,
functioni, and data types you need to perf orm highly complex graphic operations very
easily e.nd very quickly. You can drew text characters in a number of fonts, with

Road „lltp-2

Internsls II Confi dent i sl

variations that include boldface, ite.lic, underlined, and outlined; you can draw
arbitrary or predefined shapes, either hollow or filled; you can draw straight lines of
erry length and width; or you can draw any combination of these items, with a dngle
procedure call.
The De#ctap Lillnri111 provide window, graphics, mouse, and menu routines used by
811 Office System applications. They ere not directly called by any programs written
for the three run-time environments dbcuned here, but provide the hidden f oundat.icm
f or both the QuickPort and the T oolKit environments.
The Htrdwllr11 lntlJdace unit lets you access Lisa herdwsre elemenh such es the
mouse, the cursor, the display, the contrast control, the speaker, the keyboerd, the
micro- and millisecond timen, and the hardware clock/calendar.
The Slllndtrd Utit lets you do atrir1g, character, and file-name manipulation„
promptino, retrieval of messages from disk files, abort exec file processing„ and
convenions between numbers end strings.
The IJPl'imltAles unit provides you witta fast„ efficient text-file tnput and output.
The Pra,am Communi~ion unit allows prograrns to communicate with each other
and with the Workshop shell.

Ll#!Jalg allows you to examine and modify memory, set breakpoints, assemble and
disassemble instructions„ and perform other functions tor run-time debugging.

Mme Detail

QuickPmt: A program which is to make full use of the capabilities of the Lisa Office
System will be structured as an endlen loop„ within which the program continually
polls the Window Manager f or any events it should respond to. We will refer to such
a program as an lnt•ated Ftogrll/Tt. An int.egrat.ed program must handle such
esynchronous events as the program's window being activated or deactivated, the
window being opened„ closed, moved„ resized„ or needing update„ the mouse but.ton
ooing down or up, end a key goino down or up. The program must also be a oood
citizen in Lise't multi-tatking but non-preemptive scheduling environment by
volunteering periodically to yield the CPU to any other process needing service.
Theae ere just a few of the important chmacterbt.ics of an integrated progre.m. The
result of a prooram following these end_ other ouidelines will be that it exhibits the
seme consistent, responsive behavior as other Apple-written programs like LiseDraw.

<;uickPort is a collection of pieces which make writing programs tor the Office
System's window environment u easy as writing them for the Workshop's non-window
environment. l\llTE: In order to dtfferentiete the QuickPort modules trom the
program which uses them, we will refer to the program itself as a Vani/Ja Progrsm.
QuickPort allows the vanilla program to be more traditionally struct.ured, as if tts user
interf acing were being done through a imart text/grephics terminal; the vanma
pro;ram presents its display to the user by a combtnation of text 1/0 calls (e.g.,
WriteLn/Readln) and QuickDraw calls (e.g., DrawString/PaintRect). The QuickPort
modules handle all eventi from the Window Manager, provide for yieldin; the CPU to
competing processes at specific poinh, and in general shelter the program from the

· 14-FebrUBr}"-84

Inttr.rnal .s II Conri dent i s1

sometimes tricky requirements of writing an integrated program for the Lisa Office
System.

QuickPort provides the vanilla program with a window, which may be divided into a
Text P8nel end a QuickDraw Panel f or displaying both textual and oraphic
inf orme.tion. Each of these optional panels is configurable in size and loce.tion, e.nc!
may be independently scrolled horizontelly or vertically. Text and Graphics windows
may be overlaid, so the resulting window presents a composite of both types of
output. The window may be resized, moved, covered, or uncovered without the
vanilla program even being awere of such evenh. Textual and graphic information
may be exchanged between a vanille prooram'i document and other documents,
whether vanilla or integreted, by udng the f amiliar Cut/Paste mechenism. Without
eny effort on the pert of the vanilla progrem, the end user is given a laroe measure
of control over the window's configuration end behavior, uling mouse and menu
actions supported by QuickPort.
The user may request printing of either the text panel or the graphics panel. In
addition, vanilla progrems may produce printed output under praoram control by
writing to the -PRINTER logical device. Wherees, in the Workshop environment,
printino b immediate (each Une printing as soon as the program "wr.ites" it), in the
QuickPort/Desktop environment printing b all spooled. This means that the printed
out.put of a vanilla program will be submitted to the Office system's PrintShop, which
determines from the print queue when the document will be printed.

The Text Panel emulates a terminal display which corresponds to the Pascal built-in
OUTPUT file, the built-in INPUT file, end the -CONSOLE and -KEYBJARD logical (
devices. Apple provides emulaton for the •··r lt"t'> and SOFirJC terminals, end makes
it possible f or you to either customize them or create entirely new terminal
emulaton. These terminal emulaton are ectually. filters which pre-process the
character output strearn deslined for the StandlJrd Terminal Unit,. which provides the
Text Panel display. Each emulator's job is to recognize the terminal-specific
charecter sequences imbedded in the output stream which are commands to the
terminal, end t.o call upon the Standm-d Terminal Unit to take the appropriate act.ions.
A program may eliminate the filtering rtep, if dedred, by callino directly upon the
standerd Terminal Unit for dbplay actions.

The GTaphJcs Panel allows your prooram to display grephics on a bitmap whtch 1s a
maximum of 720 pixeh wide by 364 pixels high--the same size es Lba's physical
screen bitmap. Thh panel can be resized by the user or under program control, and
can be scrolled horizont.ally and vertically to ditplay different partt of the entire
bitmap. The Graphics Penel supports ~ery QuickDraw call, including those related to
setting f oreoround end background colon f or srinted output.. An epplicat.ion may
write anywhere in the coordinate plane of its graphics panel ('grafPort', to use
QuickDraw•s terminology), without having to worry about where its window h placed
on the screen or what other wtndows are in front of it. QuickOraw, with a little help
from the Window Manager, keeps the application' s output. from getting out of the
~ephics panel or from clobbering other windows.

Internals II Confidentisl

The ToolKit: The ToolKit is a set of libraries that provides standard behe.vior that
follOW$ the design principles characterizing Lha applications:

• Extensive use of graphics, including windowi and t.he mouse pointer.

• Use of pull-down menus for commands.

• Few or no operating modes.

• Data trander between documenh by simple cut and paste operations.

For exemple, all Lisa applications have windows thet ce.n be moved eround the screen,
and that can usually be resized and scrolled. The ToolKit takes care of all these
functions. The T oolKit also dhpl~s a menu b8r for the active application, end
provides a number of standard menu functions, such as savino, printing, end setting
aside.

However, the ToolKit is more than a set of libraries. Because the ToolKit is written
using Clascal, t.he ToolKit is almoit a complete program by ihelf. You can, in fact,
write e. five-line main program, compile it, link it with the ToolKit, and run it. What
results h the Generic Application.

The Generic Application has many of the standard Lisa application cheracterhtics. A
piece of Generic Application stationery can be torn of'f, and, when the new document
is opened, it presents the uter with a window with scroll ben, split controh, dze
control, and a title bar. The mouse pointer is handled correctly when it is over the
window. The window can be moved, resized, and split into multiple panes. There is a
menu bar with a f ew standard functions, so that the generic document can be saved,
printed, end set aside. The single Generic Application proceu can manage any
number or documents. You cannot, however, do anything within the window, aside
from creating panei. The space within the window, along wit.h the additional menu
fuctions„ is the responsibility of the real application.

Therefore, when you write a Lisa application using the ToolKit, you euentially write
extensions to the Generic Application. lt is very easy to write extensions to any
Clascal program. To insert your application's functions, you create a set of
subclasses, including methods to perform the work of' you applicetion, and then you
write a simple main program, and compile and link it with the ToolKit.

Whenever neceuery, the ToolKit calh your e.pplication't routines. For example, if the
user tcrolls the document, the ToolKit teils your program to redraw the changed
portions of the window. Your program does not need to be concerned with when
redrawing is required.

One eff ect of Clascal is that you cen write epplications in steps. You can begin by
doing the least amount ponible, and get an appllcation that does very little, but will
run. You can then extend your application bit by bit, checking as you go. Thh
characteristic of Clascal makes it easy to extend the capebilities of ToolKit programs,
even yean aft.er the original program.

The ToolKit's debugger, KitBug, providei run-time debugging of ToolKit Clascal
programs. lt allows you to do performance measuremenh, set breakpoints and traces,
single-step through your program one st.atement ä a time, and do high-level
examinations of data objects.

14-F etbrUBr},._84 Road tlsp-5

Internsls II Confi dent i al

The Operating System The Operating System provides an environment in which
multiple processes can coexbt, with the ability to communicate and shm-e data.. lt
provides a file syrtem for 1/0 and information storage„ and handles exceptions
(sottware interruph) and memory management.

The File S}·'Stem provides input and output. lt accesses devices, volumes, and files.
Each object, whether a printer, disk file, or eny other type of object, is referenced by
a pathname. Every 1/0 operation is perf ormed as an uninterpreted byte stream. Using
the File System, all 1/0 h device-independent. The File System aho providei device­
spectf1c control operations.
A process consish of an executing program and the data associated with it. Several
proceues can ex ht e.t once, end will eppeer to run simultaneously because the
processor is multiplexed among them. These processes can be broken into multiple
segments which are e.utomatically swapped into memory as needed. Communication
between procesies is accomplished through events and exceptions. An event is a
messe.ge sent from one process to e.nother, or from e. process to itielf, the.t b
delivered to the receiving process only when the process asks for it. An exception is
a special type of event the.t f orces itself on the receiving process. In addition to e.
sei o1 system-defined exceptions (errors), such as division by zero, you can use the
aystem calls provided to define ent other exceptions you we.nt.

f.1emoT}·' management routines handle data segments and code segments. A data
segm6nt is a file that can be placed in memory end accessed directly. A code
segment is e swapping unit that you can define. lf a process uses more memory
than the available RAM, the OS will swap code segments in and out ot memory as
they are needed.

PASUB: PASLIB is the Pascal run-time support library. lt provides the JrOCedures
end functlons the.t are built into the Pascal lenguage, acts as the run-tlme 1nterfece
to the Operating Syitem, end "completei11 the 68000 initruction set by providing
routines for the compiler-generated code to call upon in lieu or actual herdware
instructions.

PASLIB rout.ines are called with all pere.meten pe.ssed on the ste.ck. There is en
initialization routine to initialize neceuary veriables, libraries, end exceptior.-handlers
end set up global file buffer addresses, and e termination routine to kill processes.
You can do four-byte integer erithmetic. Data can be moved, or acanned tor a
pmticuler character. String menipulation rout.ines include concatenating, copying,
inserting or deleting a substring, det.ermining the position ot a substring, end
comparing strings tor equelity. Set. manipulation routines let you find set
intenections or diff erences, adjust the iize o1 a set, end compare sets rcr equality.
There ere range-checking end string renge-checking routines. Heap routines let you
8llocate memory in the heap, merk or release the heep, check available memory in
the heep, end check the heap reault. 1/0 routines let you read and write linea,
characten, strinos, packed arrays o1 characters, booleans, and int.egers, as well as
check for a keypress or an end-of-line, and send page marks. File 1/0 routinei

14-Februt!JZ)1-84 Raad 11ap-6

Internals II Confi derlt i sl

include rewriting„ resetting or closing a file, detecting an end-of-file, reading and
writing blocks, ar.d get, put, and seek procedures.

Floatlng-Poirt. Ulwariei: The Lisa srovides erithmetic, elementery functions„ and
higher level mathematical algorithms in its intrinsic units FPL.ib end Meltt..ib, which
ere contained in the file IJSFPUB.

FPLib provides the same functionelity es the SANE end Elems units on the Apple] [
end II 1, including:

• Arithmetic for e.11 floating-point and Comp types.
• CorNenions betweer1 numerical types.
• Conversions between numerical types, Asen strings, and intermedie.te f orms.
• Control of rounding modes and numerical exception handling.
• Common elementery functions.

Melhl..ib provides the extra procedures e.ve.ilable only on the Lisa:

• Extra environments procedures.
• Extra elementary functions.
• Miicellaneou$ utility procedures.
• Sorting.
• Free-format conversion to ASCII.
• Correctly rounded convenion between binary and decimal.
• Finer1cie.l analysh.
• Zeros of functions.
• Linear algebra.

QulckDraw: Virtually all of Lisa's grephics are performed by the QuickDraw unit.
You cer1 draw text, lines, and shape$, and you can draw pictures combining these
elements. Dre.wing ce.n be done to me.rry distinct "ports" on the screen,,. each of which
h a complete drawing environment. You can "clip" drawing to arbitrary ereas, so
that you only dre.w where you want. You can draw to an off-screen buffer without
disturbing the screen, then quickly move your drawing to the screen.

T6xt che.racteu are e.vil8ble in a number of proportionally-spaced fonts. Arrt font
can be drawn in any size--if a f ont isn't availeble in a pmticuler size, QuickDraw
will scale it to the specified size. Yoü can draw charact.en in 9n1 combinet.ion of
boldface, italic, underlined, outlined, or shadowed styles. Text can be condensed or
extended,,. e.nd it cen be justified (aligned with both a left end a right margin).

straight /intJs can be drawn in f!JNI lenQth and width, end can be solid-colored (bleck,
white, or thades of gray) or patterned.

Shapes defined by QuickDraw ere rectengles, rectangles with rounded cornen, full
circles or ovals, wedge-thaped sections of circles or ovals, and polygons. In e.ddition,
you can describe 9n1 arbitrmy ahape you want. All ahapes cen be drawn either
hollow (just an outline„ which has all the width and pattern characteristics of other
lines) or solid (filled in with a color or pattern that you define).

14-Februsry-84 Road 11ap-7

Internals II Confident i sl

\ _

QuickDr aw lets you combine any of these elements into a picture, which can then be
drawn--to any scale--wit.h a single procedure calL

Three-dimensional graphics cape.bilities are also available, in a unit called Graf3D,
which is layered on top of the QuickDraw routines. Gref3D lets you draw three­
dimensional objech in true penpective, using real veriables and world coordinates.

The Hm'd\\fse ~erface: The Hardware Interface unit lets you access Lisa hardwere
elements such "' the mouse, the cunor, the display, the speaker, t.he keyboerd, end
the timen and clocks.

A'/ouse routines determine the location of the mouse, set the frequency with which
sottware knowledge of the mouse location is updeted, change the reletionship between
physical mouse movement and the movemerat of the cursor on the acreen, and keep
track of how fer the mouse has moved since boot time.

Cursor routines let you define different cl.l"son, track mouse movemenh, and display
a busy cuuor when an operation takes a long time.

Screen-control routines can set the size of the screen, and set contrast and
aut.omatic fading levels.

Spttaker routines allow you to find out end set the speaker volume, and create
sounds.

Routines are provided to handle the different ktr,·'boardt aveilable for the Lisa, as
well as the mouse button and plug, the diskette buttons end insertion switches, and
the power swit.ch. You can find out which keyboard is at.tached, and set the iystern
to believe that a different physical keyboerd is connected. You can check to see
what keys (including the mouse but.ton) are currently being held down, look at or
return the events in the keyboard queue, and read end set the repeat rates for
repeatable keys.

Date and time routines let you e.ccess the microsecond and millisecond timen and
check or set the date and time.

The sttnierd Unit: The Stenderd Unit (StdUnit) b an int.rinsic unit providing a
number of standard, generally-useful functions. The functions are divided into areas
of functionelity: character end string manipulat.ion, file neme manipulat.ion, prompting„
retrieval of error messages from disk files, Workshop support, and corwersions.

The unit provides types for atandard strings and for sets of characten, definitions for
e number of standerd characters (such as <CR> and <BS>), and procedures for case
convenion on characten end et.rings, trimming blanks, and appending strings and
charact.en.

File name manipulation functions let you determine lf a pathname h a volume or
device nmne only, add file neme extensions (such as ".TEXT"), aplit a pathneme into
ih three basic components (the device or volume, the file name, end the extemion),
pul the components back together into a file name, and modify a file name given
optional defaults for missing volume, file, or extension components.

Ro8d 11ap-8

Internals II Confi dent i sl

Prompting procedures let you get characters, strings, file names, integers, yes or no
responses, and so forth from the console, providing for default values where
appropriate.

Special Workshop functions let you stop the execut.ion of an EXEC file in progreu ...
find out the nmne of the boot and current procen volumes, and open ~stem files,
looking at the prefix, boot, and current process volumes when trying to access a file.

Convenion routines Jet you convert between INTEGERs (or LONGINTs) and strings.

The IP.rimitives Unlt: The IOPrimitives unit provides you with fast, efficient
text-file input and output routines with the functionality of the Paical 1/0 routines.
lt includes routines for reading cheracten or lines, and ror writing characten, lines,
strings, and integers, plus the low-level routines on which the othen are based.

The Pr~am Communlcatlons untt: The Prograrn Communications unit (ProgComm)
provides three mechanisms for communication between one program and another c•r
between 8 progre.m and the shell. The first two irwolve strings sent from a program
to the shell; one telh the shell which program to run next, the other h a "return
string" that can be read by the exec file processor to tell an exec file, for exe.mple,
whether the program completed successfully. The third mechanism involves reading
from and writing to a 1K byte communications buN'er, global to the Workshop. Using
the unit„ a program can invoke another program and provide its input through the
buffer „ without user intervention.

Lil&BtQ LisaBug provides commands for dbplaying and setting memory locations and
registen, for assembling and disassembling instructions, for setting breakpoints and
traces to trace progrem execution, for manipulating the memory management
hardwere, and for measuring execution times using timing functions. Utility
commands are also available to clear the screen„ print either the main screen or the
LisaBug screen, change between decimal and hexadecimal, change the setting of the
NMJ key, and display the values of symbols.

14-Februmy-84 Road 11ap-9

Internals II Confi dent i sl

Where to Go from Here

The Lisa development software is not fully documented yet. The following is a list of
what is available„ some of it only int.ernally, as of this publication. Note that the
spring-releese manueh will be orgenized diff erently from the current versions, and
will incorporate much of the inf ormation that is now in the interneh documentation
or in separate documents.

Patcal Reference ft.1anu8l for the Lisa
includes: QuickDraw

Hardware Interface
Floating-Point Librmy

Operating System Refer6nce f.1anual for the Lisa

(J/orkshop User's Guide for the Lisa

Lisa Developmant S}·'.S't11m lnternsls- Documentstion
includes: Pascal Run-Time Library

Stander d Unit
LisaBug
Floating-Point Libraries

Quick.Port Applications User Guide*

<;uicl<Port Ftogrsmmer's GlJide*

An /ntroduction to Clascal

Cl&tCsl Self-Stut:/}··

Toolf<it Ref11rence f.1anual

ToolKit Training Segments

(

Numerics f+.18nu/JJ: A Guide to l..lsing the Apple l:.·:l Pascal SfWE and Elems Unit1
FPLib providei the iame f unctionality es these unih.

/+t1athlib Guide~

*These manuals currently in rouQh draft form.

14-February-84 Road 118p-10

„ Floating-Point Lümies .., ...

1-..._JEEE Numerics, Math Algorithms""

„ HBl"dware IMerface „L
'"-Mouse, Keyboard, Clock~ Speaker ""r

{ ~d Unit „„
\.„ Strings, Prompts, Error Msgs, misc"" ,-...

1111 Primitives -
Fast Text File 1/0

„
...

..._ Inter-program e.nd Shell Communication _..
:"9

..---ir Pascal Rwt-Time Lims:y ..._ ____________________________________
i.- ---i""" IIOL Heep, Strin_gs, Math ~ ____________________ ..,. ____________ _,,.

~r QuickDraw _
L.....lllL_ ~--------------------------------------....i,.,--~ ~ """ Bit-M_t!lp Gr~hlcs _...

Lila Operating system

Memory Mgmt, File Syst.em, Procen Mgmt

Figl.l'e 1
The Workshop Run-Time Environment

~ to Figures 1, 2, & 3

Unit Name
-, lndicates. Ulits that llU$t be used

1

1
~

'"-Description of what it does"" inaicates. optimal U"li ts ttet M)' r>e usec1

Rosd ft.1ap-11

• TTTTTTTllllllllllllllll ria
1 QUICKRRT PRDGRAt-ii 1

lllllllllllllllllllllll '
r

Floating-Poil* Lim•ies
,

....... „
.........

.._IEEE Numerici, Math Algorithms

""""'
j Hsct.we Irartace •„

r- l Clocks, Speaker
,

~

r
StMderd Unit

--,

""""'
...

--- Strings, Prompts, Error Msgs, misc -
'-.. ~

.......
,....

Pascal Roo-Time Utrsy
--,

r- ----,........i 1/0, Heep, Strings, Math

j_ j_ L
Smoc (VTlOO]

I ,~ I ,t
(PrirUr - _..1

Terminal)
.__: t.

~andard
1 -Printer J

_i (
r

QuickPmt
.„

..... Virtual-Terminal Window .., y-
r-

ToolKit
..,

----..
..... Generic Application, Bldg Blocks ..,

l ~· r- Desktop Litrll1es
--,

.......
~ Window Mgr, storage Mgr, Font Mgr, Print Mor

I
..oilfL r- QuickDrll'll

„
-...... i...

~ Bit-Map Graphics
....

1---1
0

1,.. Lila Opereiing SVatem -,,

-.......
Memory Mgmt, File System, Process Mgmt

~ ·~

~ t !
~;~~~~~f ;Ifüf f ~Itfüf~fätt~~fü~~~f)J.~~-~-~-~-~~~-~-~-~-~-~-~~-~~t~~~~fä~~fäfäfüfüf~~~~f~fäfäfä~~~~füt~fäfä~

Figure 2
The QuickPort Run-Time Environment RoadMap-12

r~i~i~iii~~~i~~~~~~~~~~~ lllll.KIT PFIJGRAtv1 1-~~~~~~i~~~~~~~~~~~~~~~J
1·~ii~~~~~~~~~i~~ii~i~iii''''''""'""••'•"•'''~ii~~i~ii~iiii~iiiiiiii~,

ri~~~~~~~~~~i~i~~~~~~~~*~~~~~.~~~~~.~~.~~~~~~~.i.~~i~~~~~i~~~~*~~i~~~~~~
4

r ~

Floeting-Poirt Limaries --
IEEE Numerics, Math Algorithms

....
... -'

„ ...,
t-1..-dwse lmertace

---
l. Clocks, Speaker

-'

„ ..,,. Pmcal Run-Time Lits"ery - „
-...

1/0, Heap, Strings, Math
""'- -""'

+
ToolKit

„
.__.,, -- Generic Application, Bldg Blocks ~ KitBug)-"-. --'

l
r -,

Delktop Ut.-sies

Window Mgr, Storage Mgr„ Font Mgr, Print Mgr
"-. -""' ,. „

QuickDraw
..,

.......
~ ...

~ - -...

""'-
Bit-Me.p Graphici

~

1~ ,,. ~

Lisa Opereling System --.....-
Memory Mgmt, File System, Process Mgmt

"'- --'

' ~~ ~~

l~fü~~IIf ttfäfüf f ~füfäfüf~ttC:J!.~:·:7~:~~:·:·:·~:·:·:~:~~tIIrfü~tfätfü~tfäfütf f ~füf ff]
Figure 3

The ToolKit Run-Time Environment

Road ft.'f8f)-1 _1

Pascal c:ompiler Directives

The following compiler commands are available:

~or~

$:+ or SC-

SE filemne

Si+- or SH-

SI filemne

SL filen111e

SL+ or SL-

SJ.t. or S0-
*1.

n'+ or SOV-

7-Februarv-84

Allow the % symbol in identifiers. The default is 5'-.
Turn code generation on (+) or off (-)- This is done on a
procedure-by-procedure basis. These commands should be '-Nfitten
between procedures; results ere unspecified if they are written
inside procedures. The def au lt is $::+.

Turn the generation of procedure names in object code on (+) or c1fl
(-). These comme.nds should be written between procedures; results
are unspecif"ied if the~·· are written inside procedures. The def au lt
is SO+.
Start making e. listing of compiler errors as they are encounterecL
Arsalogous to $L filenaae (see below). The default is no error
listing.
Disables handle checking so dereferenced handles (master point.ers)
may be used in with statements, on the left side of assignment
statements, and ir1 expressiom: involving procedure calls. Tr1e
default is $-1+.

Start taking source code from file filensne. When the end of ttüs
file is reached, revert to the previous source file. lf the filenarne
begins with + or -„ tt1ere must be a space between $1 and the
filename (the space is not. necessary otherwise). Files may be $1
included up tc• f ive layers deep.
Start listing the compilation on file filenaae. If a listing is being
made already_, that file is closed and se.ved prior to opening the
new file. The default is no listing. If the filename begins with +
or -, there must be a space between $L and the filename (the space
is not necessery otherwise).
The first + or - f ollowing the SL turns the source listing on (+) or
off (-) without changing the list file. You must specify the listing
file before udng SL+. The default h SL+, but no lbting is produced
if no Usting file t1as been specified.

Suppress register opitimization (-). The def au lt is 9J+.
Optimization limited--use the old (2.0 release) optimization
mechanism, instead of the new orie. The default is the new one.
Turn integer overflow checking ori (+) or off (-). Overflow checking
is done after all integer add_, subtract, 16-bit multiply„ divide„
negate, abs„ and 16-bit square operations, and after 32 to 16 bit
conversions. The def au lt is SOV-.

Compiler Directi~„es-1

lnt er nsls

SR+- or SR-

$S segnme

SU filenme

SJ+ or SU-

$X+ or $X-

$9::1C

7-February-84

fl. Confidcn.t.ic.}

(
Turn range check.ing on (+) or off (-). At present„ range cr1ec:kin~t is ,.
done in assignrnent statement.s and array indexes and for strin~i
value perameten. No range checking is done for type longint. nie
default is SR+.
Start putting code modules into segment segnme. The default
segment name is a string of blanks to designate the "blank
segment," in which the main program and all built-in support code
are al ways linked. All other code can be placed into any segment.

Seereh the file filenane for any units subsequently specified in the
uses-clause. Does not epply to intrinsic-units.

Tell the system riot to search IHTRINSIC.LIB for units you use (-).
The default is SU+ - the system searches IKTRIHSIC .LIB first,
then your own libreries.

Turn automatic run-time stack expansion on (+) or off (-).
Run-time stack expansion is the insertion of an extra 4-byte
instruction per prcacedure to ensure that t.he Lisa' s mernory­
management mechanism has mapped in enough ste.ck space for the
execution of the procedure. With SX-, exc:essive use of t.he stack
by the procedure could cause a bus error. The default is $X+.

The SSE IC command has the form:

{$SETC m == DCm}

or
{$SETC ID = DCm}

where ID is the identifier of a cornpile-time variable and DCm is a
compile-time expreision. E>FR is evaluated immediat.ely. The
value of DCm is assigned to ID.

Compile-time variables are completely independent of program
variables; even if a compile-time variable and a program variable
have the same identifier, they can r.ever be confused by the
compiler.

Note the following pc•ints about. compile-time variables:

• Compile-time variables have no types, although their values do.
The only possible types ere i~ and boolean.

• At any point in the program, a compile-time variable can have
a new ve.lue e.ssigned to it by a $SETC comme.nd.

Compiler Direäives-2

$1FC,SEI«
SElSEC

7-Februeqy-84

II Conficlerdi„'"-}

Ccinditione.l compilation is controlled by the $IFC, SEL.SEC, and
SEI« commands, which are used to bracket sections of soLn-ce t..ext.
1t"Y1hether a particular bracketed section of a pro91·am is cornpiled
depends on the boolean value of a compile-time expre.s-sion,. which
can conte.in compile-time ~·'SJ"isbles.

The SE• SEC and SEJ« commands take no erguments. The $IfC
command has the form:

{SIFC Dm}

where E><PR is a compile-time expression with a boolean value.

These three commands form constructions sirnilar to the Pascal
if-statement, except. that the satt comma.nd is alwa-y·s needec~ at
the end of the $Ift: construction. SE• SEC is optional.
$IfC constructions can be nested within each other to 10 leveh.
Every SIFC must have a matching SEJ«.

Compile-time expressions appear in the ~ command and in t.J1e
$IfC command. A compile-time expression is evaluated by the
compiler as soon as it is encountered in the text.
The only operands allowed in a compile-time expression are:

• Compile-time variables

• Constants of the types integer and boolean. (These are also the
only possible types for results of compile-time expressions.)

All Pascal ciperators are allowed except as follows:

• The in operator is not allowed.
• The i operator is not allowed.
• The I operat.or is automatically replaced by div.

Compiler Directives-3

r

Fred Fm:sman

Revision 1.0

September 28, 1983

Remove t.niel'U y, l.nWSlted bytes

in the priv8Cy of your own office.

Mo gi.Micks. pills. feds or sUtlMM exercise.

Pascal Code Cruncher's Handbook

PASCAL
CODE CRUNCHER'S

HANDBOOK
Fred Forsman

Introduction

Page 1

This doclJDent explains how to reduce the size or Pascal code by changes
at t he Pascal source 1 evel . Thus what wi 11 be present ed are source
transformations which result in semantically equivalent, but smaller
code.

. .
While these transformations will produce smaller code, they are unlikely
to produce code that is "better" in all senses. Sornetimes you will be
trading orr clarity ror efficiency since typically you will be changing
what was the first e.nd obvious w~ of writing your code. On the other
hand, your code m~ benefit (and actually become clearer) just from
havino been thought about a second time. Nevertheless, if it is given
that you must reduce your code size, you may find these source
transformations more pelatable (and more me.inte.inable) than rewri ting in
assembly language.
Please note that this is a li~··ing docunent, that is, no claims are me.de
that this is a complete or final list of source transformation
techniques. New techniques will be added as I find out about them (so
if you are a-1are of sorne transrormations not mentioned here please let
~e know about them). Also, some of the techniques described will be
removed frcm this doct.rnent when future ccmpiler optimizations obviate
the need for them.

0 0 0

Thanks to Al Hoffman for his invaluable assistance in reseerching and
doc1SDenting much or the material presented here. Thanks also to Ken
Friedenbach and Rich Page.

Pascal Code Cruncher's Handbook· Page 2

How to find what code to crunch and how to
measure your progress

Given a Pascal unit which you want to crunch, you need to identify the
procedures which are most likely to benefit from crunching and you need
a mechanism by which to measure the results of your efforts. The Pascal
code gensratar writes information to the console on the size of the code
oenerated for each procedure and the siz'e of the code for the unit being
canpiled. With a compile exec file such e.s the one below you can
redirect this information to a file, for use in later e.nalysis.

SEXEC {perform a compile}
S { the first paremeter ('.O) specifies what file to c1Jnpile }
$ { if a second pa:remeter is specified, it is used for the output obj

file, otherwise we default to "~.obj" }
$ { if a third pererneter is specified, the code generator's console

output is redirected to 11%2.text", otherwise default to "g.text"
$ { the intermediate file is put in a temp file on -paraport }
P {Pascal } "°
-paraport-temp
$If %2 <> II Tt-EN

S{Sys-mQr}O{OutputRedirect}%2.text
$ELSE

S{Sys-mgr}O{OutputRedirect}g.text
SEK>IF
O{ qui t Sys-mgr}
G{generate}-paraport-temp
$If \1 <> 11 Tt-EN

%1
$ELSE

'tO
E'Dlf
S{Sys-mgr}O{OutputRedirect}-console
O{Quit}
$EK)E)(EC

Once you have the code generator's console output, the first step is to
identif'y the easy targets for crunching: most orten these will be the
lerger routines (code size > 2~ bytes, or scne similar criterion). The
above exec rile can then be used to verif'y that any changes you make
actually result in code size improvements.

(_

Pascal Code Cruncher's Handbook Page 3

Ir you are working on code that is not totally new, chances are that it
has undergone a nl.lnber of major and minor changes. As code is modified,
"dead" code and variables are often left around inadvertently. These
unused objects can be discovered and rernoved by checkino the code with
the various cross reterence utilities. (While the Workshop linker will
remove dead code autornatically it will not remove dead variables.)

For those of you who want to know what the compiler is r~ally doing, use
the Di..plbj utility to look at a disassembly of any of the procedures or
runctions you are interested in.

Pascal Code Cruncher's Handbook Page 4

How to crunch code: techniques
Following a:re a nt.1nber of techniques for Pascal source transformation.
The fine print following the description of each techniQue attempts to
estimate the potential space savings, the difficulty of implementation,
and probability of introducing errors.

1. The first lew of code crunching: don't use in-line code when a
procedure to do the seme thino exists. The in-line code may be
faster, but space is more important in the vast majority of cases.
In order to apply this lew effectively you should KNl1' N-IAT IS
RVAIUB.E IN nE LIEHfUES. Similerly you should be femilier with
what the lenguage provides, particularly in the area of built-in
procedures and functions.

using ecisting coae is pure pin. The dlngl!' of dOing so ShOUlCI t>e fliniMl sinca tne
~i l• tnd 1 ibraries snou1a b8 1rror free (or at lnist tneir DUgS wi 11 De recognizttd end
fixed sooner thln your pri..,..te ooae vnich is exercizecs lass often).

2. An extension of the above lew is the creation procedures which
perform code sequences which are repeated orten in your code (minor
differences can be handled by paremeterization). One nane for this
technique is "ractartncf. Use or peremeters can degrade the
optimization if the size of the code being ractored is small. On
the other hand, i r introduction of a pereneter will all CM shering (
of a long sequence of code the extra overhead should be well worth
it. A word or werning: check to see whether your ractoring really
paid orf -- the code being factored out should not be smaller then
the procedure call (and any peremeter passing) that replaces it. A
point to note is that factoring of even single statements can be
rruitful, ror exemple:

A [f'(X)) : = A [f'(X)] + l; becomes ItCA;

fctoring can b! a 810 win in IW'IY cases, otten SlfJi!'M1 rtore tmn CS1 be -=t\ieve::t by any
otner tecnnique. so i t of ten pays to lOOIC tnr~ ywr coae fOr COflllOn cooe sequences.
~ifficulty end likelyhOOCS of errors are low, DUt incrnse if pel"-ters flJSt be
1ntroGUC1c2.

. .
3. Make procedures the.t ere ~100 lines long - e.round 300 bytes of

code - to optimize allocation of variables to register. Shorter
routines do not hsve enough occurrences or variables to make
register allocation wortt'Mhile, and longer routines create more
opportunities for register optimization than there e.re registers
available.

Tne lflOmt of i"C)roveMnt usino this tecnnique is ni~ly veritDle. Di ff icul ty is

/
\

(_

Pascal Code Cruncher's Handbook Page 5

PIOdlrate: likelyhOOd of errors is low.

4 . Avoi d t he use of global scal ar (1 t o 4 byt e) variables whenever
possible - global variables are never put into registers.
Techniques applicable here include:

4a. Assign a frequently used global variable to a local variable, end
change all references to be the local quantity. Caution' Beware or
saving end restoring the global quentity around procedure calls
that might access the global quantity.

The emount or improvement will be two to four bytes per rererence,
with the greatest gain appearing on assignnents like A:•A+l. There
is an overhead cost to assign the local and save registers (4 to 14
bytes). Improvement will not occur if the registers he.ve alree.dy
been assigned to locals that are used more rrequently then the
global is.

The MCJlllt of iPtProueMnt using tnis technique is noted acove. Di fficul ty is low:
likelynood of errors is hi~.

4b. further levere.ge on (4a) can be obtained i f the seme local
temporery variable is reused in different parts of the procedure
for different global variables. In this way, less frequently used
globals still he.ve a chance for optimization into registers.

l"PJ'OYMent is tvo or fllOl'e Dytes per llOdi tional remence. iess Q Dytes per nev g10Da1
assi9"1d. Di fficul ty is ..ocitrate; lileelynood of errors is even hiCJm tnan (Ga).

4c. Another, more reliable way or converting a global to a local is to
pass the global variable as a ver paremeter to the routine.
Paremeters are treated like local variables.

lftPJ'OYeNnt is tvo or P10re oytes per reference, less e-10 Dytes per lldeti ticnal parMeter,
,_,.,jlct to r19ister COf1>eti tion a noted etJoYe. Di fficul ty lf1d likelytQJCI of errors vi th
IJ8J" perawters is low.

4d. Hove a l arge mm n progrem body i nt o a mm n subrout i ne . Hove al. l
global variables that are only accessed ~' the main program into
the subroutine.

l~t is ganerally SM.11. since tnl Min prOCJl'M bOdy is usually a iN.11 pvt of ~
total OOde. Di fficul ty lnG likel yhOOd of errors are lov.

5. In a moderate to large procedure, the m.rnber of scalar (1 to 4
byte) local variables (and paremeters) should be kept to a minimlln,
since there is competition for registers. Briefly used integer
quentities end loop variables, for exemple, should all be stored in
the seme variable (which might be appropriately nemed "tempint" or
some other generic neme). Beware, of course, that the variables

Pascal Code Cruncher's Handbook Page 6

usages are never simultaneous.

ll'tprOYeMnt. for non 8ddi tional looal variable that owrloem ... existing r99ister, is
typically tw bytes per reference. Difficulty is lov: likelyhOOd of errors is Pl>derate.

6. Avoid, at all costs, pe.ssing frequently used loce.l variables as var
paremeters or usino them in nested procedures. (Also for
rrequently a.ccessed paremeters.) These actions inhibit the ve.lue
rrcrn being located in a register. Replace passing as a var
par4!Mtewith e.ssigment to a new loce.l variable, pe.ssing the new
local, then doino a reverse assigrment. Replace n11sted proc8dure
us~ or the variable wi th passing the variable e.s a non-var
paremeter, use or the paremeter inside the subroutine, then, if the
nested procedure che.nges the value, copy the paremeter into a new
variable at the end of the subroutine copy it back into the mein
locel variable after the ce.ll. The following exemple illustrates
optimization of nested usaoe of A and 8:

~ l.PPER;
VAR A, 8: INTEGER;

PRl:EDl.R Lo.ER;
EEGIN
A := B; conv6rts to-.)

EH)-,
BE GIN
La.ER;
{other statements}
{frequent uses of A and B}
00· I

~ l.PPER;
V~ A, 8, TEr'F : INTEGER;

EEGIN
La.ER;

~ La.ER(A, B:INTEGER);
EEGIN
A := B;
TEtF :• A;
Et();

A : • l'Et'P;
{frequent uses of A and B}
Etl>;

Note that, in the above ce.se, if A is not frequently used in the
subroutine, it could be eliminated as a paremeter and the
assignnent could be me.de to TEt-P directly:

PRl:EDl.R La.ER (B: INTEGER);
EEGIN
TeF :• B;
EH);

A final added technique that can be used with procedure calls is
to pass the loce.l as a non-var paremeter, change the procedure to a
function, end assign the returned function result back to the local
variable.

(_

PRa:EDlR: PROC(V~ N: INTEGER);
~ LOCAL;

FttCTicr.. PROC (N: INTEGER) : INTEGER;
Fl.J'CTICJi LOCAL (A .. B: INTEGER) : INTEGER

(

Pascal Code Cruncher's Handbook

PROC(A)
LCCAL;

Page 7

A := PROC(A);
A : = LOCAL (A, B);

where A is a frequently used local variable used as a var paremeter
to PRO:, and used in nested procedure LCCAL. This method, 8.lthough
limited in application, is elegant because no temporary-variable
assigrwnents have to be inserted.

l"PJ'OYlf'lnt is tvo or '90re bytes per reference of the frequently usecl veriet>le in thl "9.in
procedUre, less 2-e bytes per extra assi(Jl'llf'lt stai....t, 5Ubject to register OOl'tplti tion
as noted acove. Since tnis opti•dzatiCll C8'l De applieo to very frequenuy useci ve.riaoles
tnat. 8l'e ~·ooaued t>y tne CQf'l>il~, .181'91 optiPl~zations of up to 40 C?J' Mre t>ytes are
poss11?le ~n l~ge pr~es. Dlff1~1 ty ano lUcelynood of errors v1 tn ver ~ter
St0St1 tut1Cll ~s lov: d1ff1cu1 ty .._, llkelyhOOd of errors v1 tn nes ted p~es 1s
ROClerate to ru(/'.

1. Don't use the set construct to check ranges; instead use
ccnperisons e.ge.inst the upper and lower bounds.

Getting.rid of tnl set cons~t. is a B~G ~~~ Ctypically vam 30 bytes for the usual
OCU>le-ended raige ched<). 01 ff1cu1 ty 1s •un1neJ, as are tne c:nences of trror.

8. Do not pass mul ti-word (more than 4 bytes) data structures as
non-ver peremeters unless necessary. Change them to VAR
peremeters.

1.,,r~t is 12-18 t>ytes strJld t>y. no~ haVing cooe to. copy tne parMeter ~nto local
storage 1n the called procedur.. Dlfflculty 1s lov: 1ucelyh00Ct of errors 1s ~ately
low.

9. Replece F~ loops with ~ILEs end REPEATs. The equivalent REPEATs
and \ltiILEs ere typically 8 to 10 bytes shorter, even with the
explicit loop variable initie.lization and increments. REPEATs are
more erricient than \11-iILEs which ere better than F~s. Sanetimes
the savings will be greater depending on the contents or the loops
and the termination condition.

sadngs are typically 8 to 10 bytes per construot. Di fficul ty lf"2 chtnCeS of error are
SMll (just tlke care to get yoJr tentination eondi tion correct -- beVC'e of off-by-one
errors).

10. Convert erre.y indexing in loops to pointer sritf'lnetic, when the
total nL1nber or indexing operations can be reduced. For exemple

f~ I := 1 TO 100 00 A[I] := 3 CDnt.•'n"tS to

P :• IA; {A's origin is l; P is typed as AA[I)}
f'c:R I := 1 TO 100 00

EEGIN
PA : = 3;
P := POINTER(~(P)+SI2EOF({A's elernent type}));

Pascal Code Cruncher's He.ndbook Page 8

Ett>· I

lrtprO\ltMl'\t is up to 18 bytes per indeX operation (ftOre ~ tt.e trrll!f origin is nonzero
or the srr~ el~~ s~ze is not byte: satings can i:>e even t:aigr:.tr an pcked structures i f
tne progr...er 11 vuung to taa a tev ..ore contort1ons>: Olff1cu1 ey is ROOerate:
lilealynood of errors is ftOClerate.

11. Ifs without ELSE perts that heve a conjunctive conditione.l (IF a
At() b TI-EN ...) are more efficiently expressed as nested Ifs (If a
1lEN If b ~ ...). In errect, this implements your ew1n "short
circui t" boolean evaluation.

The savings is typically 4 t>ytes fOr ttcn Af'I) eli„inateo. very eesy to i"PleMnt. Just
oan·t try it on Ms.

12. Avoid packed structures whenever possible. Remember, packing is
only useful when a lerge emount of data has to fit in a limited
space -- it does not decrease the size of the code.

l"Pl'ovaillnt is ni~l y varilDle ..a can De ves t. Di ff icul ty is 1ow: lit<el ynooa of errors
is low i f tricli<S 1 ike (10) do not puvme tne Codl.

13. Repetition of expressions in the code should be removed by
pre-assigning a conmon expression value to a temporary variable.

l"'PJ'OYMlnt is ni~ly variable. Difficulty is lltOderate: likel~ of trrors is loi.1.

14. Convert procedure peremeters to global or local variables when the
seme actue.l ve.lue is always passed to the subroutine, end when
there is no recursion.

t~t is 2-4 t>ytes P9f' pertMter SIMld. eewre of crnting uplevel lddressing of
'tiot' varilDles hCNe'Jer (see (6)). Di fficul ty is PIOdlrate: 1 ikelynood of errors is low.

15. When groups of local or global variables are ccmnonly passed
toQether as paremeters, and are not 'hot' (assigned to registers),
they could be conbined into a single record, which would then be
passed as a ver peremeter to the subroutine.

I• oua 1111t is 4 bytes per panNter, wi th an overhet(I of 8 bytes (vvning, the called
procecu"e ~ grov in size if i t &lrna'i uses au registers>. Di fficu1 ty is i.oaerate:
likelyhl)od of errors is lov.

16. lf you heve several instances or the seme string conste.nt in your
code declere it as a cetfST, otherwise the conpiler will store
multiple versions of the seme constant.

The sttJings dlplndS on thl size of tne string _.., thl ~ of OCQA".-.CU. Easy to dO.

17. Turn range checking off after a sufficient emount of testing has

(_

(

Pascal Code Cruncher's Handbook Page 9

occurred.

l~~t.is 4-a bytes.per reference or u~i~t of.a r~ed.~tity:
d1 ff1cu1 ty 15 too lov; llkelytiood ot errors 15 fairly rugri 51nce a suft1c1ent MOU"tt ot
testing never occurs. consioer Mking tnis cnr.ge on a proceoure-oy-proceo.Jre contiaence
1eve1 t>asis.

Pascal Code Cruncher's He.ndbook Page 10

How to crunch code: some case studies
lhe rollCMing section presents some case studies demonstrating some of
the techniques presented in the previous section. These exemples are
intended to dernonstrate hCM some of the transformational techniques are
typically used and how a whole series of transformations me.y be applied
to a single body of code. The main purpose of the exemples, however, is
to give a sense of the thought. processes involved in crunching code.

Ir you have any good "before" and "after" exemples demonstrating how fat
code was reduced please feel rree to contribute them. Your efforts me.y
provide ideas and inspiration to others.

CASE 1:
FollCMing is the original form of the body of a routine (SllJpCh in the
StclJnit) which converts lower case characters to upper case. The code
size for the original routine was 94 bytes.

IF Ch IN ['a' .. 'z'] MN
SWpCh :=- ~ (CR) (Ch) - 32)

ELSE
SWpCh :• Ch;

lhe code above was replaced with the following, which replaced the set
range test with two comperisons. The code for this version of the
procedure was 66 bytes - a savings of 28 bytes (about 30%, or actually
~ore, since these sizes include the overhead ror the procedure and the
assigment statements). The rnoral here is that SET CFERATIOO ARE
EXPENSIVE.

I F (' a' ·< = Ch) ~ (Ch < = ' z ') MN
SUJpCh := ~ (CR) (Ch) - 32)

ELSE
SllJpCh : • Ch;

lhe following change was then made which saved another 2 bytes (bringing
the procedure size down to 64 bytes) by getting rid of the branch for
the ELSE logic on the IF statement.

SUJpCh : = Ch;
IF ('a' <=Ch) ff() (Ch<= 'z') 1lEN

Pascal Code Cruncher's Handbook Page 11

SUJpCh : = ~ (ORD (Ch) - 32).:

A further che.nge -- breaking the At'() in the If into nested IFs --
resul ted in a 4 byte savings, leaving the procedure size at 60 bytes (e.n
improvement of 36% over the original 94 bytes). In effect this is
performing "short circui t" boolean evaluati on at the source level. The
source ror this version is as rollows:

SUJpCh : = Ch;
IF 'a' <=Ch ll-EN

If Ch <= 'z' 1tEN
SWpCh : = ~ (CR) (Ch) - 32);

Note that this last transformation would not have worttlrolhile if we had
not already rernoved the ELSE pert of the IF since the nested IFs would
hsve required two ELSEs.

CASE 2:
Below is the bo_dy or the original version of SUJpStr which uppercases a
string.

F~ I : • 1 TO LEH:iTH (S") 00
S" [I] : = SU.JpCh (S" [I]);

The following version -- converting the F~ loop to a i,..HILE -- saved 8
bytes.

I : = l;
IA-tILE I <= LEt-GTH (S") 00

BEG IN
S" [I] : = SWpCh (S" [I]);
I : = I + 1;

Et{);

A further, time-oriented optimization would be to perform the
upper-casino in reverse order with the call to LEH:iTH outside the loop,
which also simplifies the termination condition to a test ror zero.

An aside: ~ appropriate (Whln tne loop DOay will t>e executed at least orce> a REPEAT will
..,. tnotrm 2 bytas. 1 tes ted tne tnr• cons tructs wi th three tes t prOOIGlres < t1, t2, tJ > ss
follows:

procecaae t1;
UV

j : integer:
begin

Pascal Code Cruncher's Handbook

for j :• 1 to i dO
too := ber;

ena:
proceclJre t2:

UG'
j : intlQI?:

taegin
J :• 1: ""il• j <• i dO

begin

ena:

fOO := oar:
j := j • 1:

end;

procedura tJ:
Yel'

j : integer;
t>egin

J := 1:
npeat

foO := Dar;
j := j • 1:

ll'ti 1 j > i;
lnd;

T2 (\IHILI;) MMC2 8 Dytes owr T~ (fOR). n2 T3 (REPEAT) saved .10 bytes over T1 (fOR).

CASE 3:

Page 12

A series or small transrormations was applied to the rollowing seCJ!lent
of TrimLeading (which trims leading blanks and tabs rrom a string).

~ I : = 1 TO CR> (S" [0]) 00
IF (S"(I] = SUSpace) CR (S"(I] = SUTab) 11-EN

{ skip over leading spaces }
ELSE

EEGIN
CELETE (S", 1, I - l);
EXIT (TrimLeading);

Etl>;
{ we fell thru - either '' or all blanks }

The first change was to change CRD (S" [O]) to LEKiTH (S")., which saved 4
bytes. (I must have thought I was being clever in the original.)
Calling the built-in function saves code by lee.ving the erre.y access to
the built-in.

The next change was to get rid of the ELSE in the FCR loop by reversing
the sense of the condition (which resulted in the code below). This
last change resulted in no code size Change since a short branch was
removed but another logical operator was added. But this prepered us

(_

Pascal Code Cruncher's Handbock

ror sane subsequent changes.

F~ I : = 1 TO LEJ'{iTH (S") 00
IF t()l ((S"[I] = SUSpace) ~ (S"[I] = SUTab)) 1lEN

EEGIN { delete leading as soon as we find a non-blank char
tELETE (S", 1, I - 1);
EXIT (Trimleading);

Et-D;
we rell thru -- either '' or all blanks }

Page 13

The next step was to apply de Morgan's le&11 (remember your boolean
algebra?) to simplify the conditional to the following form which saved
2 bytes by reducing the nt.mber or boolean operations.

F~ 1 : = 1 TO LEr«iTH (S") 00
IF (S"[I] <> SUSpace) ~ (S"[I] <> SUTab) T1-EN

EEGIN { delete leading as soon as we find a non-blank che.r
lELETE (S", 1, 1 - 1);
EXIT (Trimleading);

EN);
{ we fell thru -- either '' or all blanks }

Now we have converted the conditional into a form in which we can apply
our short-circuit evaluation transformation by converting the At-() into
nested IFs, which saves another 4 bytes.

F~ 1 := 1 TO lDGTH (S") 00
IF (S"[I] <> SUSpace) Tt-EN

IF (S"[I] <> SUTe.b) Tt-EN
~GIN { delete leading as soon as we find a non-blank char

CELETE (S", 1, I - 1);
EXIT (Trimleading);

Et()·
{ we fe11' thru -- either '' or all blanks }

finally we convert the F~ construct to a '-'tiILE which saved another 8
bytes.

l : • 1;
a.attl LE I < • lDGTH (S") 00

EEGIN
If S"[I] <> SUSpace TI-EN

IF S" [I] o SUTab Tt-EN
EEGIN { delete leading as soon as we find a non-blank che.r

Pascal Code Cruncher's Handbook

CELETE (SA„ 1, l - 1);
EXIT (Trimleading);

Et();
I : a I + 1;

Et();
{ we fell thru - ei ther •' or all blanks }

LASE 4:

Page 14

The rollowing is applicable only to progrens using ~ITEs and ~ITELNs,
but the general technique of factoring can be applied anywhere. The
section of code below prints out the defaults (voll.lfte, file neme, and
extension) ror a file neme prompt.

If Def'v'ol o ' ' 11-EN
~ITE (' ['„ DefVol, '] ');

I F Def FN <> ' ' Tl-EN
~ITE (' [', DefFN, '] ') ; ·

IF DefExt <> '' 11-EN
~ITE ('(', OefExt, '] ');

The following factoring out of the expensive ~ITE operations resulted
in a savings of 168 bytes.

~ WriteOefault (DefaultValue : SUStr);
EEGIN

IF DefaultValue o '' TtEN
~ITE (' [', oeraul tValue_, ·] ');

&D;

WriteOefault (DefVol);
WI'iteOerault (DeffN);
WriteOefault (DefExt);

LASE 5:
"Factoring" of connon code does not always pay off. Following is an
instance of how space was se.ved removing factoring. The SUStrTolnt
conversion routine had an internal procedure called BogusNunber which
set the value of the CState paremeter to the appropriate error return
code and then exited from SUStrTolnt:

~ BogusNtnber (CS : ConvNState); .
EEGIN

(

Pascal Code Cruncher's Handbook Page 15

CState : = CS;
EXIT (SUStrT.oint);

El'D;

BogusNunber was called 6 times in the original SUStrTolnt. By replacing
the ce.lls to BoousNunber with BEGIN CState := ErrCode; EXIT(SUStrToint)
El'D we got rid or the):) byte BogusNtinber routine and the size or
SUStrToint when down from 5()J bytes to 380 bytes, a total saving of 170
bytes. The more.l here is to a-EO< Y~ F~ORitf3 TO SEE THAT IT REALLY
PAYS OFF.

(

The Last Whole Earth
Text File Forrnat

Fred Forsman

This is the latest. proposal for the definition of text files. In creat.ing
this definition I had three (not always convergent) goals in mind.

1) Textfiles should support Pascal's model of files of type
TEXT as well as possible -- that is, if a file was
·~i t ten by Pascal WRITEs and ~ITELNs i t shoul d be a
valid text. file wit.h as few except.ions as possible.
The ir1tent here is to give reasonsble support to Pascal ·s TEXT Met"&Snis~ as
i t is defined in ttie l~ -- t..rtile ttie lff"igu&g'!! 1'181<~- no statel'lent &.tie•ut
tt1e for11 of TEXT fi les, me would expect tt'1at fi les vri tten wi thout errors
wi 11 resul t in valid text f i les of s~ sort. This is not to sa'.f' that s.ll
tc•oH. !-t"tOUlO s.upport every perve1·!:.e fl le tr.at car1 De generateo via P~-c=al
text I/O. At a rtirii"JPI, hoYeVer .. ttie Pascal run-ti..e sys.tert should be ~­
sccorioda.tini~ ~- ~~-!:-ible in i ts s1Jpport of Pascal TEXT J/O, end ttie edi tor
:st1ould sr.,uld 111sJ.<e siMi l:ar efforts sirice i t is the iletJice mst often u::.ed to
ins.pect text fi lrts (~1~tl"1Etr rt0rMll or Slberrar1t).

2) To make the processing of text files as sti·aightfo1·ward
and efficient as possible.

3) To be compatible with the UCSD text file formats in the
Pa.scal svstems on the Apple II and Apple ///.
Ttle f 1Jll0Ying ~tii:ti t!on tollows the uc:so text fi le forl'lat tsirly cl?S~ly.
T~ ooe or ~·,,10 oev1at1orl$. don't ~-e.e.very sen04:1S three.t to 00Pipat1till1ty
srnce they mvolve ebnorrta.l css~s wtnctl are rot llkely to be encoi.J'ltered or
generated in norl'"lal pra..::tice.

The following defini tion involves comprornises to all of the above goals. The
determination of which goal has been most violated I leave as an exercise t.o
the reader.

The definition of a text file:
• A text file is a sequence of 1024-byte cages.
• One 1024-byte header page is present at the beginning of

the file. This is not considered to be pert of the
actual contents of the text file, but is used by the
editor to store formatting inform~tion, etc. Anyone
creating a header page should do so with nulls in all
1024 bytes_, unless there is a good reason to do
otherwise. (The format and interpretation of the header
page will be described in a forthcoming document.)

Text File· Forr.ist-1

lnternBls

• Each text page (i.e., those following the header page)
contains some numtier of caoplete lines of text and is
filled witt"t null chai·acters (ASCII 0) after the last
line.

•,,.._ r··...1 t· „ L on 1 urel1 .1 .5·J.

The Pascal nn- t iPle sys teri ShOU l Cl ensure tha t all tex t f i l es end w i th a CR
'wttten CLOSEd, in particular, clealing with ttie oase wtiere ttle last ection
before tlle CLDSf was a VRITE instead of a WRITEl)f. SiPlilarly, the nn-tirte
systePI shoUld also ensure that psges terr1inate vi th CRs even i t inordinately
long 1 i~- are wri tten DV a series ot VRJTES vi tnout env \IRITE~- <~
detemining wtlen to insert a CR can be a tricky issue).· (For P10re on
related iss•JeS, see ttie follO'Jing tvo points.)

• The end of a text page must terminate with at least one
null. for simplicity, the first instance of a CR-null
sequence will signal the end of the page.
As a. conseq•.Jenee o f ttü s s i "'P 1 i fy in·~ sss•.JllP t i on, e. VR ITE U'4 fo 11 OCJed by a
'~!T~ (CHR (0)) Yi 11 inw~ert~ntl'.f' ~en\~nate the currer:-it page, bUt anyon~
wn tmg nul 1::. t(\ ~ text fl le 1s. l 1v1ng m a s.tate Of s.in end dQ-.;.erves vt1~t
they get.

lo be on the safe si~, cr.ide des.lin·~ wi th text files at ttie BLOCKREAD le,,ael
stiould not a;sURe that o. final CR-null always exists, nai-~ing .sure not to run
otf the end of psge blJffers. our tools shoUld not blow ~ on inva>. id inprJt.

• A line is a sequence of zero or more characters followed
by· s Cf;.·~ A line ma·y- be "arbi trarily long" (1023 bytes
long,. co1Jnting tt-ie CR,. wi th room for a terminatina null
at the end of the page) but programs (such as development
~ist ern t ool s) may choose t o consi der as si gni fi cant onl y
the first N charact.ers (where N is a reasonable and well
doc1..rnented number„. i. e. ,. ei ther 132 or 255) .
n.e Pas.cal run-tiPle sys tePl snould auo.., tne rftllling eno wri ting of
arDi trarily long lines. Tne oontents of a long line sho!Jld be obte.1nable
via a series. of READs. The sction of RE~LN stiould be to reed pest the next
~ .. retuming an IORESULT weming vall.Je i f cherecters are Skipped in tne
process.

~PP·:>rt of ·arbi ti·ari ly long" l ines ShOUld not. be _viewd as a ttareat. to tool
lfllPlePaentors. Tools 1111a~· r-1ave reas.onable rMtnct1ons on wtiat text f1les
they ctioose to accept, as lorig ss ttaey oon't Dl0\11 up oo ott.ei- text files.
Tool~ "ay Chot?Se to ignore the exc:e!-s on unr~onably long lines, give a
warn1ng, or s1gna1 sn error aid aoort process1ng.

• A seguence of spaces at the beginning of a line mey be
compressed into a two-byte code, namely a DlE chsrscter
(ASCII 16) followed by a byte containing 32 plus the
nllnber of" spaces represented.

• A null text file (i.e., one which has no contents -- as
might be created by openina a file and then closing it
before anything is written to it) consists of only the
1024-byte header page.

(

(

(

25-0ctober-83 Text File· Formo:t-2

(

(

Pascal's Packing Algorithm

Packed Records

Packed records ere very expensive in terms of the nllftber of bytes of code
generated by the compiler to reterence a particular tield. In general, you
should avoid packing records unless there will be many more instances of the
record the.n there are references to it. Packed records a:re packed in the
following bizarre way:

1. fields are packed as tightly as possible without crossing word boundries,
starting at the lOW-ordered bit of the tirst byte. (Note that in a
packed record, a character or 0 .. 2'' fits into a byte.) Records will
always occupy either one byte or an even nunber of bytes.
Note the.t only scaler values and subranges are considered packe.ble;
everythino else must oo on a word boundry.

For exemple, 4 booleans and a set are packed as follows:

? BVTE 1 O 7 BYTf 2 O 7 BYTf 3 O ? BYTE 4 0

1 l 1 1 f 41312 l 1 I 1 l l 1 1 1 1 l 1 1 1 1 l 1 f set 1 1 1 1 1 1 f f 1 1

2. Any empty bytes are filled by moving the previous field int„o the empty
byte if:

- The field fits into a byte.
- The field was not previously on a byte boundry.

7 BVTEl 0 7 ME 2 0 7 IVTE 3 0 7 BVTE 4 0

1 f 1 f 1 l 3 l 2 l 1) 1 1 1 1 l 1 l f 41 l 1 l l 1 1 set 1 f f 1 1 l 1 1 1 1

3. Any field that fits in a byte or word and does not share that space with
other fields is now designated "unpacked".
Any field that is still considered "packed, " and is closest to the high
end of a byte or word, is moved to the high end of that space.

? 8VTE 1 0 7 8VTE 2 0 7 8VTE 3 0 7 8VTE 4 0

f 31 1 1 1 1 l 2 l 1) 1 1 1 l 1 1 1 141 1 1 1 1 1 l set l l 1 l l 1 1 f 1 l

4. The last field is treated after steps 2 & 3 have been ccrnpleted on the
other fields.

Pack.ing-1

Internals II Confi dent i sl

'· finally, bytes containing packed fields are flipped (bits reordered).

? BVTE1 O 7 BVTE2 0 7 8VTE3 0 1 BVTE4 0

l1l2l 1 1 1 1 131 1 1 1 1 1 1 1 14 l 1 1 1 f 1 1 set J 1 1 1 1 1 1 1 1 1

The following is a (slightly) simpler description of what eppem-s to heppen
when packed records ere packed, if you don't need to know the actual process.

1. Fields sre packed as tightly as possible without crossing word boundries,
starting at the hioh-ordered bit or the r1rst byte.
All packed records take up either one byte or an even nunber of bytes.
Only boolean or subrange types can be packed; all other types start on
word boundries, so steps 2 and 3 only apply to these types.

2. If a byte would be left empty (so the next field can start on a word
boundry), end there is more then one field in the previous byte, the lest
(l01rordered) field is moved into the empty byte.

3. The last (low-ordered) field in any byte with unused space is moved to
the low end of the byte. (This happens even if it's the only field in
the byte.)

Fields of unpacked records ere packed in order, startino on word boundries,
except for booleans and subranges that can fit in a byte. Values that don't
take up a full byte or word will be packed at the low-ordered end of that
space.
The whole record will teke up either one by'te or an even nunber or bytes.
For exemple, a record containino a subrange of 0 .. 15, two integers, and a
boolean would be packed as follows:

7 BYTE 1 0 7 BYTE 2 0 7 BYTE 3 0 7 BYTE 4 0

1 1 1 1 1 0„1=> 1 1 1 1 1 1 1 1 1 1 -, .. ---.---ntroer-; 1---„ 1

7 BVTE5 O 7 BYTE6 O 7 IYTE7 O 7 BYTES O

1.---• ---1---'llnt~oe-r 2---.-1 1 1 1 1 · 1 1 1 1a1 1 1 1 1 1 1 1 1 1

(

13-Janul!II'}·'-84 Pack.ing-2

Internsls II Confi dent i sl

Packed Arrays

Packed arrays e:re also code-expensive, except tor packed arrays of char.
(These ere treated as a special case, end the code associated with them is
compect.)

The nt.mber of bits per element in a packed arrt:ry" is the sme.llest of 1,2,4,8 or
16 bits that will acccrrrnodate the element. For exernple, a subrange of coll.lnn
A requires the nunber of bits per element in colunn B:

..A... -8_
0 .. 1 1
0 .. 2 2
0 .. 3 2
0 . .4 4

0 .. 10 4
0 .. 20 8

0 .. 255 8
0 .. 395 16

Booleans are packed one boolean per bit. The packed erray as e whole must
occupy an even nt.1nber of bytes.
A pecked erray[l .. '] of boolean would be packed as follows:

? BYTEl O 7 BVTE 2 0

1 1 1 15141312'11 111111111

A packed array[l .. 5] of [0 .. 6) would be packed as follows:

? BVTEl 0 7 BVTE2 0 7 BVTE3 0 ? 8VTE 4 0

,-e(2-) -...-, -e(-1)--,, - -e(4-) -, -a(-3)-, 1 1 1 1 1 8(5) 1111111111

You can use the i operator to poke around inside 8rf1 packed value end thereby
discover what the packing algorithn (probably) is.

Si~ SUbrenges

Signed subranges (e.o. -5 .. 14) are packed in packed types (unlike U:SO Pascal,
which won't pack them). The minimt.rn field size for a signed subrange is the
11inimun nunber of bits needed to represent any nunber of the subranoe in two's
complement form.
The minimun field size is then subject to the rules for a particular packed
type. For example, though -1 .. 2 only needs three bits, if it's in a packed
erray, it will take up four (see above table). If it's in a packed record, on

Pack.i ng-J

Internsls II Confi dent i a1
(_

the other hand, it might take up only three bits, or it might use a whole
byte, depending on what's packed around it.

NJlE

A variable of type -127 .. 128 takes up a b}o·te.
A variable of type O .. 2', takes up a word.
A variable of type char takes up a word.

13-.January-84

(

Packing-4

PASLIB Procedure Interface
(Workshop Release 1.0)

PASLIB is the Pascal run-time support library. lt provides the procedures and
functions that ere built into the Pascal language, acts as the run-time interf ace to
the Operating Sy'stem, and "completes" the 6EK)X> instruction set by providing routines
for the compiler-generated code to call upon in lieu of actual hardwere instructions.

The interface to PASLIB is very tightly coupled with the Pascal canpiler„ and
is very likely to be changed to improve performance and reduce code size. For
this reason, only ce.11 these routines from assembly languege if you absolutely
end posi t i vel y have t o; st ay in Pascal as much es possi bl e when deal i r1g wi t h
PASLIB. Most of these routines support the Pascal buil t-in procedures„ which
are described in detail in t he Ps.s-cal Rererence l1anu11l.

There e:re a few conventions for usinQ these routines, which mus:t be followed
to enst.a"e correct results and successful execution. All the routines are
called wi th parerneters passed on the stack. The parM1eters are pushed ontc•
the steck in the order of the paremeter list shown in each routine. 'ST.L'
indicates a four-byte parerneter, 'ST.W' two-byte, 'ST.B' one-byte (stored in
the upper byte of a word)„ and 'ST.S' a set. The parameters passed will be
popped by these routines before return. The function results, if any, will be
returned on the stack after the parerneters are popped out. Note that the
function-type routines do not expect room for the function result to be
reserved on the stack before the call. Also note that these routines do not
check for room on the stack; the caller must guarantee enough rocm on the
steck for saved registers. The ce.ller should follow the Pascal procedure
prearnble code for expanding the stack before calling these routines. Standard
register preservation conventions ere followed except in the routines
indicated. Refer to the Alorkshop llser's Guide for the usaoe of the special
registers e.nd the stack frerne e.l.location. ·

Contents

1. Ini tialization and Termination Routines 2
2. Integer Ari ttlnetic Routines 3
3 . Data Move and Sc an Rout i nes . 4
4. String Manipulation Routines 6
5. String Comparison Routines B
6. Set Mani pul ati on Routines ~ B
7. Mi scel 1 aneous Rout i nes . 10
8 . Range Check Rout i nes . 11
9. Heap Rout i nes . 12

10. Read and Wri t e Raut i nes . 15
11. rile I/O Routines 22

27-.January-84 PRSt.IB-1

Internals II Confi dent i sl

1- Initialization and TBI11ination Routines: ~_EEGIN, ~_ßl), ~_INIT, ~-1EA1

None of these routines have parerneters, return values, or destroy any
registers.

Every main progrem must have the rollowing beginning and ending sequences
c8lling these routines:

.JS'R % EEGIN ; beginning sequence

(

LINK A6, #$0000 no-op for LiseBug, to look like standard module
head

rtJVE.L (A7)+, A6
LINK A5, #$0000 i set up global freme f or mai n program
St.BA.L $0010(A5L A7 ; variables ror uni ts, etc. passed by loader
JSR %_INIT

; mai n progrem code goes here
.
lSR %_TERM ; ending sequence
lt-ILK A5
lSR %_8'[)
RTS
lJ-.ILK A6 no-op for LiseBug, to look like standard module

RTS
tail (

Note that the size of the progrern global variables allocated to the loader
is offset +16 from register A5.

%_BEGIN - Beginning routine. Currently a no-op; reserved for future
extensions.

%_Et() - Ending routine. Currently a no-op; reserved for future extensions.

~_INIT - Initializes PASLIB internal olobal data for each process:

l. Sets up an f-line trap routine, which signals a "sys_terminate"
exception if an f-line trap is encountered in the user code,
terminating the proorem.

2. Sets up global input and output file buffer addresses. These
buffers are used for screen, keyboard, exec files and output
redirection. The address locations are fixed on the stack: the
input buffer address is offset +8 from register A5; the output
buffer address is offset +12. They are set up to point to global

27-JBntJl!JI}•'-84 PflSLIB-2

Internsls II Conti dent i sl

file buffers in the shared data area of PASLIB.

3. Initializes the OS exception handlers.

4. Initializes the Pascal heap local variables.

NJTE: The %_INIT routine will restart at step 5 if the calling process
is a resident process.

5. Initializes the PASLIB local variables.

6. If the floating-point library IOSFPLIB is linked, it is
initialized.

%_TERM - Terminate. If the process is resident, it jumps to step 5 of
%_lt'UT (see above).. if not, it calls the OS routine "Hit_End 11 to
terminate the process. Control does not return after this call.

2. Integer A:ri thletic Routines: U_lt..l..4, U_DIV4, U_t1D4

%I_tt.JL4 - Multiply two 4-byte integers

Parameters: ST. L - ArgLrnent 1
ST.L - Argt.1nent 2

Returns: ST. L - Product

Registers used: All registers are preserved.

The multiplicstion algorittm is as follows:
-argt.1nent l's upper word is multiplied by argl.l'Rent 2's lower word.
-ergt.1nent 2's upper word is multiplied by ergt.1nent l's lower word.
-these two products are added, and the Slln is put in the result's

upper word.
-the two argllDents' lower words are multiplied, and this value is

put in the result's lower word.

27-January-84 PRSLIB-3

Internsls II Confi dent i sl

%I_DIV4 - Divide two 4-byte integers

Parameters: ST.L - Dividend
ST. L - Divisor

Returns: ST.L - Quotient

Registers used: All registers are preserved.

The division is performed by subtracting the dividend from the
divisor 31 times (for each of the 32 bits except the sign bit).

%I_tt:D4 - Remainder from the division of two 4-byte integers

Pararneters: ST. L - Dividend
ST.L - Divisor

Returns: ST.L - Remainder

Registers used: All registers are preserved.

The divisiora is performed in tr1e serne w~ as %I_DIV4„ above.

J_ Data ttove and Scan Routines: ~_tlJYEL, ~_tlM:R, ~_flLLC, ~_SCfH:, ~-~

%_t10\IEL - Moveleft

Parameters: ST .L - from Address
ST.L - To Address
ST.\11 - Nt1nber or bytes to move

Returns:

Registers used: 00„ 01„ 02„ ~„ Al„ A2

(

If the nt.1nber of bytes to move is 7 or less, they ere moved a byte
at e time. If the source address + 2 is the destination address„
the data is moved one word et a time. If there ere more than 7
bytes to be moved, then data is moved e long word at a time. If
the endi.ng eddress is a byte address, the trailing byte is •oved.

1
\

PllSLIB-4

Internsls II conri dent i sl

%_t1JVER - Moveright

Parameters: ST. L - frooi Address
ST.L - To Address
ST.IA - NtJnber of bytes to move

Returns:

Registers used: 00, fK>, Al, A2

Data is moved one byte at a time.

%_FILLC - Fillchar

Parameters: ST.L - Address to fill

Returns:

ST.IA - NU"nber of bytes to fill
ST.W - fill character

Registers used: 00, 01, FK>, A2

Fills the address with the given character one byte at a time.

%_SCfr'E - Scan equal

Parameters: ST.W - Length to scan

Returns:

ST.W - Character to scan for
ST.L - Address to scan

ST.W - The position of the character (O being the
first)

Registers used: All registers ere preserved.

Scans the string for the given cheracter, one byte at a time.

Note that "Length to scan" can be negative, and the scan will go
in the lower address direction.

27-Janusry-84 PRSLIB-5

Internsls fl. conrident i sl

~-SC~ - Scan not equal

Pererneters: ST .W - Length to scan

Returns:

ST.W - Character to scan for
ST.L - Address to scan

ST.W - The first character position that is not equal
to the character to scan for (0 being the
first)

Registers used: All registers are preserved.

Scans the string for the first character not equal to the given
character, one byte at a time.

Note that "Length to scan" can be negative, and the scan will go
in the lower address direction.

4_ String tlanipulation Routines: i_CAT, i_Pm, i_CIPY, i_DEL, i_INS

All the string manipulstion routines are performed one byte at a time.

%_CAT - Concatenate

Parameters: ST.L - Address of lst string
ST.L - Address of 2nd string

Returns:

ST.L - Address or Nth string
ST.L - Address to put result
ST.W - N

Registers used: All registers are preserved.

Copies all the g1ven strings to the result string.

(

PllSLIB-6

Internal.s

%_POS - Position of one string in another

Parameters: ST.L - Address of substring
ST. L - Address of main string

Returns: ST.W - Position

Registers used: All registers are preserved.

II Conf'i dent i 8l

Compares the substring with the rnain string until a match is
found. If no match is found, O is returned.

%_CCPY - Copy a substring

Parameters: ST.L - Source string address
ST.W - Sterting index
ST.W - Size to copy
ST.L - Address of result

Returns:

Registers used: All registers are preserved.

If the nl.lnber or bytes to copy is o, or if the source string is
langer than the nl.lnber of bytes to copy, the result string has O
lenth.

%_DEL - Delete a substring from a string

Parameters: ST.L - Address of string

Returns:

ST.W - Position to stert deleting
ST.W - Nl.lllber bytes to delete

Registers used: 00, 01, 02, 03, 00, Al, A2

%_INS - Insert one string in enother

Parameters: ST.L - Address of strihg to insert
ST . L - Address of mai n stri ng
ST.W - Position in main string to 1nsert

Returns:

Registers used: 00, 01, 02, 03, FK>, Al, A2

27-Jsnusr}·'-84 PflSLIB-7

Internsls II Conf'i<Jent i sl

5. String CCllparison Routines: '5_EC, '5_tE, '5_LE, ts_CE, '5_LT, '5_GT

All the string comparison routines are performed one byte at a time.

'S_EO - String equal
%S_~ - String not equal
'S_LE - String less than or equal
%S_GE - String greater than or eque.l
'S_Ll - String less than
%S_Gl - String greater than

Pererneters: Sl.L - Address of first string
Sl.L - Address of second string

Returns: Sl.B - Boolean result

Registers used: All registers are preserved.

6. Set Hanipulation Routines: ,_IKIER, ,_SINi, ,_ltaCJf, ~_DIFF, ,_ll>IFF,

(_

,_twa:, ,_fl>J, ,_SETCE, S_S'E'TLE, ,_SETEQ, (
~-SEM

The format of a set on the stack is:

+---------+ high address
1 15 - 0 1
+---------+
' 31 - 16 1
+---------+
1 +---------+
l last wordl
+---------+
1 # Bytes 1
+------+ low address

27-.Januar}•'-84 PflSLIB-8

Internals

%_INTER - Set intersection: setl t=t<> set2
%_U'HCt~ - Set uni on: set 1 rn set 2
%_0Iff - Set difference: setl A'-D (NJT set2)
%_ROIFF - Reverse set difference: (t()T setl) ~ set2

Parameters: ST .S - First set
ST.S - Second set

Returns: ST.S - Result set

Registers used: All registers are preserved.

%_Slti:i - Singleton set

Parameters: ST.W - Singleton value

Returns: ST.S - Result set

Registers used: All registers are preserved.

%_RAtliE - Set range

Pererneters: ST .W - MinimLrn value
ST . W - Max im um val ue

Returns: ST.S - Result set

Registers used: All registers are preserved.

II Confi dent i al

Returns the set representation of the values from minimlln to
maximllfl. If min1mlln is greater than maximlfll, a null set is
returned.

%_ADJ - Set adjust

Paremeters: ST.S - Set
ST.W - Desired size in bytes

Returns: ST.S' - Adjusted set without size word

Registers used: All registers are preserved.

Changes the size of a set to the given size. If the set is la.rger
than the desired size, the extra values are thrown out; if the set
is smaller than the desired size, extra fields are added and
initialized to O.

27-Jsnus:ry-84 PlbL.IB-9

Internsls

%_SE1l'E - Set inequality test
~_SETEO - Set eque.lity test

II Conti dent i sl

% SETGE - Set inclusion test (returns true if set2 is the seme as or
- included in setl)

% SETLE - Set inclusion test (returns true if setl is the seme es or
- included in set2)

Parameters: ST.S - First set
ST.S - Second set

Returns: ST.W - Boolean Result

Registers used: All registers are preserved.

7 _ ttiscellaneous Routines: l_(IJIO(Y, l_OOTO, l_HAL T

%_GOTOXY - Move the cursor to a specified location

Parameters: ST.W - X coordinate
ST.W - Y coordinate

Returns:

Registers used: 00, 01, 02, 03, F(), Al, A2

(_

%_GOTOXY sends the following esce.pe sequence to the screen to move
the cursor position: ES"C

=
Y+32
X+32

Y velues are between 0 and 31; X velues. between O and 79. If the.
coordinate 01ven is outside these bounds, it is set equal to the
boundry val ue.

%_GOTO - Global GOTO code se(Jllent remover

Parameters: ST. L - Pointer to the des1red last-sefJRent junp table

Returns:

Registers used: FK>

Jllnps rrom a nested routine to the first-level process.

PllSLIB-11.,?

Internals II Confi dent i al

,~_HALT - Halt

If the process is resident, it goes to step 5 of the %_1NIT
routine. If not, it calls "teminate_process" with the value of
event_ptr es nil. Control does not return efter this call.

8. Range Check Routines: ~_JDt::K, ~-SRH<

%_RCH:K - Range check, to check the bounds or subrange type variables

Pererneters: ST.W - Value to check
ST.W - Lower bound
ST.W - Upper bound

Returns:

Registers used: All registers are preserved.

Note that if the check fails, this routine causes the system
exception 'SYS_VALl.E_o:e' to be signalled and the message 'VALLE
RFtlGE ~· to be displayed before the process is forced to enter
the debugger. If the process has not declared an exception
handler for this exception, the system default handler is entered
after the debugger returns control. The system default hartdler
terminates the process.

%_SRCH< - String range check, to check a string index against its length

Pererneters: ST .B - Value to check: 0 .. 255
ST.W - Upper bound

Returns:

Registers used: All registers are preserved.

Note that 1r the check fa1ls, th1s routine causes the system
exception 'SYS_VALlE_CXl3' to be signalled and the message 'ILLEGAL
STRil'li lt()EX' to be displ~ed before the process is forced to
enter the debugger. If the process has not declared an exception
handler ror this exception, the system default handler is entered
after the debugger returns control. The system default handler
terminates the process.

PflSLIB-11

Internals II Confi dent i sl

(_

9. Heap Routines: ,_tEW, ,_IWI<, ,_REL.SE, ,_telA't', ,_tEfRES

%_t€:W - The New procedure. Allocate mernory in the Pascal heap.

Parameters: ST .L - Address of pointer
ST.W - Nunber of bytes needed

Returns:

Registers used: 00, 01, 02, 03, WJ, Al, A2

%_1'€:W sets the address of the pointer to nil.

%_NEW checks whether the heap has been ini tialized {whether a date.
segment has been allocated) via the boolean Heaplnited. If
Heaplnited is false, a call is rnade to the GrowHeap function to
create and initialize a 'new heap'. lf GrCMHeap is unsuccessful
(returns false) then %_~w is exited with the pointer set to nil.

The Grar..tteep function ini tielizes a 'new heap' by calling the
PLinitHeap procedure. GrCMheap passes PLinitHeap the size of
the Pascal heap data segement, the memory size (HeepDelta) and
the logical .data segnent nt.1nber (LDSN = 5). PLinitHeap then
creates a private data se~ent with the pathneme PascalLHeap„ (
and assigns the se~ent pointer address to the pointers
HeapStert and HeapPtr. PLinitHeap sets the pointer HeapEnd to
point to the end of the se~ent (HeapStart + se~ent size -
256).

Before assigning an address to the po1nter, %_~ determines
whether there is enough roan on the heap (i.e. in the data
segment) for the variable. %_~w makes a second call to the
GrowHeap function. If GrowHeap is unsuccessful, then %_tEW is
exited-with the pointer set to nil.

The GrM-teap runction calls the Getsareftmtount procedure to
determine the maximll'ß nunber of bytes by which the heap can be
increased (the emount or system memory available to the calling
process). If this emount is greater than the current size of
the heap, then GrowHeap will double the size of the heap,
otherwise GrowHeap will increase the heap to the maximun emount
available. The pointer HeapEnd is incrmented by the emount of
increase.

%_tE:W then sets the address of the pointer to the address of
HeapPtr, which points to the next rree area on the heap. The
address of Heap:>tr is increased by the size of the variable that
was placed on the heap.

PllSLIB-12

Internals II Confi dent i al

%_M~ - The Mark procedure. Mark the Pascal heap.

Par ernet er s : ST . L - Addr ess or poi nt er t o be marked
ST.W - Nt.rnber of bytes needed

Returns:

Registers used: 00, 01, 02, 03, ~, Al, A2

%_M~ checks whether the heap has been initialized via the
boolean Heaplnited. If Hee.plnited is false, a call is made to the
GrowHeap function to create and ini tialize a 'new heap'. If the
function is unsuccessful (returns talse) then %_MARK is exited.

The GrMieap function is described under %_1'EW„ 8bove.

%_M~ sets the address of the pointer to the address of HeapPtr„
which points to the next free area on the heap.

%_RELSE - The Release procedure. Release the Pascal heap.

Parerneters: ST.L - Address or pointer to release to.

Returns:

Registers used: 00, 01, 02, 03, WJ, Al, A2

%_RELSE checks whether the heep has been initialized via the
boolean Heaplnited. If Heaplnited is false„ a call is made to the
GrowHeap runction to create and 1n1t1al1ze a 'new heap'. If
GrowHeap is unsuccessful (returns false) then %_RELSE is exited.

The GrowHeap function is described under %_tE.W„ above.

If the pointer does not point within the heap (i.e., address
memory between HeepStart and Heai:f:nd), an error will resul t and
the procedure will be exited.

If the pointer is less than Hefllfnd minus HeapDel ta, (where
HeapOelta is the orioinal size of the heap) the heap is reduced in
size by HeapOelta.

%_RELSE sets HeapPtr (which points to the next free area on the
hesp) to the address of the pointer.

27-JBnUsr}•'-84 PRSLIB-1.J

Inte:rnsls II Confi dent i sl

(_

%J"EMAV - The Memavail function. Memory Available in the Pascal heap.

Parameters: None.

Returns:

Registers used: All registers are preserved.

%_tEMAV generates a call to the %_R-MordsAvail function, which
determines the emount of words available.

%_Pl-MordsAvail checks whether the heap has been initialized via
the boolean Heaplnited. If Heaplnited is ralse, a call is made to
the GrowHeap function to create and initialize a 'new heap'. If
GrowHeap is unsuccessful (returns ralse) then %_PHWordsAvail is
exited.

The GrowHeap function is described under %_t-.EW, above.

% Pt-MordsAvail determines the maximlJ'n m.rnber of words available
(the snount left in the heap data segnent minus the maximl.ln ernount
of system memory available) and the current nllTlber of LDSN words
evailable (the maximLrn nunber of words you can get by the chosen
LDSN mintJs the nllTlber of words already used). If the maximlln
runber of words available is greater than the current m.nber of
LDSN words available, then the current nllllber of LDSN words
available is returned, otherwise the maximun nt.1nber of words
available is returned.

%_tt:fflRES - The HeapResult tunction.

Pererneters: ST.W - Heap result

Returns:

Registers used: All registers are preserved.

Refer to the Alorkshop User 's Guide ror the values or the heap
result.

~-tE~S generates a cal l to the %_ttieapRes function. "-t+teapRes
is assigned the inteoer value of tErrResult.

PllSLIB-14

Internsls II Confi dent i sl

10. Re8d end Write Routines: ~_KEYPRESS, W_LN, W_C, W_STR, W_PIU:, W_I,
w_e, ~_P&:, m_c, m_I, m_sm, m_PfO:,
~_LN, ~-EDLM

All the read and write routines take 1 file address' as a parerneter, which
is the address of the file variable. The address of the Pascal stendard
input is in offset 8 from register A5; the address of output is in offset
12 fran A5.

%_KEYPRESS - The Keypress function.

Perarneters: ST. L - File address

Returns: ST.B - Boolean Result

Registers used: All registers are preserved.

Note that the file address is not used in the current implementa­
tion.

%_KEYPRESS generates a call to the %_PKeyPress runction and
returns the result of %_PKeyPress as its result.

The %_PK~y'Press function determines whether any keys he:-Je been
pressed. lt returns true if the look-ahead buffer is full,
otherwise it returns false.

~_LN - Writeln

Peremeters: ST.L - Address of output file

Returns:

Registers used: 00, 01, 02, 03, AO, Al, A2

%W_LN calls the FWriteln procedure, passing it the address of the
file. FWriteln calls the FWriteChar procedt.ae, passing it an
ASCII <CR> (end-of-line) to be appended to the string.

27-Jsnuszy-84 PRSLIB-15

Internals II Confi dent i sl
(_

~-c - WriteChar. Display a character on the console.

Peiemeters: ST.L - Address of output file
ST.8 - Cheracter tobe output
ST.~ - Size or field to print

Returns:

Registers used: 00„ 01, 02, 03, AO, Al, A2

%\IJ_C calls the FWriteChar and OutCh procedures to write a
character to the file. %W_C passes OutCh the character to be
written and the address of the output file. OutCh then calls
FWriteChar to write the character to the file.

The default field size is 1. If the field size is greater than 1„
%W_C calls fWriteChar to write out the appropriate nt1nber of
spaces, then calls OutCh, which calls FWriteChar to write the
character.

~_STR - Write string

Parameters: ST.L - Address of output file
ST.L - Address of string
ST.W - Size of field to print

Returns:

Registers used: IX>, 01, 02, 03, AO, Al, A2

If the string size is greater than 255 characters„ then ~_STR
truncates it to 255.

(

%W_STR then compares the field size (Mit'Wlidth) to the specified
string size. lf the field size is less than or equal to zero,
it's set to the strino- size. Ir the field size is less than the
string size (but greater than zero), then the string size is set
to the field size. If the field size is greater than the string
size, then a call is made to the FWriteChar procedure to write out
[Hin-.tidth minus strino size] spaces.

~ STR then calls fWriteChar to write out the string with the
specified string size.

PliSLIB-16

Internals li Confi dent i sl

~_PfCIC - Write a packed array of characters

Parameters: ST.L - Address of output file
ST.L - Address of string
ST.~ - Actual length
ST.W - Size of field to print

Retlans:

Registers used: 00, 01, 02, 03, AO, Al, A2

The effect of ~_PFO: is the seme as calling ~_STR with the
specifed field size equal to the nllnber of elements in the array.

~-I - Write an integer

Parerneters: ST.L - Address of output file
ST.L - Value to print
ST.W - Size of field

Returns:

Registers used: 00, 01, 02, 03, AO, Al, A2

~-I compares the field size (MirWJidth) to the size of the
integer. If the field size is greater than the size of the
integer, then ~-I calls the FWriteChar procedure to write out
[MirWJidth minus integer size) spaces.

~ I then calls FWriteChar to write out the integer with the
specified integer size.

27-Jsnusry-84 PfSLIB-17

Internals II Conridentisl

~-B - Write a boolean

Parameters: ST.L - Address or output file
ST.B - Value to print
ST.W - Size or rield

Returns:

Registers used: 00, 01, 02, 03, AO, Al, A2

~-B calls the ~.W_STR procedure, passing it the string to be
written, the size of the string, and the address of the output
file.

If 'value to print' is zero„ *-B passes the string 1 fALSE 1 to
~_STR, with a string size of 5.

If 'value to print' is 1, 4:0N_B passes the string 'TR.E' to *_STR„
with a string size of 4.

~_STR then writes the string to the output file.

%_PAGE - Page procedure

(_

Parameters: ST.L - Address of output file

Returns:·

(

Registers used: 00, 01, 02, 03, AO, Al, A2

%_PFGE writes the ASCII ch&Tacter 'ff' to the output file by
calling the OutChar procedure. OutChar is passed the character to
be written (e.g. 'FF') and the address of the output file.

PllSLIB-18

Internsls II Conf'i dent i el

'4R_C - ReadChar

Parameters: ST.L - File Address

Returns: ST.B - the character read

Registers used: 00, 01„ 02„ 03, AO„ Al„ A2

~-c reads a character from the specified file by calling the IrCh
function„ then returns the character on the steck.

InCh calls the FReac.Char function„ passing it the file address.

FReaC:C:har verifies that the file has been opened, calls the
FGet procedure, reads the character that is placed in the
window buffer area by FGet, arad passes the character back to
InCh.

~_LN - ReadLn

Parameters: ST. L - Address of input file

Returns:

Registers used: 00, 01, 02, 03, AO, Al, A2

~_LN reads a line from the specified file by calling the FReadln
procedure, passing it the file address.

FReadLn verifies that the file has been opened and then calls
the FGet procdure to read each character on the line until EOLN
is true. When EOLN is true„ fReadln resets EOLN to ralse and
returns to ~_LN.

"4R_PFCX: - Read Packed Array of Character

Parameters: ST.L - file Address
ST. L - Array Address
ST.W - Size of arrflt} in bytes

Returns:

Registers used: 00„ 01, 02„ 03, AO, Al, A2

The effect is the seme es celling ~_STR whose specified field is
the nunber of elements in the srray.

Pf/SLIB-19

Internals II Confi dent i sl

(_

~_SlR - Read String

Parameters: ST. L - File Address

Returns:

ST.L - String Address
ST.W - Max size of string

Registers used: oo„ 01„ 02„ 03„ AO„ Al„ A2

'4R_STR first veri fies that EOLN is talse, otherwise '-R_STR returns
to the calling routine.

~_STR then generates a loop which reads a character from the file
by calling the IrCh procedure (described under ~_c, above), then
checks whether EOLN is true. If EOLN is true, '4R_STR returns to
the calling routine. If EOLN is talse, ~_STR reads the character
end returns to the beginning of the loop to read the next
character.

After lrCh returns a character, %R_STR checks whether the
cheracter is a R.BlJT (ASCII 'DLE') or BFCKSPFCE (ASCII 'BS'). If
the character is either of the two, ~-STR processes the character
eccordingly and then reads the next character. If the character (
is not Rl.EOJT or BFCKSPll„ the chsracter is read and %R_SlR
returns to the beginning of the loop to read the next character.

~-I - Read Integer

Parameters: Sl.L - File Address

Returns: ST.B - The integer read

Registers used: 00, 01, 02, 03, AO, Al, A2

'1.R_I consists of two main loops which reads characters from the
file to form a valid representation of an integer value.

The tirst loop reads a chm'acter fran the file by calling the lrCh
procedure (described under 'CR_C, above). If this character is
<CR> or space, ~-I returns to the beginning of the loop to read
the next character. If the character is not <CR> or space, %R_I
exits the first loop.

Next, ~-I determines whether the character read is a sign
character ('+' or '-'). If it is, %R_I enters the second loop and
calls IrCh to read the next charecter. If the character is not a

PllSLIB-..a.i

lnternsls II Confidential

sign character, %R_I enters the second loop bypassing the call to
InCh.

The character is then c.hecked to see if it 's a RLEO.JT or BFC.KSPACE
~· character; if it is, the character is processed accordingly and
· ~-I returns to the beginning of the first loop.

The chsracter is. checked once more to determine if it is a valid
integer value (O i charecter i 9). If it is, ~-I returns to tf'"1e
beginning of the second loop end calls IrCh to reed the next
character.

If the character is not a valid integer, then %R_I checks to see
if any characters read previously herve been valid integers (b'y
checking register 06). If no characters herve been valid integers
(06 = O), then ~-I generates an I~esul t error. If the characters
read previously have been valid integers (06 =1), then %R_I
returns to the calling routine with an integer result.

%_EOLN - End of line predicate

Parameters: ST.L - File address

Returns: ST.B - Boolean Result

Registers used: All registers are preserved.

%_EOLN returns true if the end of a line has been reached in the
speci fied file.

PflSLIB-21

Internsls II Confi clent i sl

11. File IAJ Rout ines: ,_RflPRT", X_A:SET, X_ct..CEE:, X_EIF, ,_BLJ<RD, ,_Bl...KtiR,
~_llJES, ~_(Cf, ~_Pl.IT, ~_l.PARR, ~-SEEK

%_RE~T - Rewrite a file

Parerneters: ST.L - File Address
ST.L - Address of Nerne String
ST.W - Kind: -2=text, -l=file, >O=nt1nber of words per

record

Returns:

Registers used: 00, 01, 02, 03, AO, Al, A2

Creates and opens a new file.

%_RE~T first initializes the file's flB (file identification
block) by making a call to Flnit and passing it the file type via
the parsneter recBytes. Once the file type is determined, the
value of FRecSize is initialized. The values of recBytes and
FRecSize and the file types are:

recBvtes
-2
-1

fRecSize
-1
0

-1 0
>0

file type
text
untyped
interactive
typed value in recBytes

Other important fIB entries are initialized as follows:
FisOpen := false The file is rnarked as not open
FNewFile := false .. The file is rnerked as not new

(i.e. no creation of new files)
FEOF := true .. End Of File is set to true
FEOLN := true .. End Of Line is set to true
FModified:= false .. The file is rnerked as not modified
FisOS := true .. The file is marked as an OS File

%_RE~T then calls FOpen. Within FOpen:

A check is made to determine whether the file has been opened
by referencing the boolean FisOpen. If FlsOpen is true, an
I~esult error will occur; if not, it is set to true.

FOpen then determines whether the filenarne is one of the
character devices CCNSOLE, KEYBJFR>, or PRINTER. If it is,
FOpen opens the file. If the filenerne is PRINTER/ a check is
~ade to deterrnine if the printer is connected. If the printer
is not connected/ an I~esult error will be generated. The FIB

(

(

27-January-84 PflSLIB-22

Internsls II Confidentisl

variable FlJnit is also set accordingly: 1=a:t60LE, 2=KEYBJARD,
3=PRINTER, lO=other devices (not pseudo devices).

The FIB variable FNewFile is set to true to indicate that a n~~
file is being created with a rewrite, otherwise its value woulcf
remain false indicating a reset operation.

FOpen creates and opens a new temporary file if the filenerne
does not exist (i.e. if fNewfile is true), otherwise it opens
the existing file. If the temporary file is of type TEXT,
FOpen writes two header blocks of null to the file. FOpen also
kills the temporary file so that it may be unkilled during the
close.

%_RESET - Reset a file

Parameters: ST.L - File Address
ST.L - Address of Name String
ST.W - Kind: -2=text, -l=file, >O=nurnber of words per

record

Returns:

Registers used: 00, 01, 02, 03, AO, Al, A2

Opens an existing File.

%_RESET behaves in the seme manner as %_~T, by making calls to
procedures Flnit and FOpen. However, %_RESET does not create a
temporary file (FNewfile is false). lt attempts to open the
existing file and if it is unsuccessful will issue an I~esult
error.

Before exiting FOpen, %_RESET makes a call to the FReset procedure
which in turn calls the FGet procedure. This has the effect of'
advancing the file position to the first record of the file.

Pfl:SLIB-2.J

Internsls II Confidentisl

%_CLOSE - Close a file

PerBfneters: ST. L - File Address
ST.W - Mode: O=l'<RMAL, l=Lo:K, 2=Pl.RGE, 3=CRl..tf:H

Returns:

Registers- used: 00, 01, 02, 03, AO, Al, A2

If the file is a character device (e.o. console, keyboard) or if
the file is not open (fisOpen is talse), the close procedure has
no effect.

CRUNCH and LO:K Options:

If the close option is either CRl.tfJi or LCCK, and the file is a
text file thet had been opened by RESET (fNewfile is false), e
check will be made to determine if the nllnber of blocks is odd.
If it is, a null block will be written to the end of the file.

If a previously existing file was opened by REWRITE (fNewfile
is true)., it will be killed (i.e. deleted). Its ternporary
file,. which was killed by FOpen„ is unkillecf using the original
file neme as the new file nsne.

PURGE Option:

If the file was creeted by ~ITE, the temporery file will
have elready been killed in fOpen.

The ~ option will kill the originel file prC1Vided it was
opened b'y ~SET (FNewFile is false).

N:A1AL Option:

If the file was created by FE~ITE, the temporary file will
heve already been killed in FOpen.

The original file is left untouched.

(_

27-January-84 PllSlIB-24

Internals II Conti dent i Bl

%_EOF - End of file predicate

Pereroeters: ST.L - file address

Returns: ST .B - Boolean Result

Registers used: All registers are preserved.

Detects the end of a file by referencing the fIB boolean entry,
FEOF.

%_BLKRD - Blockread

Perarneters: ST.L - file Address
ST.L - Buffer address
ST.W - Nt.rnber of blocks to read
ST.W - Block N1..Jnber, -1 = Sequential

****** ST.W - DoRead, O = write, 1 = read *****·

Returns: ST .W - Nllllber of blocks actually read

Registers used: 00, 01, 02_, 03, AO, Al, A2

%_BLKRD generates a call to the FBlockIO function, passing the
parameters listed above. The boolean variable DoRead is set to
true for Blockread and false for Blockwrite.

Within FBlockIO:

27-.January-84

If the file is not open (FisOpen=false) and the number of
blocks to transfer is less than zero, FBlockIO will generate an
I~esult error and the file will not be processed.

If the file is the cheracter device cnsDLE or KEYBJfR:>, an
ICResult error will be generated and the file will not be
processed.

If the file is the cheracter device PRINTER, the block nl.lnber
to start the transfer (~LCCK) is set to -1.

If the boolean DoRead is true, FBlockIO reads blocks frcm the
file via a RE~_DATA call, otherwise FBlockIO writes blocks to
the file via a ~ITE_DATA call.

Before these OS calls can be made, the mode and offset must be
determined.

PRSLIB-25

lnternals II Confi dent i sl

If the block nllnber to sta1t the transfer (RBLCCK) is less than
zero, the mode is SEr;lENTIAL and the offset is zero, otherwise
the mode is ~LUTE and the offset is calculated as:

ord4(rblock) • FBlkSize
where fBlkSize is the Standard Disk Block Length (512)

The m.mber of blocks actually read or transferred is calculated
as:

FBlockIO := actual div fBlkSize
where 'actual' is the nllnber of bytes transferred by the
READ_DATA or t,.RITE_DATA OS ce.lls.

EOf (fEOf) is set to true when the last block is read.

%_BLK~ - Bl ock~«i te

Perarneters: ST .L - File Address
ST.L - Buffer address
ST.W - Nl.IDber of blocks to write
ST.W - Block Nt.nber, -1 = Sequential

•••••• ST.W - DoRead, O = write, 1 = read *****
Returns: ST.W - Nlßber of Blocks actually written

%_BLK~ behsves in the seme manner as %_BLKRD, except it passes
the boolean variable Dc:Read with a value of talse when calling
FBlockIO.

%_ICFES - ICResult

Par arnet er s : None

Returns: ST.W - ICResult

Registers used: All registers are preserved.

Refer to the /llorkshop User 's 61.Jide for the values of ICResult.

Returns an integer value that rerlects the status or the last
completed I/O operation. Note that the code O indicates
successful completions, positive codes indicate errors, and
negative codes are warnings.

PRSLIB-26

(

(

Internsls II Confi dent i Bl

% IORES makes a call to function fl~esult, which in turns
ref'erences the variable IORslt. The variable lffisl t is assigned
val ues by the procedure %_SETICRSL T. This procedure i s called by
FPLib and appastext only.

%_GET - Read the next record in a file

Peremeters: ST.L - File Address

Returns:

Registers used: 00, 01, 02, 03, ~, Al, A2

%_PUT - Write the current record in a file

Parameters: ST.L - File Address

Returns:

Registers used: 00, Dl, 02, 03, AO, Al, A2

If %_PUT is called immediately after a file is opened with
%_RESET, the PUT will write the second record of the file (since
the %_RESET sets the current position to the first record and
%_PUT advances the position before writing).

%_LPARR - Compute the address of FA

Pererneters: Sl.L - Address of file

Returns: Sl.L - Address of FA

Registers used: All registers are preserved.

PflSLIB-27

Internsls II Confüientisl

%_SEEK - Allows access to an arbitrary record in a file.

Parameters: ST.L - Address of file
ST.W - Record nU"Aber to seek

Returns:

Registers used: 00, 01, 02, 03, AO, Al, A2

If the record nt1nber specified does not exists,

27-J8rll..18I}•'-84

1) %_SEEK causes the next CCf to access the last record in the
last block of the file.

2) % SEEK causes the next PUT to append the record to the end
of the file.

(

PRSLIB-28

P aslibCall Unit
(fr crn t he Workshop Us-er 's Sü'i de)

The unit PASLIBCALL provides you with several system functions. In order to access
the PASLIBCALL routines, you must use the units SYSCALL and PASLIBCALL:

l6ES
{Sl.J ~l} SYSCALL,
{$U Pasliteal.l} Pf&.IEDU;

This gives you access to the routines listed below. These routines are contained in
IOSPASLIB.OBJ, so programs using them require no additional inputs to the Linker.

f~tion PAbortflag : boolean
This tunction tells whett"1er or not the s-period key combination has been pressed.
lt enables prograrns to exit out of long operations. The flag is cleared when
PAbartFlag is called. lf you want yeiur progrem to stop when you press s-period„
you mu~t use this function in the program to detect that the key combination has
been pressed. For exarnple:

{This progrm fragnent hangs in an infinite loop until s-period is pressed}

aborted :=false
Repeat {Mait tar s-period. You llight want to do other things here}

abarted : =PAbartflag;
.aitil aborted.

procedure ScreerCtr (cootrrun : integer);
This procedure provides standerd screen control functions„ and enables programs to
perform screen control wtthout having to to use escape sequences. (Escape
sequences are explained in Appendix C of the Workshop User's· Guide.) The
perameter specifies the sc:reen control function. lt is defined in the constants as
follow~„ in the PASLIBCALL unit:

Function

clear screen
clear to the end of screen
clear to end of line
move cursor to home position
cursor left one position
cunor right one position
cursor up one line position
cursor down one line position

January-84

Ve.lue
Constant Decimal Hex

CclearScreen 1 1
CcleerEScreen 2 2
CclearELine 3 3
CgoHome 11 B
CleftArrow 12 C
CrightArrow 13 D
CupArrow 14 E
CdownArrow 15 F

PaslibCall-1

Screen control exemple:

{This progran h'BfJRent clears the screen, and positions the cursar on the
third line}
sC:reerctr (Cgdiclle);
ScreerCtr (Ccl emScreen);
ScreerCtr (CdcMnAirow);
ScreerCtr (Cd<MnArYow);

procedure GetCPrefix (var prefix : pathn&le);

This procedure provides your program with the first le\lel prefix setting in the
File-Mgr in the Workshop.

procedure GetPIOevice (var PIOevice : e_nme);

This procedure returns the corresponding default. printer device name so that y·ciu
can perform additional device control functions usirag DEVICE_CONTROL. (The
Operating System Reference ~1Bnusl explaini the device control call.) The def'ault
printer device name is the one corresponding to the logical device -PRINTER.
Note that. the device name returned contains a leading ·-·.

procedure PLINillEfP (var errrua, refrun: integer;
size,delta:longint
ldsn:integer;

where:

errrun

size

rerrun
delta

wappable: boolean);

is the error number returned if the procedure has ariy problems
making · a data segment having a mern_dze of" size bytes. (See
Apper1dix A of the Workshop User's Guide for an explanation of the
error codes.)

is the number of bytes in the heap.

is the refnum of the heap.

is the amount you want the data segment to increase when the
current space is used up. If you use a large heap, use a large
number for delta.

(_

is the logical data segment number used for the heap. The def au lt is
5. For more information see the Operating St/stem Reference Mam.1ai
f'or t~ l isa. ·

swappable is the boolean that determines if the system can swap the heap data
segment out to disk if it needs to.

Thh procedure ce.n be used when you have special needs; for example, when you
want to specify your own ldsn or heap size. When you use PLINITI-EAP .. you

.Janusry-84 PaslibCall-2

must call it before ca.Hing other heap routines. For more information on the heap.,
see the l4orkst1op U<·er's- Q.;ide.

PsslibCsll-.J

. l

PPaslibC Unit:
Privileg~d PASLIB Calls

The unit PPaslibC provides you with several useful low-level system functions.
However, they are not for B".·'eryonel They are tricky, in some cases have global
eff ects on the entire system„ and should be used with caution.

In order to use these routines„ you must use the units SYSCALL and PPaslibC:

lEES
{SU SVsCall} SYS:AL.L,
·~ R3aslitc} ~;

This gives you e.ccess to the routines lhted below. These routines are contained in
IOSPASLIB.OBJ„ so programs using them require no additional inputs to the Linker.

procedure BlockIOini t;

Ini tializes all shared PASLIB data. Opens inputfile and outputfile,.
associating them with the filename ...{;(16()LE.

BlockIOinit must be called by every shell before performing any IIO; it
will only be executed by the first shell that ce.lls it.

It is called by the ~staa.shell at boot time„ once for the entire system.

procedure BlockIOdisini t;

PASLIB cleanup. BlockIOdisinit closes the console only for the first shell
that called the BlocklOinit proc~dure.

procedure LockPaslib (var mTntn: integer);

where:

errnua is the error m.rnber returned i f the procedure has any problems.
(See Appendix A of the Worl<shop User 's 6uide for an
explanation of the error codes.)

Locks the PASLIBl sef1Tlent in memory so it won't be swapped out. Used by
the filer for urvnounting the boot device.

procedure LockPasIOlib (var mr,...: integer); .

where:

errnua is the error nllTlber returned if the procedure has any problems.

Locks the PASIOLIB segment in memory so it won't be swapped out. Used by
the filer for unmounting the boot device.

FPaslibC-1

Internsls II Confi dent i Bl

(_

procedure tloveConsole (ver er.mun: integer; applconsole: consoledest);
where:

1 ' ' ' ' ,· '("':''. «:. ·:. •'. .• ,,„.

mrnua is the error m.1nber returned i t the procedure has any 'problems.
applconsole tells where to move tne -console. (Consoledest is an

enumerated type of: e.l.screen, mainscreen, xsorocA, xsorocB,
fol der„ sparet spare2_, spare3.)

Noves the console to the me.in screen, an al ternate screen, or an external
terminal connected through RS232A or RS2328. The file nemes are:

Alternate Screen -AL11lJf;(Jlf-X
Main Screen -ftAilllHiOLE-X
External RS232A Terminal RS232A-X
External RS2328 Terminal RS232B-X

procedure Ex~set (var errntm: integer; execfile: pathnane; stopexec:
boolean);

where:
errnua is.the error nt1nber returned if the procedure has any problems.
execfile is the exec file nerne.
stopexec tells whether to open or stop the exec file.

TRUE = stop; FALSE = open.
If stopexec is TRLE, Exec::Reset closes the input file and
reopens it, associating it with the temporary exec file .. lt
then generates two calls to the FReadchar function to read and
save the temporary file's first character into the variable
gfirstchm", and the next cheracter into greadaheed. ExecReset
then sets the boolean gexecflag to TRLE.

(,

If' stopexec is FALSE,. ExecReset calls the Resetinput procedure,
which closes and reopens the input file, associating it with
-a:tQll.E. ExecReset then sets the boolean gexecflag to FALSE.

Opens or stops an exec file.
Exec::Reset is called once by the Exec Cornmand Interpreter, to open and read
from the exec temporary file and reopen the input file to the console.

fooction Execflag: boolean;

Tells whether an exec file is open. TRUE = open; FALSE = closed.
Execflag references the input file FIB boolean entry FSCl'lll.Jf.

(

6-Februmy-84 ff'sslibC-2

Internsls II Confidentisl

procedure OUtputRedirect (ver errntn: integer; outfile: pathnane; stopoutput :
boolean);

where:
errnua is the error m.1nber retui-ned if the procedure has any problems.

outfile is the file nerne.
stopoutput tells whether to close the file or leave it open.

TRLE = close; FALSE. = leave open.
If stopoutput is TRLE, outputRedirect calls the Resetoutput
procedure, which closes and reopens the output file,
associating it with -(lJf;()LE.

If stopoutput is FALSE,. OutputRedirect closes the output file
and reopens it,. essociating it with the filename outrile.

Redirects output to a file.

function OUtputRflag: boolean;

lells whether output has been redirected to a file. TRl.E = output file
open (output redirected); FALSE • closed (output not redirected).
outputRflag references t he out put fi 1 e fIB bool ean entry fSUF lllJf.

procedu:re CSl8SlibC81.1 (vm- Proc::Pe:rm: dsProcPm-m);
where:

dsProd>arm = record
cme ProcCode : dsProcCode of

dsResProg : (fl>rocessld : longint); {11Ust be called
befare the process starts running.}

dsSoftPWbtn (SPButton : boolean); {result}
dsPrintDev : (P.rDevice : e_nme);
dsSetfJ>refix : (errnua : INre:J:R; {resul t}

prefix : pathnmle);
dsEntf>isk : (DiskEvent : boolean);
dsCilranl.isel:ar : (tolrenslate : boolesa);

{to turn on ar otf translation rar c_ ltoh}

dsProcCode = (dsResProg, dsSoftflwbtn, dsPrintDev, dsSetfJ>refix,
dsEntf>isk, dsCi Tranlis&:sr);

dsResProg passes the process ID of a process that is going to be
resident to PASLIB.

dSSoftfWbtn returns the soft power button setting. If the button is
pressed, it returns TRLE; if not, it returns FALSE.

6-F ebruary'-84 ff'ssl i bC-_,i

lnternsls II Confidentisl

(_
~intdev passes the pt"iysical device neme of tt'1e cc•rresponding

logical device -RUNTER to PASLIB.

·-~~~~ '..;~~~~~ij;,.t;:,·.~r~~~~\~~-ti.i. ;",,;;~';·;::-~'•''.~;;:-'.:,o;ii:; i. \i,.::';'"i'~".:·;.:f·i.,:i .. :ii,:.~~i, ... '-, , .. ~„,
dsfntoisk tells P,ASLI.13 to en~l~.Jif Oikkf:yent is ~J~,.,•9'i!i"~~§;$P:l~;,,'lr ~''>·i

(if ·DiSkEvent is ~LSET?fü:f äutomatic· mountTng··ana ~~'"'~-
ejecting of a diskette.

dsColrenliS8Car tells PASLIB to turn on (if tolranslate is TRLE) or off
(if toTranslate is FALSE) the Lisa cheracter translation
for e. C. Itoh printer for the ce.lling process. The
default setting is on.

IEPaslibCall is a new call in the PPaslibC unit that cornrnunicates to and
from PASLIB about the run-time support for the system or the calling
process. It has a variant-record parameter for indicating various
functions. Note that most of· these functions dictate system behavior; they
are not safe for any process to call except the Lisa character translation
function.

(

(

6-Februsry-84 FPaslitC-4

Irtroduction

Floating-Point
Libraries

The Lisa provides Siithrnetic, elementary functions, and higher level mathematical
algorithms in its intrinsic units FPLib and M8lhlib, which ere contained in the file
llSFPLIB.

The contents of FPLib are described in the manuals for the Standard Apple Numeric
Environment. The best currently available description of t.he Ste.nderd Apple Nurneric
Environment is t.he f·lumerics ,A'/anual: ~ Guide to Using the Apple ... :.·:.·· Pascal SflA/E
anti EJems Units (part 1030-0660-A), which will eventuelly be superseded by a
me.nuel applice.ble to all Apple products. FPLib provides the sarne functionalit'y as
t.he SANE and Elems units on the Apple] [and III, including:

• Arithmetic for all f'loating-point and Comp types.
• Con.,,..ersiom bet.ween numerical t.ypes.
• Corro.,,1ersions between numericel types, ASCII strings, and intermediate forms.
• Contrnl of rciunding modes and numerical exception handling.
• Comrnon elementary· functions.

The MathLib guide (currently in draft form) describes the extra procedures availe.ble
only c•n the Lisa. Mat.hlib provides:

• Extra environments procedures.
• Extra elementarv functions.
• Mi*celleneous utility procedures.
• Sorting.
• Free format conversion to ASCII.
• Correctly rounded coriversion between binary and decimal.
• Firiancial analysh.
• Zeros of functior1s.
• Linear algebra.

How to Use FPLib

FPLib h available as an intrinsic unit to Pascal programmers. If your only use of
floating point is as Pascal REAL variables used within the limits of standerd Pascal_,
then it is not necessary to include a USES $tatement for FPLib. But if you explicitly·
require any of the types or procedures defined in the FPLib interf ace, be sure to
include e. USES rtatemerit such as

USES FPLib;

after the program statement in a main program or etter the interf ace statemerit in a
unit. If you are also udng other units„ include FPLib in the list of units in your orie

7-F ebruary-84 Floating Point-1

Internsls II Confi dent i ,5)

USES statement. FPLib may be listed bef ore or after other Apple-supplied units that (
you are using .

. When linking„ be sure to include ESFPLIB in your list of files to be linked along wiht.
ESPASUB and your own files„ even if your only use of floating point is as Pascal
RE AL variables.

How to Use Mettt..ib

~lb is available as an intrinsic unit to Pascal programmers. When writing your
Pascal source code„ be sure to include a USES statement such as

USES FPLib, Mat.hlib;

after the prograrn statement in a main program or after the int.erface statement. in a
unit. If you are also using other units„ include FPLib and Mathl.ib in the list of units
in your one USES statement. The)' may be listed before or after other Apple-supplied
unih that you ere using, but FPLib rnuc:t appear in the. lht before t.1elhLib.

When linking„ be sure to include llSFPLIB in your list of files to be linked along wiht
llSPASLIB and your own files.

.7-Februsry-84 Floating Point-2

(

B Feb 1984 18:11:40 SUHEKJ.TEX'f

TO:

FROH:

DßTE:

Developnent Systen Group, Hark Neubieser, Lee Nolan, Steve Flournoy,
Wendell Henry

fred f orsnan

Har eh 31, 1983

SUBJECT: Intrinsic unit providing standard fmctions -- the "StdUnit"

================================= INTRODUCTION ===================================
ßn intrinsic tmi t has been developed which provides a m.mber of standard,
generally-useful fmctions (particularly for the developAent systen). lbe
"StdUnit" m.it has groups of fmctions dealing with (1) character and string
l'lcmipulation, (2) file naAe l'lcmipulation, (3) prol'lpting, (4) retrieval of error
Jllessages fron disk files, (5) special WorkShop-oriented features, and (6)
conversions.

The StdUnit is now available in the WorkShop ß5 intrinsic library. ß
non-intrinsic Honitor-based version of the tmit is available in 'fJ'/ office.

Developnent systen tools should be converted to use the tmit where possible,
especially in the area of prol'lpting cmd OS error reporting since this will help
nake the WorkShop interface ADre consistent.

The rest of this AeAo explains the standard lD'lit and its use. The naterial is
organized into three sections:

(1) FUNC:TION.RL RREßS a description of the areas of fmctionality
(2) SOHE EXßMPLES softe exCD'lples of how to use the fmctions
(3) THE INTERFACE the lD'lit's interface

============================== FUNCTIONRL ßREßS ==================================
The five basic areas of fmctionality provided are:

(0) Initialization of lD'lit

lbis is not really an area of fmctionality but it should not be overlooked.
The tmit needs to be initialized before it ccm be used. (Using the lD'lit
wittxlut initializing it will often result in cm address or bus error.)

(1) String and character Acmipulation

The unit provides a standard string type "SUStr", a type for sets of
characters, defini tions for a m.mber of standard characters (such as CR
and BS), and procedures for case conversion on characters and strings,
trimri.ng blanks, and appending strings cmd characters.

NOTE: The naAes of EVERYTHING in StdUnit begin with the letters "SU".
lbis Aay seen soAewhat mmatural, but it practically insures that you will
have no naAe conflicts when incorporating the stcmdard lD'lit into your code.
lt has the additional benefit of identifying where everything cOJ11es fron.

(2) File naAe l'lcmipulation

R nunber of fmctions dealing with file ncmes are provided -- detenrlning
if a patlmCD'le is a volUl'le or device naAe only, adding extensions (such as
".text") to file naAes (the procedure is cognizant of our various
conventions about when extensions should and should not be added), splitting
a patlmaAe into its three basic col'lponents (the device or volUl'le COl'lpOnent,
the f ile naAe col'lponent, and the extension col'lpOnent), putting the COl'lponents
back together into a file naAe, and J110difying a file naAe given optional
defaults for Aissing volUl'le, file or extension ccmponents.

NOTE: several of the procedures return overflow flags for identifying when a
file naAe COl'lponent has exceeded its character lißit. You l'lay chose to

Cllllllll cm u er

Page 1

8 Feb 1984 18:11:40

ignore the overflow condi tion, partic..:~ :'J.'ly you think i t likely to occur only
in perverse cirCUl'lStances.

Page 2

NOTE: you will notice that the string parCD'leters to these procedures are
often typed differently, sol'letil'les SUStr's, or VßR SUStr's, or SUStrP's
(ie, pointers to SUStr"s). The apparent inconsistency of types is deliberate; (
the goal was to ovoid awkward probleRS with Pascal string typing vhen using
the procedures with strings which are not SUStr's (PathNcme's for exmiple).
lt Jllight have been best to use only SUStrP's, but the coP1piler does not
allow 11 of a string constant, so this would have been inappropriate vhen
passing defaults such as '.text', Plecse let l'le know if you can think of a
way to Rake these procedures easier to use.

(3) Pronpting

The unit provides a llUl'lber of procedures which get characters, strings, file
nal'les, integers, yes/DD responses, etc. f row the console, providing for
default values where appropriate. Rn attenpt was l'lade to do a coSl'letically
nice job of echoing responses, clisplaying defaults, etc. (1 CJl'l open to
further suggestions.)

Most of the proRpting procedures return a ProRptState which indicate such
things as vhether an escape (CLEBR) was typed, vhether the default was
taken, or vhether there was a request for options wi th a ·?'. The states
returned are given for each procedure. The strings and prol'lpt states
returned have been designed to allow you to ignore the prol'lpt states you
are not interested in. For exmiple, if you are not interested in treating
'?' as a request for options, you Ray ignore the SUOptions state altogether
and treat the '?' returned as a f ile nCJl'le or vhatever.

(4) Error Text Retrieval

The unit provides a Rechanisl'l which retrieves single-line error ftessages
f rol'l specially forRatted error files. Error Ressages can be looked up by
n\ll'lber in one or J.110re error f iles.

The original l'lOtivation for this was the aggravation of constantly looking
up OS error nUl'lbers. ß error file for OS errors is provided in the VorkShop
release -- 'OSErrs.Err'. This Plakes it sil'lple to return a real l'lessage when
an OS error occurs, as is del'IOnstrated in one of the exmiples in the
following section. (Note that OS errors are also returned via Pascal's
IORESULT.)

Whether the tool is useful for storing your progrCJl'l's error l'lessages will
depend pril'larily on vhether you think your error l'lessages are taking up too
1'1\lch space in l'leJ.110ry. ß progrCJl'l (described below) is available to Rake your
own nessage files. One benefit of using this error l'lechanisl'l is that you
l'lay add and l'lOdify wessages without recoRpiling your progrcm.

The "ErrTool" progral'l is provided to construct your own col'lpacted error
Ressage files. The tool produces an error file with an ordered directory of
error nUl'lbers at the beginning of the file, along with pointers to the
corresponding ftessage text. The input to ErrTool consists of text lines of
the forl'l:

<nUl'lher><space><l'lessage>
The error mmbers way be sparse, and the l'lessages l'lay be up to 255 chars
long.

ß call to retrieve a l'lessage will open the error f ile, search the clirectory
for the error nUl'lber, seek to the location of the Ressage, and return the
text. This l'lay result in several file systel'l accesses but the response seens
reasonable (even with a large IlUl'lber of errors with a directory spanning
several blocks as in the OS error l'lessage file).

ß progral'l nay use the unit to access cmy nUl'lber of different error files
sil'IUltaneously. You nay, for exmiple, access different files for OS and
your own error l'lessages.

....--·

(

8 Feh 1984 18:11:40

(5) YorkShop Support

Special YorkShop-oriented f\.Dlctions su;:-~~~ted are: the ability to stop the
execution of an EXEC file in progress, the ability to find out the nCD'le of
the boot and current process volUl'les (SysVols), and a super-RESET which will
try to open a f ile f irst on the pref ix volu~e, then on the boot volUJ11e, and,
if all else fails, on the current process volUl'le.

(6) Conversions

Routin.es to convert fro1'1 INTEGERs (and LCXGIN'fs) to strings and frol'l
strings to INTEGERs (and LONGINTs) are provided.

IHPORTANT HOTE: The standard unit and its interfar:e have been written so as to
work on either the Monitor or the OS depending on the setting of a COPlpilation
flag "ForOS" which you should set before you use the unit (you will get a C01'1pile
error if you don't). Note that the Monitor version of the interface provides a
definition of "PathNCD'le" which would nonially co1'1e fron SysCall when on the OS.

================================ SOME EXRHPLES ===================================
{ EXAHPLE l

RssUJ11e we are going to pro1'1pt for an output file nal'J.e (OutFNcme) and that we
already have the input file nCD'le (InFNCD'le). Ye will use SUSplitFN to split
the input file nCD'le into its various col'lpOnents. Then we will prol'lpt for the
output file nCD'le (with SUGetFN) using the volme and file nCD'le col'lponents of the
input f ile nCD'le as def aul ts but wi th a •. ERR • extension. We then do a CR5E on
the pror1pt state (PState) returned by StlietFN. Dur progrOl'I will terninate if the
f ile specification was an escape (CLEAR on the keyboard); say that no options
are available if ·7· is typed as an option request; pro1'1pt again if no file is
specif ied, since we wcmt to require an output file; and fall through if the
default is accepted or sone other file is specified. Note that we only have to
check for the prol'lpt states we are interested in for special hcmdling. }

9999:
WRITE ('NCD'le of Error Output File ');
SUSpH tFN (mlnFNCD'le, mVolN, mFN, iDExt);
SUGetFN (iilOutFNCD'le, PState, VolN, FN, •. ERR.);
CRSE PState OF

SUEscape: EXIT (ErrFileP); { exit fron progrcm }
StlJptions: BEGIN

WRITELN ('No options available. ·);
GOTO 9999;

END;
SlJHone: GOTO 9999;

END {CRSE};

{ EXßHPLE 2
Suppose we have just nade a Pascal IO call and wcmt to report an error (along
with the OS nessage text) if we receive a non-zero IORESULT. Note that we copy
IOREstn.T into our IOStatus variable so that the subsequent WRITELN will not
reset the value of IORESlß..T before we get a chance to use it. (EHsg should be
an SUStr.)}

IF IOREstn.T <> 0 l1IEN
BEG IN

IOStatus : = IOREstn.T;
WRITELN ('Error openning input file. ');
SUErrText ('OsErrs.Err', IOStatus, mEMsg);
WRITELN (EMsg);

END;

================================== INIERfßCE =====================================

f-c~;.;;i~~-i9ä3:-e;;1~-c~;;~;~;:-1n~= stdUnit ----------------------------------i

~WWWIO._

Page- 3

8 Feb 1984 18:11:40 SUMEKJ.TEXT

}
lbis unit provides a IlUl'lber of stcm.dard type definitions cmd a collection of }
procedurcs which perforn a variety of col'll'lOn functions. The areas covered are: }

Page 4

(1) String and Character l'lanipulation J}
(2) File NCJl'le Manipulation
(3) Prorq>ting (
(4) Retrieval of l'lessages froI'l düok }
(5) Developl'lent Systel'l Support 1
(6) Conversions

Fred Fors~an 3-28-83

INTERFHCE

{SIFC ForOS}
USES

1
SU SysCall.obj
SU PasLibCall.obj
SU PPasLibC.obj l

SysCall, { for definition of PathNCJl'le, etc. }
PasLibCall,
PPasLibC;

{SENDC}

CONS!
SUMaxStrLeng = 255;
SUNullStr = 0

.,

SUSpace = • ·:
SUOrdCR = 13;

{SIFC ForOS}
SUMmd>NLeng
SUMaxVNLeng
SUMaxFNLeng
SUVolSuf fix

= 66;
= 33;
= 32;
= • - •• , t

J'lax length of path nCJllle }
J'lax length of volUl'le nCll'le, includes leading ·-· }
l'lOXil'IUl'l length of f ile nal'le }
suf fix or end of device or volUl'le nCJllle }

{SELSEC}
SUMaxPNLeng = 39;
SUMaxVNLeng = 24;
SUMaxfNLeng = 15;
SUVolSuffix = ·. ·, 1

l'lax length of path mme }
l'lax length of volUl'le nal'le, includes trailing · · }
l'lOXil'lUl'l length of f ile n(]l'le }
suf fix or end of device or vol\ll'le nCJllle }

{SENDC}

TYPE
SUSetOfChar = SET OF CHAR;

= ·sustr; SUStrP
SUStr
SUVolNCJllle

= STRING(255];
= S'l'RING SUMaxVNl..eng];

{SIFC NOT forOS}
PathJIOl'le

{SENDC}
= S'l'RING (255);

SUFile = FILE;
SUFileP = -SUFile;
Prol'lptState = (SUDefault,

SUEscape,
SUNone,
Sll)ptions,
SUValid,
SUinvalid
);

{ supply definition of PathNCJllle for Monitor }

the default (if any) was chosen) }
the "Clear" key was pressed }
nothing specif ied in response to pronpt }
"?" was entered -- ie, an option query }
valid reponse }
invalid reponse ~- eg, non-Il\Jlllber to Sllietlnt }

ErrTextRet = (stllk, { successful }
SUBadEFOpen, { could not open error file }
SUBadEFRead, { error reading error f ile }
SUErrNNotFound { error nunber not found }
);

ConvHState = (SUValidN,
SUNoN,
SUBadN,
SUNOverFlow
);

VRR

{ valid llUl'lber }
{ no nUl'lber -- nothing specif ied }
{ invalid nunber }
{ overflow -- nußber too big }

..... w

(

e Feb 1984 18:11:40

{SIFC ForOS}
SUOsHootV : SlNolNCJl"le; { The vol\ll"le tbe OS was booted frol'l }
SUMyProcV : SUVolNOl'le; { The volUl'le lr~"?rocess was started frol'l }

{SENDC}
SUBell, SUBs, SUCr, SUTab, SUEsc, SUDle, SUNul : CHRR; { predef ined eh vars }
SUNullS : SUStr; { predefined str var }

{================================ INIT ßND DCNE ==================================}
PROCEDURE SUini t;

{ Should be called before using rest of uni t. On the OS this opens
"-KeyBoard'". lt also initializes the standard character variables.
Note that SUinit sets StllsBootV and SUMyProcV to null strings, and
that SUlnitSysVols should be called to set thel'I to the correct values. }

PROCEDURE SUDone;
{ Can be called when done using unit (although this is not strictly

necessary). On the OS this closes 11 -KeyBoard11

• }

{============================== Sl"RINGS ßND CHRRS ================================}
FUNCTION SUUpCh (Ch : CHßR) : CHAR;

{ SUUpCh returns the eh that was passed, uppercased if it was lower case~ }

FUNCTION Slß..owCh (Ch : CHRR) : OIRR;
{ Stn.owCh returns the eh that was passed, lowercased if i t was upper case. }

PROCEDURE SlRJpStr (S: SUStrP);
{ Stn.owStr uppercases the string that is passed. }

PROCEDURE Stn.owStr (S: SUStrP);
{ Stn.owStr lowercases the string that is passed. }

PROCEDURE SUTrinBlcmks (S: SUStrP);
{ SUTrinBlcmks rel'IOves leading and trailing blcmks and tabs in the passed

string. }

PROCEDURE SURddCh (S: SUStrP; Ch : CHRR; MaxStrLeng : INTEGER;
VAR Overflow : BOOLEßN);

{ SUHddCh appends the passed eh to the end of the passed string.
Overflow is set to TRUE if adding the eh will cause the string to be
langer than HaxStrLeng. }

PROCEDURE SUConcat (Sl: SUStrP; S2: SUStrP);
{ Sll:oncat appends the second passed str to the end of the f irst passed

string. lt is assUl'led that the target string is of suf f icient size to
accol'lOdate the new value. }

PROCEDURE SUßddStr (Sl: SUStrP; S2: SUStrP; HaxStrLeng : INTEGER;
VßR Overflow : BOOLEßN);

{ SUl1dd.Str appends the second passed str to the end of the f irst passed
string. Overflow is set to TRUE if adding the second string will cause
the resulting string to be langer than HaxStrLeng. }

PROCEDUHE SUSetStr (Dest: SUStrP; Src: . SUStrP);
{ SU'JetStr sets the target string (Dest) to the given value (Src) by

copying the value onto the target. lt is asSUl'led that the target string
is cf suf f icient size to accoJ110date the new value. }

PROCEDURE SUC:opyStr (Dest: SUStrP; Src: SUStrP; Start, Comt: INTEGER);
{ Sll:opyStr sets the destination string (Dest) to the specified substring of

the source string (Src) by copying the appropriate part of the source to
the destination. lt is assUl'led that the destination string is of
suf ficient size to accol'IOdate the new value, and that the Start and Count
values are reasonable. }

{================================== FILE Nfll-ES ===================================}

c .;:Jcs cm: ew

e Feb 1984 18:11:40 SUHEMJ. TEX'i

FUNCTIUN SUlsVolNCil'le (FN: SUStrP): 8001.E&~;
{ SUisVolNCil'le returns a boolean indicating whether the passed file nCil'le, FN,

is a vol\Jl'le or device nCll'1e (i.e., not a full file nal'le) }

PROCEDURE SURddExtension (FN: SUStrP; DefExt: SUStr;
KaxStrLeng: INTEGER; VßR Overflow: BOOLERN);

{ SUßddExtension will add the default extension, DefExt, to the end of the
f ile nCll'le, S, if the extension is not already present. If the f ile DOl'le
ends wi th a dot, the dot will be rel'lOved and no extension will be added.
If the patlmOl'le is a device or volUl'le nCll'le only no extension will be
added. Overflow is set true if adding the extension will overflow the
string (deten'li.ned using KaxStrLeng). }

PROCEDURE SUSplitFN (PathN: SUStrP; VolN: SUStrP; FN: SUStrP; Ext: SUStrP);
{ SUSplitFN splits a PathNCll'1e into its volUl'le (device), file nOl'le, and file

nm1e extension col'lponents. }

PROCEDURE SUKakeFN (PathN: SUStrP; VolN: SUStrP; FN: SUStrP; Ext: SUStr;
VRR Overflow: BOOLEßH);

{ SUHakeFN constructs a PathNCll'1e frOJll its vol\Jl'le (device), file ncme, and
file nCll'1e extension ccmponents. The OS VolN's are assUl'led to have a
leading "-", while ROnitor VolN's are assUl'led to have a trailing ":".
Overflow is set if any of the f ile nOl'le col'lponents are too long. This
procedure will not create a file nCll'le over SUKaxPNLeng chars long.}

PROCEDURE Sll:hkFN (FN: SUStrP; VRR PState: Prol'lptState; DefVol: SUStr;
DefFN: SUStr; DefExt: SUStr);

{ StI:hkFN checks a file nCll'le specification, putting resul t type in PState.
If no file nCll'1e is given, then DefFN is used. If FN does not have DefExt
in it, then the extension is appended. If no volUl'le is specifed then
the DefVol is used. PState is set appropriately:

PState = SUOptions if '?' is hit to ask for options
PState = SUDefault if nothing specified when a default is present
PState = SUNone if default overriden with '\' or if CR with no default
PState = SUinvalid if one or ROre of the file DOl'le COl'lpOnents overflowed (
PState = SUValid otherwise }

{=========~======================== PRDHPTING ====================================}
PROCEDURE SUGetCh (VRR Ch: CHBR);

{ SllietCh reads a character froR the console without echoing it and }
{ without interpreting <er> as <sp>, as Read (Ch) does. }

PROCEDURE SUGetLine (S: SUStrP; VRR PState: PrOl'lptState);
{ SllietLine reads a line froR the console a character at a tiRe, perfonri.ng

its own line editing. PState is set appropriately:
PState = SUEscape if <clear> was hit.
PState = SUValid otherwise. }

PROCEDURE SUGetStr (S: SUStrP; VflR PState: Prol'lptState; DefVal: SUStr);
{ SllietStr reads a string frOJll the console; it is like SUGetLine with the

addition of defaults. PState is set appropriately:
PState = SUDefault if <er> only was hit; S is set to DefVal.
PState = SUEscape if <clear> was the first character hit.
PState = SUValid otherwise. }

PROCEDURE SllietFN (FN: SUStrP; VRR PState: PrOP1ptState; DefVol: SUStr;
DefFN: SUStr; DefExt: SUStr);

{ SllietFN reads a file DCD'le frol'l the console, with result type in PState.
SllietFN will print out any defaults in brackets (such as [FOO] [.TEXI])
before proRpting for for the file nCll'le. If no file nOl'le is given, then
DeffN is used. If FN does not have DefExt in it, then the extension is
appended. If no vobme is specifed then the DefVol is used. If only a
volUl'le nmte is specified then no default file DOl'le or extension will be
added. PState is set appropriately:

PState = SUEscape if <clear> hit
PState = SUOptions if '?' is hit to ask for options
PState = SUDefault if nothing specified when a default is present

.._..._, ...

(

„ 1

8 Feb 1984 18:11:40 SU!-a«l. TEXT

PState = SUNone if default overriden with '\' or if CR with no default
PState = SUlnvalid if one or l'JOre cf the f ile nal'le coPiponents overflowed
PState = SUValid otherwise }

PROCEDURE SUGetlnt (VAR 1: INTEGER; VßR PState: ProP1ptState; DefVal: INTEGER);
{ Sll~et Int reads an INTEGER fro1'l the console, wi th PState set as in

Sll~etStr, except that PState = SUinvalid when a non-IlUl'leric is input. }

PROCEDURE SUWaitEscOrSp (VHR PState: ProPiptState);
{ stnlaitEscOrSp prints a Ressage 'Type <space> to continue, <clear> to exit.'

& waits for the user to hit a <sp> or <clear>, setting PState appropriately:
PState = SUEscape if <clear> was hit
PState = SUValid if <sp> was hit }

PROCEDURE SUWai tSp;
{ SUHaitSp prints a 11essage ('Type <space> to continue. ') and waits for the

user to hit a <sp>. }

PROCEDURE SUGetOllnSet (VHR 01: CHRR; Olars: SUSetOfOlar);
{ Sll.1etOllnSet reads characters froJll the console (wi thout echoing) mtil

a character fro1'l the given set is typed. The accepted character is echoed
and an end-of-line is written. }

FUNCTION SUGetYesNo : BOOLEHN;
{ Sll~etYesNo prints the l'lessage "(Y or N)" and reads characters frol'l the

console (without echoing) until a 'y', 'Y', 'n', or 'N' is typed. If a
'y' is typed "Yes" will be printed followed by an end-of-line; if 'n' is
typed "No" will be printed. The appropriate boolean value is returned. }

FUNCTION SUGetBool (Def aul t: BOOLEßN): BOOLEßN;
{ SllietBool prints the 11essage "(Y or N) [<default>)" and reads characters

froß the console (without echoing) mtil a 'y', 'Y', 'n', 'N', space or
retum is typed. If a 'y' is typed "Yes" will be printed in the place
of the default. If 'n' is typed "No" will be printed. If a space or
return is typed the default is used. The appropriate boolean value is
retumed. }

{============================= ERRDR TEXT RETRIEVBL ==============================}
PROCEDURE SUGetErrText (ErrFN: SUStr; ErrN: INTEGER; ErrHsg: SUStrP;

VHR ErrRet: ErrTextRet);
{ SlJ.jetErrText retrieves error Ressage text, given an error llUl'lber and

and error f ile to look the error up in. The error f ile should have
becn generated by the error file processor. SUGetErrText use SUSysReset
to open the error f ile. }

PROCEDURE SUErrText (ErrFN: SUStr; ErrN: INTEGER; ErrHsg: SUStrP);
{ SUErrText retrieves error nessage text, just as does stljetErrText;

however, if the text is not obtainable due to a non-Slllk ErrRet value
f ron SUErrText, SUErrText will return the string
"Error nessage text not available. " }

{=============================== DEV. SYS. SUPPORT ===============================}
PROCEDURE SUStopExec (VRR ErrNul'l: INTEGER);

{ Kills and exec file on the OS, returns cmy error conditions in errtlUJll }

{SIFC ForOS}
PROCEDURE SUinitSysVols;

{ lnitializes "SUHyProcV" and "SUOsBootV", the ncme of the volme on which
f1Y process was created and the nCJ111e of the volUl'le which the OS was booted
off of. ß Ressage 11ay be printed if there is trouble getting this
infomation froJll the OS. This can be called ROre than once; it will only
aal:e the OS calls if SUHyProcV and SlllsBootV are both null strings (as
thcy will be after a call to SUinit. }

{SENDC}

PRDCEDURE SUSysReset (F SUFileP; FN : SUStr; VHR IOStatus INIEGER);

Page 7

B Feb 1984 18:11:40 St.Jt1fX:!.TEXT

{ SUSysReset is for openi.ng systeft f iles, and will try the pref ix, boot,
CD'ld current process volUl'les (in that order) when trying to access a file.
SUSysReset assUl'les that the f ile nOl'le FN does not have a volUPle ncme.
SUSysReset aay sOl'letines have to call SUinitSysVols. }

{================================== CONVERSIONS ==================================}
PROC:EDURE SUintToStr (N : INTEGER; S : SUStrP);

{ SU!ntToStr converts an integer into its string forB; lbe string which S
points to should be of length >= 6 (5 digits + sign). }

PROCEDURE SULintToStr (N : LQlljlNT; S : SUStrP);
{ SULintToStr converts an longint into its string fora; The string which S

points to should be of length >= 11 (10 digits + sign). }

Pl'<OCEDURE SUStrTolnt (NS : SUStrP; VHR N : INTEGER; VßR CState : ConvNState);
{ SUStrTolnt converts a string to an INTEGER. Leading and trailing blanks

and tabs are penrl tted. ß leadin9 sign [• - ·, • + •] is penrl tted. The
CState variable (conversion state) will be set to indicate if the DUl'lber
was valid, if no ll\ll'lber was present, if an invalid ll\Jlllber was specified,
or if the DUl'lber overflowed. }

PROCEDURE SUStrToLlnt (NS : SUStrP; VflR N : LONGINT; VflR CState : ConvNState);
{ SUStrToLint converts a string to a LONGINI. It behaves just like

SUStrTolnt otherwise. } ··

...-==•r...,

Pczqe 8

l

(1

(

Rich Pqe
Apple Computer, lnc.
May 4, 1983

Bzecu1ion Bnviromnent of the Lisa Pascal Compiler

Registers:
lll-02/AO-Al User 1emporufes

Compiler 1emporufes lll-03/ AO-Al

D4-D7/A3-A4
lö

A6
A7

Compiler uses fot 1cals & poin1ers

Pointer tD Biobai frame

Pointer UJ 1D21 frame
Pointer tD top of SlaCt

OJoba1 Frame:

SFmll~
AS~

A6~
A7~

The global rrame consisu of two segments:
1) Tbe Jump Table Segment
2) Tbe Stack Segment (ftrst of N segments)

The global frame is Jayed out as follows:

Jump Table

Segment Table

Data Pointer Table

Sbared Main Pqram Parameters
Private Main Pqmm Puameten

--,,.

Main Pn:pm Olobals

Regular Unit Globals

InUimic Unit Globals

Dynamic Users Stack

Compl1er Ex~cution Em·"ironment-1

4-M141-B:J

The Jump Table is a an array of 6 byte JMPs used 10
tmmfer control between segments of 1he pqram and
1be regular uniu used by the pqram. This is built by (
tbe Linker from Enuy points and Extemals reference lists.

· The Segment Table fs a structure which deftnes each of
tbe segments oE lhe prcpm and tb.e regular units. This
is med by the Leader 1D swap in segments. For each of
tbe segments, tbe Segment Table pmrides a ft1e address,

. size of code (pacted & unpacted sizes) and 1he qlca1
· addm~ (ie. segment number).

- The Da Pointer Table fs an array of 4 byte pointers
which is used to reference global data for intrinsic units.
Tlds SlrUClU1'e is built by the Leader and referenced by

. cmnpiled code.

. Tbe Shmed Main Pqram Parameters is an uea resemd
- ror US! by the Leader 1D SIDre informadon about lhe main

_ -. . .- pqram. Cmrendy this aiea 1s SUD bftes. .

The ·Private Main Pqram Parameters is an area initialized
br tbe loader and mferenced by campiled code. This uea (
emtains pointen 10 INPUT and OUTPUT ft1e buffers and
otber infarma1ion such as the size of tbe regu1ar unit glol>W.
Omendy this uea ls SlOO bytes.

The Main Pqram Globals is ~ global data allcDted by
tim campiler for 1he program.

· The Regular Unit Globals is the combinadon of all global
daia requi!ed by 1be · regular units used by the program.

.
The lntrinsic Unit Globals is the private global da1a which
fs required by 1he intrinsic units used by the program.

The Users Dynamic Stack is lbat mea which is used by lhe
PQram for Ja:a1 frames, 1emporary data and pra:edure
Hnbges (both panl and assembly language).

Imtially the Leader allm:ates enough space to caver 1hese
areas and the user min Slact requirements. The system alm. (

- enfmces a upper limit (ie. mu Slaet).

Compiler Execution Environment-2

Loca1 Frame:

..

Tbe kra1 frame consiSIS of the following:
1) Punction result and puameters
l) Sladc and dynamic llnts
3) UaJs and compiler 1emporäries
4) Dynamic stack area

.. . The mI frame is layed out as t'ollows:

PUDCdan Result •

Paramete·rs ••

- Stade Unt •••

Remm Address

-.J
Dynamic Lint ..

"' . .. ·Lcals

Compiler Temps
Dynamic Stack Area

-...

. • .T~ m r0ur bjtl fmicdon msult, present only for functicms.
· ** N. bytes depending an tbe parameter HsL

.-.~ Pmsent onl)' rar mm. level l pra:edures and parameters. .
-: • • • • ' • "'!; ~ •

The kra1 ftame is allcated by tbe campiler and allows the
· campiled code 1D reference ka1s, pmmters, static 1ints, -

The dynamic lint (ie. OldA6) ls pushed by the LINK A6
lm1ructfon which allcates space for kEaJs and compiler temps. •
. .
The Siide lint ls pushed by die caller as part of lhe parameter

. lisL Tbe stadc lint is a copy the pments A6 (fe. kra1 frame).
Compiler temporades are med to implement ~ such
as non kra1 gotOS and expressiom computed by the compiler
which happen to not be in registers. These expressions may
include fm loop limits ar wilh expressiom.

Panm.euic pm:edmes and fanc1ions appear as follOws:

1 Addre~ of pm:/func body 1
_ Zem or •1ic link •

Note zero is used for tevel 1 pm:edures.

Compiler Execution Environment-_,t

AutomaUc Stack B!p!nston:

The compiler mmmunicates the space requJrements for each
pm:edure by preceding each LINK A6,#-'JirJJ! with one of the
tbUowing sequences: ·

TST.W e(A7)

MOVB.L · A7JJJ
SUB.L . #sizeJJJ
TST.W (AD)

The offset med in the first esse ar the size in 1he seccmd reflect
1be sum of lbe pm:edures Slatic and dynamic requJremenis.
This sum fs intlated by at least Sl(D bytes 10 allow membly
Janguage pm:edmes 10 use a sma11 amount or SlaCk space at
. Jaw cmt (ie. tbey need not check). Note the code for automatic
Sllct upamlon can be conlmlled wilh a campile option.

JSRs, JMPs, LBAs and PEAs:
· niese fmtrucdom are used iJ uamfer contml and ob11in lbe

addle:m of a puedure or ftmctkm. These hls1ructiom exist in
tbree fbrms all ri which m:upy 4 bytes each:

l) Wltbin a segment: PC relalive
. 2) References 10 iegular segmenu:. Offse1S fmm AS .

3) Refeiences 1D intrinsic segmenu: IU Trap iDstrucdons

The ftlSt form is simply a reference 1D a pm:edure fmm within .
the same segment which uses the PC relalive addreSng mode.

The second form is a reference 10 a pm:edure which is not in
tbe same segment but ls con11ined in a segment of the pqram
or a regular UDiL This is implemented by using an offset fmm
AS to reference lhe pm:edure lbrough the Jump Table.

The lhird form is a reference to a pm:edure which is conlained
in an intrimic segment (ie. in an inuimic UDit~ This form is
implemen1ed by using Line 1mo trap mechanism 10 compre~
the opcode and 24 bit 1~ address in1D a 4 byte inslruction.

In each of the above cases tbe compiler emits references the

(

(

desired pm:edure or functioD and die Unter consucuts the (
appropiale addreSng mode for JSRs, JMPs, LEAs and ~

Compilt!T Execution Err.·-Uonment-4

Structure of Code for a Pu:a1 Prccedure or Function:

The code euiiued by the compiler contains three ccmstructs which
can be cmltmlled via compile time options. These are as follows:

1} Autmnatfc S1aCt expamfon.
2) Range chectlng for values. fnde:ms and striDgs.

-3) Debuggung iDfo (ie. the pra:edure name).
. .

The code rar a typD1 pro:edure will loot as follows:

TST.W e(A7) - TeSIS for sufticient mct space
LINr A6,#-m Almltes space for 1ca1s

body of the pra:edure or function

UNLK. A6 Restmes previous mI frame
RTS Bzit sequence

„ .
. -- : „

Blgb.t byte prcadure name and
two byte da11 size. This is lhe
opiional debugging fnfqrmation.

· · mnsrant data area for Slrings cl sets

ihe em sequence emiued by the compiler. fs dependent an the
number rl bytes ri puameters. If Illere are no puameters then
lbe RTS is used as shown above. The campiler emi.., one of the
following sequences when puameters must be deleted:

Case #1: 2, 6 ar 8 b)'!es of paramters
MOVE.L (A1)+ ,AO
AD~.W #size,A7
JMP CAD>.

Case #2: 4 bf!!S of parameters
MOVE.L (A7)+ ~A7)
RTS

2
l
2

Tbytes total

2
2

Case #3: more than 8 brtes of parameters
4bytes total

MOVB.L (A7)+ ,AO 2
ADD.W #size,A7 4
JMP (AO) 2

Tbytes una1

Compl1M EX6Cution Environmtmt-~

Segmentation cl Large constants passed by value:

Since the QIDl is not testartable, (ie. use a 68ll.O imlead) the (
data (fe. stact and heaps) for a given pqram must be present

_ while 1be pqram is execudng. Since code segments must be
. swapped mm memory u oeeded and set and Slring constants
· am srored wilh tbe code, !arge comtanu passed by value pose
a problem. Cmnntly, we m1ve dlfs problem by haviDg the

. · campiler me the fmtruc1fon TST .B (Ai) to check 1D .see if the
tbe acma1 value puametet is in memory. lf 1he TST .B (Ai)

. ~ .: cames a fault tben the sysaem loads the segment conraining the
· addle9 in AL . .

.
When. copying SlriDgs the compiler emits code which depends
aaly ~ 1he size of the desdnation. This may cause the code
1D iead beyond the end of a segmenL The system al1ows for
. tim b7 mapping code segments to caver size + 756 bytes. The
heap segmen1S alm bave an addilimlal 756 bytes.

Compile Execution EnvironmeM-6

(

(

Internsls II Conf'i dent i sl

Intrinsic Units

AOTE: The informstion in this document will be in the llnits section of the Pascal
/.1anual in the spring release.

Intrinsic units provide a mechanism f or Pascal programs to share common code. A
single copy of the code h kept on disk, and when loaded into memory thh code can
be executed by any program the.t decle.res the intrinsic unit (via e. uses cle.use, just as
for regular units) and has been linked against the librery file. In addition, a shsred
intrinsic unit provides for the sharing of common data (i.e., one copy of the data on
the syrtem).

The code of the entire unit, or of blocks within the unit, must be placed in one or
more n81Tled segments. Segmentation is controlled by the $S compiler command
(described in the Pascsl Reference f.1anual), the ChangeSeg utility, and the +M linker
opt1on (both descrlbed in the Workshop User~s Guide). Code from an intrtnsic unit
cannot be placed in the same segment with code from a program or a regular unit.

"'11tlng lntrinlic lkdts

An intrinsic unit has the same syntax as a reguler unit, except that it has an intrinsic
clause in the hee.ding.

NJTE: For syntactic compatibility with UCSD Pascal, the keywords code end dsta
may appeer in the unit heading of an intrinsic unit, together with integer
constants. These keywords end constants are accepted but ere ignored.

lf the keyword shm'ed appeen ira the intrindc clause, the system will contain only a
single data aree. f or the unit; the data is shared among all programs that uie thh unit.
lf lhm'ed does not appear in the intrinsic clause, each proorem that uses the unit has
ih own data area f or the unit.

lf an intrinsic unit contains a uses clause, lt can only use other intrinstc units; an
intrimic unit cannot use a regular unif..

Each unit used by a progre.m (or by enother unit) mutt be compiled, end its object file
must be accessible to the compiler, before the progr81Tl (or unit) can be compiled.

A single copy of the code of an intrinsic unit is available to all programs in the
~stem; therefore, intrindc units must be coordinated as part or system generation and
~stem maintenance activities. Specifically, all intrindc units that have code in the
smne run-time code segment file must be linked together into an intrinsic segment
file, and the intrinsic segment file must be ref erenced in the iystem intrindcs librery,
INTRINSIC.LIB.

17-.JtflrtUBI}•._84 Intri.nsi.c Units-1

Internals II Confi dent i al

Building Litrary Files

To create intrinsic units and link them into a library file, you must perf orm the
following steps in order / tu shown in Figure l:

srEP 1A Compile and Generate the intrinsic units.
srEP 18 Define the intrinsic units, code aegments, and file names, using the

Sl'EP 2
Sl'EP 3
Sl'EP 4

Sl'EP '

Sl'EP l8

lUManager. (Steps 1A and le can be done in either order .)
Link the intrinsic libraries.
Install the litrmy files, using the IUMenager.
Develop the main programs (not shown in detail).
Run main programs which use the librery files. (The system must be
rebooted bef ore this step.)

Sl'EP 5

FigLre 1
Dewloping lrtrinlic Litrariel

r·-------·- ---·---·

l ~GD
:

(

(

(

Intrinsic Units-2

1 (.

Internsls II Confidential

The IUManager
(F or versior1~ 1.x and 2.x softwere)

The ILl1enager progrem is used to menage the directory ot librery tiles. You
can edd, delete, or change intrinsic units, sef1nents, end files in the
directory. To use the Ill1aneger, you should be femiliar with the Wf!lt/ that
units and sef11lents are handled in Pascal on the Lisa. (Information on
intrinsic units is in the Intrinsic Unit ERS by Ken Friedenbach from September
16, 1981.) This docl.lnent describes the version of the IU1anager in software
prior to the "spring release".

Tt1e ILl1enager has three modes, which do the toll~ing:
Units: Add, delete, or change intrinsic units. An intrinsic unit is a

unit of Pascal code that can be accessed by different
processes. There are two kind of intrinsic units--regular and
she.red. A regule.r intrinsic unit has a private global data
area associated with it; shared intrinsic units share data as
well as code.

Segments: Add, delete, or change se~ents. Units can be broken up into
segments, so that interdependant parts of different units will
be swapped in and out of memory at the seme time. You can
segment your code with either the $S Canpiler option or the
ChangeSeg utility.

Files: Add, delete, or change library files. Units and segments are
8I'ranged in libre.ry files.

When you run the llJ1anager, you ere asked the input and output nemes of the
library directory that you want to edit. The defeult neme for both is
INTRINSIC.LIB, the directory that the system looks for at boot time. (Don't
play with the INTRINSIC.LIB unless you know what you're doing, or your system
may not boot!)

When you first enter the Ill1anager, you're in the se'1Jlents mode. The
IlJ1anaaer has only one cOR1nand line, so if you don't know which mode you're
in, either L(ist the current table or type S(egs, U(nits, or F(iles to get to
the mode you want. The conwnands available in the IlJ1anager are:

O(uit Ouit the IlJ1anager and rewrite the directory.

IUtr/anager [n, . .!.„}-1

Internsls

S(egs

II Conri.dentisl

Select the se~ents mode and list the se~ent table. Entries in
the serJnent table have the following information:

SEGtENT
tt.11

F-rt.t1

F-LOC
POCKED/
U'POCKED

The sec;;Jnent name.
The se~ent nl.lnber (17-128).
The nl.lnber of the file that the se~ent is in.
The byte location of the se~ent in the file.

The nunber of packed or unpacked bytes in the segnent.
FILE-Ntl"E The neme of the file that the se~ent is in.

(

U(nits Select the units mode and list the unit table. Entries in the
unit table he.ve the following information:

LtlIT The unit neme.
tt..t1 The unit nl.lnber (1-2,6).
F-ft.t1 The nllllber of t he f il e t hat t he uni t i s in .
TYPE The type of unit: Intrinsic or Shared Intrinsic.
DATA-SIZE The nunber of bytes of global de.te. (Shared lntrinsic

uni ts only).
FILE-NM The nEfne of the file that the uni t is in.

F(iles Select the files mode and list the file table. Entries in the
file t8ble have the following informat1on:

I(ns

L(ist

P(rt

N..11 The fi 1 e nl.lnber (1-64) .
FILE The file neme.

Install a library in the directory. This stores the segnent and
uni t tables from the linked object file. The Install connend puts
you in the files mode if you're not in it already, lists the file
table, and pranpts yot.ffor the file nunber to inst8ll.

List the entries in the currently selected t8ble. Use •-s to
stop the output for tables of more than 32 entries.

Print all three tables. This conrnand doesn't work. If you accept
the default [PRINTER:], the tables sre not printed, but sre sent
to e file nerned PRINTER: . To print the tables, send them to a
.TEXT f'ile (or chenge the PRINTER: file to a .TEXT file).. end
print them from the Editor.

(

6-JanuarJl-84 Il/18n8ger [n, . .t„}-2

Internals II Confidentisl

R(em Remove an entry frorn the currently selected table. You ere
prompted for the segment, unit, or file nunber. If you try to
remove a file that is used by the se'1'ßent table, you will get a
warning, and the file will not be removed.

C(hng Change an entry in the currently selected table. You will be
asked for the se~ent, unit, or tile n1..1nber, and prompted for
changes in each field. If you enter an unused ntJnber, the Change
cOl'Mland works just like the New caunand. If, in changing a unit
or Sef11\ent, you specify a file neme that has not been used, a new
file will be created with the next avail8ble file n1.1nber.

N(ew Create a new entry in the currently selected table. You will be
asked for the segment, unit, or file nl.mber, end prompted for each
field. If you enter a nt.1nber already associated with an entry,
the New ccmnand works just like the Change coornand. The default
entry ntJnber is the first unused nl.lnber in the t8ble. Valid
ranges for entry nl.l'nbers a.Te:

Segments
Units
Files

17 - 128
1 - 2,6
1 - 64

tCITE: Segment nl.lnbers 1-16 are used by the OS, but the llt1anager
doesn • t know this, and prompts you for them. 00 t{)T l.F"..>E
Tl-EM, or unspecified evil things will he.ppen.

If you add a unit or segment and specify a file name that has not
been used, a new file will be created with the next available file
nunber.

V(erify Verify that the information in the linked object file is
consistent with the directory.

(

Internsls II Confi dent i sl

The IUManager
(For Apple pre-release version 3.x software)

The ll.11aneger utility is used to manage the directory of library files. You
can add, delete, or change intrinsic units, se~ents, and files in the
directory. To use the IlJ1anager, you should be femiliar with the way that
units and se11"ents are handled in Pascal on the Lisa. (Information on
intrinsic units is in the Intrinsic Unit ERS by Ken friedenbach from September
16, 1981.) This docunent describes the internal pre-release version of the
IU1anager in the "spring release", which is lieble to change without notice
(though not significantly).

The Ilt1anager has three modes, which do the following:

ltlITS: Add, delete, or change intrinsic units. An intrinsic unit is a
unit of Pascal code thet can be accessed by different
processes. There are two kind of intrinsic units--regular and
shared. A regular 1ntrins1c unit has a private global data
area associated with it; shared intrinsic units share data as
well as code.

SEGtENTS: Add, delete, or change selJ'ßents. Units can be broken up into
segrnents, so that interdependent parts of different units will
be swapped in and out of memory at the seme time. You can
segment your code with either the $S Compiler option or the
ChangeSeg utility.

FILES: Add, delete, or change library files. Units and segments are
erranged in library f'iles.

When you run the IL11anager, you are asked the input and output nernes or the
library directory that you want to edit. The default neme for both is
INTRINSIC.LIB, the directory that the system looks ror et boot time. (Don't
play with the INTRINSIC.LIB unless you know what you're doing, or your system
me:y not bootl)

Internsls II Confi dent i sl

When you first enter the Il.1'1anager, you're in the FILES mode. To switch
between modes, the following canmands are available:

S(eCJDents Enter the SEGt'ENTS rnode end displery the seC1f1ent table.

U(nits

F(iles

Entries in the se~ent table have the following inforrnation:

SegNerne
Seg#
File#
Fileloc
Packed/
UrPacked

FileNevne

The se~ent neme.
The selJDent nunber.
The m.mber of the file thet the se~ent is in.

The byte location of the se~ent in the file.

The nl.l'nber of packed or unpacked bytes in the
segment.
The name of' the file that the se~1ent is in.

Enter the l.tUTS mode end display the uni t table. Entries in
the unit table have the following information:

Uni tNerne

Unitll

filell
lype
De.teSize

The unit neme.
The unit nl.lnber.

The m.mber of' t he fil e t hat t he uni t i s in.

The type of unit: Intrinsic or Shered Intrinsic.
The nt.1nber of bytes of global de.te. (Shered
Intrinsic units only).

Enter the FILES rnode and display the file table. Entries in
the file table have the following information:

File

fileName

The file nlJllber.
The file neme.

(

(

(

Internsls II Conf'i dent i sl

Other than the S(egments, U(nits, and f(iles conrnands, the cornmands available
in all three modes are the seme:

C(hange Change an entry in the currently selected table. You will be
asked ror the file, unit, or se'1l)ent nunber, and prompted for
changes in each field. If you enter an unused nllnber, the
Change conrnand works just like the Add conrnand.

A(dd Add a new entry in the currently selected table. You will be
asked for the file, unit, or se'1l)ent nunber, and prompted for
each field. If you enter a ntJnber already associated with an
entry, the Add command works just like the Change convnand. The
derault entry nl.11lber is the first unused nunber in the t8ble.
If you add a unit or segment and specify a file neme that has
not been used, a new file will be created with the next
available file nt.1nber.

D(elete Delete an entry from the currently selected te.ble. You are
prompted for the file, unit, or sef1nent nsne or ntJnber. If you
try to delete a file that is used by the se~ent table or unit
table, you will get a warning, and the file will not be
removed. If you try to delete a segment that is used by the
system t8ble as a Public Interface se~ent, the se~ent will
not be removed.

L(ist List the entries in the currently selected table.

Q(uit Quit the ILl1anager and rewrite the directory.

? Typing ? fran the main coovnand line displays the al ternate
convnand line, with the following ce111nands:

I(nstall Install a library in the directory. This stores the se~ent
and unit tables fran the linked object file. The Install
canmand puts you in the FILES mode if you're not already,
displays the file table, and prompts you for the file neme or
nl.11lber to install.

V(erify Verify that the information in the linked object file is
consistent with the directory. You are prompted for the neme of
the fil e t o veri f"y.

P(rint Print all three te.bles. (You ce.n send the te.bles to a .TEXT
file instead of -PRINTER if you want to look at thern in the
Editor.)

? Typing ? fran the alternate cannend line returns you to the
main command line.

Subject: Lisa Object File Formats ... ··

Date:

From:

August 14, 1982 (O.S. 5.2, Monitor 10)

Ken Friedenbach

CONTENTS

1.0 Introduction • 2
1.1 Related Documents 2
1.2 Overview of the Lisa Hardware/Software System 3
1.3 Basic Definitions 4
1.4 Types of Object Files 5

2.0 Grammatical Definition of Object Files 7
2.1 Grammar-Grammar 7
2.2 Software Configuration Files • 8
2.3 Linked Files 8
2.4 Unlinked Files 9

3.0 Future Directions • 10
3.1 Version Control • 10
3.2 The Software Management Utility • • 10
3.3 Symbolic Debugging • 10
3.4 Other Languages • 10

4.0 Object Record Details • • 12
4.1 Version Control • 13
4.2 Module Blocks (ModuleName, EndBlock, EntryPoint,

External, StartAddress, CodeBlock, Relocation,
CommonReloc, ShortExternal) • 14

4.3 Unit Blocks (UnitBlock, InterfLoc) • • 19
4.4 Main Program (Executable, jump table) • • 21
4.5 Intrinsic Units (SegmentTable, UnitTable, SegLocation,

UnitLocation, FilesBlock) • 24
4.6 Code Compaction (PackedCode, PackTable) • 28
4.7 The End • • 29

Ref erences

Appendix A. ObjIOLib Interface

August 14, 1982 - 1 - OS 5.2 Monitor 10

Lisa Object File Formats

1.0 Introduction

This document provides a detailed reference manual for the object file formats
and system conventions which def ine the software run-time environment for Lisa
Applications. This information is of use to developers of compilers which
emit object code to be linked with the IULinker. Object code which is in
these formats can be executed under the Monitor or the o.s. Leaders or be
debugged with LisaBug. Fred Forsman is currently working on a Symbolic
Debugger which will assume these formats. Some of this information will be of
use to third-party software developers who develop libraries of Intrinsic
Units to support specialized applications. This information may be of use to
programmers who develop and debug programs at the machine or assembly language
level.

This document describes a set of Intrinsic Units used by programs in the
Pascal Development System which create and access object files. These units
are useful in building utility programs which can be maintained across changes
in object file formats. The units are distributed in the library file named
ObjIOLib.OBJ. The ObjIOLib units are used by the Pascal Compiler, the Code
Generator, the Assembler, the Monitor Loader, the IULinker, the IUManager, and
a variety of utility programs including DumpObj, ChangeSeg, GXRef, SegMap,
CodeSize, PackSeg, and ReUse. The units will be used by the Symbolic
Debugger. Information on the functions and use of the above programs is
contained in the Pascal Development System Manual.

Developers of Code Generators are strongly urged to use the ObjIOLib units for
writing object files and developing object file utilities. This will reduce
maintainence difficulties caused by object file format changes.

This document describes the object files in their present form (Monitor
Release 10, o.s. Release 5.2). Except for additions in the area of Symbolic
Debugging, this form should be the formats for First Release of the Lisa
Office System. In some places in the document, future changes or extensions
are mentioned. This information is tentative and is primarily intended to aid
in long range planning for maintenance.

1.1 Related Documents

The reader is assumed to be familiar with the following documents:

PASCAL DEVELOPMENT SYSTEM MANUAL, Bill Schottstaedt, February 16, 1982.
Sections of relevance are: The Linker, Segmentation and Intrinsic
Unit Management, and Object File Debugging.

PASCAL DEVELOPMENT SYSTEM INTERNAL DOCUMENTATION, Bill Schottstaedt,
February 16, 1982. This document is an expansion of the sections:
Linker File Layout and Jump Table Formats.

August 14, 1982 - 2 - OS 5.2 Monitor 10

(

(

(

·{

Lisa Object File Formats

LISA PASCAL: LANGUAGE SPECIFICATION, Rich Page and David Casseres,
February 19, 1982. Background material is contained in Section
14: UNITS.

LISA HAR~ARE REFERENCE MANUAL. Especially the sections on Memory
Mapping and address translation.

LISA OPERATING SYSTEM REFERENCE MANUAL. Especially the description of
the loader (task initialization) and the flushing of INTRINSIC.LIB.

1.2 Overview of the Lisa Hardware/Software System

The Lisa Hardware supports the mapping of a 16 M-byte logical address space
into a smaller physical address space at run-time. The 16 M-byte logical
address space is divided into 128 (logical) segments of 128 K-bytes each.

The IULinker supports Intrinsic Units (shared code) by linking main programs
and intrinsic units into absolute locations in the 16 M-byte logical address
space. The system Loaders support the execution of programs which use
Intrinsic units by swapping code into memory, setting up a Memory Management
Unit (MMU) to translate logical adrreses into physical addresses, and handling
the sharing of code between different programs (processes).

Uniform addressability of code is achieved by assigning an MMU number (128
K-bytes of logical address space) to each Intrinsic Unit segment. Code
segments for a Main Program are assigned MMU numbers which are not among those
assigned to Units used by the program.

Uniform addressability of data areas for Intrinsic Segments is achieved via
pointers which are at a fixed locatiori relative to the Global Frame pointer
(register AS). This allows a "compact" allocation of global variables for
Intrinsic Units without "holes" for Units which are not used.

Unlike UCSD Pascal the assignment of numbers to Segments and Units is done at
Link time, not at compile time. Only Symbolic names are assigned at Compile
Time. Also, the control of Segmentation is much more flexible than in UCSD
Pascal. Procedures from different Units can be combined into the same
segment.

Short Jumps (4 bytes rather than 6 bytes) to Intrinsic Unit Segments are
achieved via emulated instructions. These instructions are editted by the
IULinker. They make use of the "Axxx" class of emulation instructions
supported by the hardware. See the section on the Intrinsic Unit Trap Handler
in the PASCAL DEVELOPMENT SYSTEM INTERNAL DOCUMENTATION for more details.
Current instructions emulated include:

IUJSR JSR to an IU Segment procedure or function.
IUJMP JMP to an IU Segment procedure or function.
IULEA LEA of an IU Segment procedure or function (except into A7).
IUPEA -- PEA of an IU Segment procedure or function.

August 14, 1982 - 3 - OS 5.2 Monitor 10

Lisa Object File Formats

The major advantages of this architecture are the following:

One copy of code (on the disk and in memory) can be part of several
different programs.

Code can be swapped into memory in a state that is "ready to execute".
No patching or load-time linking is needed.

Since code segments are "read only" code never needs to be swapped out.
(However, debuggers must be aware of swapping to reinstall breakpoints.)

Some of the disadvantages are:

The size of the Intrinsic Unit library is limited by the number of MMU's
supported by the hardware. (This could be expanded by treating the
library as a tree structure or by swapping related segments and mapping
them with a single MMU.)

The size of the largest program using Intrinsic Units is limited by the
number of MMU's supported by the hardware.

There is a slight perf ormance penalty in accessing global variables in
Intrinsic Units indirectly via the table of pointers. (The Pascal
Compiler puts such references into the pool of computations to optimize
by saving results in registers.)

There is a penalty in speed in emulating the instructions IUJSR, IUJMP,
IULEA, and IUPEA. For the most common instruction (JSR) the penalty is
about 8:1 for the emulated version. This causes an overall 2:1 increase
in the average procedure overhead (including LINK, UNLINK, return,
argument passing and scrubbing, saving optimization registers, automatic
stack expansion, etc.)

1.3 Basic Definitions

--
Segment

This term is used in two different senses which are related but distinct.
From the hardware point of view, a segment is a portion of the logical address
space which is mapped by an MMU and can include from 0 to 256 blocks of 512
bytes (zero to 128 K bytes). From the software point of view, a segment is a
swappable piece of code of up to 32 K bytes. (The 32 K limitation is related
to using signed words for PC relative branches.) There are also special
segments, such as the stack segment and the jump-table segment. Where the
distinction is important, the terms "logical segment" and "code segment" will
be used.

Module (Block)

August 14, 1982 - 4 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

A module or block is a contiguous piece of memory. In unlinked files produced
by the Pascal Compiler, a module is a procedure or function including string
constants, set constants and embedded debug information. In unlinked files
produced by the Assembler, a module is a single .PROC or .FUNC section of
code. The IULinker also defines several other blocks of memory which are
referenced and defined implicitly by the languages and run-time environment:
the "global data" area (or initial stack), the "data pointer" area for
accessing the global data of intrinsic units, and the jump table of a Main
Program. The heap is the only part of the run-time environment which the
Linker does not def ine as a block.

In a linked file, a block is a code segment (i.e. the smaller blocks of memory
have been bound together into a larger contiguous piece of memory). Code
modules (whether linked or unlinked) are represented in an object file by a
set of object file records, beginning with a ModuleName block and ending with
a EndBlock.

Note: the use of the term "module" to mean a "block" is due to historical
roots. At some time in the future it would be nice to switch to the following
terms, although this will involve massive edits to existing programs:

Block -- a contiguous piece of memory.
Module -- a block of data and one or more blocks of code.
Class -- a Module which can be instantiated with several data blocks.
Segment -- code blocks of one or more modules linked together.
ObjRecord -- a file format.

1.4 Types of Object Files

A object file contains one or more records of information relating to the
execution of machine code. There are several types of object file:

Intrinsic Unit Directory (IUDirectory)
Intrinsic library and Main Program
Unlinked Units and Code

The general function of each type of object file is discussed below. The
detailed specification of which blocks are present is given in the Section
7.0. Detailed formats of each block are given in Appendix A.

Intrinsic Unit Directory (IUDirectory)

Intrinsic Unit Dircectories are read and written by the IUManager. The
"current" or "active" directory is found by convention in the file
INTRINSIC.LIB on the o.s. boot volume or the Monitor root volume on the
working device. Loaders read INTRINSIC.LIB to locate Intrinsic Segments. The
IULinker uses INTRINSIC.LIB to compute the transitive closure of Intrinsic
Units referenced and to assign absolute logical addresses. The Compiler reads
INTRINSIC.LIB to locate the interfaces of lntrinsic Units.

August 14, 1982 - 5 - OS 5.2 Monitor 10

Lisa Object File Formats

Intrinsic Library and Main Program Files

Intrinsic library and main program files are written by the IULinker and
loaded for execution by loaders on the Monitor and the o.s. Intrinsic library
files contain linked intrinsic unit code which is ready to be loaded and
executed as part of a main program. In addition, Intrinsic library files may
contain linker information and unit interfaces used in the compilation and
linking of other units and main programs. Intrinsic library and Main Program
files can be stripped and packed by the PackSeg Utility in order to minimize
disk space in a production system.

In the present development environment, the IUManager must be used to define
Intrinsic Segments and Intrinsic Units before the IULinker links them. After
the IULinker has linked an Intrinsic library file, the lntrinsic library file
must be "Installed" using the IUManager. The installation operation places
file relative location information in INTRINSIC.LIB so that the loaders can
efficiently locate and load segments.

August 14, 1982 - 6 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

2.0 Grammatical Definition of Object Files

The grammar used is a form of Extended BNF similiar to that used by Wirth in
describing Modula-2 [1]. The major differences are the adoption of a
"list-of" construct suggested by DeRemer [2] and the interpretation of {E} as
one or more occurances of E. The Extended BNF is capable of describing itself
concisely:

2. 1 GRAMMAR-GRAMMAR

Syntax:
syntax = {production}.
production = NTSym "=" expr
expr • (term "I").
term • {factor}.
f actor • TSym 1 NTSym

1 " [" expr "] "

-- one or more factors
"(" expr ")"
"(" expr TSym ")"

1 " { " expr "} " •

Semantics:
El 1 E2 denotes either El or E2

that is, one of two alternatives.
{E} denotes E, EE, EEE, etc.

that is, one or more E's.
[E] denotes tbe empty string or E

tbat is, an optional E.
(E P) denotes E, EPE, EPEPE, etc.

tbat is, a list of E's separated by P's.
() are used for grouping.

NOTE: [{E}] denotes tbe empty string, E, EE, EEE, etc.

Scanning:
Comments are delimited by "--" and tbe end-of-line.
Special cbaracter terminals are in quotes.
Tbe string "'""' is a quoted ". For example:

Tbe sentence: "It's bot today!", be said.
would be quoted: """lt ... s bot today!"", be said."

Conventions:
Syntactic class names begin witb a lower case letter.
Terminal class names begin witb an upper case letter.

Object file formats are descibed in the form used by tbe Development
System during tbe development and testing of software. The "stripped and
packed" formats produced by tbe PackSeg utility are documented in tbe
co111Dents. The PreLink file formats are also mentioned a few places in tbe
comments, but bave not been completely specified.

August 14, 1982 - 7 - OS 5.2 Monitor 10

Lisa Object File Formats

2.2 SOF~ARE CONFIGURATION FILES

objFile •
iuDirectory

1 iuLibrary
1 unlinkedUnit

iuDirectory •

sysPackTable
mainProg
unlinkedModule.

VersionControl UnitLocation SegLocation FilesBlock
(CodeBlock] EOFMark.

sysPackTable • VersionControl PackTable EOFMark.

The iuDirectory defines the intrinsic units and intrinsic segments
which are available for use by main programs. By convention the name of the
active iuDirectory is INTRINSIC.LIB. The optional CodeBlock contains the IU
Trap Handler for the o.s. without LisaBug. This file cannot be packed.

The sysPackTable f ile contains the PackTable record used in packing
any intrinsic library or main program files on the o.s. By convention the
active PackTable is in PACKTABLE.LIB. This file cannot be packed.

2.3 LINKED FILES

iuLibrary •
VersionControl SegLocation
[InterfLocation] stripped. Present if Interfaces in file.
UnitTable SegmentTable stripped, only used by Linker
{UnitBlock} interfaces are stripped
{iuLibModule} EOFMark.

iuLibModule •
Module Name
[{EntryPoint}] -- stripped
[{CommonReloc 1 ShortExternal}] -- later, to Support PreLink
CodeBlock EndBlock.

mainProg •
VersionControl [UnitTable] Executable (SegmentTable]
{module} EOFMark.

module • ModuleName {otherModBlock} EndBlock.

otherModBlock •
EntryPoint
CodeBlock

StartAddress CommonReloc 1 ShortExternal
Relocation External.

August 14, 1982 - 8 - OS 5.2 Monitor 10

(

(.

(

Lisa Object File Formats

The SegLocation block in iuLibrary files is for future Loader support
of slightly different versions of files on a system, i.e. packed Lisa Office
System files and Development System versions with interf aces and linker
information. Presently, one set of numbers is installed in INTRINSIC.LIB and
is assumed valid for any file of the indicated name.

The InterfLocation block is used by the Compiler to quickly access
interfaces in the UnitBlock(s). The UnitTable and the SegmentTable contain
the transitive closure of intrinsic units used and intrinsic segments from
code within a file. The UnitTable and SegmentTable are only present if
intrinsic units are referenced.

The UnitBlock contains the size of the global data area for a
particular intrinsic unit and optionally the interface or interface location
inf ormation.

Presently iuLibrary modules do not contain relocation records.
However this is planned for the PreLink and lnstallLink programs which will
support third party sof tware development and distribution.

The Executable block contains the segment table and the jump table for
the main program and regular unit segments.

unlinkedUnit •

UnitBlock
[{module}]
EOFMark
TextBlocks.

unlinkedModule •

2.4 UNLINKED FILES

later: VersionControl

units can be definitions only

note: TextBlocks after EOFMark.

-- later: Version Control
{module} EOFMark.

An unlinked unit file is the output of a compiler which is intended
for "use" or "import" by another compilation. The kludge of having text
blocks tacked on the end of the f ile is scheduled for replacement by
compilation to an intermediate form which includes definitions.

A unlinked file is formed by a compiler or an assembler. Version
control blocks are not presently placed on unlinked files but are sheduled to
be shortly added (11.0).

August 14, 1982 - 9 - OS 5.2 Monitor 10

Lisa Object File Formats

3.0 Future Directions

3.1 Version Control

Version control will be needed for two purposes:

To prevent the execution from inconsistent library and main program
files.

For consistency checking of a software configuration, i.e to support the
Make facility and the Software Management Utility.

Version control for execution is scheduled for implementation after the second
product build (internal use).

3.2 The Software Management Utility

A Software Management Utility is being developed which will facilitate the
management of system dependencies and the automatic regeneration of a system
based on consistency checking. This facility represents an extension of the
UNIX "make" facility to include:

Distinction between interface and implementation editing changes.
Distinction between linking with regular units (code is copied) and

intrinsic units (code is referenced).
Support for the concept of "reuseable" intrinsic library files.
Support for the concept of a "run-time" library directory.

The Software Management will provide for management of four levels of system
implementation and conf iguration:

Run-time Systems
Intrinsic Library Files
Unlinked or Raw Object Files
Source Code Files

3.3 Symbolic Debugging

A new attempt at defining and implementing a Symbolic Debugger is being made.
In the previous effort, the emphasis was on dumping symbolic information from
the compiler into an independent .DBG file. In the current effort we are
examining the possibility of passing more information through the .I-code file
to the code generator. Some forms of debugging information will be embedded
in the CodeBlock. Other forms of debugging will be introduced as new block
types.

3.4 Other Languages

August 14, 1982 - 10 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

Currently we are planning for COBOL to generate object files which can be
linked with the IULinker. We are also investigating the feasibility of
bringing Modula-2 up on Lisa. Over the course of the next year Lisa will
begin to support multi-language development projects.

August 14, 1982 - 11 - OS 5.2 Monitor 10

Lisa Object File Formats

4.0 Object Record Details

Object file records consist of a Header, an Invariant part and a Variant
part.

The Header consists of a byte which indicates the BlockType followed by a
three byte length field. The GetObjinvar and PutObjinvar procedures in ObjIO
manage the details of the BlockType encoding and translate the particular
encoding into an enumerated type.

The Invariant part is always a fixed length (possibly zero) for a given
BlockType. The Invariant part characterizes the record. The following
BlockTypes are currently supported:

BlockType=
(ModuleName, EndBlock, EntryPoint,
External, StartAddress, CodeBlock,
Relocation, CommonReloc,
ShortExternal,
UnitBlock, InterfLoc,
Executable, VersionCtrl,
SegmentTable, UnitTable, SegLocation, UnitLocation, FilesBlock,
PackedCode, PackTable,
EOFMark);

Note: the current ObjIO Unit includes some additional BlockTypes that are
supported for compatibility reasons, but are not intended for future support.

For each of the above BlockTypes there is a corresponding invariant record
definition in ObjIO. For instance, the BlockType -"ModuleName" has an
invariant record definition "iModuleName". These are shown in detail below.

The Variant part may be missing, optional or of varying length depending on
the BlockType. When present, the Variant part of an object file record
usually consists of a varying number of fixed size entries. There are
exceptions, however, such as the Executable block which has a complex variant
structure (segment table, jump table and a few miscellaneous entries). The
following VariantTypes are currently supported:

Variant Type•
(NoVariant,
RefVariant, ShortRef, ModVariant, Comments,
SegVariant, UnitVariant, IntfLocVariant,
SegLocVariant, UnitLocVariant, FilesVariant,
JumpTVariant, JTSegVariant, ObjectCode);

August 14, 1982 - 12 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

The association of a VariantType with each BlockType is expressed in two
ways. In the invariant record definition a comment at the end documents the
corresonding VarinatType. In addition, there is an array of information in
ObjIO which contains the mapping. GetObjinvar and PutObjinvar manage the
communication of this information to programs accessing object files.

In the definition of object file records, there are some standard types used
in addition to Integer, Longlnt, Boolean, Char, etc. The following types are
introduced in the indicated Units:

(* from Unit PasDefs: *)

const NameStrLen = 8;
MaxLStringLen = 80;

(* Length of Identifier Names *)
(* Reasonably long: error messages etc. *)

type NameString = packed array [1 •• NameStrLen] of char;
LString = String [MaxLStringLen];

MemPtr • Ainteger;
ProcPtr • Ainteger;

(* from Unit ObjIO: *)

type FileAddr • longint;
MemAddr • longint;
SegAddr = longint;

(* "untyped" pointer to memory *)
(* in place of Procedure variables *)

(* 0 based, byte address within a file *)
(* 24-bit virtual address *)
(* 0 based, byte address within a segment *)

Note: the name of the type NameString may need to change in the future due to
a conflict with a different type in the o.s. and the lack of support for
qualified names in Pascal.

4.1 VERSION CONTROL

August 14, 1982 - 13 - OS 5.2 Monitor 10

Lisa Object File Formats

VersionCtrl:
iVersionCtrl • record

SysNum, MinSys,
MaxSys, Reservl,
Reserv2, Reserv3: longint;

end;

+----+--+--+- 1

1 99 1 size SysNuml MinSysl MaxSyslReservlfReserv21Reserv31
+----+--+--+- 1

1 - 2 5 9 13 17 21 25 28

Note:

99
size
SysNum
MinSys
MaxSys
Reservl
Reserv2
Reserv3

- Hexadecimal 99
- Number of bytes in this block

(reserved)
(reserved)
(reserved)
(reserved)
(reserved)
(reserved)

Contents are currently ignored by loaders and system programs for all
fields.
Future plans:

See the VERSION CONTROL - SPECIFICATION document for detailed plans
for releases 11.0 and 12.0.

August 14, 1982 - 14 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

ModuleName:

4.2 MODULE BLOCKS

iModuleName•record
ModuleName,
SegmentName: NameString;
CSize: Longlnt;
(* Comments *)

end;

+----+--+--+- 1 ---+

1 80 1 size ModuleName SegmentName CSize Comments ••• 1
+----+--+--+- 1 1 1 1 1-+-+-+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ---+

1 2 4 5 12 13 20 21 24 size

80 - Hexadecimal 80
size - Number of bytes in this block
ModuleName - Blank padded ASCII name of this module
SegmentName - ASCII name of segment in which this module will reside

Notes:
CSize is always zero. The actual CSize is in the EndBlock.
Comments are not currently generated.

Future plans:
CSize will be dropped.
Comments will be replaced with stack frame descriptor for debugging.
Linker will do language checking and size checking of args and locals.

EndBlock:
iEndBlock=record

CSize: Longlnt;
end;

+----+--+--+- 1 1
1 81 1 size CSize
+----+--+--+- 1 1 1 1 1

1 2 4 5 8

- Hexadecimal 81 81
size
CSize

- Number of bytes in this block (always 000008)
- Numer of bytes in the code block for this module

Note:
CSize is the actual number of bytes of code in the CodeBlock, i.e. CSize

is equal to the number of Variant bytes in the CodeBlock. By convention, the
Monitor and o.s. loaders load the CodeBlock header and invariant part as
well. So other records such as SegLocation blocks and the segment table in
the Executable block generally indicate a code block size which is !arger.

August 14, 1982 - 15 - OS 5.2 Monitor 10

Lisa Object File Formats

EntryPoint:
iEntryPoint=record

LinkName,
UserName: NameString;
Loc: SegAddr;
(* Comments *)

end;

+----+--+--+--+_.-+-1

1 82 1 size LinkName User Name 1 Loc 1 Comments
+----+--+--+--+l-+-1

1 2 4 5

82
size
LinkName
UserName
Loc

Note:

12 13 20 21 24 25

- Hexadecimal 82
- Number of bytes in this block
- Blank padded ASCII linker name of entry point
- Blank padded ASCII user name of entry point
- Location of entry point relative to this module

CoDDDents are not currently generated.

---+
1

---+
size

In Pascal files each module has only one EntryPoint and Loc is zero.
In Assembly language files there is an EntryPoint record for the .PROC or

.FUNC and one for each .DEF
In lntrinsic library files with Linker information there is an EntryPoint

record for each procedure or function in an Interface section.

(

For languages with nested scopes (such as Pascal) LinkName has a special ·
format ("$nnnnnnn") for nested names or names in Implementation sections which (
do not need to be unique globally. LinkNames must be unique within a file.
The Linker will remap the LinkNames to preserve uniqueness when reading the
file. See Appendix C on the IULinker functions for more details.

Future plans:
Addition of UnitName to support qualified name references.
Switch from eight character case-insensitive names to longer

case-sensitive names. The length will probably be either a fixed 16
characters or a varying 31 characters (i.e. an index in a NameTable).

August 14, 1982 - 16 - OS 5.2 Monitor 10

(_

Lisa Object File Formats

External:
iExternal=record

LinkName,
UserName: NameString;
(* RefVariant *)

end;

+----+--+--+--+-+-+-+-+-+-+-+-+-+-+-+--+--+--+--+--+--+-+-+-+-1 1 1 1 1 1 1 1 1 1 1 1
1 83 1 size LinkName User Name ref 1
+----+--+--+--+l-+-+-+-+-+-+-+-+-+-+-+--+--+--+--+--+--+-+-+-+-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 4 5 12 13 20 21 24

83 - Hexadecimal 83
- Number of bytes in this block

1 1 ... ref n
- 1 1 1

size

size
LinkName
User Name
ref 1

- Blank padded ASCII linker name of external reference
- Blank padded ASCII user name of external reference
- Location of first reference relative to this block

ref n
Note:

- Other ref erences
- Location of last reference

See the notes and futures plans for names under EntryPoint.

StartAddress:
iStartAddress•record

Start: SegAddr;
GSize: Longint;
(* Comments *)

end;

+----+--+--+- ' 1 ' 1
1 84 1 size 1 Start 1 ' ' GSize

1 ' ' ' ------+
Comments • • • 1

+----+--+--+- 1 1 1 1 1 1 1 1 1 ------+
1 2 4 5 8 9 12 13 size

84 - Hexadecimal 84
- Number of bytes in this block
- Starting address relative to this block
- Number of bytes in the global data area

size
Start
GSize
Comments - Arbitrary information. Ignored by the Linker.

Note:
Comments are not currently generated.

August 14, 1982 - 17 - OS 5.2 Monitor 10

Lisa Object File Formats

CodeBlock:
iCodeBlock=record

Addr: SegAddr;
(* ObjectCode *)

end;

+----+--+- 1 1 1 1 1 1 1 1 1 1 -----+
1 85 1 size 1 Addr ObjectCode ••• 1
+----+--+--+---+ 1 1 1 1 1 1 1 1 1 -----+

1 2 4 5 8 9 si?.e

85 - Hexadecimal 85
size - Number of bytes in this block
Addr - Address of first byte of code
ObjectCode - The object code. Always an even number of bytes.

Note:
For raw object files (unlinked) the address is always O.
For linked files the address is an absolute address in the logical

address space. (MMU # times 128 K + const).

Relocation:
iRelocation•record

(* RefVariant *)
end;

iRefVariant•SegAddr;

+----+--+--+--+--+-1~1~1.._.,_

1 86 1 size 1 ref 1 1
...
1

1 1
ref

1 -1
n 1

+--- 1 -+- 1 1 1 1 1 1 1 1
1 2 4 5 8 size

86 - Hexadecimal 86
size - Number of bytes in this block
ref 1 - Location of first address to relocate

- Other addresses
ref n - Location of last address to relocate

Note:
Relocation records are generated by the old Linker (partial links) and

by the old Library program. They are not supported by the current Linker.
Future plans:

Reloction records will be used by the PreLink and InstallLink versions
of the Linker.

August 14, 1982 - 18 - OS 5.2 Monitor 10

(

(

(_

Lisa Object File Formats

CoIIDDonReloc:
iCommonRelocation=record

CommonName: NameString;
(* RefVariant *)

end;

iRefVariant=SegAddr;

+----+- 1 1 1 ' ' 1 ' '
1 87 1 size CommonName ref 1
+----+--+--+- 1 1 1 1 1 1 1 1 1 1 1 1

1 2 4 5 12 13 16

87 - Hexadecimal 87
- Number of bytes in this block

1 1

ref n
1 1 1 1

size

- Blank padded ASCII name of common block
size
CommonName
ref 1 - Location of first reference relative to this module

ref n
Note:

- Other references
- Location of last reference

Common relocation references in the code are zero based relative to
the beginning of the named regular unit.

ShortExternal:
iShortExternal=record

LinkName,
UserName: NameString;
(* ShortRcf *)

end;

iShortRef=Integer;

+----+--+--+- 1 1 1 1 1 1 !-+-+-+-+-+-+-+-+-+-+--+--+-----+--+--+
1 89 1 size 1 LinkName 1 UserName 1 refll ••• 1 refnl
+----~--+--+--+-+-~-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+--+-----+--+--+

1 2 4 5 12 13 20 21 22 size

89
size
LinkName
User Name
refl

refn

August 14, 1982

- Hexadecimal 89
- Number of bytes in this block (always 000016)
- Blank padded ASCII linker name of external reference
- Blank padded ASCII user name of external reference
- Location of first address to reloca~e
- Other addresses
- Location of last address to relocate

- 19 - OS 5.2 Monitor 10

Lisa Object File Formats

UnitBlock:

4.3 UNIT BLOCKS

iUnitBlock=record
UnitName: NameString;
CodeAddr,
TextAddr: FileAddr;
TextSize,
GlobalSize: Longint;
UnitType: integer; (* 0-Reg, l•Intrin, 2•Shared *)
(* comments • interface section of Unit (compressed) *)

end;

+---+--+--+- 1 1 1 1 1 -+--+--+--+--+--+--+--+--+--+--+--+---
! 92 1 size UnitName CodeAddr 1 TextAddr 1 TextSize 1 •••
+----+--+--+- 1 1 1 1 1 1 1 1 1 -+--+--+--+--+--+--+--+- 1 -+--+---

1 2 4 5 12 13 16 17 20 21 24

92

---+--+--+--+--+----+--- 1 1 1 1 1 ------+
••• 1 GlobalSizel UnitTypef Comments ••• 1
---+--+--+--+--+----+--- 1 1 1 1 1 ------+

25 28 29 30 31 size

- Hexadecimal 92
size
UnitName
CodeAddr
TextAddr
TextSize
GlobalSize
UnitType
Comments

- Number of bytes in this block (always OOOOlE)

Note:
In

- Name of this unit
- Disk address of module
- Disk address of text block
- Size of text block
- Number of bytes of globals in this unit
- O•Regular, l•Intrinsic, 2•Shared
- Compressed ASCII text of Interface

an unlinked (raw) file:
CodeAddr is the address of the first Module Name Block (i.e. the

first byte after this UnitBlock).
TextAddr is the (block aligned) File Address of the Interface

(past the EOFMark).
TextSize is the size of the interface (• n*l024) where n is the

number of text pages.
Comments is missing.
The Interface is found in standard .TEXT file blocks.

In a linked (intrinsic library) file:
CodeAddr is O.
TextAddr is O.
TextSize is O.
Comments is either empty (no interfaces in the library) or contains

the compressed interface (blanks and meaningless comments removed).

For Pascal the Interface is defined to begin with the character after the
semicolon in the "Unit Foo;" statement and extends through the word

August 14, 1982 - 20 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

"implementation".

Future Plans:
The kludge of having Text blocks at the end of the f ile may not be

supported forever. Compilers should be designed to get interf aces from the
variant part of the UnitBlock record, whether they are stored in text form or
are represented as intermediate code.

InterfLoc:
iinterfLoc= record

(* IntfLocVariant *)

end;

+----+--+--+- 1 1 1 l-+------+-+-1 ~1~-+
1 86 1 size 1 loc 1 1 loc n
+----+--+--+- 1 1 1 1 1 1 1

1 2 4 5 8 size

92
size
loc 1

loc n
Note:

- Hexadecimal 92
- Number of bytes in this block
- Location record for first unit interface
- Other location records
- Location record for last unit interface

The interf ace location block is only present if the +I option has been
specified to the Linker to include interf aces when linking an intrinsic
library file.

IntfLocVariant:

August 14, 1982

1

iintfLocVariant • record
UnitName: NameString;
IfLoc: FileAddr;

end;

1 1 1 1 1

UnitName
1 1 1 1

1 1 1

IfLoc
1 1

8 9 12

UnitName
IfLoc

- Blank padded ASCII Unit Name
- File Address of first byte of Interface

- 21 - OS 5.2 Monitor 10

Lisa Object File Formats

Executable:

4.4 MAIN PROGRAM

iExecutable•record
JTLaddr: MemAddr;
JTSize,
DataSize, MainSize,
JTSegDelta, StkSegDelta,
DynStack, MaxStack,
MinHeap, MaxHeap: Longint;
(* Unknown • numSegs + JTSegVariants +

numDescriptors + JumpTVariants + other stuff *)
end;

+-- 1 1 1 1 1 1 1 1 1 1 1 1 -+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
' 981 sizelJTLaddrl JTSizel DataSize 1 MainSize 1

JTSegDeltalStkSegDeltal ••
+-- 1 1 1 1 1 1 1 1 1 1 !--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
! 2 4 5 8 9 12 13 16 17 20 21 24 25 28

--+--+- 1 1 -+--+--+- 1 -+--+--+--+--+--+--+--+--+--+--+--+------+
••• 1 DynStack 1 MaxStack MinHeap 1 MaxHeap 1 jump table ••• 1
--+------+

29 32 33 36 37 40 41 44 45 size

98
size
JTLaddr
JTsize
DataSize
MainSize
JTSegDelta
StkSegDelta
DynStack
MaxStack
MinHeap
MaxHeap
jump table

August 14, 1982

- Hexadecimal 98
- Number of bytes in this block
- Absolute load address of jump table
- Number of bytes in jump table
- Total number of bytes in regular units global data areas
- Size of main program global data area
- Distance from base of segment to beginning of data pointers
- Distance from JTSegDelta to AS at runtime
- Initial dynamic stack size
- Maximum total stack size
- Initial heap size
- Maximum total heap size
- The jump table itself.

- 22 - OS 5.2 Monitor 10

f

(

(

Lisa Object File Formats

The format of the jump table is:

+---------------------+
1 Number of segments 1 2 bytes

+---------------------+
1 Main Segment Table 1 12 bytes

+---------------------+
1 Segment Table #2 1 12 bytes
+---------------------+
1 1
+---------------------+
1 Segment Table #n 1 12 bytes

+---------------------+
INumber of Descriptorsl 2 bytes
+---------------------+
1 Start Descriptor 1 6 bytes

+---------------------+
1 S#l P#2 Descriptor 1

+---------------------+
1 1
+---------------------+
1 S#l P#nl Descriptor 1

+---------------------+
1 S#2 P#l Descriptor 1

+---------------------+
1 1
+---------------------+
1 S#2 P#n2 Descriptor 1

+---------------------+
1 S#3 P#l Descriptor 1

+---------------------+
1 1
+---------------------+
1 S#m P#nN Descriptor 1 6 bytes
+---------------------+
1 Old Stuf f 1

+---------------------+
Note:

By convention, the main segment has a blank name, and is the first
segment in the jump table. Also, the first descriptor in the first segment is
the entry point for the main program.

August 14, 1982 - 23 - OS 5.2 Monitor 10

Lisa Object File Formats

Segment Table Entry:
iJTSegVariant • record

SegmentAddr: FileAddr;
SizePacked: integer;
SizeUnpacked: integer;
MemLoc: MemAddr;

end;

+---+---+---+---+-----+-----+------+------+---+---+---+---+
1 SegmentAddr 1 SizePackedl SizeUnpackedl MemLoc 1
+---+---+---+---+-----+-----+------+------+---+---+---+---+

1 4 5 6 7 8 9 12

SegmentAddr
SizePacked
SizeUnpacked
MemLoc

- File address of either CodeBlock or PackedCode block
- Number of bytes in PackedCode record
- Number of bytes in (unpacked) Code record
- Absolute logical address of segment

Note:
lf SizePacked = 0 then segment is not packed.
SizePacked and SizeUnpacked include the invariant part of the record.

Future plans:
Both SizePacked and SizeUnpacked will become Longlnts at the next

non-compatible object code release.

Jump Table Descriptor:
iJumpTVariant • record

JumpL: integer;
AbsAddr: MemAddr;

end;

+---+---+--+--+--+--+
1 JumpL 1 AbsAddr 1
+---+---+--+--+--+--+

1 2 3 6

- JMP.L $xxxxxxx instruction JumpL
AbsAddr - Absolute address of procedure in logical address space

August 14, 1982 - 24 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

SegmentTable:

4.5 INTRINSIC UNITS

iSegmentTable = record
nSegments: integer;
(* SegVariant *)

end;

+----+--+--+--+-----+-----+----------+- -+----------+
1 9A 1 size 1 nSegments 1 seglnfol 1 ••• 1 seglnfoN 1
+----+--+--+--+-----+-----+----------+- -+----------+

1 2 4 5 7 25 size

9A
size
nSegments
seglnfol

seglnf oN
Note:

- Hexadecimal 9A
- Number of bytes in this block
- Number of segment descriptors in table
- First SegVariant record

- Last SegVariant record

The Segment Table contains the transitive closure of the intrinsic
segments referenced by segments in this file. The transitive closure is
currently computed fairly loosely: inclusion of a file in the Linker input
list is taken as a reference to all the segments in the file. This is
consistent with the notion of "reuseable" and the notion of "changes in
implementation" not affecting reuseability, i.e. references can be added to
other parts of a lower level library without affecting the transitive closure
computation.

August 14, 1982

iSegVariant = record
SegName: NameString;
SegNumber: integer;
Version!: longint;
Version2: longint;

end;

+-+-+-~l-+-1-+-I -+--+-~!----+----+- 1 1 -+--+--+--+--+--+
SegName ISegNumberl Versionl 1 Version2 1

+l-+-+l-+-1-+-l-+-I -+--+-~1-----+----+--+--+--+--+--+--+--+--+
1 9 11 15 18

SegName
SegNumber
Version!
Version2

- Segment Name
- Segment (MMU) number
- (reserved)
- (reserved)

- 25 - OS 5.2 Monitor 10

Lisa Object File Formats

UnitTable:
iUnitTable = record

nUnits,
maxunit: integer;
(* UnitVariant *)

end;

+--- 1 -+--+---+---+----+----+----------+- -+----------+
1 9B 1 size 1 nUnitsl maxunit IUnitinfol 1 ••• IUnitinfoN 1
+----+--+--+--+---+---+----+----+----------+- -+----------+

1 2 4 5 7 9 21 size

9B
size
nUnits
maxunit
Unitlnfol

- Hexadecimal 9B
- Number of bytes in unit table block
- Number of unit descriptors in table.
- maximum unit number found in the table.
- First UnitVariant record

UnitinfoN - Last UnitVariant record
Example:

If units number 1, 7, and 11 are present then nUnits•3 and
maxunit•ll.

Note:

August 14, 1982

iUnitVariant = record
UnitName: NameString;
UnitNumber: integer;
UnitType: integer;

end;

+-+-+-~l-+-1-1..._,I..._,~-----+-----+----+----+

UnitName UnitNumberl UnitTypel
+-+-+l-+-l-+-l-1~11-1~1-----+-----+----+----+

1 9 10 11 12

- Unit Name UnitName
UnitNumber
UnitType

- Index into data pointer table
- 0-Regular, l•Intrinsic, 2•Shared

UnitType • 0 would be an error.

- 26 - OS 5.2 Monitor 10

(

(

l

Lisa Object File Formats

SegLocation:
iSegLocation = record

nSegments: integer;
(* SegLocVariant *)

end;

+----+--+--+--+----+-~-+----------+- -+----------+
1 9C 1 size lnSegmentsl seginfol 1 ••• 1 seginfoN 1
+----+--+--+--+----+----+----------+- -+-----~---+

1 2 4 5 6 7 size

9C - Hexadecimal 9C
size - Number of bytes in segLocation block
nSegments - Number of segment descriptors in table.
seginfol - First SegLocVariant record

seglnfoN - Last SegLocVariant record

Note:

iSegLocVariant = record
SegName: NameString;
SegNumber: integer;
Version!, Version2: longint;
FileNumber: integer;
FileLocation: FileAddr;
SizePacked, SizeUnpacked: integer;

end;

+--t-~~1~1~1~-..1----+----+--+--+--+--+--+--+--+--+--­

Se g Name ISegNumberf Version! 1 Version2 f ••••
+l-+-+-+l-+-1-+-I ~1~~1----+----+--+--+--+--+- 1 1 -+--+---

1 9 11 15 18

---+-----+-----+---+---+---+-~----+---~-----+------+

••• 1 FileNumberf FileLocation 1 SizePackedl SizeUnpackedl
---+-----+-----+---+---+---+---+-----+-----+------+------+

19 20 21 24 25 26 27 28

SegName - Segment Name
SegNumber - MMU number
Versionl - (reserved)
Version2 - (reserved)
FileNumber - Index into the FilesBlock file table
FileLocation - Location within file of CodeBlock
SizePacked - Number of bytes in PackedCode record
SizeUnpacked - Number of bytes in (unpacked) Code record

If SizePacked • 0 then Segment is not packed.
FileLocation may become invalid when variations are allowed in

an intrinsic unit or main program file.
SizePacked and SizeUnpacked will become longints.

August 14, 1982 - 27 - OS 5.2 Monitor 10

Lisa Object File Formats

UnitLocation:
iUnitLocation • record

nUnits: integer;
(* UnitLVariant *)

end;

+----+--+--+--+---+---+----------+- -+----------+
1 9D 1 size 1 nUnitslUnitinfol 1 ••• IUnitlnfoN 1
+----+--+--+--+---+---+----------+- -+----------+

1 2 4 5 7 23 size

9D - Hexadecimal 9D
size - Number of bytes in unitLocation block
nUnits - Number of unit descriptors in table.
Unitlnfol - First UnitLVariant record

UnitlnfoN - Last UnitLVariant record

iUnitLVariant • record
UnitName: NameString;
UnitNumber: integer;
FileNumber, UnitType: FileByte;
DataSize: longint;

end;

+-+-+-~1-+-f-ft--tf~~-----+-----+----------+--------+--+--+--+--+

UnitName UnitNumberlFileNumberlUnitTypel DataSize 1
~f-1-f-+l-+f-1-1-+-l~f~t--tl~----+-----+----------+--------+--+--+--+--+

1 9 10 11 12 13 16

UnitName
UnitNumber
FileNumber
UnitType
DataSize

August 14, 1982

- Unit Name
- Index into data pointer table
- Index into the FilesBlock f ile table
- See UnitTable above
- Size in bytes of global data area for unit

- 28 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

FilesBlock:
iFilesBlock = record

nFiles: integer;
(* Unknown = FilesVariant + string table *)

end;

+----+--+--+--+----+--- 1 1 1 1 1 1 - --~~l-lt--tl~l--tl-+-----------------+

1 9E 1 Size 1 nFiles Filelnfol 1 FileinfoN StringTable ••• 1
+--- 1 1 -+--+----+--- 1 1 1 1 1 1 1 - - 1 1 1 1 1 1 ----------------+

1 2 4 5 6 7 13 size

9E - Hexadecimal 9E
nFiles
Filelnfol

- number of file descriptors in block. Each Fileinf o record
- First FilesVariant record

FilelnfoN - Last FilesVariant record

iFilesVariant = record
FileNumber: integer;
NameAddr: FileAddr;

end;

+-----+-----+--+--+--+--+
1 FileNumberl NameAddr 1
+-----+-----+--+--+--+--+

1 2 3 6

FileNumber
NameAddr

- Index into the FilesBlock f ile table
- File address of name string

Note:
Each StringTable entry has the format of a Pascal string, i.e. the

strings begins on an even byte and the first byte is a length byte indicating
how the length of the string.

PackedCode:

addr
csize

4.6 CODE COMPACTION

iPackedCode • record
addr: MemAddr;
csize: longint;
(* Unknown • packed object code *)

end;
,

- Absolute address in logical address space
- Size in bytes of the code when unpacked

August 14, 1982 - 29 - OS 5.2 Monitor 10

Lisa Object File Formats

PackTable:

Note:

iPackTable • record
packversion: longint;
(* Unknown • translation table *)

end;

The packversion field was originally intended to indicate changes in
the packing algorithm. With the o.s. supporting one PackTable for the system,
packversion could also be used to indicate which table.

EOFMark:

+--+--+--+--+
1001 000004 '
+--+--+--+--+

1 2 4

4.7 THE END

The EOFMark block marks the end of an object file (almost).

Note:
Text blocks can occur past the EOFMark.

Ref erences

(1) Niklaus Wirth, "MODULA-2", Institut fur Informatik der ETH, 1980.

(2) Frank DeRemer and Tom Pennello, "Translator Writing System (1WS) Manual",
MetaWare, Inc., 1981.

August 14, 1982 - 30 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

Appendix A. ObjIOLib Interface

(**)
(* *)
(* File: LIB:OBJIO *)
(* *)
(* (C) Copyright 1981, 1982 *)
(* Apple Computer, Inc. *)
(* *)
(* 9-Jul-82 *)
(**)

{$S LIBl }

unit ObjIO;
intrinsic;

(* ObjIO is a unit defining and providing blockwise and bytewise read/ *)
(* write access to object-format files. All I/O goes through FileIO. *)

interf ace
uses

(*$U PASDEFS.OBJ *) PasDefs,
(*$U UTILITY.OBJ *) Utility,
(*$U FILEIO.OBJ *) FileIO;

(* Note: distinctions *)
(* OldExecutable (old compilers, either machine) *)
(* PhysicalExec (New compiler, old linker, either machine, physical) *)
(* Executabe (New compiler, either linker, new machine, logical) *)
(* New linker links Intrinsic Units and produces a version control record. *)

type
BlockType=(ModuleName, EndBlock, EntryPoint,

External, StartAddress, CodeBlock,
Relocation, CommonReloc, CommonDef,
ShortExternal, QuickLoad, OldExecutable,
LibModule, LibEntry, UnitBlock, lnterfLoc,
PhysicalExec, Executable, VersionCtrl,
SegmentTable, UnitTable, SegLocation, UnitLocation, FilesBlock,
PackedCode, PackTable, DebugSymbols,
DebugEntry, DebugCommon, EOFMark, UnknownBlock);

VariantType•(NoVariant, (* must be first *)
RefVariant, ShortRef, HodVariant, Comments,
SegVariant, UnitVariant, IntfLocVariant,
SegLocVariant, UnitLocVariant, FilesVariant,
JumpTVariant, JTSegVariant, ObjectCode, ProcHeap,
OldJumpTV, OldJTSegV,
(* must be last *) UnknownVariant);

FileAddr • longint; (* 0 based, byte address within a file *)

August 14, 1982 - 31 - OS 5.2 Monitor 10

Lisa Object File Formats

(* 24-bit virtual address *) MemAddr • longint;
SegAddr • longint; (* 0 based, byte address within a segment *)

(* Variant Definitions *)

iRefVariant•SegAddr;

iShortRef•Integer;

iModVariant=Integer;

iSegVariant • record
SegName: NameString;
SegNumber: integer;
Versionl: longint;
Version2: longint;

end;

iUnitVariant • record
UnitName: NameString;
UnitNumber: integer;
UnitType: integer;

end;

ilntfLocVariant = record
UnitName: NameString;
IfLoc: FileAddr;

end;

iSegLocVariant • record
SegName: NameString;
SegNumber: integer;
Versionl: longint;
Version2: longint;
FileNumber: integer;
FileLocation: FileAddr;
SizePacked: integer;
SizeUnpacked: integer;

(* size of PackedCode record *)
(* size of CodeBlock record *)

end;

iUnitLVariant • record
UnitName: NameString;
UnitNumber: integer;
FileNumber, UnitType: FileByte;
DataSize: longint;

end;

iFilesVariant • record
FileNumber: integer;
NameAddr: FileAddr;
(* one per file, followed by string table *)

end;

iJumpTVariant = record

August 14, 1982 - 32 - OS 5.2 Monitor 10

(

(

(

Lisa Object File Formats

end;

Jumpt: integer;
AbsAddr: MemAddr;

iOldJumpTV = record
RelOffset: longint;

end;

Noop: integer;
Jump: integer;
PCRel: integer;

iOldJTSegV • record

(* not in Memory • JMP.L *)
(* not in Memory • Adrress of %%LOADIT *)

Addrl: MemAddr; (* Address of First Proc Descriptor *)
FileLoc: FileAddr;
CodeSize: longint;
MemLoc: MemAddr;
RetAddr: MemAddr;
RefCount: longint;
ActiveList: MemAddr; (* -1 = End Of List ?? *)
Reserved: longint;

end;

iJTSegVariant • record
SegmentAddr: FileAddr;
SizePacked: integer;
SizeUnpacked: integer;
MemLoc: MemAddr;

end;

(* points to CodeBlock or PackedCode *)
(* size of PackedCode record *)
(* size of CodeBlock record *)
(* Logical Addr *)

(* Invariant Definitions: *)

iModuleName•record
ModuleName,
SegmentName: NameString;
CSize: Longlnt;
(* Comments *)

end;

iEndBlock•record
CSize: Longlnt;

end;

iEntryPoint•record
LinkName,
UserName: NameString;
Loc: SegAddr;
(* Comments *)

end;

iExternal=record
LinkName,
UserName: NameString;

August 14, 1982 - 33 - OS 5.2 Monitor 10

Lisa Object File Formats

(* RefVariant *)
end;

iStartAddress=record
Start: SegAddr;
GSize: Longlnt;
(* Comments *)

end;

iCodeBlock=record
Addr: SegAddr;
(* ObjectCode *)

end;

iRelocation•record
(* RefVariant *)

end;

iCommonRelocation•record
CommonName: NameString;
(* RefVariant *)

end;

iCommonDefinition=record
CommonName: NameString;
DSize: Longlnt;
(* Comments *)

end;

iShortExternal•record
LinkName,
UserName: NameString;
(* ShortRef *)

end;

iQuickLoad•record
StartLoc: SegAddr;
DataSize: Longlnt;
(* ObjectCode *)

end;

iLibModule•record
ModuleName: NameString;
ModSize: Longlnt;
CodeAddr,
TextAddr: FileAddr;
TextSize: Longlnt;
NrMods: Integer;
(* ModVariant *)

end;

iLibEntry•record
LinkName: NameString;
Module: Integer;

August 14, 1982

(

(

(

- 34 - OS 5.2 Monitor 10

Lisa Object File Formats

Address: SegAddr;
end;

iUnitBlock=record
UnitName: NameString;
CodeAddr,
TextAddr: FileAddr;
TextSize,
GlobalSize: Longlnt;
UnitType: integer;
(* coDBDents • interf ace

end;

(* O=Reg, l•Intrin, 2•Shared *)
section of Unit (compressed) *)

ilnterfLoc• record
(* IntfLocVariant *)

end;

iExecutable•record
JTLaddr: MemAddr;
JTSize,
DataSize, (* Global Area, Reg Units *)
MainSize, (* Global Area, Main Program *)
JTSegDelta, (* Jump Table Segment Delta *)
StkSegDelta, (* Stack Segment Delta *)
DynStack, (* Initial Dynamic Stack Size *)
MaxStack, (* Max. Total Stack Size *)
MinHeap, (* Initial Heap Size *)
MaxHeap: Longlnt; (* Max. Total Heap Size *)
(* Unknown • numSegs + JTSegVariants +

numDescriptors + JumpTVariants + other stuff *)
end;

iOldExecutable•record
JTLaddr: HemAddr;
JTSize,

(* Global Area, Reg Units *) DataSize: Longlnt;
(* Unknown • numSegs + OldJTSegVs + OldJumpTVs + other stuff *)

end;

iPhysicalExec•record
JTLaddr: MemAddr;
JTSize,

(* Global Area, Reg Units *) DataSize,
MainSize,
JTSegDelta,
StkSegDelta:
(* Unknown •

(* Global Area, Main Program *)
(* Jump Table Segment Delta *)

Longlnt; (* Stack Segment Delta *)
numSegs + OldJTSegVs +
DummyPtr + OldJumpTVs + other stuf f *)

end;

iVersionCtrl • record
sysNum, minSys,
maxSys, Reservl,
Reserv2, Reserv3: longint;

August 14, 1982 - 35 - OS 5.2 Monitor 10

Lisa Object File Formats

end;

iSegmentTable • record
nSegments: integer;
(* SegVariant *)

end;

iUnitTable • record
nUnits,
maxunit: integer;
(* UnitVariant *)

end;

iSegLocation • record
nSegments: integer;
(* SegLocVariant *)

end;

iUnitLocation • record
nUnits: integer;
(* UnitLVariant *)

end;

iFilesBlock • record
nFiles: integer;
(* Unknown • FilesVariant + string table *)

end;

iPackedCode • record
addr: MemAddr;
csize: longint;
(* Unknown • packed object code *)

end;

iPackTable • record
packversion: longint;
(* Unknown • translation table *)

end;

iDebugSymbols•record
UserName,
SegName: NameString;
ProcBase,
ProcSyms,
ProcStmt,
ProcNode,
UsesSize: Longlnt;
{ if UsesSize<>O then ••• these have valid values: }
HoleBase,
HoleTop,
MapBase,
MapTop: Longlnt;
MapName: NameString;
{ later }

August 14, 1982 - 36 -

(

(

(

OS 5.2 Monitor 10

Lisa Object File Formats

(* ProcHeap *}
end;

iDebugEntry=record
UserName: NameString;
EntrySeg: Longint;
EntryLoc: SegAddr;
(* Couunents *)

end;

iDebugCommon•record
UnitName: NameString;
CommonBase: MemAddr;
(* Couunents *)

end;

iUnknown=record
(* UnknownVariant *}

end;

ObjBlock=record
Variant: VariantType;
NrVariants: Longlnt;
case BlockHeader: BlockType of

ModuleName: (bModuleName:
EndBlock: (bEndBlock:
EntryPoint: (bEntryPoint:
External: (bExternal:
StartAddress: (bStartAddress:
CodeBlock: (bCodeBlock:
Relocation: (bRelocation:
CommonReloc: (bCommonReloc:
CommonDef: (bCommonDef:
ShortExternal:(bShortExternal:
QuickLoad: (bQuickLoad:
OldExecutable:(bOldExecutable:
LibModule: (bLibModule:
LibEntry: (bLibEntry:
UnitBlock: (bUnitBlock:
lnterfLoc: (binterfLoc:
PhysicalExec: (bPhysicalExec:
Executable: (bExecutable:
VersionCtrl: (bVersionCtrl:
SegmentTable: (bSegmentTable:
UnitTable: (bUnitTable:
SegLocation: (bSegLocation:
UnitLocation: (bUnitLocation:
Files Block: (bFilesBlock:
PackedCode: (bPackedCode:
PackTable: (bPackTable:
DebugSymbols: (bDebugSymbols:
DebugEntry: (bDebugEntry:
DebugCommon: (bDebugCommon:
UnknownBlock: (bUnknown:

August 14, 1982 - 37 -

iModuleName};
iEndBlock);
iEntryPoint);
iExternal);
iStartAddress);
iCodeBlock);
iRelocation);
iCommonReloc);
iCommonDef);
iShortExternal};
iQuickLoad);
iOldExecutable);
iLibModule);
iLibEntry);
iUnitBlock);
ilnterfLoc);
iPhysicalExec);
iExecutable);
iVersionCtrl);
iSegmentTable);
iUnitTable);
iSegLocation);
iUnitLocation);
iFilesBlock);
iPackedCode);
iPackTable);
iDebugSymbols);
iDebugEntry);
iDebugCommon);
iUnknownBlock);

OS 5.2 Monitor 10

Lisa Object File Formats

end;

ObjVarBlock • record
case VarHeader: VariantType of

RefVariant: (bRefVariant:
ShortRef: (bShortRef:
ModVariant: (bModVariant:
SegVariant: (bSegVariant:
UnitVariant: (bUnitVariant:
lntfLocVariant: (blntfLocVariant:
SegLocVariant: (bSegLocVariant:
UnitLocVariant: (bUnitLVariant:
FilesVariant: (bFilesVariant:
OldJumpTV: (bOldJumpTV:
OldJTSegV: (bOldJTSegV:
JumpTVariant: (bJumpTVariant:
JTSegVariant: (bJTSegVariant:

end;

ObjHandle··objDesc;
ObjDesc•record

ObjFile: FileHandle;
NextBlock: FileAddr;

end;

iRefVariant);
iShortRef);
iModVariant);
iSegVariant);
iUnitVariant);
ilntfLocVariant);
iSegLocVariant);
iUnitLVariant);
iFilesVariant);
iOldJumpTV);
iOldJTSegV);
iJumpTVariant);
iJTSegVariant)

procedure InitObjFile (var ObjPtr: ObjHandle; nBlocks: integer);
(* InitObjFile initializes ObjPtr and allocates a buffer of nBlocks *)

procedure OpenObjFile (var ObjPtr: ObjHandle; FileName: LString;
NewFile: Boolean);

(* OpenObjFile initializes ObjPtr to the file FileName. The file is *)
(* scratched if NewFile is set. *)

procedure ZeroObjEnd (ObjPtr: ObjHandle);
(* Zero ObjEnd fills out the current block with zeroes *)

procedure CloseObjFile (ObjPtr: ObjHandle; Save: Boolean);
(* CloseObjFile closes an object file. lf Save is set then the file is *)
(* locked. Otherwise, the file is left in the state it was in before *)
(* it was opened. *)

procedure GetObjPtr (ObjPtr: ObjHandle; var BytePtr: FileAddr);
(* GetObjPtr returns the position of ObjPtr's "read/write head". *)

procedure GetObjBlockPtr (ObjPtr: ObjHandle; var BytePtr: FileAddr);
(* sets BytePtr to the file location of the next ObjBlock to be read *)

procedure SetObjPtr (ObjPtr: ObjHandle; BytePtr: FileAddr);
(* SetObjPtr positions the "read/write head" BytePtr bytes from the *)
(* beginning of ObjPtr. The invariant access flow is not altered, *)
(* that is to say the next (Get/Put)Objlnvar accesses the sequentially *)
(* next invariant following the variant that we're in before calling *)
(* SetObjPtr. *)

August 14, 1982 - 38 - OS 5.2 Monitor 10

(

Lisa Object File Formats

procedure SetObjBlockPtr (ObjPtr: ObjHandle; BytePtr: FileAddr);
(* SetObjBlockPtr positions the "read/write head" BytePtr bytes from *)
(* the beginning of ObjPtr. BytePtr must point to the beginning of an *)
(* invariant. That invariant will be accessed with the next *)
(* (Get/Put)Objlnvar. *)

procedure SkipObjBytes (ObjPtr: ObjHandle; NrBytes: Longlnt);
(* SkipObjBytes moves the file pointer of file ObjPtr NrBytes bytes. *)

procedure SetObjlnvar (var B: ObjBlock; InvarType: BlockType;
VarSize: Longlnt);

(* SetObjlnvar sets some fields in B. B is of InvarType type with *)
(* VarSize bytes in its variant. *)

procedure CopyObjSeq (InObj, OutObj: ObjHandle; NrBytes: Integer);
(* CopyObjSeq copies a sequence of NrBytes bytes from InObj to OutObj. *)

procedure GetObjlnvar (ObjPtr: ObjHandle; var Stuff: ObjBlock);
(* GetObjlnvar reads the invariant part of an object block. *)
(* The user can read the variant part, if so desired. *)

procedure GetObjVar (ObjPtr: ObjHandle; VarType: VariantType;
var Stuff: ObjVarBlock);

(* GetObjVar reads a variant part of the specified type *)
(* into the ObjVarBlock *)

procedure GetObjName (ObjPtr: ObjHandle; var N: NameString);
(* GetObjName reads a name from file ObjPtr. *)

procedure GetObjSeq (ObjPtr: ObjHandle; Stuff: Ptr; NrBytes: Integer);
(* GetObjSeq moves NrBytes bytes from ObjPtr to the area pointed to by *)
(* Stuff. *)

procedure GetObjByte (ObjPtr: ObjHandle; var B: Byte);
(* GetObjByte reads a byte from file ObjPtr. *)

procedure GetObjWord (ObjPtr: ObjHandle; var W: Integer);
(* GetObjlord reads an integer from file ObjPtr. *)

procedure GetObjLong (ObjPtr: ObjHandle; var L: Longlnt);
(* GetObjLong reads a longint from file ObjPtr. *)

procedure PutObjinvar (ObjPtr: ObjHandle; var Stuff: ObjBlock);
(* PutObjinvar writes the invariant part of an object block. *)

procedure PutObjVar (ObjPtr: ObjHandle; VarType: VariantType;
var Stuff: ObjVarBlock);

(* PutObjVar writes a variant part of the specified type *)
(* from the ObjVarBlock *)

procedure PutObjName (ObjPtr: ObjHandle; N: NameString);
(* PutObjName writes a name to file ObjPtr. *)

procedure PutObjSeq (ObjPtr: ObjHandle; Stuff: Ptr; NrBytes: Integer);

August 14, 1982 - 39 - OS 5.2 Monitor 10

Lisa Object File Formats

(* PutObjSeq moves NrBytes bytes from the area pointed to by Stuff *)
(* to ObjPtr. *)

procedure PutObjByte (ObjPtr: ObjHandle; B: Byte);
(* PutObjByte writes a byte to file ObjPtr. *)

procedure PutObjWord (ObjPtr: ObjHandle; W: Integer);
(* PutObjWord writes an integer to file ObjPtr. *)

procedure PutObjLong (ObjPtr: ObjHandle; L: Longlnt);
(* PutObjLong writes a longint to file ObjPtr. *)

implementation
end.

August 14, 1982 - 40 - OS 5.2 Monitor 10

(

Date:
From:
Subj:

'"luly 17, 1983
Ron Johnston
Format of .SYMBOLS files

The Lisa Assembler can produce a .SYMBOLS file that gives the mapping between
symbol names and their locations within a code segment. The file format is
very simple:

A .SYMBOLS file is a sequence of 12-byte records of the following structure:

+--------------------------------+----------------+
Symbol_Name <B bytes) !Location\4 byte)!

+--------------------------------+----------------+
Symbol_Name - left-adjusted, with names shorter than 8 characters padded on

the right with blanks. They are case shifted, if necessary, to
be all upper case.

Loca t i on Gives the byte offset within the module from the beginning of code.

The symbol records are alphabetized within the file by Symbol_Name. The file
is terminated by a record of all zeros (0). The remainder, if any, of the final
blocl< is also zeroed.

I have i nc 1 uded a dump of the MONITOR. SYMBOLS f i 1e as an examp 1 e.

18 Jul 1983 16:16:22 HSYMBOLS.TEXT

F 11 e: monitor. symbol s BI ock •: 0

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
OOAO:
0080:
OOCO:
0000:
OOEO:
OOFO:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
OlAO:
0180:
OlCO:
0100:
OlEO:
OlFO:

0 2 4 6 8 A C E 0 2 4 6 8 A C E
4130 544F 534F 2020 0000 3FEE 4143 4546 'AOTOSO .. ?. ACEF'
4C20 2020 0000 4002 4143 544E 5442 4C20 'L .. tt.ACTNT8L'
0000 1098 4144 4452 3253 4F20 0000 401A · AOOR2SO .. a.·
4144 4452 4452 5652 0000 lCFA 414C 4C2E 'AOORORVR ALL.'
3835 2020 0000 38F8 414C 5241 4048 2020 ·es .. ;.ALRAttH •
0000 430C 4150 4E44 4F42 4A20 0000 499E ' .. C. APNOOBJ .. 1.'
4150 4E44 5458 5420 0000 4880 4241 4442 'APNOTXT .. H.BA08'
4C43 4820 0000 3890 424C 4849 4F20 2020 'LCK .. ;.BLKIO '
0000 3432 424C 4852 5849 5420 0000 3428 ' .. 42BLKRXIT .. 4('
424C 4F43 4838 3020 0000 38A4 424C 4F43 'BLOCKBO .. ;.BLOC'
4838 3120 0000 3C28 424C 4F43 4838 3220 'K81 .. <(BLOCK82'
0000 38A4 424C 4F43 4838 3320 0000 38A4 · .. ;.BLOCK83 .. ;.'
424C 4F43 4838 3420 0000 38A4 424C 4F43 'BLOCK84 .. ;.BLOC'
4838 3520 0000 38CO 424C 4F43 4838 3620 'KBS .. ;.BLOCK86'
0000 3COA 424F 5453 5953 4320 0000 0030 ' .. <.BOTSYSC ... O'
424F 5453 5953 4620 0000 0208 424F 5455 'BOTSYSF 80TU'
5442 4C20 0000 012E 4252 4549 4E49 3220 'TBL 8REINI2.
0000 OE98 4252 4549 4E49 5420 0000 OE4E · 8REINIT ... N'
4252 564F 4C53 5820 0000 2624 4253 5250 '8RVOLSX .. &$BSRP'
5554 4220 0000 3F90 4253 5350 4253 2020 ' UT8 .. ?. BSSPBS '
0000 46FE 4258 4C50 4C20 2020 0000 46CE ' .. F. BXLPL .. F.'
4258 504C 2020 2020 0000 4600 432E 5441 '8XPL .. F. C. TA'
424C 4520 0000 3896 4341 4C4C 4348 4820 'BLE .. ;.CALLCHK'
0000 1034 4341 4C4C 4C44 5220 0000 4C4A ' ... 4CALLLDR .. LJ'
4341 4C4C 4041 4845 0000 49FE 4341 4E54 ' CALLttAKE .. 1. CANT'
4445 4620 0000 03A6 4341 4E54 5354 3120 'OEF CANTSTl'
0000 3250 4341 4E54 5354 5220 0000 313C · .. 2PCANTSTR .. 1<'
4341 4E54 5354 5820 0000 3262 4344 4255 'CANTSTX .. 2bCOBlf
5359 2020 0000 lAlO 4344 434C 4541 5220 ·sv COCLEAR.
0000 1Al6 4344 4552 524F 5220 0000 1A04 ' COERROR '
4344 4556 564F 4C20 0000 280C 4344 5245 'CDEVVOL .. (.CORE'
4144 2020 0000 lAlA 4344 5257 5849 5420 'AD CDRWXIT'

U:ile: monitor. symbols BI ock •: 1

0 2 4 6 8 A C E 0 2 4 6 8 A C E
0000: 0000 lAAO 4344 5348 4353 5A20 0000 1184 ' CDSKCSZ '
0010: 4344 5348 494E 4954 0000 115E 4344 5348 ' COSK IN IT ... TCOSK'
0020: 5244 2020 0000 1276 4344 5348 5245 4144 ' RD ... vCDSKREAD'
0030: 0000 1174 4344 5348 5752 2020 0000 1308 ' ... tCDSKWR '
0040: 4344 5348 5752 5420 0000 117C 4344 5752 'CDSKWRT ... ICDWR'
0050: 4954 4520 0000 lA08 4348 4543 4843 4420 . ITE CHECKCO '
0060: 0000 198C 4348 4831 3038 2020 0000 3832 ' CHK108 .. ; 2'
0070: 4348 4842 4C48 3720 0000 OOE6 4348 4844 'CHKBLK7 CHKO'

. 0080: 4556 2020 0000 2628 4348 4845 5252 2020 ' EV .. &(CHKERR '
0090: 0000 0870 4348 4840 5442 4C20 0000 OE50 ' ... pCHKt1T8L ... P'
OOAO: 434A 4050 5442 4C20 0000 114E 434C 524C 'CJMPTBL ... NCLRL'
0080: 4E20 2020 0000 4574 434C 524C 4E32 2020 ' N .. EtCLRLN2 '
OOCO: 0000 4584 434C 524C 4F47 4E20 0000 440A · .. E.CLRLOGN .. D.'
0000: 434C 5253 4352 2020 0000 458C 434C 5253 'CLRSCR .. E.CLRS'
OOEO: 4352 3220 0000 459C 4340 444C 4F4F 5020 'CR2 .. E. CMOLOOP'
OOFO: 0000 4840 4340 5053 4658 2020 0000 218C ' .. KICMPSFX .. ! . '
0100: 4340 5053 4658 5820 0000 21C8 434F 5059 'CMPSFXX .. ! .COPY'
0110: 3620 2020 0000 1468 434F 5059 364C 5020 '6 ... hCOPY6LP'
0120: 0000 1476 4350 5944 4556 4520 0000 OE8C ' ... vCPYDEVE '
0130: 4350 5944 4556 4E20 0000 OE86 4350 594C 'CPYOEVN CPYL'
0140: 4F4F 5020 0000 07E4 4352 4C46 2020 2020 'OOP CRLF '
0150: 0000 46C4 4353 4C41 5348 2020 0000 25AE ' .. F. CSLASH .. '·.
0160: 4353 5A45 5849 5420 0000 116E 4445 4352 'CSZEXIT ... nDECR'
0170: 544F 5720 0000 OC84 4445 4C31 4348 2020 'TOW DELlCH '
0180: 0000 21A2 4445 4C44 4556 2020 0000 2642 · .. !.DELOEV .. &B'
0190: 4445 4C4E 5452 5920 0000 2A82 4445 564A . OELNTRY .. •. OEVJ'
OlAO: 4050 5420 0000 06FA 4445 564C 4F4F 5020 ' MPT OEVLOOP '
0180: 0000 06FO 4445 564E 5540 3020 0000 071A ' DEVNUMO '
OlCO: 4445 564E 5540 3120 0000 072A 4445 564E 'OEVNUMl ... •OEVN'
0100: 5540 3220 0000 073A 4445 564E 5540 3320 'UM2 ... :OEVNUH3'
OlEO: 0000 0746 4445 564E 5540 3420 0000 0758 FOEVNUM4 ... X'
OlFO: 4445 564E 5540 3520 0000 0772 4445 564E ' OEVNUM5 ... rOEVN'

IFile: monitor. symbols BI ock •: 2

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
OOAO:
0080:
OOCO:
0000:
OOEO:
OOFO:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
OlAO:
0180:
01CO:
01DO:
01EO:
OlFO:

0 2 4 6 8 A C E 0 2 4 6 8 A C E
5540 3620 0000 078C 4445 564E 5540 3720 'UM6 DEVNUM7.
0000 07CO 4445 564E 5540 4220 0000 265E ' DEVNUHB .. &f
4449 5253 5243 4820 0000 2876 4449 5253 'DIRSRCH .. (vDIRS'
5243 5820 0000 28E2 4449 5253 524C 5020 'RCX .. (.DIRSRLP'
0000 2892 4449 5348 4552 5220 0000 1124 · .. (.DISKERR ... $"
4449 5348 494F 2020 0000 11AE 4449 5348 'OISKIO DISK'
494F 5820 0000 126E 444A 4D50 5442 4C20 ' IOX ... nOJMPT8L '
0000 43E8 444F 434F 5059 2020 0000 07E2 ' .. C.DOCOPY '
444F 5346 5820 2020 0000 200C 444F 5355 'OOSFX ... oosu·
4649 5820 0000 20C6 444F 584F 5242 2020 'FIX ... OOXOR8 '
0000 48AC 4452 4956 4552 5320 0000 0892 ', .K DRIVERS '
4452 5652 2020 2020 0000 1C2C 4452 5652 'DRVR ... ,DRVR'
5442 4C20 0000 1828 4453 4845 5252 2020 'T8L ... (OSKERR '
0000 1586 4453 4852 4431 2020 0000 12AC · DSKRDl ·
4453 4852 4432 2020 0000 128C 4453 4852 'OSKRD2 DSKR'
4433 2020 0000 12CO 4453 4852 4434 2020 'D3 DSKRD4 '
0000 12DO 4453 4852 4435 2020 0000 12E6 · DSKRDS ·
4453 4852 4436 2020 0000 12FO 4453 4852 'DSKRD6 OSKR'
4541 4420 0000 1118 4453 4857 5254 2020 'EAD OSKWRT '
0000 1130 4453 4857 5254 3220 0000 133E ' ... OOSKWRT2 ... >'
4453 4857 5254 3320 0000 134C 4453 4857 'DSKWRT3 ... LOSKW'
5254 3420 0000 135C 4453 4857 5254 3520 ·RT4 ... \OSKWRT5'
0000 1376 4453 4857 5254 3620 0000 137A · ... vOSKWRT6 ... z•
4453 4857 5254 3720 0000 138A 454C 504C 'DSKWRT7 ELPL'
2020 2020 0000 OA7A 454E 4457 4838 3520' ... zENDWHBS'
0000 3C06 454E 5452 5440 5020 0000 2A08 · .. <.ENTRTMP .. •.·
454E 5540 4253 5020 0000 44E4 4550 4C20 'ENUttBSP .. O.EPL.
2020 2020 0000 OA7C 4552 524F 5220 2020' ... IERROR .
0000 308C 4558 4543 4452 5652 0000 1956 · .. •.EXECORVR ... v·
4641 4952 5454 4C20 0000 1F70 4641 4845 'FAIRTTL ... pFAKE'
5245 4420 0000 4CEC 4643 4C4F 5345 2020 'RED .. L.FCLOSE .
0000 2EEA 4643 4C4F 5345 3120 0000 311A · FCLOSEl .. 1.·

U: il e: monitor. symbol s BI ock •: 3

0 2 4 6 8 A c E 0 2 4 6 8 A C E

Page 01

18 Jul 1983 16:16:22 H.SYHBOLS.TEXT

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
OOAO:
0080:
OOCO:
OODO:
OOEO:
OOFO:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
OlAO:
0180:
OlCO:
OlDO:
OlEO:
OlFO:

4643 4C4F 5345 5820 0000 312A 4647 4554 . FCLOSEX .. l•FGET'
2020 2020 0000 3588 4647 4554 314C 2020 . . . 5. FGETll
0000 37DC 4647 4554 324C 2020 0000 37EC ' .. 7.FGET2L .. 7. ·
4647 4554 324E 4420 0000 3690 4647 4554 'FGET2ND .. 6.FGET'
3352 4420 0000 373E 4647 4554 4E4F 5020 ' 3RD .. 7>FGETNOP '
0000 37D4 4649 4C31 5354 5220 0000 47AO ... 7.FILlSTR .. G.'
4649 4C32 5354 5220 0000 0598 4649 4C4C "FIL2STR FILL'
4255 4620 0000 3CA8 4649 4E44 4250 2020 '8UF .. <.FIND8P
0000 3E90 4649 4E44 4432 2020 0000 141A ' .. >.FINDD2
4649 4E44 4C50 2020 0000 4000 4649 4E44 'FINDLP .. 1. FIND'
4D41 5820 0000 2A88 4649 4E44 5359 5320 'MAX .. •.FINDSYS'
0000 4DFA 4649 4E49 5348 2020 0000 158E ' .. H. FINISH
4649 4E49 5420 2020 0000 1E84 4649 4E49 'FINIT FINI'
5458 2020 0000 1F04 4649 5846 5649 4420 'TX FIXFVIO.
0000 27EE 464C 504C 2020 2020 0000 0A6A ' .. ' . FLPL ... j'
464E 4453 4547 4E20 0000 3E9C 464E 4453 'FNDSEGN .. >.FNOS'
4547 4F20 0000 3EA4 464E 4453 5953 3220 'EGO .. >.FNDSYS2'
0000 40E6 464E 4453 5953 3320 0000 4DF8 ' .. H.FNDSYS3 .. H.'
464F 5045 4E20 2020 0000 2C36 464F 5045 ' FOPEN .. , 6FOPE'
4E31 2020 0000 2E8E 464F 5045 4E32 2020 'Nl FOPEN2
0000 2E2E 464F 5045 4E4F 4B20 0000 4C94 ' FOPENOK .. L.'
464F 5045 4E58 2020 0000 2ED6 4650 4C20 'FOPENX FPL'
2020 2020 0000 OA6C 4650 5554 2020 2020' ... IFPUT
0000 37F4 4650 5554 314C 2020 0000 3960 ' .. 7.FPUTll .. 9tl
4650 5554 324C 2020 0000 3970 4650 5554 'FPUT2L .. 9pFPUT'
4E4F 5020 0000 3958 4652 4541 4443 4852 'NOP .. 9XFREADCHR'
0000 34F2 4652 4541 444C 4E20 0000 3528 ' .. 4.FREAOLN .. 5('
4652 4545 5031 3230 0000 220C 4652 4545 'FREEP120 .. ".FREE'
5031 3234 0000 2210 4652 4545 5031 3336 'P12~.-.FREEP13~
0000 2214 4652 4545 5031 3430 0000 2218 ' .. ". FREEP140 .. ".'
4652 4553 4554 2020 0000 28EC 4652 4553. FRESET .. (.FRES'
4554 5820 0000 2924 4652 4F40 4558 4543 'ETX ..)$FR0HEXEC'

IFile: monttor. symbols BI ock •: 4

0 2 4 6 8 A C E 0 2 4 6 8 A C E
0000: 0000 47F6 4653 4545 4820 2020 0000 398E ' .. G. FSEEK .. 9. '
0010: 4653 4545 4831 2020 0000 3A9E 4654 4348 ' FSEEKl .. : . FTCH'
0020: 4449 5220 0000 234A 4654 4348 4452 3320 'DIR .. •JFTCHOR3 '
0030: 0000 251A 4654 4348 4452 3420 0000 2528 ' .. %.FTCHOR4 .. %('
0040: 4654 4348 4452 5820 0000 2566 4654 4348 'FTCHDRX .. %fFTCH'
0050: 4552 5220 0000 2536 4657 5249 5445 4C4E 'ERR .. %6FWRITELN'
0060: 0000 3408 4657 5254 4348 4152 0000 3498 ' .. 4. FWRTCHAR .. 4 ..
0070: 4657 5254 4348 5820 0000 3402 4745 5420 'FWRTCHX .. 4.GET.
0080: 2020 2020 0000 184C 4745 5442 4153 4520 LGETBASE '
0090: 0000 OC5E 4745 5443 4841 5220 0000 4686 ' ... TGETCHAR .. F.'
OOAO: 4745 5443 4852 5820 0000 46C2 4745 5445 'GETCHRX .. F. GETE'
OOBO: 4649 4220 0000 477E 4745 5449 4E44 5820 'FIB .. G-GETINOX'
OOCO: 0000 09E8 4745 5449 4E46 4F20 0000 19AO ' GETINFO '
OODO: 4745 544A 5442 4C20 0000 10F2 4745 544D 'GETJT8L GETH'
OOEO: 5442 4C20 0000 OC42 4745 5452 4449 5220. TBL ... BGETRDIR'
OOFO: 0000 OF8E 4745 5452 4547 5320 0000 4420 ' GETREGS .. 0'
0100: 4745 5452 534C 5420 0000 1B68 4745 5453 'GETRSLT ... hGETS'
0110: 5441 5420 0000 14A8 4745 5455 4E49 5420 'TAT GETUNIT'
0120: 0000 1C4C 474F 3255 5345 5220 0000 3C7E ' ... LG02USER .. <-·
0130: 474F 4F44 5043 2020 0000 3E6C 4752 4F57. GOOOPC .. >IGROW'
0140: 3220 2020 0000 2326 4752 4F57 4449 5220. 2 .. •&GROWOIR'
015~ 0000 2282 4841 4E44 4C45 5220 0000 09D6 ' .. -. HANOLER ·
0160: 4844 524C 4F4F 5020 0000 1628 4844 5348 'HORLOOP ... (HOSK'
0170: 4353 5A20 0000 113E 4844 534B 494E 4954 'CSZ ... >HOSKINIT'
0180: 0000 1108 484F 4043 5253 5220 0000 4568 ' HOHCRSR .. Eh'
0190: 494C 504C 2020 2020 0000 447E 494E 4458 ' ILPL .. o- INOX'
OlAO: 4552 3020 0000 OACE 494E 4458 4552 5220 'ERO INOXERR'
0180: 0000 OAOO 494E 4954 4445 5620 0000 0600 ' IN ITOEV '
OlCO: 494E 4954 464C 5320 0000 05A2 494E 4954 ' IN ITFLS IN IT'
OlDO: 4941 4C20 0000 020A 494E 4954 4049 2020 ' IAL IN ITH 1
OlEO: 0000 0618 494E 4954 4049 4C20 0000 0672 ' INITHIL ... r
OlFO: 494E 4954 4D49 5820 0000 0678 494E 4954 ' IN ITH IX ... x IN IT'

IFile: monitor. symbols BI ock •: 5

0 2 4 6 8 A C E 0 2 4 6 8 A C E
0000: 5052 4720 0000 43F8 494E 4954 5359 5320 ' PRG .. C. IN ITSYS '
0010: 0000 023A 494E 4954 5359 5346 0000 051A ' ... : IN ITSYSF '
0020: 494E 4954 5554 424C 0000 0508 494E 4954 ' IN ITUTBL. ... IN IT'
0030: 5849 5420 0000 116C 494E 534E 5452 5920 'XIT ... 1 INSNTRY'
0040: 0000 2A2E 494E 5353 5441 5220 0000 498E ' .. •. INSSTAR .. I. '
0050: 494E 5452 4C56 2020 0000 13FC 494F 4348 ' INTRLV JOCH'
0060: 4B20 2020 0000 44A6 494F 4348 4B58 2020 'K .. O. IOCHKX
0070: 0000 4512 494F 4558 4954 2020 0000 lCDE ' .. E. IOEX IT
0080: 4950 4C20 2020 2020 0000 4480 4954 2E46 ' IPL .. 0. IT. F'
0090: 4954 5320 0000 3B44 4A45 5252 4F52 3120 ' ITS .. : DJERRORl '
OOAO: 0000 3B3E 4A49 4E44 5845 5252 0000 OA52 ' .. :>JINDXERR ... R'
OOBO: 4A40 5054 424C 2020 0000 091E 4846 4C55 'Jt1PT8L KFLU'
OOCO: 5348 2020 0000 1CA4 4B49 4C4C 4355 5220 'SH KILLCUR'
0000: 0000 4812 4C30 2E38 3520 2020 0000 3BE4 • .. K.L0.85 .. ,.
OOEO: 4C31 2E38 3520 2020 0000 3COO 4C41 5354 'Ll.85 .. <.LAST'
OOFO: 5345 4720 0000 3AFO 4C41 554E 4348 2020 ' SEG .. : . LAUNCH
0100: 0000 40AO 4C44 5041 5240 5320 0000 3974 ' .. l.LDPARHS .. 9t'
0110: 4C44 534B 5244 2020 0000 1514 4C44 5348 'LOSKRO LDSK'
0120: 5752 2020 0000 166E 4C45 4C50 4C20 2020 ' ldR ... nLELPL
0130: 0000 307C 4C45 504C 2020 2020 0000 307E ' .. •I LEPL ..• -·
0140: 4C4E 4656 4944 3020 0000 2742 4C4F 4144 'LNFVIDO .. 'BLOAO'
0150: 4F42 4A20 0000 490E 4C4F 474E 3244 3520 · 08J .. 1. LOGN205 '
0160: 0000 2258 4C4F 4F50 454E 4420 0000 OE9C ' .. "XLOOPENO •
0170: 4C4F 4F50 494F 2020 0000 3274 4C4F 4F50 ' LOOP 10 .• 2tLOOP'
0180: 5442 4C20 0000 OE68 4C4F 4F50 564F 4C20 'T8L ... hLOOPVOL'
0190: 0000 OE08 4C50 4C20 2020 2020 0000 45FE • LPL .• E.'
OlAO: 4C50 4C32 2020 2020 0000 45AC 4C53 4C41 ' LPL2 .. E. LSLA'
0180: 5348 2020 0000 259C 4041 494E 4C4F 4F50 ' SH .. %. HA INLOOP'
OlCO: 0000 386C 4041 4845 5440 5020 0000 1E8E · .. ;IHAKETt1P •
0100: 4044 5348 4353 SA20 0000 1738 4044 534B 'HOSKCSZ ... 8t10SK'
OlEO: 494E 4954 0000 1716 4044 5348 5244 2020 'INIT t1DSKRD
OlFO: 0000 1742 4044 534B 5245 4144 0000 1728 · ... Bt10SKREAO ... ('

IFile: inonttor.symbols BI ock S: 6

0 2 4 6 8 A C E 0 2 4 6 8 A C E
0000: 4D44 534B 5245 5320 0000 16FA 4044 5348 'HDSKRES t1DSK'
0010: 5752 2020 0000 184C 4044 5348 5752 5420 'WR ... LHOSKWRT'
0020: 0000 1730 4045 4D41 2020 2020 0000 105A ' ... OHEHA ... Z'

Page 1

(

(

(

(.

18 Jul 1983 16:16:22

0030: 4045 4052 4541 4420 0000 1AA4 4045 4057 'HEHREAO HEHW'
0040: 5249 5445 0000 1A02 4047 4F54 4F58 5920 'RITE HGOTOXV '
0050: 0000 08E4 4048 414C 5420 2020 0000 OA08 ' HHALT '
0060: 4049 4F45 5252 2020 0000 088E 404A 4050 'HIOERR HJHP'
0070: 5442 4C20 0000 16EA 4040 5248 2020 2020 'T8L HHRK
0080: 0000 1026 404E 4557 2020 2020 0000 1012 ' ... &HNEW
0090: 404F 4E42 4153 4520 0000 0000 404F 5645 'HON8ASE HOVE'
OOAO: 3050 2020 0000 04F6 404F 5645 4045 4020 ' OP HOVEHEH '
0080: 0000 1AA8 404F 5646 4153 5420 0000 1A8C ' HOVFAST '
OOCO: 404F 5653 4C4F 5720 0000 lAAE 4052 4C53 'HOVSLOW HRLS'
0000: 2020 2020 0000 102E 4056 3248 4244 2020' HV2K80 '
OOEO: 0000 47AA 4056 4054 4142 4C20 0000 OF7A ' .. G. HVHTA8L ... z·
OOFO: 4E44 5348 5244 2020 0000 1512 4E44 5348 'NOSKRO NDSK'
0100: 5245 4144 0000 13E2 4E44 5348 5752 2020 'REAn ... ~DSKWR '
0110: 0000 166C 4E44 5348 5752 5420 0000 13EA ' ... INDSK~RT '
0120: 4E45 5754 4050 3120 0000 OC7A 4E45 5854 ' NEWTHPl ... zNEXT'
0130: 2E31 2020 0000 3CF6 4E45 5854 2E33 2020 '. 1 .. <. NEXT. 3 '
0140: 0000 3006 4E45 5854 2E34 2020 0000 3018 ' .. •. NEXT. 4 .. •.'
0150: 4E45 5854 4255 4620 0000 3CEA 4E45 5854 'NEXT8UF .. <.NEXT'
0160: 5345 4720 0000 3FF2 4E4A 4050 5442 4C20 'SEG .. ?. NJHPT8L'
0170: 0000 13AE 4E4C 4F41 4445 5220 0000 032C · NLOADER ... ,·
0180: 4E4F 4150 504C 3220 0000 185C 4E4F 4150 ' NOAPPL2 ... \NOAP'
0190: 504C 4520 0000 1856 4E4F 4341 5244 2020 'PLE ... VNOCARD '
OlAO: 0000 OF84 4E4F 4C4F 4144 5220 0000 4C90 · NOLOAOR .. L.'
0180: 4E4F 4E55 4042 3420 0000 033E 4E4F 5434 'NONUM84 ... >NOT4'
OlCO: 3420 2020 0000 3F98 4E4F 5436 3048 5A20 '4 .. ?.NOT60HZ'
0100: 0000 OC92 4E4F 5441 4352 2020 0000 487E ' NOTACR .. K-·
OlEO: 4E4F 5442 4143 4820 0000 48A4 4E4F 5444 'NOT8ACK .. KNOTO'
OlFO: 4953 4820 0000 19F6 4E4F 544F 484C 4820 ' ISK NOTOKLH '

fFile: monitor.symbois BI ock •: 7

0 2 4 6 8 A C E 0 2 4 6 8 A C E
0000: 0000 277E 4E4F 5450 4047 5220 0000 4896 · .. '-NOTPHGR .. K.'
0010: 4E4F 5453 5441 5220 0000 1F96 4E4F 5457 'NOTSTAR NOTW'
0020: 4744 5220 0000 0546 4E58 5450 524F 4320 'GOR ... FNXTPROC'
0030: 0000 42EO 4F46 5340 4953 4320 0000 OOOA ' .. 8. OFSMISC '
0040: 4F48 2E31 2020 2020 0000 3CFC 4F50 4E43 'OK 1 .. <. OPNC'
0050: 4F 44 4520 0000 497C 4F50 4E45 5845 4320 ' ODE .. II OPNEXEC '
0060: 0000 488E 4F56 4643 4848 2020 0000 OA3A ' .. H.OVFCHK ... : '
0070: 4F56 4643 4848 5820 0000 OA54 502E 4C4F 'OVFCHKX ... TP. LO'
0080: 4F50 2020 0000 3C3A 5041 5443 4842 5020 'OP .. <:PATCH8P'
0090: 0000 3C64 5041 5443 4849 5420 0000 3C2C ' .. <dPATCHIT .. <.'
OOAO: 5044 5348 4353 5A20 0000 13F2 5044 5348 'PDSKCSZ POSK'
0080: 494E 4954 0000 138E 5044 5348 5244 2020 ' IN IT POSKRD '
OOCO: 0000 150C 5044 5348 5245 4144 0000 1302 ' POSKREAO '
0000: 5044 5348 5752 2020 0000 1666 5044 5348 'POSKWR ... fPOSK'
OOEO: 5752 5420 0000 130A 504A 4050 5442 4C20 'WRT PJHPT8L'
OOFO: 0000 139E 504C 2020 2020 2020 0000 4600 ' PL .. F.'
0100: 504C 3220 2020 2020 0000 45AE 5040 4144 ' PL2 .. E. PHAO'
0110: 4452 3253 0000 405C 504F 4845 5843 5020 'DR2S .. l\POKEXCP'
0120: 0000 416C 5052 494E 5420 2020 0000 4674 ' .. AI PRINT .. Ft'
0130: 5052 4E54 4552 5220 0000 4400 5052 4F43 'PRNTERR .. O.PROC'
0140: 4E55 4020 0000 OA8C 5052 4F40 5054 2020 'NUH PROMPT '
0150: 0000 4650 5052 5442 5553 5920 0000 lOAO · .. FPPRT8USY ·
0160: 5052 5443 4C52 2020 0000 10A6 5052 5444 'PRTCLR PRTD'
0170: 52$6 5220 0000 1090 5052 5445 5849 5420 'RVR PRTEXIT'
0180: 0000 1E4C 5052 5449 4E49 5420 0000 118C ' ... LPRTINIT '
0190: 5052 5452 4541 4420 0000 1DA2 5052 5453 'PRTREAO PRTS'
OlAO: 454E 4420 0000 1E50 5052 5453 4554 5550 'END ... PPRTSETUP'
0180: 0000 108C 5052 5457 5254 2020 0000 lOEE · PRTWRT •
OlCO: 5055 5420 2020 2020 0000 1B3C 5055 5442 'PUT ... <PUTB'
0100: 4143 4820 0000 3FA6 5055 5442 414B 3220 'ACK .. ?.PUTBAK2'
OlEO: 0000 3FCA 5055 5442 4148 3320 0000 3FE8 ' .. ?.PUT8AK3 .. ?. '
OlFO: 5055 5450 5246 3120 0000 4554 5055 5450 'PUTPRFl .. ETPUTP'

IFile: monito~symbols BI ock •: 8

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
OOAO:
OOBO:
OOCO:
0000:
OOEO:
OOFO:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
OlAO:
OlBO:
OlCO:
0100:
OlEO:
OlFO:

0 2 4 6 8 A C E 0 2 4 6 8 A C E
5246 3220 0000 4566 5055 5450 5246 5820 'RF2 .. EfPUTPRFX'
0000 4532 5155 4954 4453 4B20 0000 OC96 · .. E2QUITOSK ·
5243 4552 5220 2020 0000 OAOE 5244 4441 ' RCERR RODA'
5441 2020 0000 1802 5244 4054 4142 4C20 'TA ROHTABL'
0000 OCEA 5244 4054 494E 4954 0000 005A ' ROHTINIT ... Z'
5244 4054 4C50 2020 0000 0060 5244 4E52 'RDMTLP ... ~DNR'
4553 2020 0000 155E 5245 4144 2E4F 4820 'ES ... tREAD.OK'
0000 3CE8 5245 4144 4844 5220 0000 157C ' .. <.READHOR ... I'
5245 4144 4C50 2020 0000 1594 5245 4752 'READLP -~ ... RE~'
4553 5420 0000 437A 5245 494E 4954 2020 'EST .. CzREINIT '
0000 OF4A 5245 494E 4954 4A20 0000 OFSE ',,, JREINITJ ... T
5245 4041 5020 2020 0000 140C 5245 404F ' REHAP REHO'
5645 3120 0000 302A 5245 5345 5445 5220 'VEl .. ••RESETER'
0000 292C 5245 5345 5452 5820 0000 2A26 ' ..) • RESETRX .. •&'
5245 5354 4152 5420 0000 4B24 5245 5649 'RESTART .. KSREVI'
5349 4F4E 0000 45A4 524C 504C 2020 2020 'SION .. E.RLPL '
0000 4A5A 524C 504C 3220 2020 0000 4A66 ' .. JZRLPL2 .. J f'
524E 4E47 5553 5220 0000 3EE8 5250 4C20 'RNNGUSR .. >.RPL'
2020 2020 0000 4ASC 5250 4C32 2020 2020' .. J\RPL2 '
0000 4A68 5253 4850 4844 5220 0000 158C ',,JhRSKPHDR •
5253 5452 5843 5020 0000 4102 5254 4E46 'RSTRXCP .. A.RTNF'
4C44 5220 0000 4C8C 5341 4045 5345 4720 'LOR .. L.SAHESEG'
0000 3C70 5343 414E 4148 4420 0000 3552 • .. <pSCANAHO .. SR'
5343 414E 5454 4C20 0000 1F06 5343 414E 'SCANTTL SCAN'
5454 4C58 0000 2174 5343 4552 5220 2020 'TTLX .. !tSCERR .
0000 OA24 5343 4845 4455 4C20 0000 41FC · ... $SCHEOUL .. A.'
5343 4E53 5452 4320 0000 1F40 5345 4E44 'SCNSTRC ... ISENO'
4340 4420 0000 1870 5345 4E44 4844 5220 'CMO ... pSENOHDR.
0000 1B78 5345 5441 3141 3220 0000 2A70 · ... xSETAlA2 .. •p'
5345 5444 4953 4B20 0000 lOEO 5345 5445 'SETOISK SETE'
4E49 5620 0000 4388 5345 5448 4453 4B20 'NIV .. C.SETHDSK'
0000 10A4 5345 5453 5220 2020 0000 4E06 ' SETSR .. N. '

IFile: monitor.symbois BI ock S: 9

0 2 4 6 8 A C E 0 2 4 6 8 A C E
0000: 5345 5454 5747 5920 0000 OE02 5345 5455 'SETTWGY SETU'
0010: 5041 3520 0000 441A 5346 5842 4143 4820 'PAS .. O.SFX8ACK'
0020: 0000 218A 5346 5843 4F44 4520 0000 2184 · .. !.SFXCODE .. !.'
0030: 5346 5846 4F54 4F20 0000 219C 5346 5847 'SFXFOTO .. !.SFXG'
0040: 5241 4620 0000 2196 5346 5849 4E46 4F20 "RAF .. !.SFXINFO'
0050: 0000 2190 5346 5854 4558 5420 0000 217E ' .. ! . SFXTEXT .. !-·

18 Jul 1983 16:16:22 HSYMBOLS. TEXT

0060: 5348 5053 594E 4320 0000 04CE 5340 5343 "SKPSYNC SHsc·
0070: 4E46 4F20 0000 060A 534E 4452 3120 2020 'NFO SNORl '
0080: 0000 1436 534F 4654 4230 2020 0000 3E32 ' ... 6SOFTBO .. >2'
0090: 534F 4654 4250 5420 0000 3E2E 534F 4654 'SOFT8PT .. >.SOFT'
OOAO: 5849 5420 0000 3EAE 5354 4152 5455 5020 'XIT .. >. STARTUP'
0080: 0000 084E 5354 4154 3031 2020 0000 1456 · ... NSTATOl ... V'
OOCO: 5354 4154 4A40 5020 0000 10C8 5354 4154 'STATJHP STAT'
0000: 5553 5220 0000 4384 5354 494C 4C49 4E20 'USR .. C. STILL IN'
OOEO: 0000 305C 5354 5254 4F42 4A20 0000 4A6E · .. •\STRT08J .. Jn'
OOFO: 5354 5254 5244 2020 0000 14C2 5354 5254 'STRTRO STRT'
0100: 5752 5420 0000 15C8 5355 4044 4952 2020 'lllRT SUMOIR '
0110: 0000 22FA 5355 4044 4952 4C20 0000 2316 ',.".SUMOIRL .. ~·
0120: 5355 4044 4952 5820 0000 2320 5357 4150 'SUHOIRX .. • SWAP'
0130: 4A54 2020 0000 41E6 5359 5350 524F 4720 'JT .. A. SYSPROG'
0140: 0000 406C 5448 4545 4E44 2020 0000 4F22 · .. MITHEENO .. O"'
0150: 544C 504C 2020 2020 0000 448A 544F 502E ' TLPL .. 0. TOP. '
0160: 3836 2020 0000 3C16 544F 5053 5953 4320 '86 .. <. TOPSYSC'
0170: 0000 0004 544F 5053 5953 4620 0000 0130 ', ... TOPSYSF ... O'
0180: 544F 5055 5442 4C20 0000 0032 5450 4C20 'TOPUTBL ... 2TPL'
0190: 2020 2020 0000 448C 5452 5032 4041 5820' .. 0. TRP2HAX'
OlAO: 0000 4EOC 5452 5032 4043 5320 0000 4EE8 ' .. N. TRP2HCS .. N.'
OlBO: 5452 5943 5256 2020 0000 lOOC 5452 5944 ' TRYCRV TRYO'
OlCO: 4255 4720 0000 4CC6 5452 5945 5845 4320 'BUG .. L.TRYEXEC'
0100: 0000 4804 5452 5940 5248 2020 0000 1000 · .. H. TRYMRK •
OlEO: 5452 594E 4558 5420 0000 3AOE 5452 594E 'TRYNEXT .. :. TRVN'
OlfO: 4A40 5020 0000 OF3E 5452 5950 4950 2020 'Jt1P ... >TRYPIP '

lfile: inonitor.synt>ols Block S: 10

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
OOAO:
0080:
OOCO:
0000:
OOEO:
OOFO:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
OlAO:
0180:
OlCO:
0100:
OlEO:
OlFO:

0 2 4 6 8 A C E 0 2 4 6 8 A C E
0000 1006 5452 5951 2020 2020 0000 4CF4 ' TRYQ .. L.'
5452 5958 4551 5420 0000 48CC 5453 5446 'TRVXEOT .. K TSTF'
5649 4420 0000 lFFA 5453 5453 5441 5420 'VID TSTSTAT'
0000 108C 5454 4C43 4F50 5920 0000 21CC ',, .. TTLCOPY .. !.'
5542 5553 5920 2020 0000 1CE6 5543 4C52 'U8USY UCLR'
2020 2020 0000 1C8C 5549 4F20 2020 2020' UIO '
0000 lCCE 554E 2E4C 4F4F 5020 0000 3068 ' UN.LOOP .. •h'
554E 4954 424C 2020 0000 08AO 554E 4954 'UNITBL UNIT'
4253 5920 0000 1BA2 554E 4954 434C 5220 '8SY UNITCLR'
0000 lBBE 554E 4954 4445 5620 0000 196A ' UN ITOEV ... j'
554E 4954 4953 4220 0000 221C 554E 4041 ' UN IT ISB .. ". UNNA'
5020 2020 0000 226A 5550 5348 4654 2020 'P .. "jUPSHFT '
0000 4516 5550 5348 4654 5820 0000 4526 ' .. E.UPSHFTX .. E&'
5552 4541 4420 2020 0000 lCCC 5553 454C ' UREAO USEL'
564C 3720 0000 4F18 5554 3137 4944 5820 'VL7 .. O.UT1710X'
0000 2242 555 7 5249 5445 2020 0000 1CC6 ' .. "BUlllR ITE '
5631 3020 2020 2020 0000 3E1C 5631 3120 'VlO , . >.Vll'
2020 2020 0000 3E22 5632 2020 2020 2020' .. >"V2 '
0000 30EC 5632 3420 2020 2020 0000 3E28 ' .. •.V24 .. >('
5633 2020 2020 2020 0000 30F2 5633 3120 'V3 .. •.V31'
2020 2020 0000 3082 5633 3141 2020 2020' .. •.V31A
0000 30AE 5633 3158 2020 2020 0000 30BE ' .. •. V31X .. •.
5634 2020 2020 2020 0000 30F8 5635 2020 'V4 .. •.VS '
2020 2020 0000 30FE 5636 2020 2020 2020' .. •.V6 '
0000 3E04 5637 2020 2020 2020 0000 3EOA ' .. >.V7 .. >.'
5638 2020 2020 2020 0000 3E10 5639 2020 'VB .. >.V9 '
2020 2020 0000 3E16 5641 4C49 4442 3720' .. >.VALIOB7'
0000 OEA4 564F 4C53 5243 4820 0000 256E ' VOLSRCH .. %n'
564F 4C53 5243 5820 0000 2862 564F 4C53 'VOLSRCX .. (bVOLS'
5258 5420 0000 286C 5731 4C50 4C20 2020 'RXT .. (lllllLPL '
0000 080C 5731 504C 2020 2020 0000 OBOE' llllPL ·
5732 4C50 4C20 2020 0000 0816 5732 504C '1112LPL 1112PL'

lfile: monitor.synt>ols BI ock •: 11

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:
0080:
0090:
OOAO:
0080:
OOCO:
0000:
OOEO:
OOFO:
0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
OlAO:
0180:
OlCO:
0100:
OlEO:
OlFO:

1

0 2 4 6 8 A C E 0 2 4 6 8 A C E
2020 2020 0000 0818 5741 4954 2020 2020' lllAIT
0000 4528 5743 524C 4620 2020 0000 46C6 ' .. E{lllCRLF .. F.'
5745 4C43 4F40 3220 0000 086A 5745 4C43 'lllELCOM2 ... jWELC'
4F40 4520 0000 085A 5746 4231 2020 2020 'OME ... ZWF81 '
0000 1422 5746 4E42 3120 2020 0000 1446 ', .. "llJFNBl ... f'
5748 494C 4538 3520 0000 3800 574C 504C 'lllHILE85 .. ;.lllLPL'
2020 2020 0000 OA5A 574C 504C 3220 2020' ... ZWLPL2 '
0000 OA64 5750 4C20 2020 2020 0000 OA5C ' ... dWPL ... \'
5750 4C32 2020 2020 0000 OA66 5752 4441 'lllPL2 ... flllROA'
5441 2020 0000 18FA 5752 4954 4549 5420 'TA lllRITEIT'
0000 28F2 5752 5444 4952 2020 0000 2COO ',,•.WRTOIR ..•. ·
5752 544C 4F4F 5020 0000 1644 5752 544E 'WRTLOOP ... OlllRTN'
5245 5320 0000 160C 5752 5450 5254 2020 'RES WRTPRT '
0000 lAOA 5753 4850 4844 5220 0000 163C · lllSKPHOR ... <'
5842 4C4B 494F 2020 0000 3314 5845 5155 ' XBLK 10 .. 3. XEQU'
5445 2020 0000 4702 5845 5155 5445 3020 'TE .. G.XEQUTEO'
0000 4708 5845 5155 5445 3120 0000 4734 · .. G.XEQUTEl .. G4'
5845 5155 5445 3220 0000 4770 5845 5155 'XEOUTE2 .. GpXEOU'
5445 3320 0000 477C 5845 5155 5445 3420 'TE3 .. Gj XEQUTE4'
0000 475C 5849 544E 5452 5920 0000 2A66 ' .. G\XITNTRY .. •r
584C 504C 2020 2020 0000 46FO 5850 4C20 'XLPL .. F. XPL '
2020 2020 0000 46F2 5853 5452 5455 5020 ' .. F. XSTRTUP '
0000 0828 592E 4552 524F 5220 0000 2208 ' ... {V.ERROR .. ".'
592E 4C45 4156 4520 0000 21F8 592E 4C4F 'Y.LtAVE .. !.V.LO'
4F50 2020 0000 21F2 592E 5445 5354 2020 'OP .. !. Y. TEST '
0000 21F4 SA45 524F 4045 4020 0000 067C · .. !.ZEROMEM ... f'
5A5A 494F 5245 5320 0000 1004 5A5A 4C4F 'ZZIORES ZZLO'
4144 4954 0000 3AA6 SA5A 554E 4C4F 4144 'ADIT .. :.ZZUNLOAO'
0000 3024 0000 0000 0000 0000 0000 0000 · .. •$. ·
0000 0000 0000 0000 0000 0000 0000 0000 · ·
0000 0000 0000 0000 0000 0000 0000 0000 · ·
0000 0000 0000 0000 0000 0000 nooo 0000 · ·

Page (

(

(

LJsing Lisaßug
Ed Birss

Mhat to do when you crash, heng, ar loop

When a prograrn crashes in the Office System, and the release has LisaBug, you
end up in LiseBug. You can then poke around for a while, but eventually you
will want to get on to other things. To get out of LiseBug, you need to know
a few things. The register display, on the right of the third line has a
piece that says 00=0 (or 1,2,or 3). The 00 stands for domain, and if the
danain is nonzero and it does not say overridden to 0, then to resllne you
should type the LisaBug convnand G. This is the typical crash found in the
Office System„ and using the G comrnand forces the process into the terminate
exception handler„ and things can be put away neatly. If you are in domain 0„
or overridden to zero, you should use the OSQJIT connand.
If you are stuck and nothing is happening in response to power offs„ key input
or mouse clicks„ you are either looping or are hung. In either case you want
to hit tf1I. If the display is not in domain 0, you are probably looping. To
kill the process„ you can type G 0, or PC 0 followed by G. This sets the
progrem counter to O and tries to access location O which is illegal and
causes a bus error. Typing G after this bus error will terminate the process
neatly.
If you are in domain O and you are sitting on an RTS instruction, type id
PC-4. If the result is a STCP instruction, then you may be hung. You should
first make sure that you are not doing any 1/0. Type G to continue and watch
the Profile lights and listen for diskette 1/0. If 1/0 is in progress, you
can wait for the I/O to complete, or you can follow instructions on looping
which follow. If however„ no I/O is in progress, e.nd when you hit tt1I you ere
still on and RTS instruction and the STCP instruction preceed the RTS~ type
OSOUIT to clean up the OS and file structures.
If you are in domain o and are not on an RTS instruction, you should type G
and then tf1I again. Eventually you should get out of domain 0 or get to the
STOP instruction. You can also use the l.l3R command as described in the
breakpoints section. If you cannot get out of dornain 0, Type OSQJIT to clean
up.
The ground rules are do everything you ce.n to terminate processes normally.
If you blow up in an application, type G to terminate cleanly. After looping~
type PC O ; G to again terminate the process cleanly. Use OSQJIT as a last
resort, e.nd the.t means only in domain 0. You should never have to reset the
Bachine using the reset button on the back of the machine.

18-November-83 ListJBug-1

Internsls # Confidentisl
(

The AllPl. dt.-p

Frequently„ a bug report will come with a three page printout that was made
with the PU or PL LiseBug conrnand. This conrnand generates output similar to
pages 1,2, and 3. The first page consists of a screen dl.lnp of the primary
screen, the second page contains the screen dl.lllp of the alternate screen, and
the third page has some additional stack crawl and memory locations displayed.
There is a wealth of information provided in these three pages. The first
page gives us a big hint; some item from the arrangement menu was being
executed. The second page gives us additional information. A bus error was
detected and the access address is o. This is a big clue because n11 pointers
are 0 and generate a bus error if you try to access location 0. Also included
an page 2 is a register display, and the most interesting piece or information
is that the progrsn counter (PC) was at Sl.13FHOLS+94 at the time of the bus
error. Note that the first line of the register display is Level 7 interrupt.
This is basically a worthless piece of information„ as fe.r as applications are.
concerned. This is because NMI„ address errors„ and bus errors always sho\I~
level 7 interrupt.
The third page of the dt.rnp gives us four distinct groupings of information.
The first is a register display, then a stack crawl, then a disassernbly of the
instructions surrounding the PC„ and finally a portion of the stack is
displayed. Using these pieces of information we can determine what went
wrong.
To find out what the processor is objecting to, we start by looking at
SlEFMOLS+94, the location which is at the top of the register display.

(

Looking at the disassembly (marked 5 on page 3) we see instructions et
Sl.Bfl1JLS+92 and at +96 but not at +94. Actually„ i t turris out that the PC
leads (has already advanced past) the instruction being executed. This time
the PC leads by 4, and the instruction being executed is at +90. There we see
a HOVE.L (AO), (Al). This is marked 6 an page 3. Looking back to the register
display, we can see that AO looks okay but that Al is 0. lt is the reference
via Al which caused the bus error.
There is also some other handy inforrnation on page 3. Register A6 points to
the steck freme (marked l on page 3). Matching the address contained in A6
with the stack display, we can find the parerneters to SLeFMOLS. The address
is marked 2. The first 2 words at that address link to the calling stack
frarne and the return PC for the callino procedure. Followino that are the
peremeters in REVERSE order (m8I'ked 3). See the section on Paremeters for
mor e det ail s .
One final note on the using the PU and PL commands. These commands use a
Parallel printer connected to Slot2Che.n2 or Slot2Chan1 respectively. They do
not work with serial printers. The commands should be used irrmediately
following an occurrance of a bug so the error display is preserved. lf you do
a steck crawl and the call is pretty deep, the stack crawl can wipe out the
error display, making the information on the alternate screen less valuable.

(

18-November-83 lise/3ug-2

Interl?8ls II Conti der„t i sl

finding out what parmeters are passed and returned
Page 4 shows a more dynamic tracing of the seme bus error. The first comme.nd
used is the display memory command. Its arg1..1nents request using A6 indirectly
to display 40 hex words. The next command TD gives the register display. The
SC (stack crawl) command gives the trace back of who called whorn.
So let's find out what parerneters were passed to GENenuCrnd. This routine has
the calling sequence written in to the right of the stack crawl convnand. To
find the parerneters we find ~ in the stack crawl display, and look dov~n
one line to find out the stack frame. The stack frame is at F7BE88. This
part of memory was then displeyed using the DM cORmand. The first word
contains f7C21E which is the steck freme pointer for GeMenl.f.:vent. The next
word is an address, and using the CV (convert) conrnand shown at the bottom of
the page_, we see that this is the address of GeMem.Event+492 which is the
instruction in GeMenuEvent immediately following the call to GEMent.Cmd.
Following the return PC, the steck has <XYJ7 and 0006. The parameters are in
reverse order so itern is 7 and menu is 6.

Tt-iis exanple sh~s a very simple case„ one where two integers were passed t">-1

value. Now we' 11 do a more complicated exernple. Page 5 shows the calling
sequence for the Select routine in the field Editor. First a breakpoint was
set et Select+8 and then the register display is shown when the breakpoint was
hit. (See the breakpoint section ror more info on breakpoints). Once inside
the Select routine (and past the Link instruction -- more on this in
breakpoints)„ we proceed to display memory pointed to by A6. Remembering to
skip the stack frame pointer and the return PC, the next word is the LAST
parameter to Select, and it is F7f32E. This is an address because it is a ver
parameter -- so F7F32E is a pointer to t. Continuing, F7EE32 is a pointer to
n; 060552 is a handle to a field state; D6054E is a handle to the field; The
point consists of the next two integers 85 and 141.
Now let's assll'fte we want to look at the field„ and specifically„ what the
value of the field is currently. To do this, we have the handle to the field~
end the record decleration of the field. We can use the DM command to look at
D6054E and then access the first longint there D623d4 to get to the field .. or
we can use the shorthand DM (OD6054E) to get in one step to the field. The ()
means "indirect".
Exemining the field„ the coords rectangle is the first 4 words; maxlen is 8;
growlen is 8; curlen is 1; align is 3, drEMpad is 4 ~ both packed into one
integer; curvalue is E20802. Now we access curvelue to get the contents of
the array. Looking at the displey, the first byte is e lowercase g. We know
that since ct.alen is 1 that is all the field contains.
There ere a couple of other observations we cen make. We cen exemine where
these heeps map to data se~ents. Lookino at the curvalue array we know that
it is pointed to by the handle E20802. Knowing that the master pointer and
the handle are in the same seoment, using the first byte of the address, we
Can Calculate the a n'-be'"' E2 '"> ... „ o 11"2 „ -... 'f'\C"'1,1 „

r11U um '"' • I .L YJ. Y~~ UJ. J..J WllJ....,11 "'UJ. J. ~~IJUllU~ "u L.IJ..>11 / •

(LDSN 1 starts at 107, LDSN 2 is et 108 ...). Doing a Stop-Start calculation

18-November-83 li.ssBug-3

Internsls II Confidentisl

we see that the segrnent is 8K long and the handle, at 602 is at 2K into the
segment, a valid address.
Note that 2 heaps (and segments) are being used here by the graphics editor.
lhe field data structure is in one heap D6xxxx addresses and the other is used
for the data canponents of the field and have addresses of E2xxxx. This is
not the usual way of using fields and heaps, but see what you can figure out
using LiseBug~

Breakpoints
Breakpoints when debugging applications are useful when in the application's
domain. This is noted on the register display. Note that domain O or another
dccriain overridden to 0 are not application domains, and you cannot set
breakpoints in the application there. There is one special case. When in the
application process, but in domain 0 (the case indicated with the brace on
page 6) you can use the U3R (user break) command. This sets a breakpoint at
the first instruction in the user danain, and starts executing. In the case
on page 6, the breakpoint is reached at LetOthersRun+34. from this location
you are in a user domain (domain 3) and in your process (process id 6) and can
set breakpoints. I did a stack crawl to show that the application symbols are
available at this point. Next I did a CL PC to clear the breakpoint where I
am currently stopped.

(

There are a few rules to rernember to follow when setting breakpoints. First (
you should never set breakpoints on IU.ER or the future IL.ER instructions (or
fD/ other IUxxx or Ilxxx instructions) _ However, you can trace through them
if you don't mind seeing all the code for the trap hendlers. They do not
work, and will give unpredictable results. Many people have wasted hours of
time because of this. The second rule is it is frequently desireable to set
breakpoints after the LINK and before the lJ'ILK instructions. Page 7 shows
why. After the first register display, two breakpoints were set, one at
GEMenl.Cmd, and one at GEMenuCmd+B. I then ran until I reached the first
breakpoint. Then I did a stack crawl and displayed the stack frsne. Then I
ran again, stopping after the Link instruction is executed. Then I did a
stack cre.wl and a disple.y of the stack freme again. Note that they ere very
different, and the one at +8 gives correct results. I generally set
breakpoints at the Procedure+S. Note that this only works for code generated
with a TST.W instruction before the ~LK (the usual case, but is not
guaranteed) _
To set breakpoints at the end or the procedure„ you will have to use the IL
canmand to find the end of the procedure. You can usually spot this because
LNLK ... RTS sequence followed by the procedure nerne dropped in the code. An
example of the end of a procedure is shown on page 4. You can even see the
procedure neme„ although the first character is not visable because the high
bit is set to indicate to LiseBug that this is a Pascal procedure. Setting a
breakpoint just before executing the ll'fLK instruction will permit you to
examine the ver paremeters that are being returned in exactly the way the

(

18-November-83 lisl!Elug-4

Interl?Bls II Confi dent i sl

input paremeters were determined. However, to use this technique, beware of
nested procedures and global gotos.
So far we have always used syrnbols for setting breakpoints. Sornetimes it is
not always possible. Sometimes the code is swapped out and LisaBug cannot
find the symbols, or the code wes canpiled without symbols. Then you will
have to use a logical address to set the breekpoint. The usual way of finding
out the address is to find the IU.JSR cal.l to the routine and break on the
target address. Another technique suggested by Chris Moeller, is to first let
the progrem fail„ then do e. CV on the symbolic neme, e.nd then rerun the
proorarn setting the breakpoint at the logical address.
To set breakpoints when the progrern is coming up, you have to use a few
tricks. First, you'll run the Office System under the OS shell (or Workshop
shell i f you have compatible libraries). Then you use the Debug command„ ancj
respond shell. office sytern for the progrern, and yes for the question to debug
all sons. Then each process launch will give you an opportunity to set
breakpoints. These breakpoints may heve to be logical addresses because the
probability of the code being in memory is very low (unless the OS has left
the progrem loaded). Note that this technique of remembering logical address
across process executions only works for the exact seme progrefil. Relinking
the progrem will invalidate the logical address assigrments and you will have
to let it break first, find out the logical address, and then rerun and set
the breakpoints.
An alternative suggest by Rod Perkins is to bring up the filer, hit NHI
opportunely in domain 0, then set a breekpoint on 0 :Declere_Excep_Hdl. When
it stops et the breakpoint (in domain O),. issue CL PC to clear the breakpoint„
Then issue the Lm carmand. lt will then break in your application.

Local and Global Variables

lt is frequently useful to be able to trace through a routine and determine
what the value of sorne variable is. To do this, you need to understand the
layout of the stack. Page 8 shows a diagrem of the stack. Note that in this
diagram„ the addresses go from low to high. Global variables are accessed by
adding negative n1.1nbers to A5, and local variables are accessed by adding
negative nl.lllbers to A6. Intrinsic unit olobals are accessed by first adding
positive nunbers to A5 to get to the data pointer table entry, and then taking
the value found there and adding negative nl.lllbers to that.
To show how you can figure out values of local and global variables while
stepping through a procedure, I picked out a very smal.l procedure. Its source
listing is on page 9. Page 10 contains the disassembly of the procedure. The
process of determining where a variable is in mernory requires some matching of
the source with the code generated. What I usually do is use the IUJSR
instructions to determine rough areas of code and then look in more detail at
the generated code from there.
Page 10 also sets a breakpoint at copysel+8 and runs until the breakpoint was
hit; then the stack frame was printed out. Note that the CutCopyfield

18-November-83 Liseßug-5

Internals II Confi dent i al
(

procedure is not in memory. We can tell that by the fact that at CopySel+~
there is an IUJSR to $8EOOOE instead of CutCopyS.
Looking on pege 11, we see that an ID of $8EOOOE gives the invalid logical
address message. To illustrate setting a breakpoint on a logical address~ I
set a breakpoint at $8EOOOE. Also a breakpoint was set at CopySel+l4.
At the CopySel+14 breakpoint, we are about to compare TypeofSel with
eCellTxTSl. TypeofSel is a Variable of an entJnerated type, and eCellTxTSl is
one or the values. Its value is 1. So displaying ra4+$ffffffc9 displays the
value of TypeofSel. Note that the instruction is CtPI.B 11$(XX)1,$ffc9(a4).
The r:t1 ccmraand uses $fffffrc9 because we want to maintain the fact that i t is
a negative quantity. RA4+$ffffffc9 yields Of7cf49, an odd address. Note that
LissBug .. however, starts the display at Of7fcf48, so the byte we are testing
is the rightmost byte of the first word. Note also that the access is
relative to A4, but that A4 was loaded relative to A5. This is because this
is a global variable in an intrinsic unit, and A4 contains the pointer to the
base of the globals for this unit.
At CopySel+24 we access another intrinsic unit global, this time it is
tblpars.editcoltitle. lt is again at an odd address. The variable is a
boolean~ and hence its value is true.
At CopySel+3E we are pushing a paremeter to SetPnlPort. It again is an
intrinsic unit global. The parameter is an integer, and displaying the value
shows it to be 3. Next, the trace command was used to step to the next /
instruction. Note that the value of' A7 has changed .. and that A7 points to the'
value just pushed on the stack.
On page 12, we are pushing the effective address of a local variable, errntxn.
Note that the reference is relative to A6. When the value is displayed~ its
value is Bf52 (garbage since its value is set by the routine).
Continuing on, we hit the breakpoint at $8EOOOE. This is a digression from
the flow of finding out the value returned fran CutCopyfield, so I'll just
show how you can get 1nto CutCopyF1eld and get out. Th1s address where we
stopped is actually a jtJnp table entry, so we trace through the instruction
end get to CutCopyfield. (A jl.ITip table is used when calling from one sef1]lent
to another). After a few more traces to get past the Lltf< instruction, we
check the address of the last peremeter passed to CutCopyfield, and it is
indeed the address of errnl.ln we found before. Next, a breakpoint was set to
the return PC.
After continuing, we break in CopySel immediately after the return from
CutCopyField. Displaying the location containing errnt1n, we see CutCopyfield
returned 0000.

(

18-November-83 liseBug-6

lnternsls II Conf'identisl

Function retu:rns
lt is frequently useful to determine what a function returns. To do this
break at the instruction immediately following the JSR or IUJSR to the
function. Then the function return is on the top of the steck. DM ra7 will
display the returned value.

18-NCA•'elTtber-83 LissBug-/

-

,.. File" .-Jrint Edit Llnes Shodes

+

D
0
0

:

• =·~== • • • • • • • • • • • • • :!:::::::
• • • • • • =~:::::: ••••••••••.•••••••••••••••••.•• :!i:::;::
• • • • • • :s~~~

II. -

•• .
.
.

••• ---

• . .

·~

=~:=~== !!l;i~i!
:l::fü:
:;;::~:=
=~==~:: &!:::!:::
=~==~::: =~:!::::·
=~==~::
=~:=:·:= il::~::
·:o::~::

•••••• t •• i~:i:t:i

=~==~==·

""' --..

!~i=~f::
:~1:!::: ·1··='··
:!::=~== :::::*:
1~:11!::

·~=·===·· i~ii~ii
=~:=~== ·=-······ =~==~== ·~=·~=· ••••••••••.•••.•• =1=i;::: . ······ ·~:·:·:· : :::::: : ::*:
····•···· ·~=·=-=· !;:::~::
•!'.·~··· =~::;::::
N·:~::

...

1
Level 7 Interrupt
SUBFHOLS+0094 9908 5349 ORI.B 1$5349,AB
PC•88281A32 SR•0000 0 US•88F7BDCC SS•88CBFED8 DO•i Pl•eeee?
De=eeeee000 D1=00000108 D2=8808FFCE D3=08D007E4
D4=0C280005 D5=00145700 D6=0000000A D7=00DA0AB8
A0=99DA0ABS A1=00000000 A2=90CE994C A3=00F7F466
A4=00F7F466 A5=00F7F4A6 A6s00F?BDD8 A?•00F7BDCC
)pu
1

BUS ERROR in process of gid 7
Process is about to be ter•inated.
access address = 0 = ••uM

inst reg = 8848 sr = 0 pc
saved registers at 13369270

Going to Lisabug, type g to continue.
1

e ' of f set
= 2628146

0

L•v•l 7 Inttrrupt
SUBFHOLS+0094 0008 5340 PC ORJ.B 1$5340,AO

00281A32 SR-0000 0 US-OOF78DCC SS-OOCBFED8 00-1 Ptl-00007
u-00000000 01•00000100 02-0000FFCE 03-000007E4

04-0C280005 03-0014S?OO 06-00.00000A O?-OODAOAB8
AO•OODAOAB8 A1•00000000 A2-00CE004C A3-00F?F466
A4-00F?F466 AS-OOF?F4A6\Ä6-00F78008~7•00F7BDCC i (At SUBFf1oLS+0094 ~ Q)
Stack fr111i at 00 78008 calltd frOll CClt1ITLA+033A •
Stack fr111t at OOF78E14 calltd frOll LOCKD10+007A
Stack fram• at OOF78E2E call•d fra11\llEHENOCH+02AO\
Stack fram• at(ÖOF?BEB~calltd fror1 GB1ENUEV+048E
Stack fr111• at OOF?C21E calltd frora PROCESST+OllE
Stack fr111t at OOF?C258 calltd frOll HAINPROG+OOSA
Stack fraat at OOF7C298 calltd frora GRAPHJCS+001E
Stack fr111t at OOF?F4A6
SUBFHOLS+00?4 2968 0004 0004 HOVE.L •0004<A0>,$0004<A4>
SUBFHOLS+007A 6016 BRA.S •+•0018 ; 00281A30
SUBFHOLS+007C 2047 HOVE.L 07,AO
SUBFHOLS+OO?E 2247 HOVE.L 07,Al
SUBFHOLS+0080 2251 HOVE.L <A1>,A1
SUBFHOLS+0082 2368 0004 0004 HOVE.L •0004<AO>,S0004<A1>
SUBFHOLS+0088 2047 HOVE.L 07,AO
SUBFHOLS+OOSA 2247 HOVE.L 07,Al
SUBFMOLS+008C 2269 0004 HOVE.L S0004<Al>,A1

/! BFHOLS+ 2290 HOVE. L <AO > ßeii}@
-~SUB + 092 302C 0008 HOVE.W f0008<A4>,00

~"9FHOLS+0096 5340 SUBQ.W ffl,DO
(,FHOLS+0098 3940 0008 HOVE .W DO, S0008<A4 >

~UBFMOLS+009C 4267 CLR.W -<A7>
SUBFHOLS+009E 2F07 HOVE.L 07,-<A7>
SUBFHOLS+OOAO 4EBA FlOA JSR CNTOFOBJ 0028084A
SUBFMOLS+OOA4 302C OOOA HOVE.W •OOOA<A4>,DO
SUBFHOLS+OOA8 905F sue.w (A7>+,DO
SUBFHOLS+OOAA 3940 OOOA MOVE.W DO,SOOOA<A4>
SUBFHOLS+OOAE 42A7 CLR.L -<A7>
OOF7BOB8 OOF? BE02 002A 353C OOF7 BOEC OOF7 EB88 •••••*5< •.•.••••
OOF? 8 OODA OA6C 0000 0001 OODA OA64 OOFB 0486 ••• 1 ••••••• d ••••

~ F7800 (ÖOF7 BE14 002A 2?64~0DA OAB8 OOF7 F466 ••••• •~d •.••.•• f
OOF?BOEB 0000 OOOA 0000 0197 OODA OA64 OOF8 0486 ••••••••••. d ••••
OOF780F8 0002 0088 5FC2 OODA OA88 OOF7 BE12 002A ····-··········*
OOF78E08 3~8 0000 0000 0000 0000 OOF? OOF? BE2E 5 •••••••••••••••
OOF?BE18 0062 0888 0014 5700 0000 0001 0000 0007 .b •••• w •••••••••
OOF7BE28 BE30 0036 3316 OOF7 BEB8 0064 1400 016E .0.63 •••.•. d ••• n

>eh ra6 40
OOF7BDD8
OOF7BDEB

7BDF8
Out7BE08
>td

OOF? BE14 002A 2764 OODA OAB8 OOF7 F466 •.••• •~d ••••••• f
0000 OOOA 0000 0197 OODA OA64 OOFS 0486 ••••••••••• d ••••
0002 0088 SFC2 OODA OAB8 OOF7 BE12 002A ····-··········*
3SA8 0000 0000 0000 0000 OOF? OOF7 BE2E S •••••••••••••••

SUBFHOLS+0094 0008 S340 PC ORJ.B ltS340,AO
PC-00281A32 SR-0000 0 US-OOF?BDCC SS-OOCBFED8 D0-1 Ptt-00007
D0-00000000 D1•00000100 D2-0000FFCE D3-00D007E4
D„OC28000S D5-0014S700 DcS-OOOOOOOA D7•00DAOAB8
AO-OODAOA88 A1•00000000 A2-00CE004C A3-00F?F466
A4-00F?F466 AS-OOF?F4A6 AcS-OOF?BDDB A?-OOF?BDCC
)SC

At SUBFHOLS+0094
Stack fr111• at OOF?BDD8 ca11td frcn CCtt1ITLA+033A
Stack fr111• at OOF?BE14 calltd frcn LOCKQ1D+007A
Stack fr111• at OOF?BE2E cal ltd frcn fiEHENUD1+02Aö)
Stack fr111• at töoF?BE!!j cal l•d frcn GB1ENUEV+048
Stack fr111• at OF?C21E calltd frcn PROCESST+011E
Stack fr111• at OF?C2S8 calltd frcn HAINPROG+OOSA
Stack fr1111 a OOF?C298 calltd frcn GRAPHICS+OOlE
Stack fr1111 at OOF?F4A6
>eh Of?b188 30:....-~---,,-----....-.::
OOF?BEB8 OOF? 064 180 lifoo7{'iiliJ OC28 0002 ••••• d •.••••. < ••
OOF?BE98 0014 S7CO 2FOO 4267 2F2E FF04 201F OAOl •• w.1.eg1
OOF78EA8 OOFB 0486 0001 14S3 6S74 2041 1369 646S ••••••• Set.Aside
> i 1 641 Sdc-20
GB1ENUEV+0472 FFDC
GR1ENUEV+0474 486E FFD2
(.ENUEV+0478 486E FF04
GB1ENUEV+047C A088 0284
GB1ENUEV+0480 4A6E FFD4
G91ENUEV+0484 670C
GB1ENUEV+0486 3F2E FF02
GEHENUEV+048A 3F2E FF04
G81ENUEV+048E 4EBA FB82
GB1ENUEV+0492 4267
6B1ENUEV+0494 A088 022A
GEHENUEV+0498 4CDF 18FO
G81ENUEV+049C 4ESE
GB1ENUEV+049E 2E9F
GB1ENUEV+04AO 4E?S
G81ENUEV+04A2 C?4S 4D4S 4ESS 4SS6
6B1ENUEV+0482 0000 0000 0000 0000
GEHENUEV+04C2 0000 0000 0000 0000
GEHENUEV+04D2 0000 0000 0000 0000
GB1ENUEV+04E2 0000 0000 0000 0000

m: 64i9dCJ
64ft8DC=atr6SS9964aG81ENUEV+0492

>pr 0

•••• PEA tFFD2<A6>
PEA SFFD4<A6>
IUJSR HENUSELE
TST.W SFFD4<A6>
BEQ.S H$000E
HOVE.W tFFD2<A6>,-<A7)
HOVE.W SFF04<A6>,-<A7)
JSR GEHENUCM
CLR.W -<A7>

008861AC

0064180C

00641l 5C

JUJSR HILlTEHE ; 008BSC18
t10U91.L <A7>+,D4-07/A3/A4
~LK A6
HOVE.L <A?>+,<A?>
RTS

0060 2000 0000 0000 .81ENUEV.' ••••••
0000 0000 0000 0000 ••••••••••••••••
0000 0000 0000 0000 ••••••••••••••••
0000 0000 0000 0000 •••••••..•••••••
0000 0000 0000 0000 .•••.••.•••••...

(

(

(

procedure Sefect (dxy:Point: hf:hndf"'ield: hfs:hndfState: var n:Rect:
var t:integer);

Break Point
SELECT+0008 •48E7 0118 HOVB1.L 07/A3/A4,-<A7)
PC-008C3FA8 SR-0000 0 US-OOF7C010 SS-OOCCOOOO 00=1 Ptt-00008
00•00020001 01•00E20000 02-00000002 03-00lFFFFF
04D0010FFFA 0'900000001 06-FFFC3900 07-0007FFFE
AO•OOF80486 A1•00F?F32E A2-00CE004C Al-70061080

1 A4-00F80486 AS-OOF7F4A6 A'800F7C018 A7-00F7C010
>eh ra6 40
OOF?C018
OOF7C028
OOF7C038
OOF7C048
>eh Od6054•

OOF7 C034 002A OBOE OOF7 F32E OOF7 EE32
0006 0552 0006 054E 0085 0141 OOF7 C07E
0062 1884 0062 0085 0141 OODA 0896 397C
0010 FFFC 397C 0007 FFFE 7006 1080 OOF8

••• 4.• ••••••••• 2
••• R ••• N ••• A ••• N

.b ••• b ••• A •••• 91
•••• 91 •••• p •••••

0006054E 0006 2304 0006 23AE 0006 2394 0006 237A •• 1 ••• 1 ••• 1 •.• lz
>eh Od623d4 40
00062304 007E 0138 OO&A 0140 0008 0008 0001 0304 .-.; ••• H ••••••••
000623E4 OOE2 0802 0001 0001 0001 OOE2 0806 002E ••••••••••••••.•
OOD623F4 4012 054A OOlE FFFO 002A 0025 0008 0008 i .. J ••••• *.X .•..
00062404 0004 0304 0006 053A 0001 0001 0001 0006 ••••••• : .•••.•..
>eh <Od6054•> 40
00062304 007E 0138 008A 0140 0008 0008 0001 0304 •N•i•••M••••••••
000623E4 OOE2 0802 0001 0001 0001 OOE2 0806 002E ••••••••••••••••
000623F4 4012 054A OOlE FFFO 002A 0025 0008 0008 a •• J ••••• •./. ••••
p~~62404 0004 0304 0006 053A 0001 0001 0001 0006 ••••••• : ••••••••

(·' (Ot20802> 10
OOE20832 67E2 1FF4 OOE2 1FF4 0000 0006 OOE2 0846 g •••••••••••••• F
>cv t2/2
•71=-&113-00000071
>nn &113
DC1l S•~•nt[71l OriginC65Cl LimitCFOl Contro1C7l StartCOCB800l StopCOCD7FFJ
>cv Ocd7f f-Ocb800
t1FFF-&8191•00001FFF
>cv 802
•0802-&2050-00000802 field • 1ecord

c:aords:
IDCl.en:

grGllL.en:

curlen:
al ign:

drONPod:

curValue:
l'la>CFPtts:
grOMfftts:

curflilts:
f1irt Info:
protect:
end;

Reet· . . , ' integer; ~Cf 1,

integer;

integer;
byte;

byte;

tnlJata;
integer;
integer;

integer;
tna.'5;
boolean;

~ 1„

C4fJ1

ptrfiefd • -f ield;
hnlt=ield. • -ptrfield;

static fleld characteristics
ba&ntlng rectangle
l'llDCi,... rulber of chars

(should equal size of
curvalm array)

size by Mhich to grOll wlue
array - dan't grow if O

current rulber of chars
ali grwmtt af chars w.rt f i et d

is di,played
• af phcels to drOM frOR left
· or right (depending an

al igMent)
handle of array of cantents
NDCilU'I • of fonmt records
• of fon10t records by Mhich.

to grOM - don't grow if 0
current • of f orNJt recards
handle to array of nm
true •• changes not a 11 owed

~·~2D48FEOO D7'a00000000

OCBFFdlt A7'-00CBFF36

; •1 7 lnttrrupt
Ou220E62 4CDF 08EO HOJEH.L <A7>+ ,DS-D7/A3
PC-00220Eo2· SRa2004 0 US-OOF7C2Sf\ SS-OOCBFFBI ~
DO-OOOOOOOO Dl•OOOOFFFF D?-000006\S D3-00CE07F3
D4-0010FFFA DS-00020000· 1>6-00CC4F86 D7'-00A80700
A0-003'024E A1-00A84270 A2-00D08000 A3-0000040a
A+-OM8426C AS-OOCC4088 M-OOC8FFE4 A7'-00CBFF88
>1

Ltvtl 7 lnttrMapt
QUEUE_PR+006'.D280 ADD.L DO,Dl
PC-002'88F4 SR-070~ a US-OOF?DC32 SS-OOCCOOOO D0-0 P„00006

· oo-FFFFl4&1· Dl-00a:A083 D2-00000062 D3-00D007E4
IM-2D48F900 DS-00108004 1>6-20480078 D7'aOOF7DC5E
~Ocr.AIU A1-00F7DC62 .U-OOCE004C A3-0020A022
~OCC81 OE A9-00CC4088 .W-OOF?DC4C A7'-00F7DC32

-7 >ubr

Br•ak· Point
LETOTHER+0034*4ESE llll.K A6
Po-G0883D3C SR-0000 0 U9-00F?DC72 SS-OOCCOOOO D0-3 P„00006
00-00002000 Dl-00000002 D2-00000002 D3-001FFFFF
D4-2D48F,OO OS-00108004 o.-2D48FEOO D~EOOOO
AO-OOF7DC72.Al-OOCCA083 A2-00CE004C A3-0020A022
A4-02E46010 AB-DOF7F9A4 AcS-OOF7DC74 A7-00F7DC72 . .
~-~

LETOTHER+0034
Stack fr ... at OOF?DC74 calltd frat ~JNLOOP+Ol96

.- ·· ·stack ···fr-. at· ·aoF?DCCA calltd ·frm 00240030
Stack fr... at OOF7F9A4

~>c1 pc
>g

Ltvtl 7 lnttrrupt
00208C'8 . 4840 SWAP DO
PC-00288C68 SR-2700 o· US-OOF?DC72 SS-OOCBFF4A D0-3 ovtrriddtn 0
DO-OOFEOOFE Dl-40000000 D2-00000000 D3-00D02704
M-2D48F900 DS-0010C08D D.-2D48FEOO 07-ulMEOOOO
A0-8000402C Al-00004000 A2-00208C2C A3-0020A022
A4-02E46010 A&-OOOOOS7A ~OCBFF7E A7'a00CBFF4A
)SC
At 00208C68
Stack fr ... at OOCBFF7E calltd frcn 0020A9A4
Stack fr„1 at OOCBFFAI call•d frcn 0020AA36
Stack fr„t at OOCBFFBO calltd frcn 0020CC9A
Stack ·fr1111 at OOCBFFDC calltd frcn 00208466
Stack fr1111 at OOCBFFFC
>ubr

L•Y•l 7 ln~pt
00208474 427' RTS
,-~00208474 SR-200 US-OOF7DC72 SS-OOCBFFEC D0-3 ovtrriddtn 0
l • .--00000002 Dl-000 D2-00000002 D3-00D007E4
D4-2D48F900 DS-0 OC689 2D48FEOO D7'a~OOOO
A0-0020CDl4 Al 0000414 A2- 004C A3-0020A022
A41-02E460l0 OOCC4088 AcS-OOCB
>ubr

Ltv•l 7 Inttrrupt

(

(

(

AA~Aft.Aft ~p Mft.Eft.
/;~~-~

. •~'7C..J\'7 _____ ----·· .. -------------

Lev•l i lntlrru1tt
f32r.pack+oooa 4AO% Tsr.a 02

1 cOOACOD7& SR-0001 0 US-OOF?ClDC ss-ooccoooo· D0-1 P„00008.
~~FFFFoooa 01-oooooooF oa-eooooooavoa-000001e4
0..-0010~~7C0010t D'8FFFC3t7C D7-4318000a
AO-OOF1EBSB"Al-OOF7C226 A2-00CE004C A3-00F7E0~4

(

A..OOF7E864 AS-OOF1F~'- A6-00F7C20C. A1aOOF7C1DC
) .,,... g.elleßQCla'-

> br- g_.nuaa+S
>g:

11-•all Poftttt ..
881ENUCl1+00D0*4WWF EFB•· · IBENUCM' TST.W SEFM<A7l
Pe>oo64usc sa-onur a· u..aoF78EIC se-ooccoooo. oo-t P„ooooa
DO-OOOOOOFF Dl-OGOOOOFF 02-0000000% DMCU FFFFF
D4-00lOOOO~Ds-3'7COOOI °'9FFFC390• D7-0000000E
AO-Ol'41arA A1-GOF80~ AZ-OICE004C 1\31170061080.
A+-OOF80486 AS-OOF?F~ .W-OOF?C21E A7m08F78E8C
>sc
At IEHENUat+OOOO·
Stack fr- a-t OOF7C21E c:al l•cl frcm PROCESST+OUE
Stack fr at OOF7C2S8 caf T .et fre9 ""INPRO&+OOM­
Staclt fr_. at OOF7C298 ca1T~ frcs &MPHICS+OOlE
Stack fr_. at OOF7F4'\4S.

. >ca ra6 3a
OOF?C21E
OOF?C22E
OflF7C23E

OOF7 C2S& 0064 JF90 OOF7 C22E 206E' FFFC • „.X.d· ••••••• n ••
OOF8 0548 0001 0007 oocs OOUt 70M oooa ••• H ••••••.•• pJ ••
oooa 0000. 0100 oMC 0000 o.ooo= oooa 0000· •••• „ •••••••••••.

··aritak Pöi nt ·; · „ · · · · · • •.
8EHENUD1+0008•2F07 MOUE~L D7,-<A7>
PC-006411~ srt-0010 o US-OOF7BE3C ~occoooo 00-1 Pt-00008
OO-OOOOOOFF Dl•OOOOOOFF D2-00000002 D3-001FFFFF
D„00100005 D~397COOOO DcS-FFFC3900 D7-0000000E
A0-006418CA A1•00F80S~ A2-00CE004C ~70061080
M-OOF884M. AS-OOF?F4A6. APOOF?BE88- A7-oOF?IE3C
)K
At &DliiNUCtt+OOOS
Stack fr-. at- OOF78E88" c:an 4"!· fra. 881ENUEV+048E
Stacr fr_. at- OOF7C21E c:a11 •4 frca- PROCESST+011E
Stack f~_. at- OOF7C2S& ca ll N:: frca HAINPROG+OOIA
Stack fr at OOF?C298· c~l l•d. frca 6RAPHICS+001E
Stack fr„ at OOF?Ft1A6
>eh ra6 30
OOF78EBB
OOF7BE98
OOF7BEA8

OOF7 C21E 0064 18DC 0008 0004 0010 FFFA ••••• d ••••••• r••
397C 0010 FFFC 397C 0007 FFFE 7006 1080 91 •••• 91 .••• p •••
OOFB 0486 OOAC 14S3 6574 2041 7369 6465 ••••••• s.t.Asid•

)il v ... num
GEHENUD1+0000•4"6F EF84 8EHENUQ1 TST.W tEFB4<A7>
GEHENUD1+0004 4ES6 FFB4 LINK A6,ltFFB4
GEHENU01+0008•2F07 PC HcrJE.L D7,-<A7>
GEHENUD1+000A 3E2E 0008 HOVE.W •0008<A6>,D7
os:t1ENU01+000E- 4EAD 096E JSR SElWRKOR 003632DE

\ ,'IENUQ1+0012 302E OOOA- HOVE.W SOOOA<AcU ,DO
891ENUD1+0016 SS40 SUBQ .W IS2, DO ·
891ENUOtt0018 '800 02C2 1111 „t02C4 1 00641438
881ENUOt+OO 1 C OC40 OOOA 01Pl .W ltOOOA, DO
891ENU01+0020 6100 028A 8&T Hto.28C 00641438
891ENU01+0024 E348 LSL.W Hl ,DO

··.-;..

•

891ENUOtt0026 3038 0006 HOUE.W Ht0008<DO .W> ,DO ; 0064118A Li~ -7 ---~.,..~L'~.At:CIL..0.~------ - -- __ ,...._ ----·~,.,~--- ·~~ - _ ___,...1.,#•..efte---- - -- - - ----- ---

Stack Segm.ent Layout

lau add?es s

„ A7 (

pracedure lacal
variables

.-- ""'9 link „ A6
PC'

T „ ,-, ,_

Intnnsic.
~it

Slaf!els
,-.,,

PfogrM

&laDal -· Data- _ , .

• AS (
Pas' 1D
Sleppart.

Shared IU Gl.Obals

~-TaDle
Sf 80000

SF7FFFF
"',,,,,,..

\SS •-vt-oUse } \1 A ~
PROCEDURE CopvS•llst•t~• : int•g•rh

VA#t •rrnu• : iri\eger;
9EGIN
IF Tr•ceSMG;t :h•" :O.r iU ln('~t1-=spr!:tc2 CopySe l')i
it (typ•otS•l • •CellTxTSl{ or
(tblPars.EditColTitl• and tvp.OtSel a •ColHedSl)) or ·
(tblP•rs.EdltRo~Titl• •"d typ•ütSel • •Ro~edSl)) then

Beg"'
S•~P~lPort(WidePnl);
CutCop~Field(w•vFieldH,~avF~t•t•"· r3lse, :rue,err~um);
Status:• errn~m; ·
CutCopyF'ie !d(s• IF'ie ldH, se IF::.1cer4, ra t~e. r.1 l:e, err"um);
ENO;

ENO;

---:-....

. i 1 cppysel
COPVSEL+OO.OO· 4A6F EFFE COPYSEL TST .~ SEFFE<A7>
COPYSEL+0004- 4ES& FFFE ·LINK A6,„FFFE
f"'OPYSEL+0008 48E7 OOUJ HOVEH.L A3/A41.-<A7>

PYSEL+OOOC 2860 02AO. HOVE.L S02AO<AS> tA4
COPYSEl.+0010 2660 029C ;_. HOUE.L S029C<AS> ,A3
COPYSEL+OQ14 OCZ 0001 FFC~ 01PI.8 M0001,SFFC9<A4>
COPYSEL+o01Ai S7CO' SEQ DO.
COPYSEL.+001~ tlC2C oao„ FFC9' . QtPt .a. MQQQP„SFFC9(A4)·
COPYSEL+0022· S?Ct· ~· - SEQ Dt
COPYSEL.+002.4 C22B· FFDlt · ANO.a SFFDB<A3> ~D1
COPYSEL+Q02& 800.1.. CR.& Dt· „oo~-
COPYSEL+OO» . QC2C. 0008 FFC9- ,_ .- _ "- „ „ 01Pt.a - M0008,$FFC9<A4>
COPVSEL+oo• 57ea ·~ · -~ . ~-~ sm 01

.: ·~ -.. '· ~ : -

COPY.SEt..+003Z C229 FFE2 -~_::. '-~r •. · ··. AND.lt •FFE%<A3·> ,Dt
COPYSEL.+0036 800t. OR.a Dl ,DO·
COPY.SEL+00.38 024Ct OOQt · - ANDt .w; tts0001,DO:
COPYSEL+003C 4'7M'. BEll.S -..oo3C J. 00So06SC
COPVSEL+OG3E · 3F2& FFCC HOUE.a. SFFCC<A3> ~-<A7>-
COPYSEt.+004% AOSO 0 t?Q .. , IUJSR SETPNLPO· r. OOS008S'E
COP'r.SEL+0046 2F2C. F442. MOVE.L SF442<A4> „-<A7>
) i-l
COPVSEL+004A 2F2C F43C MOUE.L SF43C<A4>~-<A7>
COPVSEL+004E 4267 . CLR.W. -<A7>
COPYSEL+OOSO 1F3C 0001 MOVE.B „0001,-<A7>
COPYSEL+OOS4 486E FFFE Pl:Ai SFFFE<A6>
COPVSEL+oosa A08E OOOE IUJS~ . S008EOOOE
COPYSEL.+OOSC 204'E 000& HOUE.L S0008<A6> ,AO
COPYSEL+0060 30AE FFFE MOUE.W SFFFE<A6>,<AO>
rf1PYSEL+0064 -2F2C FFC4· MOVE.L SFFC4<A4>,-<A7>
(,PYSEL+0068. 2F2C F44E HOVE.L SF44E<A4> ,-<A7>
COPYSEL+006C 4267 CLR.W. -<A7>
COPYSEL+006E 4267 CLR.W -<A7>
COPYSEL+007n 486c FFFE PEA- SFFFE<A6)
COPVSEL+0074- A08E OOOE IUJSR S008EOOOE
COPYSEl..+0078 4CDF 1800 MOVEM.L <A7>+,A3/A4
COPYSEL+007C 4ESE ~LK A6

· COPVSEL+007E 2E9F MOVE.L. <A7>+„<A7>
COPYSEL+0081l 4E7S' RTS.
COPVSEL+008%. C34F SOSP S345 4C20 OOOQ. 4A6F EFFE. 4ES6. .OPYSEL ••• Jo •• NV
CUTSEt..+OOOCJ. · 4A6F EFFE CUTSEL TST .W SEFFE<A7>
CUTSEL+OOCJ4 . 4e6. FFFE UNK A6, ... FFFE
>br c:opy„r+e
)9

Br•al< Point
COPYSEL+OOOS •48E7 0018 MOUEH.L A3/A4,-<A7>
PC-OOS60SEC SR-0000 0 US-OOF7BEEB SS-OOCCOOOO 00-1 P..-00005
00•00000000 01•00000000 02-00000000 03-00lFFFFF
04-000E2F2D OS-FAEA3F07 06-A03C0005 07-4EAD0005
AO•OOS214CO Al•OOF7BEEO A2-0088SCOO A3-00FB04B6
A4-00F7D766 AS-OOF7F73A A6-00F7BEEA A7-00F7BEEB
>ctn ra6 40
OOF7BEEA OOF7 BF~2 00:52 150C OOF7 BF50 A03C 009E ••• R.~ ••••• P.< ••
OOF7BEFA 4EAD 0005 OOF7 0766 OOFS 0486 OOF7 BFOO N •••••• f ••••••••

. -~F7BFOA OOOE 2F2D 4E01 0002 OOF8 0486 OOF7 DF26 •• /-N •••••••••• &

(

(

' - .JF78F1A OOF7 BF38 0088 SDOE OOF7 0000 0002. 001 F ••.• 8 •• l • • • • • • • • • (
>pr 0

Li~,&~·10
·-----------.--.~---- -------~--~-------~~-~--

Invalid 1 OQ addr
>br 8•000•.
>br copy„T+l4
>9

Br•&k Pol nt
COPYSEL+0014 ttOC2C" 0001 FFC9 01PI.B „0001,SFFC9<A4>
PC-OOS60SF8 SR-0000 Q US-OOF?BEEQ SS-OOCCOOOO 00-1 Ptt-00005
00•00000000 01•00000000' 02-00000000 03-00!FFFFF
04-000E2F2D Os-FAEA3F07 06mA03COOOS D?-4EADOOOS
AO-OOS214CO Al•OOF?BEEO A2-008&:5COO A3-00F?D?66
A4-00F?CF80 Ae-OOF7F7"3A> flWmOOF?BEEA A7-00F?BEEO
> +Sf fffff c9
OF?CF48 0101 OOOC 0010- 0008 072E 0008 0?46 0008 •••••••••.•••• F ••

>br cop 1+24 ~
>9

Br•al< Poi n
COPYSEL+OO •C228 FFDB AND.B SFFOB<A3>,Dl
PC-00560608 SR-0009 0 US-OOF?BEEO SS-OOCCOOOO 00-1 Pl-00003
OO•OOOOOOFF 1•00000000 02-00000000 03-001FFFFF
04-000E2F2D ~FAEA3F07 06-A03C0005 0794EA00005
AO•OOS214CO l•OOF?BEEO A2-0088SCOO A3-00F?0766

•OOF?CF80 =:5-00F?F73A AO-OOF?BEEA A7•00F?BEEO
(>dm Sfff ffdb
. OF7D'740 . . ,. 0 uu 01·00 0001 CU 08 0000 .o~o 1. OGOO 0048 •.•.•.•••••••••••• H

C'J ra3.f.Sfff ·~~ . .
SF?D?41~16242 ~
>cv ra4+Sffffffc
SF?CF49-&162404S?.l{[F7CF~
>br copyse1+3•
>g

Br•ak Point
COPYSEL+003E •3F28 FFCC HOVE.W SFFCC<A3>,-<A7>
PC-00560622 SR-0000 0 US-OOF78EEO SS-OOCCOOOO 00-1 Ptt-OOOOG
00-00000001 01•00000000 02-00000000 03m001FFFFF
04-000E2F2D D~FAEA3F07 06-A03COOOS D?-4EADOOOS
AO•OOS214CO Al-OOF?BEEO A2-0088SCOO A~OO 66
A4-00F?CF80 A~OF?F73A A6-00F?BEEA A OF?BEE
>dm ra3+Sffffff,~---.
OOF?D732 0003 002 0001 0000 0001 0100 0101 ,101 ••••••••••••••••

>t \
Trac• Point
COPYSEL+0042 AOS 01?0 IUJSR SETPNL~O OOSOOS9E
PC•00560626 SR-80 0 0 US-OOF?BEOE SS-OOCCOOOO 00=1 P#-00005
00•00000001 01•00 0000 02-00000000 03-00lFFFFF
~4-000E2F2D 05-FA 3FO? 06-A03C0005 D7-4EA00005

(
l•00~214CO Al•OOF BEEO A2-0088~COO A3-00 ?66

A4-00F?CF80 A~OOF ?3A A6-00F?8EEA A OOF?BED
1>cn ra7
OOF?BEDE 0003 OF8 0486 OOF? 0?66 BF~2 OOF? BF~2 ••••••••• f.R ••• R
>br copys•1+54
)Q -

_..„ ... __ , • - „ - ... - •

COpYSEL+OOS4 •486E FFFE PEA $f FFE<A6>
___ PC:-OOS60638 SR-0000 0 US-OOF7BE04 SS-OOCCOOOO 00=1 Pl=00005

00•00000000 01=00000000 02=00000000 03=001FFFFF
04-000E2F20 OS-FAEA3F07 06-A03C0005 07•4EA00005
AO•OOS6062A A1•00F20BEC A2-0088SCOO A3=00F70766
~ 4•00F7CF80 AS-OOF7F73A A6-00F7BEEA A7=00F7BE04

BFS2 OF7 BFS2 OOS2 150C OOF7 BFSO A03C .R ••• R.R ••••• P.<
ffffsY

6+•f ff f

Br•ak Poi t
008EOOOE •4EF9 008E 068E JMP $008E068E
PC-008EOOOE R-0008 0 US-OOF7BECC SS=OOCCOOOO 00-1 Ptt-00005
00•00000000 1•00000000 02-00000000 D3-001FFFFF
04-000E2F20 D FAEA3F07 06-A03COOOS 07•4EAOOOOS
AO•OOS6062A Al OOF20BEC A2-0088SCOO A3-00F70766
A4-00F7CF80 AS- OF7F73A A6-00F7BEEA A7•00F7BECC
>t

Trac• Point
CUTCOPYF+OOOO 4A6F CUTCOPYF TST.W SEFDO<A7>
PC•008E068E SR-8008 US-OOF7BECC SS-OOCCOOOO 00-1 Ptt-00003
00•00000000 01•00000 0 02-00000000 03-00lFFFFF
D4-000E2F2D O~FAEA3F 7 D6-A03COOOS D7•4EA00005
A0•0056062A Al•OOF20BE A2-00883COO A3=00F70766
A4-00F7CF80 AS-OOF7F73A A6-00F7BEEA A7=00F7BECC
:>t

Trac• Point
CUTCOPYF+0004 4E36 FFOO LINK A6,#SFFDO
-' „008E0692 SR-8000 0 SS=OOCCOOOO 00•1 Ptt-00005
~~·00000000 01=00000000 03-00lFFFFF
D4-000E2F2D D~FAEA3F07 06-AO C0005 07•4EA00005
A0•0056062A Al•OOF20BEC A2-008 SCOO A3-00F70766
A4-00F7CF80 AS-OOF7F73A A6=00F7 EEA A7=00F7BECC
:>t

Trac• Point
CUTCOPYF+0008 48E7 0318 MOVEM.L 06/D7/A3/A4,-<A7>
PC•008E0696 SR-8000 0 US-OOF7BE98 S=OOCCOOOO 00-1 P*=00005
00•00000000 01•00000000 02-00000000 3-001FFFFF
D4-000E2F2D D~FAEA3F07 D6-A03C0003 D •4EAD0005
AO•OOS6062A A1•00F20BEC A2-0088SCOO A OOF70766
A4-00F7CF80 AS-OOF7F73A A6-00F7BEC8 A7 60F7BE98

. '.·

: >eh ra6
OOF7BEC8 OOF7 BEEA {ÖÖS6 0640] 1F8 0000 .•... V.i •.•....•
> br S611640 + ../
>g

Break Point _,,,,, . .,,..,,.
COPYSEL+OOSC •206E 0008,.....·/ MOVE.L $0008<A6>,AO
PC=-00560640 SR-0000 ,...9"...- US-OOF7BEEO SS=OOCCOOOO 00=1 Ptt=00005
00=00002700 01=00Q.81fooo 02=00000002 03-00lFFFFF
04=000E2F2D D~MEA3F07 06-A03COOOS 07=4EADOOOS
A0•00560640 ~OOCC94CC A2=00CE004C A3=00F70766
A4=00F7CF~A5=a00F7F73A A6=00F7BEEA A7=00F78EEO

t ~ffff-f~
~~~ ~ OOF7 BF52 0052 130C OOF7 BFSO A03C •••.. R.R ..••. P.< 

>g 

( 



Shell-Writer's C~uide 

This document. contains information you need to know to write a shell for the Lisa. 
lt describes the things a shell must do when it starh up and \l,1hen it terminates. To 
use this document, you should be familier with the Operating System Reference 
fi.1anual and have some knowledge of Pascal. To do any graphics, you will have to 
use QuickDraw, described in the Pascal Reference ft.1snual You may also want to use 
calh in the PaslibCall and PPaslibC units. 

The systenuhell 

When the OS is booted, it starts the 'root' process„ which searches the boot disk for a 
shell called 'system.shell'. The syitemshell is automatically started„ and will be the 
ancestor of all other shell processes (see Figure 1). All shells must be "plug­
compa.tible" with each ot.her so that. any shell can be the system.shell wit.hciut. special 
support from the OS. In this w~'.· a turn-key boot disk could be prepared that didn't 
include e. selector shelL 

7-F e-tlTl..JNy-84 

Root process 

Systenuhell 
(Envlm 11e1ts wlndoW) 

as Shell 
(UltraDos) 

Office System 

Fl~re 1 
Process Plcture 

still more 
ShellS 

other shells 

Shell-~4riter'.s Guide-1 



lnternsls· II Confiden.t.iB.l 

If y'OIJr shell is t.he first. process (t.he systenuhell),, you must make the following 
sy·stern initialization calls. Normally, the selector shell takes care of this f or you. 

Startup: pa ucecb'e Blocklllnit; lnitializes Pascal 1/0. (Note: if you don•t have 
the privileged PASLIB interface„ declare Blocklllnit externaL) 

swoceci.t"e PMinit (var errcw: ir&eger); Initializes parameter memory. 
(Note: you have to be able to link against. the pmm unit. to 
make this calL) 

fwd.ion enableDbg (on: boolean): boolean; Activates LisaBug if you 
we.nt to use it. 

swoceci.t"e setNMlkey (keyCap: integs); Makes LisaBug accessible 
through t.he NMI ke)'. 

Termination: JB"oceci.t"e BlockIDislnit; PASLIB cleanup. (~.Jote: if you don't have 
t.he privileged PASLIB int.erface, declare Blocklllnit external.,i 

To teil if ~.1orz shell is t.he system.shell, call: 

W'o_procen (OSErr, M/ _Id, Pinro) 

If Plnfo.fathel-_id is 1 (the root proceu), then you're in the syst.em.shell. 

( 

The Errvironrnents 1r1indow is the standard 1ystenuhell lt scans the directory of the 
startup dhk. for files whose names begin with 'shell.'. For your shell to be recognized 
and available from the Environments window, the narne of its object file must. statt 
wit.1'"1 'thelL'. ( 

Interprocen COmmunication 

Event channels are used for communication between processes. The root process and 
the select.or shell expect inf ormation from their son processes through a 
SYS_SON_TERM event channel, telling why the son terminated, end whether the fattler 
should restert the son, select or rtmt e.nother shell, turn the power off_, or reste.rt t.he 
mschine. The OS guarantees that this event will always be sent back to the f ather of 
a terminated process via the local event channel, even if the son proceu was 
unwillingly aborted. 

At Shell Stsrtup 

F ATHER: A process that starts a shell must do the following: 

1) Establbh a local event channel to allow its son to communicat.e with it 
(IPEN_EVENT_CHN)_ 

2) Start the sor1 shell (MAKE_PAJCESS). 

3) Wait for a SYS_SON_~ event (WAIT_EVENT_CHN). 

. 7-Fetiruerv-84 Shell-Hlriter's· Guide-2 

( 



lnternsls II. Confidentisl 

SON: The shell t.hat wa:s st.srted must do the follciwing: 

1) Declare a SYS_TERMINATE. exception handler (DECLARE_EXCEP _HDL). 

This exception will be signalled when the shell process is about to be 
terminated for any reason: because KILL_PRJCESS or TERMINATE_PRDCESS 
has been calledi because the process ran to completion; because there has 
been a bus error, address enor„ illegal instruction, privilege violation, or line 
1010 or 1111 emulat.or error. 

If this procedure is declared, the OS will alwt1ys give it a chance to run 
before the process is terminated. 

lt is recommended that new shells not assume anything about the state of the 
machine (e.a. the console settina„ etc.). 
For more information an event channels and an starting up other processes from a 
shell,. refer to the Operating System Reterence /\1anual 

At Shell Termination 

SON: lt is the shell's responsibility to make the operating ~ystem call to 
TERtv1INATE_ PRJCESS to open an event channel, s_eventblk (an array of longints). 
The first entry of this block (s_eventblk[1] ) contains the event that tells the shell's 
father what to do. The chosen meanings f or these values are: 

1--Restart. same shell (shell crashed and needs t.c• be restsrt.ea). To avoid infinite 
loops of START - CRASH - RESTART - CRASH ... , the user will be able t.o 
intervene when the selector shell is reached. -

2--Select another shell (SELECT_ANlTHER command). 
3--Start the specified shell. The remaining longints in the event. text blc•c:k 

(s_eventblk[2_9] ) are interpreted as a packed erray [l..32) cf characters (witt1 
no lengt.h field), containing the file name of · the shell to be started. The 
unused portion of the erray is packed with spaces. 

4--Turn machine off (white power button clicked, or PO\\IER_OFF comrnand). 

5--Reboot the machine. 

other -- Unspecified. 

lt will be the job of the shell's terminate except.iora hsndler (which is just a procedure 
the shell owns) to guarantee that the proper SYS_S{l\J_ T~ event text is set bef ore 
the shell actually terminates. It can do thh by calling TERMINATE_PRJCESS, one of 
whose parameters is a pointer to this block. 

7-FebTU8J'V-84 SneJJ-{-Vriter'.s· Guide-3 



k1ternel.s fi Contidentisl 

FATHER: The fatt"1er of t.t'1e shell t.hat just terminated should: 

1) Reawaken because it has received the SYS_9JN_ TERM event. vis. its local 
event. channel. 

2) Check the event text to see what. to do. 

Examplet 

F ollowing are code segments from bot.h a f ather shell and a son shell showing the 
start-up and termination of the son. 

These constarrt and type definitions are used throughout the following examples: 

CON.S'T 
aRestsrt = 1; 
&SelectAnOtt'ler = 2; 
&S"t8J' tAno ther = 3; 
eDff = 4; 
eReset = 5; 

TYPE 

{Restar t ..e ) 
{se1ect enotner st1e11 } 
{Start the Shell nMed in ttte event text } 
{Turn off Lisa) 
(Reset the Pl$Chine > 

{ ~is is a varient record wtiic:h e.1 low!- u:. to aödl'H!· the pac:ked arrey of eher 
tnx = RfCORO ~ 6'".JOlfAH OF 

TRUE: ( eVbH<: s even tOU<); 
FALSf: (z~1·oth: I~int; 

firs. t: lmgmt; 
. 2·es t : psc&.ced ena:1 r 1. . MX~enaPl~ J o f chsJ·: >: 

END; {tnx} ·· 

FATHER: This code s:hows a father shell starting up a son shell and waiting f'or it.s 
terminatic•n. 
PROCEOURE St.el 11..00p; 

VAR oserr: inteoer; 
procID: longint; 
fnMe: pathN!Ae; 
entry: neMString; 
nextToOo: integer; 
ex mrae : t ex nar1e· 

, ev:cnen_re~: integer; -
ev_ch_nePte: pa~e; 
W8.i tllS t: t W8.1 tllS t; 
ev_po·: r_eVentblk; 

PROCED JRE se lect9le 11 CYAR fflalle: patmw >; 
BEGIH 

~Ilf('ttext Shell ?'); 
REM>LN( fnMe); 

END; {SlelectSlell} 

7-Fetll'ua~··-84 Shell-1".lriter'..r Guide-4 

( 

( 

( 



( 

1 

' 

. . 

lnternals 

PROCEOURE stuffflaAe(ev olk: s eventblk; VAR fnerte: ~ttmrte); 
\/AR Dl()CI.(: trix; - -

i: IHTEGER; 
BEG IN 

block.evt>lk := ev Dlk; 
i := 1; -
fnaPte := ''; {null string} 
i.HILE i<=32 DO BEGitt 

lf fneM[i) = ' ' (sp&ee} TtEi BEGIH 
fnllfle[OJ := cttr<i-1); {s.tuff lengtn field) 
EXIT (Stuf ftWle); 

END; (JF} 
fr1Me[i l := t>lcd<.rest[i J: 
i := i + 1; 

BtO; (1'HI Lf} 
fnefte[O] := Chr(32); {stuff length field) 

END; (stuf fliMe) 

BEGIH (Shell L.oop} 

entry := • ·; 
e..• eh naMe := ''; 
ex-neÄe := ·' 
~in_Event_Ct'n(OSerr, ev _ct'l_nerte, fN _cherl_refl'llrl, ex_MM, reoeive); 

se 1ectsne 11 c tn&Ae); 

REPEAT 
Hake_Process(osEri·,procIO,fnSMe,entry,ev_ctien_refnUrl); 
IF (os.Err <= 0) THEH BEGIN 

wai tLis t. length := 1; 
we.itList.refn.JPl[OJ := eiJ chan refnuM; 
we.i t_Event_Ctn(osfrr, w.i tlis (" wtiich, tev _ptr); 

{~ode for father shell bringirig dOWn son starts here} 
K111_Process(osErr,proclO); 

IF ev_ptr .event_text[OJ=e:all_terPI THEN {c:&lled teJ111inate_proc:es~.} 
NextTOOO := ev _ptr .event_ text[1 J 

ELSE 
ttextTOOO := &Select.nJther; 

EHD; {Mde tne process successfully} 

CASE NextToDo OF 
&Restart: (do nottaing}; 
ü 1 ectAnOthel·: se lectShel 1 c fneAe >; 

II Confident.isl 

EßtartAnotner: stuffHal'le(ev_ptr .event_text, fl"IBPle)~ {get nBAe onex„Slel! out of event_te.xt> 
f//Jff: S!YJtooCJrl(80ff); (4---turn the MOhUll Off) 
eReset: SlUtDoWn(eReset >; {5--rese t tne MOtline > 

OTtERVISE SlelectS'lel 1; 
BtD; { case ttex tTOOO > 

LtfT 1 L He llFreezesover; 
END: (Shell LDop) 

7-FebrutJiy-84 Shell-~V/'iter's GJ.Jide-5 



II Confidentis.l 

SON: Tt-1is prncedtJre makes the nec:essary calls ror the start-up of a shell. 
~ Shellinit; 
WIR oserr: INTEGER; 

Pinfo: ProclnfoRec; 

EEGIK 
info_prooess(oserr,Ky_ID,Plnfo); 
Jf' Plnf'O. fattaer JO = 1 {root} ne. BEGIH 

810Cl<IOini t; (frOl'I PPasLiDC} 
Pl"linit; (fror1 Pl'l'I} 
IF ErlllttleoeG TtEN S'etN'llkey(J3); (S tsnoard tt1I keyef4'} 

END; (lf} 
END; {S'hel 1 Ini t} 

This code shows the shut.down of a shell. If the stUC>o\tln procedure. is declered as 
the ~-Tenninet.e exception handler„ it will properly communicate to its father its 
reason for terminating. 

PROCID..IRE 9'1Ut00'.ln ('rA"ty: IHTEGER); 
TYPE 
VAR 

bloek: trix; < the variant reco;rd } 
9'.1!Xt9'lel 1: e_NAe; 
l: JHTEGER; { for the for loop } 
oserr: IHTEGf'R; { requireo per&Mter for me ca11 to ten.inate_process > 

BEGIN 
bloek.evt>lk[1] :=.vtty: 
IF w~· = astartTt1uone TtEN BEGJN 

Nfa.xtStlt-11 := 'shell.next'; 
<~ stririg wi ttiout length fielen 
FOR 1 := 1 TO length(nextshell) 00 bloek.rest[i J := nextshell[i ]; 
FOR i := lengtncnextsne11) • 1 TO nax enaite IX.l DlOCk.restCil := · ·; 

END; -
teJ111inate_prcc:ess<oserr, til OOk. M• l k); 

END; {ShJtDown} 

7-February-84 Shell-klt'iter's Guide-6 

( 

( 



Spring Workshop Shell Enhe.ncements Page 1 

Summary 
The Workshop's file manager has been extended to take advantage of some new 
features provided by the OS ~ password protection and hierarchical catalog 
structures. The file manager has been beefed up to allow convenient 
copy/backup/transfers onto more than one diskette <a Mre frequent occurance wi tti 
SJnys). 

The Details 
File Ha:nager 

Changes to the File manager herve revolved around three issues: the new OS 
hierMchical catalog structures„ password protection„ and backup to multiple 
volumes. 

Following are details on how the various File Manager commands have changed. 

o Addeetalog convn&nd. The AddCatalog command allows you to create new 
catalogs. The pathname you specify for a catalog should refer to a volume 
which has been initalized with the new OS's 8-tree file system structures. A 
catalog specified by a pathname without a volume part v,.till be created with 
respect to the current main pref ix. 

The dash is the catalog delimiter, so a f'ile name referring to a file in a 
catalog rnight look like 11-vol-cat-file11 or 11-vol-cat1-cat2-file"„ and so on. A 
file name of the form "cat-file" is interpreted relative to the current prefix 
and thus might refer to 11-vol-cat-file" or 11-vol-catl-cat-file" depending on 
'"-'hether the current prefix was set to a volurne or to a catalog. 

There is no special command to put a file in a catalog. Once a catalog has 
been created„ newly created files will get put into it in two ways: ( 1) if the 
nev·l file's name is specified by a full pathname with volume and catalog parts„ 
in which esse the file is put in the specified catalog (which rnust exist before 
a file can be put into it); and (2) if the new file's name does not have a 
volume pert (i.e., it is a partial pathname) and the current prefix is to a 
catalog_, in which cese the file is created in the current catalog ( or the 
appropriate sub-catalog if the new file's pathname includes a catalog part). 

Note that when the OS tries to find a file given a partial pathname, the file 
will be found only' if (1) the pathnarne has no catalog part and is located in 
the current prefix volume or catalog„ or (2) if the pathname hes a catalog part 
t.hat corresponds to a path starting with a catalog at the top level in the 
current prefix volume or catalog. 

o Backup/Copy/Transter to multiple diskettes. The Backup, Copy and Transfer 
commands share a common file duplication mechanism that has been modified 
to allow backups (or whatever) to mutilple volurnes. If a list of files is being 
copied to a diskette and you run out of space„ you will be told what file didn't 
fit and how many more blocks were needed, and you will be asked whether you 
'v'lant to continue on another diskette. If you answer Yes you will be lead 
through a diskette change and the operation will continue. Note that the 
volume names of the subsequent disks need not match the first, even if the 

Fred F orsman April 23 „ 1984 



spring worJ<.snop snen Ennancements Page z 

original destination was specified with a particular volume name es opposed to 
a generic device name. 

o LEt. and Names comrnanm. Two new attributes are indicated for items in the 
List command display. The D attribute indicates a directory (C for catalog 
would have been nicer but was already in use for closed-by-OS) and the • 
attribute indicate.s a pessword protected file (see the next section). 

The List and Names cornmands will now indent names to show the catalog 
structure when listing 8-Tree catalogs. The one exception to this esse is 
when you do a "non-contiguous" or partial list, that is, when y·ou use a 
wildcard specification with something t.o match following the wildcard 
character,. causing only some of a contiguous subset of files to be listed. A 
wildcard specification of the form "<left pattern><wildcard eher>" will select a 
"contiguous" subset of files matching <left pattern>, while a wildcard pattem 
of the form "<left pattern> <wildcard char> <right pattern>" will select only 
some of the set of files matching <left pattern>,. resulting in a list with any 
number of discontinuities. Since a partial list is not assured of containing 
enough files to indicate the catalog hiererchy via indentation„ the List and 
Names commands will print an unindented list of complete pathnames 
matching the wildcard specification. 

NOTE: In the past the Workshop h~ truncated f ile names in the displays of 
several commands (such es the List command which hes a limited field in 
which to print the ne.me„ and commands lik.e Copy which display "<source file> 
copied to <destination file>"). In some cases the names would be simply 
truncated and in others the last two characters would be replaced with two 
periods. The new Workshop should now indicate truncation by replacing the 
lest character displayed with " ... " (i.e., the ellipses character). 

o Pref"ix command. Catalogs have changed the prefix command so that prefixes 
may now be to arbitrary catalogs in addition to volumes. Prefix es must be 
specified with complete pathnames; that is, if you ere prefixing to a 
subcatalog, you must specify the cornplete path to the catalog. 

The eff ect of the current prefix on the interpretation of file names was 
discussed in the previous section. 

WARNING: Due to a recent ct1ange in the OS, the act of setting the main 
prefix (or working directory) has greater consequences than it used to. In 
particular, it may cause problems in running programs which use intrinsic units 
(this includes all the Workshop tools). The OS loader used to load a program's 
intrinsic libraries from the boot ~··oJume using the librery names in 
INTRINSIC.LIB ( which it makes a copy of at boot time). The library names 
used to be partial pathnames without a volume specification. Now the OS 
loader tries to find the libreries according to the pathnames it found in 
INTRINSIC.LIB„ which means it will loo~. on the prefix volume (or catalog) if 
the names in INTRINSIC.LIB were partial pathnames. There are two solutions 
to this problem: (1) copy the intrinsic.libraries. to the prefix catalog, which 
could result in a proliferation of library files, or (2) change the names of the 
libraries in INTRINSIC.LIB to pathnames of the form "-#BOOT -libname"„ and 
then reboot so that the OS will cache the new names. The latter solution is 
the best in general, but requires tarnpering with INTRINSIC.LIB (which mak.es 
many people nervous, so I've written an exec file to do it ... see me if you're 
intere.sted). The first solution points out the flexibility of the new scheme„ 
t.hat. is„ you me:y support several different library environments on the same 

Fred F orsrnan April 23„ 1984 



Spring l.rJorkshop Shell Enhancements Page 3 

volume via pref ix ing. 

o AddPmswcrd and RemovePassword corrmands. The two new cornmands 
supporting passv~ord protection are found under the FileAttributes command. 
AddPessword allows you to password protect a file ( or files via wildcards). 
Don't forget the password! RemovePassword allows vou to remove passwords 
from files_, but you must know the pessword to remove it. 

A key point to note about password protected files in the Workshop is that the 
1t'Jorkshop tools will not be able to open a file once it is password protected_, 
so passwords must be removed to make the files 1JSeable. Admittedly this is a 
less-than-optirnal password protection scheme_, but. short of a major redesign 
of the file access methods of the Workshop and e.11 its tools_, it does provide 
reasonable prot.ection at little expen.se. 

o Initimize command (the new file system)_ Although this command hes not 
changed„ it is useful to note that volumes initialized under the new Workshop 
and OS have a new structure (B-trees) which e.llows f or hierarchical catalogs. 
Since these structures cannot be applied retroactively to old volumes„ a device 
must be reinit.ialized in order to take e.dave.nte.ge of these features. 

The following fact may be of interest to speed freaks and Priam users. Since 
the names in a 8-tree catalog are already sorted_, the shell knows enough to 
not sort the files coming from B-tree volumes when performing file manager 
commands which operate on lists of files. This means_, for example_, that 
running the List command on a reinitialized Priam should be much fester than 
before, since the potentially very large list of files does not need to be sort.ed. 
Incidentally „ the bubble sort of days of yore has been replaced with a Shell 
sort (aptly enough).. which is many times faster_, so life should be greatly 
improved even if you don't reinitialize your Priarn. 

o Online conmand. The Online cornmand has changed in one immediately· 
obvious Wf!J:i/ -- the new device nmnes used by the new OS. F or the sake of 
convenience (to make the device names intelligible to humans) the Online 
command has been altered to also disple:y the old device names which the new 
OS supports as device aliases. The point to note is that the aliases are no 
longer the real device names_, so while the new names and alieses are 
accepted going into the OS„ only the new names corne back out. 

The Online comrnand has been modified in another less obvious way. The 
prefix attribute (P) is now sometimes displayed in lower case (p)_ The 
upperce6e P indicates that the main prefix is to the indicated volurne_, while a 
lowerc:ase p indicates that the prefix is to a catalog somewhere on that 
volume. 

NOTE: lt is possible to confuse the Online command into thinking that 
devices are configured that when they are not. A typical example is getting 
an error in the middle of the Online output which says that it could not find 
111 (i.e., paraport) on a Pepsi. The problem is eliminated by using Pref erences 
or the CDConfig program to detach the non-existant device. Similarly_, instead 
of an error_, you may find that the 11'\Jorkshop pauses unexpectedly in the middle 
of Online output. This problem is also caused by a device being configured 
but not present (the pause in the Online output is the device driver timing out 
while trying to access the device). The point to note is that the Online 
command no langer iterates through a fixed list of devices es it did before.; 
instead_, it must rely on the information supplied by the Parameter Memory 
manager ( which is set when y·ou run Pref erences)_ So make sure that 

Fred f orsrnan April 23,. 1984 



I Spring Workshop Shell Enhancements Page 4 

Preferences' idea of how the system is configured is correctl 

o File Selection. The File Manager uses a common mec:hanism for file selection 
for all of the commands which operate on lists of files (list., copy-, delete, 
rename, etc.). Lists of files are specified via wildcard pattems against which 
file names are matched. These wildcard patterns have the general form: 

<catalog part><left pattern><wildc:ard char><right pattern> 

Yarious combinations of the wildcard pattern elements can be omitted. 

The wildcard characters are "?" and "=". These will now operate on all files in 
a 8-tree catalog and on any files in subcatalogs, that is, the wildcard 
matching mechanism will "go down into" subcatalogs es it attempts to find 
files satisfying the wildcerd specification. New varia.nts of "?" and "=" have 
been introduced to allow file selection to take place only on the top level of a 
8-tree catalog (without going into subcatalogs). The new variants are enabled 
t)\/ pressing the option key while typing "?' or "=", resulting in "l" or "~"-

Pleese note (from the general form of a wildcard pattern given above) that 
wildcards are not permitted in the <catalog part> of a wildcard specification. 

Fred F orsman April 23 „ 1984 



Spring Workshop Shell Enhancements 

Apple Computer Inc 
rtacintosn Division 

DeYelopttent Tools Cl~ m 

Page 1 

April 23, 1984 

IQ.: 

FROH: 
Macintosh Software Engineering 
Fred Forsman 

SUBJECT: Workshop Enhancements for Spring Release 
(or what's new in the old shell gerne) 

A nunber or enhancements to the Workshop Shell have been implemented ror 
the Spring release. The next section sU11narizes the changes, and the 
remainder of the memo the details. 

Summary 
The Workshop's file manager has been extended to take advantage of some 
new reatures provided by the OS -- password protection and hiererchical 
catalog structures. The file manager has been beefed up to allow 
convenient copy/backup/transrers onto more than one diskette cart0re 
frequent occurance vi tr't snnys> • The resident process mechani sm has been 
removed, having beccne obsolete with the new OS. A nt.rnber of 
convenience featt.aes have been added, such as the remembering Run 
CCllrßand. A unit has been provided for conrnunication between programs 
and the shell or between cooperative progrerns. 
Last, but not least, the Exec File processor has been extended so that 
it now provides a fairly powerful interpretive lanouage for controlling 
development scripts. The usefulness of the exec processor has been 
greatly enhanced by converting it frcn a preprocessor into a truly 
interactive processor, by allowing it to stay present while Workshop 
coornands ere executed and progrerns are run so that the exec script can 
be rest1ned after the non-exec workshop commands have been executed. 
(Formerly all exec processing took place first and then the resultino 
script was run.) The exec language has been enhanced to include looping 
constructs, nerned variables, file IAJ, a directory search capability, 
screen control functions, and functions to perform e:rittnetic 
operations. The performance has also be oreatly improved, due in part 
to a new file caching mechanism. (A word or reassurance: your old exec 
files will work just as berore, only raster.) 

The Details 
Note the.t t.he following description e.ssumes knowledge of the Releme 1.0 
Workshop and Pepsi Workshop (virtually identical to 1.0 but with support f or 
the new herdware). · 
~ 1tun Clllwn<J 

The Run command will remember whe.t you ran l~t and off er it es a 
defeult. Even if you don't always want to run the same thing again, 

Fred Forsman Aprll 23, 1984 



Spring Workshop Shell Enher1cements 

it serves es a convenient reminder of what you did last. 

Run commands in exec files will not be remembered. 

Mo l1<re Resident Processes 

Page 2 

Improvements in the OS have obviated the need for the Workshop's 
old resident-process mechanism (which would allow certain specified 
processes to be suspended rather than killed so that they could be 
rerun with less swapping). 

As a result, the System maneger's Process manager subsystem h~ 
been simplif ied by removing the commands to support the list of 
resident programs. (Note that the rne LDS_RES_PROCS. TEXT that 
once saved this list bet ween invocations of the Workshop is no 
longer used.) The process manager is still useful ror monitoring and 
killing suspended and background processes. 

Progrems can still achieve the more interesting eff ects of residency 
(such m continuing from where they l~t were, ~ does the Mouse 
Editor) by suspending themselves. When the program is reirwoked, 
the shell will detect that a susper1ded instance or the process is still 
around m-td will reactivate it. 

1ile Hanager 

Changes to the File manager have revolved eround three issues: the 
new OS hierarchical catalog structures, pa.ssword protection, and 
backup to multiple volumes. 

NOTE: The discussion below essumes familiarity with the breakdown 
or pathnames tnto volume, catalog and filename components. The 
following examples of the vsrious forms of valid pathnames should 
meke the division into components clear. The possible forms of 
pathnames bef ore catalogs were two: 

-volname-filename < fUl l pathnlPle > 

filname < partial patmar.e; no vollft } 

The new f orms of pathnames now possible with catalogs ere: 

-volname-C8lname-tilename < full with catalog ) 

-volname-c&name C8lname2-filename < ful 1 wi th catalOCJ' > 

cetnerne-tllename < partt a1 wt ttt catal og< s > > 

F ollowing ere details on how the various File manaoer commands 
he:ve changed. 

o File Selection. The File manager uses a common mechanism ror 
file selection f or e.11 of the commends which operate on lists ot 
files (list, copy, delete, rename, etc.). Lists of riles are specified 
via wildcsd pattems against which file names are matched. 
These wildcard patterns have the general rcrm: 

<catalog pmt><left pattern><wildcard char><right pattern> 

Various combine.tions of the wildcard pattern elements cari be 
omitted. 

The wildcerd cheracters ere ''?' and "=". These will now operate 

Fred F orsman April 23, 1984 



Spring Workshop Shell Enhancements Page 3 

on all files in a 8-tree catalog and on 8nJ files in subcatalogs, 
that ts, the wildcerd matching mechanism will "go down into" 
subcatalogs ~ it attempts to find f iles satisfying the wildcard 
specification. New veriants of "?" and "=" have been introduced 
to allow tile selection to take place only on the top level of' a 
B-tree catalog (without going into subcatalogs). The new variants 
are enebled by pressing the option key while typing 11? 1 or 11=11

, 

resulting in "l" or "• ". 

Ple~e note (from the general form of a Wildcard pattern given 
above) that wildcm-ds m-e not permitted in the <catalog pert> of a 
wildcard specif ication. 

o lnitialize command (the new file systemi Although this command 
h~ not changed, lt 1S useful to note that volumes 1n1t18ltzed 
under the new Workshop end OS have a new st.ructure (B-trees) 
which allows tor hierarchical cataloos. Since these structures 
cannot be applied retroactively to old volumes, a device must be 
reinitialized in order to t8ke adavantage ot these features. 

The f ollowing f act may be of interest to speed freaks and Priam 
users. Since the names in a 8-tree catalog m-e e.lready sorted, 
the shell knows enouah to not sort the files comina from 8-tree 
volumes when perf orming file manager comme.nds which operate 
on lists of tiles. This means, for example, that runnina the List 
comme.nd on a reinitialized Priem should be much f~ter than 
bef ore, since the potentially very larae list of files does not need 
to be sorted. lncidente.lly, the bubble sort or days of yore hm 
been replaced with a Shell sort (aptly enough), which is many 
times fmter, so life should be greatly improved even if you don't 
reinitialize your Priem. 

o AddCatalog conwnand. The AddCatalog command allows you to 
create new catalogs. The pathname you specify f or a catalog 
should ref er to a volume which hes been initalized with the new 
OS's B-tree tile system structures. A cat8.log specified by a 
pathname without a volume part will be created with respect to 
the current main prefix. 

The dmh is the cataloa delimiter, so a file neme ref erring to a 
file in a catalog might look like "-vol-cat-file" or 
"-vol-cat1-cat2-file", and so on. A file name of the form 
"cat-file" is interpreted relative to the current pre(ix and thus 
might refer to "-vol-cat-file" or 11-vol-cat1-cat-file" dependinQ on 
whether the current prefix wm set to a volume or to a catalog. 

There is no specie.1 command to put a file in a catalog. Once a 
catalog hes been creat.ed, newly created files will get put into it 
1n two ways: (1) lt the new rue·s .name is specitled by a tun 
pathname with volume and catalog parts, in which cse the file is 
put in the specified ce.talog (which must exist before a file can 
be put. into it); and (2) if the new file's name does not have a 
volume part (i.e., it is a partial pathname) end the curren~ preflx 
is to a catalog, in which cse the file is created in the curtent. 
catalog ( or the appropriate sub-catalog if the new f ile's pathname 
includes a catalog perl). 

Fred Forsman April 23, 1984 



~prmg worKSnop ~neu cnnancements .-.ege 4 

Note that when the OS tries to find a file given a partial 
pathname, the file will be f ound only if ( 1) the pathname ·has no 
catalog part end is located in the current prefix volume or 
catalog, or (2) ir the pathname has a cat8log pmt that 
corresponds to a path sterting with a cstalog st the top level in 
the cl.l'rent pref ix volume or cate.log. 

o Prefix C011111181d. Ce.te.loos have changed the prefix command so 
that prefixes mey now be to erbitrary catalogs in addition to 
volumes. Pref ixes must be specified with complete pathnames; 
that is, if you are prefixing to a subcatalog, you must specity the 
complete path to the cataloo. 

The effect ot the current prefix on the interpretation of file 
names was discussed in the previous section. 

WARNING: Due to e. recent change in the OS, the act ot setting 
the main prefix (or working directory) hes greater cor6equences 
than it used to. In particular, it may cause problems in running 
programs with use intrinsic units (this includes all the Workshop 
tools). The OS loader used to load a program's intrinsic libreries 
from th8 boot ~10lumt1 using the library names in INTRINSIC.LIB 
(which it makes a copy of at boot time). The librery names used 
to be partiel pathnames without a volume specification. Now the 
OS loader tries to find the libraries according to the pathnames it 
found in INTRINSIC.LIB, which means it will look on the prefix 
volume (or catalog) if the names in INTFUNSIC.UB were partial 
pathnames. There are two solutions to this problem: ( 1) copy the 
intrinsic.libreries to the prefix catalog, which could result in a 
prolif eration of librery files, or (2) change the names or the 
libraries in INTRINSIC.LIB to pathnames of the form 
"-IBOOT -libname", end then reboot so that the OS will cache the 
new names. The latter solution is the best in general, but 
requires tampering with INTRINSIC.LIB (which male.es many people 
nervol.6, so I've written an exec file to do it ... see me if you're 
interested). The first solution points out the flexibility of the 
new scheme, that is, you may support. several different library 
environments on the same volume via prefix ing. 

o OrUne corrmand. The Online command hes changed in one 
immediately obvious WfßJ -- the new device names used by the 
new OS. For the sake ot corwenience (to make the device names 
intelligible to humans) the Online command has been altered to 
also displfßJ the old device names which the new OS supports es 
de\lice aliases. The point to note is that the aliases are no 
longer the real device names, so while the new nemes and 8lieses 
are accepted going into the OS, only the new names come back 
out. 

The Online corrmand hes been modified in another less obvious 
wtt-;. The prefix attribute (P) is now sometimes displayed in 
lower cse (p). The uppercese P indicates that the main pretix is 
to the indicated volume, while e. lowercase p indicates that the 
prefix is to e. catalog somewhere on that volume. 

NOTE: lt is possible to confuse the Online command into 

Fred Forsman April 23„ 1984 



Spring Workshop St'1ell Enhancements Page ' 

thinking that devices ere configured that when they sre not. A 
typical ex ample is getting an error in the middle of the Online 
output which says that it could not find 111 (i.e., peraport) on a 
Pepsi. The problem is eliminated by using Pref erences or the 
CDConfig program to detach the non-existent device. Similerly, 
i~tead or an error, you mey find that. the Workshop pauses 
unexpectedly in the middle of Online output. This problem is 
also caused by a device being configured but not present (the 
pause in the Online output is the device driver timing out while 
trying to access the device). The point to note is that the Online 
command no langer iterates through a fixed list or devices ~ it 
did berore; instead,_ lt must rely on the information supplied by 
the Parameter Memory manager ( which is set when you run 
Prererences). So make sure that Preterences' idea of how the 
system is configured is correctl 

o List and Names CCJITl1l8nCB. Two new attributes are indicated for 
items in the List command displey. The D attribute indicates a 
directory (C for catalog would have been nicer but wes already in 
use for closed-by-OS) and the • attribute indicates a password 
protected file (see the next section). 

The List and Names commands will now indent nemes to show 
the catalog structure when listing 8-Tree catalogs. The one 
exception to this cese is when you do a "non-contiguous" or 
partial list, that is, when you use a wildcerd specification with 
something to match following the wildcard cheracter, causing only 
some of a contiguous subset of files to be listed. A wildcard 
specitication ot the form "<left pattern><wildcard char>" will 
select a "contiguous" subset of files matching <left pattern>, 
while a Wildcard p8ttern of' the form "<left pattern><wildcard 
char><right pettern>" will select only some of the set of files 
matching <left pattern>, resulting in a list with any number of 
discontinuities. Since a partial list is not assured of containing 
el'.lough files to indicate the catalog hierarchy via indentation, the 
List and Names commands will print an unindented list of 
complete pathnames matching the wildc8l'd specificetion. 

NOTE: In the pest the Workshop has truncated file names in the 
displays or several commends (such m the List command which 
hes a limited field in which to print the name, and commands 
like Copy which display "<source file> copied to <destination 
file>'1. In some cases the names would be simply truncated and 
in others the lest two chere.cters would be repleced with two 
periods. The new Workshop should now indicate truncation by 
replacing the 1~ cheracter displayed with " ... " (i.e., the ellipses 
character). 

o AdcFasswcrd and RemcwePass'A'm'd C01T11l81Mls. The two new 
commands supporting password protection are tound under the 
FileAttribut.es command. AddPassword allows you to pssword 
protect a f'ile (or files via wildcarm). Don't forget the p8$Swcrdl 
RemovePessword allows you to remove psswords from files, but 
you must know the password to remove it. 

A key point to note ebout password protected files in the 

Fred Forsman April 23, 1984 



~pnng worKSnop sneu ~nnancements Page 0 

Workshop is that the Workshop tools will not be able to open a 
file once it is password protected, so passwords mu.st be removed 
to make the files useable. Admittedly this is a less-than-optimal 
p~word protection scheme, but short ot e m8jor redesign or the 
file access methods of the Workshop and all its tools, it does 
provide re~onable protection at little expense. 

o Delete Cornnand. Those of you who look closely at the behavior 
of the Delete command operating on B-tree cate.logs may notice 
a new wrinkle in the command's operation. While all the other 
File manager commands perform their operations on an 
alphabetically sorted list or files, the Delete command must 
delay the deletions of ce.talogs which are not yet empty. Thus 
the Delete commands works in two passes: in the first pass all 
files are deleted in alphabetical order, ~ are catalogs which are 
empty; in the second pass, any catalogs not ·deleted in the first 
pess are now deleted in reverse alphabetical order (to take care 
of catalogs contained in other catalogs). 

o Backup/Copy/Trand'er to multiple diskettes. The Backup, Copy 
and Transfer commands share a common file duplication 
mechenism that has been modified to allow backups (or whatever) 
to mutilple volumes. lf a list of files is being copied to a 
diskette and you run out of space, you will be told what file 
didn't fit end how many more blocks were needed, and you will 
be asked whether you want to continue on another diskette. lf 
you enswer Yes you will be lead through a diskette change and 
the opere.tion will continue. Note that the volume names of the 
subsequent disks need not match the rtrst, even it the original 
destination wes specified with a particular volume name as 
opposed to a generic device name. 

Praeri.1l-SheD. Caulunica.tim 

An intrinsic unit (ProgComm) hes been added to SULib which allows 
programs to communicate with the shell and with other prograrns. 
Three besic mechanisms are provided. 

o Set Next Run Commard. A programmatic call is provided which 
allows a program to teil the Workshop shell what to run next. 
The specified program will be run next (after the current program 
is done), takino precedence even over an exec file in progress. 

o The Pr•am Rstwn String. A string is provided which can be 
set programmatic8lly and which can be accessed from the exec 
processor (via the RETSTR function). This allows exec scripts to 
be written which make choices based on program results. 

o The Comnuücation Bllfer. A lK byt.e buffer (global to the 
Workshop) hes been provided for ·communication between 
programs. The buffer can be used in any number of ways; 
however, e. set or primitives supporting chm'e.cter and 
line-oriented 1/0 to and from the buN'er is provided. 

More detailed inf'ormation of' the program communication unit can be 
found in the ProgComm appendix to this document. 

Note that the above mechanisrrs can be used in conjunction with 

Fred Forsman April 23, 1984 



Spring Workshop Shell Enhancements Page 7 

each other. For example, a program could 'Nl"ite a series of 
irwocation arguments to the communication butfer and then tell the 
shell to run a particular program next (via the set-next-run 
command). That program could then know to check the 
communication buffer to find its erguments. (In general, programs 
might be written so that they check the communication butfer ror 
their arguments first end prompt for arguments from the console 
only it the arguments are not found in the buffer). 

ProoComm's program-program communication f acility hes been used 
by several of t.he Spring rele~e Workshop tools: 

o Compller-Gener8lm cormuücation. The Pascal compiler will 
now automatically invoke the Generator to perf orm the second 
step or the compllation process. This behavior can be suppressed 
by specifying the 11$G-11 option in response to the compiler input 
prompt. The third compiler prompt is now rar a .OBJ output file 
rather than a .l out.put. file (although a .1 is generated when the 
generstor is ce.lled automatlcally). 

NOTE: The above change will probably mean that you will have 
to chenge your "Compile" exec file (either to eliminate the 
oenerate step or to use tt1e $G- option). lf you haven't been 
using a common compile exec file, then you probably heve more 
editino in store. 

o Compiler-Editm' commooication. The compiler now provides the 
option ot going to the editor in the event of' a compllatton error 
(the choices offered by the error prompt are SPACE to continue, 
CLE AR to escspe, and E to go to the editor). If you go to the 
editor the point of error will be displayed in the appropriate 
source f'ile and the compiler error message will be displayed. 

E:i:ec:nles 

Major extensions he.ve been made to the Exec File processor, m 
enumereted below: 

o Alternate ·s· corMmtion. New that the exec conrnand 
language is filling out, you can create meaningful exec 
files with many more exec connand lines than workshop 
(non-exec) conne.nd 11nes. Up until now these two types or 
lines have been distinguished by a 11$ 11 ac the f'irst 
signit1cant character or exec 11nes. As a consequence, exec 
files consisting of mostly exec connand lines beccne 
unreadable or annoying with all or the dollar signs, which 
is unfortunate since the dollar signs mess up the lines 
wh1ch are 1nherently more readable and 1ntel11g1ble. 

NCM exec files which begin with "EXEC" rather than "S EXEC" 
will be accepted and processed with the "$" convention 
reversed, that is, workshop lines would then begin with a 
dollar and exec lines would not. This makes exec files 
consisting or mainly exec connands look more normal and 
readable, and in no Wt!l:tJ affects files written using the 
other convention. In fact the two conventions can be mixed, 

Fred Forsman April 23, 1984 



:spnng worKSnop ~neu cnnancements Page " 

that is, a file written in one convention can call a file 
written in the other convention. In the new convention, 
workshop lines begin inrnediately following the "$" (although 
leading and tra111ng blanks will be removed unless the "B" 
option is in effect). 

o Nllled parmeters and variables. Nemes can now be associated 
with the '.n variables, allowing meaningful nemes to be used 
to make exec files more readable e.nd intelligible. 
Parameters can still be referred to in the old "%n" fashion, 
or they can be referred to with new nemes, or both. The 
nemes are declared (associated positionally with the "~" 
parerneters) by he.ving an optional perenthesized list of 
nemes on the exec cornmand line, as in 

EXEC (volNeme, fileNeme) 
If l.PPERCASE (volNeme) = '-P~~T' Tt'EN 
<etc.> 

Et«XEC 

The paremeter nemes as speciried on the EXEC conrnand line 
must begin with an alphabetic character, may include 
subsequent alphabetic and nLneric characters, and may be as 
long as you like, although only the first eight characters 
are signiricant (as in Pascal). The parerneter list is not 
allowed to have "holes" in it, that is, you cannot do 
sanething like: 

EXEC (~emeO, , ~eme2) 

Once the nemes are declared on the EXEC line, nerned 
paremeters can then be used as you would expect in exec 
lines (see "volNeme" in the second line of the exernple 
above). In workshop (non-exec) lines the nerne should be 
st.arounded by square braces so that it can be distinguished 
rrcn the surrounding text as in: 

EXEC (rile) 
$F{filer}D{delete}[file] 
$Y{yes}O{Ouit} 
<etc.> 

Et«XEC 

The rule is that square braces are required to offset a 
paremeter neme in contexts where processing is done in a 
text-oriented mode (1.e., when in workshop as opposed to 
exec lines). Otherwise, the nemes cannot cannot be 
distinguished (frcn the exec processor's point or view) rrcn 
the text in which they appear. Note that [ ... ] constructs 
in non-exec lines will be copied into the temporary file as 
is if the stuff between the braces is not recognized as a 
pe:rmeter neme. 
Syrnbolic nemes must also be enclosed in square braces in 
order to be recognized in Sl.111IT connands and in runction 
calls. This is required since Sl.111IT and function e:rgtnents 

Fred Forsman April 23, 1984 



Spring Workshop Shell Enhancements Page 9 

lists are scanned as if the argunents were pure text instead 
Of St.ring. expressio.ns. (This f01" of arcptent.scarvli':19 ~ chosen to De 
~tlble v1 tn the scenn1ng of arguiitents on the exec 1nvocation l 1ne. 
~fOrt\rlately. tnis is one vea tnat cennot be cleened '4> vi thout breeking 
everyone's exec files. or eise l>y intrcdJcing a1 ternate versions of 9..B'tlT ..a 
ftfttion calls t:hl.t tll<e string expressioo arguitents.) The following 
example demonstrates situations in which a name does and 
does not need to be enclosed in squere braces. 

EXEC (rile) 
$F{filer}C{copy}[file] 
$-lower-backup/[file] 
IF file <> 11 11-EN 

Sl.111IT compile ([file]) 
<etc.> 

Er«XEC 

{ nerne with braces } 
{ name without braces } 
{ name with braces } 

The scope or narnes is the body or the defining exec file. 
Up-level name references are not allowed, that is, neme 
rererences are always local (as they were before). 

o llill.E and JEJEAT cmaands. These conrnands al 1 ow for 
repetition of cCJ11nand sequences under the control of an 
arbitrary boolean condition. The syntax for the ~ILE 
ccmnand is as follows: 

1,tilLE <boolean expr> CO 
<arbitrary stuff> 

ENJWHILE 

The behavior or the \ltiILE construct is the sarne as the 
cornparable Pascal construct. The <boolean expr> may be a 
condition or arbitrary ccrnplexity. The <arbitrary stufr> 
between the \PliILE and the ENJWHILE may be anything: exec 
cCJMlands (including nested '*iILEs) or Workshop command 
lines. 
Similarly, the REPEAT ccmnand syntax is: 

REPEAT 
<arbitrary stuff> 

ltITIL <boolean expr> 

o RESEICAT C* aud and tEXTFILE r&metion. These allow an 
exec file to get files from an OS directory (based on a 
wildcard pattern 1r desired). These new constructs are 
illustrated in the following exemple: 

EXEC (file) 
FESETCAT '-paraport-=. text 1 

REPEAT 
SET file TO NEXTFILE 
<whatever> 

ltITIL file = ' ' 
Er«XEC 

for those of you fmailisr with the OS calls, RESETCAT is 

Fred Forsman April 23, 1984 



:spnng worKsnop ~neu cnnancementS Page 10 

comparable to F\t:SET_CATALOO and NEXTFILE is comparable to 
GET_~_ENTRY. The RESETCAT conrnand takes a <string 
expression> argt.rnent which specifies the directory and the 
search pattern (ir any). Ir a fileneme part is speciried in 
addition to a volt.rne nerne, the rilenerne part will be used as 
a search pattern ror subsequent calls to the NEXTFILE 
function. Ir the wildcerd character (=) is present standard 
Wildcard matching takes place. Ir there is a rilename part 
but no wildcard, the file nerne part is used as a seerch 
preri x ( t hat i s, "RESETCAT ' roo' " i s equi valent t o "RESETCAT 
'foo=' "). The NEXTFILE function returns an empty string 
when there ere no more entries in the directory. The 
F\t:SETCAT command also has the side effect of setting the 
value or the I~SULT runction described below. 

o I~T r...ction. This works in conjunction with the 
F\t:SETCAT comme.nd e.nd the NEXTFILE function, indicating 
whether an error occured in the operation (similar to the 
ICJESULT function in Pascal). I~SULT returns the empty 
string if no error occurred in the last significant 
operation (RESETCAT, NEXTFILE, CFENIN, CFBOJT). If an 
error occured, then a string with the error nt.rnber, and the 
appropriate textual message is returned. An exernple: 

EXEC (dir, 1oErr) 
REPEAT 

REClEST dir WITH 'Search what directory ?' 
RESETCAT dir 
If I~SULT = lt 1tEN { successrul RESETCAT} 

<search directory, etc.> 
ELSE { unsuccessf ul RESETCAT } 

SET ioErr TO I~SULT 
~ITELN 'Bad directory specification' 
~ITELN 'OS error : ', i oErr 

EJ'{)If 
l.NTIL FALSE 
<etc.> 

EK>EXEC 

o HALT and BRT ccmaands. These comme.nds stop the exec 
processor; the difference between HALT and AB:RT is whether 
any acct.nlated Workshop coonands will be processed. The 
HALT cCJ11nand will stop exec processing and will execute the 
ccnrnands that have been sent so rar to the intermediate 
file. The ~T conrnand will stop exec processing and will 
not execute &mJ acct.mlated commands. In a nut shell, if 
smnething really goes wrong you probably want to AB:RT; if 
you have valid commands generated but not executed and you 
want to stop exec processing but still execute the queued 
ccnrnands, you probably want to HALT. · 
Both convnands take an optional "string expression" argU1ent 
which will be printed to the console (replacinQ an "Exec 
processing aborted. 11 message in the case of the AB:RT 

Fred ForsmM April 23, 1984 



Spring Workshop Shell Enh8ncements Page 11 

conrnand). 

o EVAL tw.ction and ruaeric expressions. The EVAL runction is 
used to evaluate erittvnetic expressions, returning a string 
containing the result of the evaluation. While the exec 
language still deals only with objects which ere strings, 
this reature introduces the ce.pability or dealing with a 
string as a nunber. The synte.x or the EVAL function is 

EVAL ( <nuneric expression> ) 

where <nlßeric expression> is your usual erittrnetic 
expression allowing the +, -, •, /, t1D and ( ... ) operators. 
The nt.neric elernents can be supplied via unquoted nl.lneric 
constants (decimal only), paremeters or variables (with 
string values which must be nllneric constants), string 
functions returning nllneric string values, or functions 
which return ntJneric string values such as LEl'liTH, (II), and 
POS. 
lt is important to keep in mind the differences between 
nLmeric and string expressions. You should also be awere of 
the contexts in which each is required. For exemple, you 
should understand why "EVAL( 1)" is valid and "EVAL( '1') is 
not. 
Observe that the result type or the EVAL runction is a 
string (not a nllnber, not a nllneric string, just a string). 
The point to keep in mind is that all data objects in the 
exec processor are still strings. Only within the context 
or a <nt.rneric expression> ere strings treated as nl.lnbers. 
Arittnetic is done with L(]'(ilNls with no overflow detection 
except when ntJneric constants ere too large. 
following is an exernple or a loop using a counter: 

SET N TO 'O'{note 0 is expressed as a string constant} 
w-tILE N <> '10' 00 

<whatever> 
SET N TO EVAL (N + 1) 

80/l-fILE 

o ltare str1ng f&mettons: lfJGTH, a::FI', POS, l.Jll:ICRSE, DR, 
and III>. A n"8ber of new string funtions have been added. 
Some or these take advantage or the nuneric expression 
capability introduced by the EVAL function. Note that some 
or the functions may be used in nuneric expressions (s1nce 
they return strings with nlnbers) in addition to string 
expressions. 

LENiTH ( <str expr> ) 
lEt(äTH takes a string expression ergunent and returns a 
string with a nt1nber in it. lEt(äTH may be used in both 
string and nuneric expressions. 

Fred Forsman April 23~ 1984 



~pnng worKSnop snen cnnancements Page lZ 

aJJY ( <str expr>, <nua expr>, <nua expr> ) 
CCPY takes three argL1Rents: a string expression and two 
nunerie expressions. lt returns the appropriate substring 
or the first ergllftent, as in PASCAL with the exception that 
if the third argllnent is too large it will return what is 
available rather than the empty string. CCPY can be used in 
string expressions but not nunerie expressions (sinee it 
typically does not return a nt1nber). Keep in mind the 
differences between the two types of argunents taken by the 
copy runction -- string and nt1ner1c express1ons. An 
exemple: 

EXEC ( foo, n, eh) 
SET n TO LEttiTH(foo) 
SET eh to CCPY(foo, 1, 1) {eh :• first eher of foo} 
SET foo TO CCPY(foo,n/2,n) {foo :=last half of roo} 
<etc.> 

POS ( <str expr>, <str expr> ) 
POS takes two string expression argLnents, and returns a 
string with a nllnber in it. The nllßber is the position of 
the first occurrance or the first string within the second. 
If the first string does not appear in the second 'O' is 
returned. POS may be used in both string and nuneric 
expressions. 

l..CIEH:RSE ( <str expr> ) 
LOJERCASE takes a single string expression argllnent and 
returns that string lowercased. \fle have lPPERCASE 8.lready 
so it seemed only fair to give equal time to lowercase. 

DR ( <nm expr> ) 
~ takes a nll'ßeric expression and returns a one-character 
string with the eheracter value corresponding to the nllfteric 
value t1D 255. 

OI> ( <str expr> ) 
~ takes a string expression ergunent. An exec-time error 
will be generated if the string does not have a length of 
one. ~ returns a string with a nll'ßber representing the 
integer value of the eharacter. (II) may be used in both 
string and nllDeric expressions. 

o New string cmparison operatars. Previously only the = and 
<> string comparison operators were supported. To this the 
>, <, >•, and <= operators have been added. These all 
runetion in the expeeted Wf!l/. Now for the confusing part. 
Since the EVAL function has introduced strings which 
runetion as nl.lllbers, we need operators whieh ecnpere strings 
as if they were nL1Rbers (instead or as strings). The new 
nuneriee.l string eompere operators are EO, tE, LT, GT, LE, 
and GE. for exemple, try compe:ring 9 and 16 with the 
following exec proeedure. 

EXEC ( nl, n2) 
If nl > n2 ltEN 

Fred F orsmen April 23, 1984 



Spring Workshop Shell Enhancements 

~ITELN nl,' is alphabetically greater than ',n2 
ELSE 

Page 13 

~ITELN nl, • is not alphabetically greater than ',n2 
Et()lf 
If nl GT n2 TtEN 
l.IRITELN nl,' is nl.IDerically greater than ',n2 

ELSE 
~ITELN nl,' is not nt.rnerically greater than ',n2 

El'{)lf 
Et«XEC 

o 111.E and fALSE constants in boolean expressions. Just as 
you would expect. Useful for "tf-IILE TRLE 00" and similar 
constructs. 

o Screen control camands: OOILOCY, a.EfR end QRS(R_ A mnber 
of caN'ßands have been added to allow screen-oriented exec 
procedures 

QJTOXY <nlin expr>, <nlin expr> 
QJTOXY takes two mneric expression argt.nents separated by a 
coorna. The behavior is the ssne as Pascal' s OOTOXY. Values 
which sre beyond the upper or lower limits ror coordinates 
will peg at the limit. 

CLEAR <cleer option> 
CLEAR takes a <cleer option> (SCREEN, Et()SCREEN, and 
Et-DLitE) as an argll1lent. SCREEN will clear the screen and 
leave the cursor at <0,0>. Ett)SCREEN will clear to the end 
of the screen from the current cursor position. EK>LitE 
will clear to the end of the line from the current cursor 
position. 
~ <cursor option> [ <nl.ID expr> ] 
~ takes a <cursor option> (H:tE, lP, ~, RIGfT, LEFT) 
as an argt1nent, tollowed by an optional nt1neric expression. 
The results or the various cursor options should be obvious, 
and the optinal nU'fteric expression can be used to supply a 
repetition count. 

o File I.Al: Ae:EI, REJIUlE, end CUliE camends. The current 
REFC>s and ~ITEs have been extended to work with files in 
addition to the console. In order to support this new 
functionality three new conwnands have been introduced for 
opening and closing files. Note that these file-oriented 
cC11VDands work only on text files. 

RESET <id> , <str expr> 
RESET opens a tile ror 1nput. An <1d> (an identifier, as in 
Pascal, with only the first eight characters being 
significant) is used to establish a file variable (which is 
used to identify the file for subsequent reads, writes, and 
closes). The RESET ccmnand serves as a dynsnic declaration 
of the file variable which becomes known globally for the 
duration or exec processing or until the rile is CLOSEd. 
The string expression srgt.ment is usectto specify the 

Fred Forsmen April 23 „ 1964 



~pnng worKSnop snen c:nnancements Page 14 

pathnerne for the file. The value of the ICIESULT function 
will be set appropriately after the operation. 

~ITE <id> , <str expr> 
~ITE opens a rile for output and is otherwise like the 
RESET conrnand. 

CLOSE <id> 
CLOSE closes the r11e associated with the r11e variable, and 
causes the file variable to be deallocated. 
The REl1Xli, RE~LN, ~ITE, and ~ITELN convnands he.ve been 
extended to deal with files by adding an optional file 
specifier. The form of the file specifier is: 

( <id> ) 
where <id> is a file variable. The file specifier should 
follow the conrnand keyword~ preceeding the normal connand 
a:rgt.nents, as in the following exemples: 

REl1Xli (inFile) Char 
RE~LN (infile) Line 
~ITE (outFile) 'This is a test: ', message, •. • 
\IRITELN (outfile) { write a CR } 

o IAl to the P.r~mm Cmuücation Butter. The IJO conrnands 
defined in the previous section (RE~ITE, RESET, CLOSE, 
REl1Xli, REfl>LN, ~ITE, and ~ITELN) can also be used to 
write to or read frorn the conrnunications buffer provided by 
the ProgCoon unit (see the appendix on Proit:onn). There is 
a predefined <id> -- 'ConrnBufr' -- which serves as a 
pseudo-file identifier for the conrnunications buffer. With 
the exception of CLOSE, all of the IIO comrne.nds are the seme 
are the seme as the file-oriented forms, as in the following 
exemples: 

RESET ConrnBufr, 'key' 
~ITE ConrnBufr, 'key' 
REAOCH (COOl1f3urr) Cher 
REil>LN (CorntnBufr) Line 
~ITE (ConrnBufr) 'This is a test: ', message, •.' 
l,IRlTELN (ConrnBufr) { wri te a CR } 

Note that when openning the conrnunication buffer, the second 
argtJnents of RESET and RE~ITE are the access key instead or 
a file neme. CLOSE is syntactice.lly different in that it 
also requ1res a second argt1nent specif'y1ng an access key, as 
in: 

CLOSE Corß3ufr, 'key' 

~= CLOSE on the CommBufr has the effect of flushing 
the ConrnBurr. Consequently, Cl lH: should not be called 
atter writing to the D Bh. lt should be called after 
reading if the buffer is not intended to be read by scnebody 
else, e.nd it should be ce.lled when you want flush the 
buffer. Note that the CLOSE will only succeed if you 

Fred Forsman April 23, 1984 



Spring Workshop Shell Enhancements Page 1' 

specify right key or if the buffer was not keyed, thus a 
CLOSE with a key is in errect a conditional flush or the 
buffer. An unconditional flush can be achieved with a 
~ITE, which always clobbers the buffer, regerdless or the 
key. 

o OOIT cmmand. The OOIT coornand transforms the exec 
processor into more than just a preprocessor. When a DJIT 
is encountered all coornands that have accllftulated in the 
exec tempora:ry file will be executed and then control will 
return to the current exec file following the OOIT (with the 
tempora:ry file emptied). This allows you to execute 
Workshop conrnands and to run progrens from an exec file and 
then to base rurther exec processing on the results of these 
conmands. The concept is simple, yet powerful. A trivial 
exemple or something you could not do before is print a 
~essage after some workshop conrnands in an exec file have 
executed, as in: 

EXEC (fromVol, toVol) 
'8RITELN 'Now sterting backup 
$F{filer}B{backup}(frcnVol]-=, [toVol]-$ 
SQ{quit the filer} 
OOIT 
~ITELN 'Backup or ', rromVol, ' to ', 

toVol, ' completed' 
Et«XEC 

One point to note about the CXJIT camnand is that it causes 
inrnediate execution of what has accl.lftulated in the ternporary 
r11e, which you may find surprising initially 1r you ere 
stepping through an exec file via the "S" option. As a 
result, the acct1nulated conrnands will be executed e.nd then 
you will return to stepping following the DOIT. 

o II.lt c+=•snct. The Rltf coornand allows a progrern to be run 
inrnediately from an exec file without affecting conmands 
being accllftulated in the tempora:ry file. The simplest form 
or the Rl1'I conrnand is: 

A.li <str expr> 

...,here the <str expr> gives the pathname of the program to 
run. Note the ~ exec camnand gets executed inrnediately at 
exec time, whereas an embedded Workshop "R" conwnand will get 
executed at run time. 
Since proareras orten require input rrom the console, the 
following form of the Fltt connand is provided: 

Rl.ti <str expr> Itf'UT 
<arbitrary stuff> 
~ 

Here the "sturr" between Itf'UT and ~ is put into 
another ternporary file to use as exec input while the 

Fred Forsman April 23, 1984 



:spnng worKSnop :snen cnnancements Page 10 

progrem is being run. This "stuff" will not affect arry 
cairnands acct.rnulating in the normal tempor8ry tile. Ir the 
progrern being run requires more input that provided by the 
"sturr", 1nput will revert to the console to ccnplete the 
progrern's input requirements. Ir too much "stuff" is 
provided, the excess will be ignored. 

o The ll::ISIR r...ction. The RETSTR function returns what is in 
the ProgCornm unit's return string. Thus a return string set 
by a progrem usino the Pro~onn unit can be accessed frcn an 
exec file. for exernple: 

EXEC 
RlJ.f 'foo' 
I f RETSTR < > 'Sl.CCESS' Tt-EN 
~T 'Foo failed' 

Er«XEC 

o The "G• invocation option. The "G" (or generate only) 
invocation option allows you to test out your exec files 
without actually running them. Note that the "G" option 
disables the DOIT and ~ cornands. 

o The "E• invocation option. The "E" ( or continue even wi th 
errors) invocation option allows you to run exec files which 
run workshop progrems which have errors which would normally 
stop exec file execution. When runnino under this option, 
run-time errors will not stop exec processing. In using 
this option you run a hioher-than-normal risk of your exec 
file becoming out-of-synch e.nd doing things you did not 
intend. But the option can be very useful if you must run 
test suites which contain errors. 

o The "K• irM>Cation option (rm11er1y -r•). The old "T" 
option, indicating that the generated ternporary file should 
be saved rather than deleted after being run, has been 
renerned to "K" for Keep. This change was made because the 
new doctnentation ror exec files (which will appear saneday) 
does not refer to the generated file as a temporery file, so 
the "T" no langer makes any sense (not that it was a good 
choice for an option nerne in the first place). 

o Improved pm-ranaance end file caching. A file caching 
mechanism has been added to the exec processor. The cache 
currently consists of 5 pages (where a page is two blocks). 
The caching mechanism can cache 5 small files at at time 
where "srnall" is defined as having a listed size or 4 blocks 
(1 header page and 1 page of significant text). Small files 
will be put in the cache, and subsequent Slfl1ITs or function 
calls to that file will be read rrcn the cache. The cache 
is maintained on a LRU (least recently used) basis .. This 
~eans, for exemple, that if you call a sub-exec file to 
canpile many times frcn a build exec file, the canpile exec 
file will typically only be read once. 
To ft.ather boost performance the exec processor's handling 

Fred Forsman April 23, 1984 



Spring Workshop Shell Enhencements Page 17 

of text files now goes ~hrough a unit developed by Ira Ruben 
(ICPrirnitives in SULib). 
These changes, along with nllfterous other tweaks to low-level 
routines in the exec processor, have resulted in rnore than 
doubling (sornetirnes tripling) of the exec processor's speed 
(although you may find the performance to be better or worse 
than this depending on road conditions and how your exec 
files ere structtaed). 

Fred F orsman Aprll 23, 1984 



ProgComm: the Program Communication Unit Page 1 

AppelMftX 1 

ProgConvn: the ProWem Communicetion Unit 

Summary 
An intrinsic unit (ProgConm) h~ been added to SULib which allows 
programs to communicate with the shell and with other programs. 
Three basic mechanisms are provided. 

o Set Next Run Commmd. A procedure is provided which allows a 
progrem to teil the Workshop shell what to run next. The 
specified program will be run next (after the current program is 
done), taking precedence even over an exec file in progress. 

o The Pr•em Reb.s"n Str'ing. A string is provided which can be 
set programmatically and which can be accessed from the exec 
processor (via the ~ETST~ function). This allows exec scripts to 
be written which make choices based on program results. 

o The Communicalion EUrer. A lK byte buffer (global to the 
Workshop) has been provided for communication between 
programs. The buffer can be used in any number of ways; 
howe\ler, a set of primitives supporting character and 
line-oriented 1/0 to and from the buff er is provided. 

Note that the above mechanisms can be used in conjunction with 
each other. For example, a program could write a series of 
irwocation arguments to the communication buffer and then tell the 
shell to run a particular program next (via the set-next-run 
command). That program could then know to check the 
communication buffer to find its erguments. (In general,. programs 
might be written so that they check the communication buffer for 
their arguments first and prompt f'or arguments from the console 
only if the arguments are not found in the buffer). 

The Details. 
The followino describes the interf ace to the ProgComm unit. The 
following procedure initializes the ProgComm unit so that a program 
may use it. 

PROCEDl.JRE PClnit; 
PCinit should be called before using the ProgComm unit. One 
effect or note is thet. the program's retl.l'n string (RETSTR in 
the exec language) is initialized to the null string. 

The f ollowing two procedures give a proQram the ability to set what 
program will run next and to pass back a return string to the exec 
processor. Note that the SUStr type comes rrom the ''standerd un1t" 
-- StdUnit in SULib -- which provides, among other things, e number 
of string manipulation routines. 

PROCEDlJRE PCSetRwCmd (RC : SUStr); 
PCSetRunCmd enables a program to tell the shell what 

Fred Forsman April 24, 1984 



ProgComm: the Program Communication Unit Page 2 

program (or exec file) to run after the current program 
terminates, which allows program "chaining". RC, the run 
command you pass to PCSetRunCmd, should be a string with 
the same program pathname or exec file invocation you would 
give in response to the Workshop Run command prompt. The 
run command set in this Wfll/ will take precedence over 8nJ 
keyboard type-ahead and over arry pending ex ec file 
commands. 

There is an added complication when you want to use 
PCSetRunCmd to run a Workshop tool that is normally invoked 
t.rom the Workshop menu line. (Note that only some of items 
in the Workshop menu are actually scporcte toob whioh con 
be ''run" .) The complication arises from the f act that typina 
'E' to invoke the editor is riot always the same es typing 'R' 
for run and specifying 'editor.obj' es the program to run. The 
difference is that the Run command will look for 'editor.obj' 
usino the ttvee level of prefixes, while the 'E' menu command 
will look on the Workshop boot volume first and then at the 
ttvee prefix volumes. lf you want to get the effect of the 
menu command, your argument to PCSetRunCmd should be a 
two character strino with an escape (CHR(27)) es the first 
cheracter end the eppropriate menu command es the second 
character. 

Another subtlety, which you are unlikely to run into unless you 
. are doing tricky things with exec files„ is tr1at starting to run 
an exec file while you are already running another exec file 
will cause the first exec file to be terminated in order to 
allow the second to be run. This means that if you run 
program P rrom exec rue A„ and P calls PCSetRunCmd to run 
exec file 8, then, when program P terminates, exec file A will 
also be terminated so that exec file B can be run. Exec file 
A will not be resumed when ex ec file B has completed. This 
is another instance of the "exec file chaining" effect. 

PROCEDURE PCSetRetstr (RS : S\ßtr); 
PCSetRetStr allows a program to set a return string which 
may be accessed via the exec processor's RETSTR function. 
This allows exec files to make choices b~ed on information 
passed back to the shell by cooperating prngrams. How the 
return string should be used and interpreted is up to you, end 
will depend on what sort or information you want to pass back 
to the exec processor. (But in order to be a good citizen it is 
probably best to f ollow whatever system-wide conventions 
emerge and prevaiL) 

The tollowing procedures and functtons operate on the corrvnwdcation 
ldfer, which is a 1K byte buffer which is global to the Workshop 
shell (that is, it stays eround between program invocations). The 
buffer can hold essentially any type of inf ormation, but a standard 
set ot tunctions is provided for P~cal-like character or line-:oriented 
access to the buff er. 

Following ere some CONST, TYPE, and VAR declerations from the 

Fred F orsmen April 24, 1984 



Progcomm: the Prograrn Communtcatlon untt Page 3 

ProgComm interface which relate to the communication buffer. 

CONST 
{ communication buffer content types } 
PCNone • -1; { nothing in buffer } 
PCArJJ = O; { f or PC Reset to match any content type } 
PCText • 1; { text, m supported by fCGets a PCPuts } 
PCBurrtvtax = 1023; { max buff er index, ie, tsufr is lK bytes } 

TYPE 
PCBurrP = ·PCfMr; { ptr to bufr } 
PCfMr • PACKED ARRAY [OJ>al.lrMax] OF CHAR; 
V~ 

PCBurrPb" : PCBurrP; { points to bufr efter successful open } 

The communication buff er is given a type when it is opened f or 
writing with PCReWrtte. This type will be used to determine 
whether a potential reader trying to open the buffer with PCReset 
will be successful. The intent is to prevent reading or the butfer 
when the contents are not of the type expected by the reader. Three 
predefined constants are provided f or buff er typing: PCNone means 
that the buffer hm no contents; PCText means that the buffer 
contains standard text with CR line delimiters; and PCAfri matches 
any type, allowing a reader to override the typing mechanism. other 
buffer content types (such es mause events) may be defined users, 
choosing some number to identify the new type which does not 
conflict with the predefined types. We make no attempt here to 
provide a complete set of predefined types; the issue is simply one 
of having compatible corwentions (agreement) between communicating 
programs. To use the buff er f or something other than text, the 
variable PCBurrPtr may be used to access the buffer (using whatever 
means of interpretation of the buf'fer is desired). 

The buff er also hes e.n access key, which functions in very much the 
same weiy ~ the content type (i.e., writers set it and readers must 
match it to gain access to the buffer). The ir.tent of the acces-s key 
is to prevent programs from readino the buff er when they are not 
the intended recipient. The access key, again, is something that 
should be established by agreement between the communicating 
programs. lf e. buffer writer does not care about preventing 
unintended access to the buffer, the null strina can be used for the 
access key. Note that the access key is cese sensitive. 

F ollowing are the procedtaes and functions which open and close the 
communication buf'f er. 

PROCEDURE PCRe'n'rite ('-"'riteType: INTEGER; Key: SUStrli 
PCReWrite opens the communication buffer ror writing. The 
content type and access key ere set. PCBufrptr is set to 
point to stert of the communication buffer. A PCReWrite will 
override en.J previous use of the buff er, i.e., it will flush t!Jn1 
previous buf'f er contents. 'NriteType should be an integer 
identifying the type of data you plan to write to the buff er. 
If you are plarminQ to use the text-oriented primitives .... 
provided, WriteType should be PCText; otherwise, WriteType 
should be some integer established by agreement between the 

Fred F orsman April 24, 1984 



ProgComm: the Program Communication Unit Page 4 

communicating programs. Key should be a string also 
established by agreement between the communicating 
programs. A useful form of key is one that identifies the 
intended recipient, so that things that get left in the buffer do 
not get read inadvertently by programs for which they were 
not intended. 

FLNCTION PCReset (Readlype: INTEGER; Key: SUStr): BOOLEAN; 
PCReset opens the buff er for ree.ding. The boolean result will 
indicate whether the open wes successful. The open will f ail 
if Read'Type does not metch the type set by the lt1St buffer 
writer or if Key does not match the key set by the lest 
writer. 

FUNCTION PCClose {KlllBl.lr: BOOLEAN; Key: SUStr): BOOLEAt+J; 
PCClose will close ( or empty) the communication buff er. lf 
Kill8'h is true the buff er will be emptied. In general, the 
buff er can be read more than once (by multiple readers) if 
desired. If a reader is finished with the butrer and knows that 
no one else should read the buffer, PCClose should be called 
with KillBufr set to true. The call to PCClose will fail if the 
access key does not match. Note that PCClose may be used 
to flush buff ers that were written by someone eise, es long es 
you know the access key. PCClose may be called without 
calling PCReset or PCRel.tJrite f irst. 

The followino functions provide a text-oriented buff er f acility with 
P~cal-like chare.cter e.nd line-oriented ree.ds e.nd writes. 

FUNCTION PCPutCh (Ch: CHAR): BOOLEAN; 
PCPutCh will put a character into the buffer. The boolean 
result will indicate whether the operation was success1'ul. lt 
will fail if the buffer is full or if the buffer w~ never opened 
successfully for writing. Note that PCPutCt(CR) is equivalent 
to PCPutline("). 

F~TION PCGetO. (YAR Ch: CHAR): BOOLEAN; 
PCGetCh will oet a character from the buffer. The boolean 
result will ir1dicate whether the operation Wf6 successful. lt 
will f ail if the buff er is empty or if the buff er ws never 
opened successf ully f or reading. 

FUNCTION PCPutline (L: SUStr): BOOLE~ 
PCPut.Line will put a line into the buff er. A CR is put in the 
buf1'er following the string pmsed to PCPut.Line. The boolean 
result will indicate whether the operation w~ successful. lt 
will f ail if the buffer is full or if the buff er wm never opened 
successfully f or writing. 

FLNCTION PCGetLine (VAR L: SUStr): BOOLE~ 
PCGetLine will oet a line from the buff er, where a line is the 
text from the current buff er pointer up to the next CR or the 
end of file (whichever comes first). The boolean result will 
indicate whether the operation wm successful. lt will ·fail if 
the buffer is empty or if the buffer wm never opened 
successfully for reading. 

Fred F orsman April 24, 1984 



Progcomm: tr1e Program communtcat1on un1t Page:> 

You will notice the following runction in the ProgComm interface; it 
is used for special-purpose communication between the Workshop 
shell and various Workshop tools. 

FlA'JCTION PCShellCmd (Cmd: INTEGERi P: S\.QrP): BOOLEAN; 
For internal use by Workshop development system tools only. 
Contact me if you have a need to know about this function. 

Fred Forsman April 24, 1984 



Releme 3.0 Notes 
CHAPTER 2, THE FILE MANAGER 

Overview of Changes to the File Manager 
Tt·1e significe.nt crranges to the File Manager involve: 

• The Operating S·'.>.1st.em 1s ne\. ..... hierarc:hical ce.talcu;t st.ruct.ure. 
• Tre.nsfer opera.tions onto rnore tha.n one micro disk.ette. 
• Password protection. 
• The new OS device nemes. 

The Operating S~1stern uses new ph',1sical device narnes„ trrJt still supports the old 
narnes es device aliases. You can specify e. device using either the narne or the 
alias.: the OS refers to devices by narne. The new narnes are: 

Name 

111011 
l/1012 
1111 
l/12 
1113 
111581 
81512 
fix 
11X ly 
flxlylz 

AliEE 

RS232A 
RS232B 
PARAPORT 
UPPER oc PARAPORT 
LOWER 
ALTCONSOLE 
t..,1AH-..JCONSOLE 
SLOTx 
SLOTxCHANy 
SLOTxCHAt·JyDEVz 

Adda&alog Command 

Device 

Serial Port A 
Serial Port B 
Pars.llel Connec:tor (Lisa 1) 
Built-in heJCf disk. (Lisa 2) 
Micro diskett.e drive 
Alternate cons:ole 
t ... 1ain console 
Peripheral at expansion slot :x: 

PeripheraJ a.t expansion slot. x„ connector y 
Peripheral at expan.·s:ion slot "J.:,. connect.or Y ... 
device z 

Files on a volume can now be arranged under cat.alogs and subcat.a.logs. The 
AddCa.te.log command lets you create new ca.ta.logs. The pathnarne you specify· for 
a cata.log shoulcJ refer t.o a volurne that has been init.ialized using the Release 3.0 
software. 

The 1?ypben is the catalog delirniter„ so a. file name referring to a file in a cata.log 
might look like 11-vc1l-cat-file 11 or 11-vol-c:atl-cat2-file11„ and so nn. A file narne of 
the form "cat-file" is interpreted relative to the current prefix ancJ thus: mi~tht ref er 
to 11-vol-cat-file 11 or 11-vol-catl-cat-file11

, depending on whether the prefix is set. to 
a volurne or to a catalog. A catalog specified by a paUmame 'rvitt"tout a. volume 
part will be cree.ted using the current main prefix. 

There is no specia.l command to put a file in a catalog. Once a catelog has been 
creat.ed„ new files get put. into it in two wa·y·s: 

1. If the new file's ne.rne is specified by a full pathne:rne wit.h volurne arid cet.e.log 
parts„ the file is put in the specified catalog. (A catalog rnus:t exist before a. 
file ca.n be put. into it.) 

Dr a.ft--19 .]un-c· 84 ,,, 1 
~-.l. .Re/&:5.:sc- lJot es 



2. If the ne~'v' file's ne.rne is a partial pathnarne wit.hout. a volume pert., and the 
current prefix is a catalog,, the file is put in the pref'ix catalog (or a. 
subcat.e.log, if the file's pathne.me iricludes e. catetlog pert). 

1\>Jhen the OS tri es to find a. file given a. partial pathname„ the file will be f ound 
onl~1 if (1) the pat.hname has no catalog p8It and is loca.ted in the prefix volume or 
catalog„ or (2) the pathname has a catalog pait corresponding to a patti starting 
wit.h a c:atalog at. the top level of the prefix volume or catalog. 

Backup/Copy/Trarder to Multiple Micro OEkettes (See Sections 2_3_1, 2-3_2, end 2-3. 7) 
The Backup„ Copy and Tran.sf er commands no\."' ellow backups„ copies, and tre.nsfers 
to multiple volurnes. If a list of files is being copied (or backed UP .. or transferred) 
to a mic:ro diskette and you run out of space„ you will be told which file didn't fit 
and ho•vv many more blocks ,,,.,,ere needed„ and y·ou will tie a.s:ked whether vou wa.nt to 
continue on another disket..te. lf you enswer Yes,. you will be led through e. disk.ette 
change and the opere.tion will continue. Note that the volume names of the 
subsequent diskettes need not match t.he first, even if the original destination wes 
specified with a particular volume name (instead of a. device narne). 

List and Names Commands (See Sections 2..3-4 end 2.3.13) 
There are two new at.tributes for iterns in t.he List display. The D attribute 
indicates a directory (a catalog object) arid the • attribute indicates a 
p&-..sword-protected file (see Password Protection,. below). 

The List and Names commands now indent names to show the catalog structure 
whenever yol.J list a contiguous set of files. If you specify a wildcaJd character 
follo•\ved by a string to match„ the files shown will not necessarily be contiguous,. 
and will not be indented. 
11-Jhen a file narne has to be truncated to fit into a limited field of t.he display· (as 
in t.he List command)... the rnissing chare.cters ere no'"'' indicated by an elips:is: ( ... ). 

Pref'ix Convnand (See Section 2_3_5) 
Prefixes rna~' nov\.• be set to catalogs in addition to volumes. A prefix to a catalog 
or sutrce.t.alog must be specified wit.h a complete pathname_ 

Tt1e effect of the current prefix on the interpretation of file narnes: is dis:cr..1sse1j 
under AddCa.talog Command„ 8.bove. 

Dr o.ft- -19 ... 7une.· 84 2-2 



Th&· Fiie /-,:ts..:?S:f/el· 

WARNING 

Setting the main prefix (or working directory) ma·~1 cause problems •nihen 
nmning programs t.hat use int.rinsic units (this includes all the Workshop 
tools). The OS loader tries t.o find a. pro9rarn's: intrinsic libraries using tt-ie 
pathnarnes it finc~s in JNTFW\ISIC.LIB; if t.hese names are partial pathna.mes_, 
it looks: on the prefix vol1Jme or cate.lc11;t,. not tl1e boot volume. To as.·sure 
that 'y'our program's intrin.sic librnries are found, y·ou can do one of t.wo 
t.tüngs: 

1. Cop~./ the intrinsic libraries to the prefi>:: c:atalog. This way·„ ·~/ou can 
support several different library environments on t.t"1e se.rne volume,. 
though ).·'CtU could end up with a prolif eration of librEir:/ files. 

2. Change the names of the libraries in INTRINSIC.LIB to pat.hnames: of t.he 
form "-tlBOOT -libname11 (using the IUMana.ger„ 1jescribed in Chapter 11„ 
Utilities)„ then reboot so t.he OS will store the new names. This rnethod 
is: better, but be careful cr-1anging t.Mngs in INTRINSIC.LIB. 

If 'y'Ctl..J • • .mrnount. the ms.in prefi:x: volurne by eject.ing t.he diskette„ Scavengin~t t.he 
volurne ... or using ttte Unrnount command,. the tioot vol1Jme becomes tt'te prefix 
volurne. 

Rename Command (See Section 2-3.6) 
To rename a file to a name t.he.t only diflers from t.he original in the case of the 
lettern (e.g.; DEt..,10GRAPHICS.OBJ to DernoGraphics.Obj).. you rnust first Rename the 
file to a ternporary rrarne,. then Rerrarne that to the name you vlant. 

Password Protection (See Section 2-3.10, FileAttributes) 
Tv10 new cornmands for pes:S'T'lOrd protection ere found under t.J1e FileAttribut.es 
command. AddPassv1orcJ allo•-Ns 'y'OU to passv.,•ord-protect. a. file (or files„ usin1~ 
',o\'ildcerds:). RemovePa.ssword allows ~1ou to remove a. file's pa-ss\..,•ord„ but ~'OU must 
kno•,i,.• the pa.ssword to remove it. 

The ~"i-1orkshop tools can't open a file once it is password-protect.ed; you must. 
remove the password tiefore ·you can use the file. 

Initialize Command (See Section 2-3.11 and 2..4.1) 
Volumes init.ialized under the new Workshop and OS have a hierarchical catalog 
st.ructure. Since this structure cannot be applied retroactivelv„ an existing volume 
mus:t. be reinitialized in order to t.ake advantage of these features:. ComrnancJs that 
operate on a list of files (e.g,. List) run much faster on a reinitie.Iized disk.,. becaus:e 
in t.he new structure narnes ec.re alread)„ sorted. 

Online Command (See Section 2..3_14) 
The Online cornma.nd now displeys both t.he new OS device names and the olcl 
narnes_, '·,1r1hich are nov-/ devic:e e.lias:es. The new device names are listed in the 
Overviev,• et the beginning of this sect.ion„ and shov·m in the syntax diagrarn:::: under 
File Specifiers, below. 



i+'ork.slwp User's Gaide 

The prefix attribute P is no\.v sometimes displayed as a lo•.,..,ercase p. Uppercase P 
indicates that the main prefix is the indicated volume .. while lowercase p indicates 
that the prefix is e. catalog on the.t volume. 

NOTE 

Tt-1e Online comme.ncf uses the configl.ll'ation informe.tion set by Preferences:. 
lf Online 01Jt.put. says t.hat it could not find 1111 (PARAPORT) on a Lisa 2/10,.. 
use Preferences to detach the non-existent device. If t.he Y.Jorkshop pause:s: 
unexpect.edly in the middle of Online output, it. means e. device is configured 
but. not present. Mal<.e sure that Preferences' idee. of ho•,41 the S\/stem is 
configured is correct. 

File Specifiers (See Section 2..4.2) 
File specifiers he.ve changed to allow for subce.talogs,. new device names, and the 
new wild c:ard characters. The diagrarns that follow show the new format of file 
specifiers, reple.cing those on pages 2-9 and 2-10 of the manual. (The logical 
device names have not changed„ but the diagram is repeat.ed here for convenience.) 

<.ART> syntax diagrams: file-specifier,. 
file-name-or-pattern, 
volume/catalog-spec ... 
physic:al-devic:e, 
physical-device-narne & -alias„ 
logica.1-device, 
wild-cerd-spec. 

New #. and l Wildcard Characters (See Section 2..5) 
Because of the new hiererchical ce.talog structure,. the meanings of the = and ? 
•\.vildcBid characters have changed .. and the new analogous wildcards t. (OPTION =) 
eind l (OPTIOl\J "?) he.ve been e.dded. The plain = and ? wildcerds mee.n search f or e. 
match only across the top level of the catalog, v\1hile the option Wildcards mea.n 
searc:h through all levels. The Wf11./ in 'Tv'hich the matches are rnade is the same: 

= me.tches anv string in the top level of the catalog. 

~ matches any string throughout all levels of the cata.log. 

"? matches any string in the top level of the catalog_, asking for c:onfirrnation of 
each file narne before perforrning trie operation. 

l matches any string throughout all levels of the cate.log„ esking for confirma.tion 
of each file ne.me before perforrning the caperetion. 

Dr o.lt--19 .}une· 84 2-4 li'eJ.5-ss-e- .:\/otes 



logical-device 

fi 1 e-name-or-pat.tern ------------------91 file-name 1--------
~ volume/catalog-spec wild-card-spec 

volume/ catalog-spec 

subcatalog 

physical-device 

physi cal-device 

physical-device-alias 

physical-device-name physical-device-eli~ 

111 PARAPORT 

112 UPPER 

113 LOWER 

lx SLOTx 

lxly SLOTxCHANy 

lxlylz SLOTxCHANyDEVz 

11011 RS232A 

11012 RS232B 

11511 ALTCONSOLE )-
11512 MAINCONSOLE 

(The der.··ice names on the Jett correspond to the det.··ice slisses on the right.,I 

Re l eese tto te 
WOrkS.riop MenU&l , c.r. Z 

Page 1 



logical-devic:e 

wild-cerd-spec 

CONSOLE 

PRINTER 

KEYBOARD 

string-2 



·~V~··· 

Internsl.s II Conf'idential 

1-Code Definition 

PMll~ 
The first pass of the ccmpiler generates a .1 file. Its contents are 
described in this doca;ent. Please note that this information is likely to 
change without notice; there is no guarantee that it is correct. 

-- ( 

A ~.1.f-'~ A-~~Y~- Abbreviations: -~ __ j.· 
()/<~ r·0,,,, 11x { f"· . expr => expression ir;j &. {-'-"""' -l - ' • 

, J ~J'~- ~--, ,, --addr => address (_vJ 1 -::-· \~ o~ \:. ~~~,t 
··/1 · (W) => size or operand is a word 

t" ~ (B) => size of operand is a byte 

00 

t Verlabie rereiinces! 

01 +orrset (W) 
02 +offset(W) 
03 lev(B) +offset(W) 

!J ~- com(B) +offset(W) 
' --05 reg(B) O(B) 

or 05 reg(B) loadSize(B) expr 

Global variable reference 
Local variable reference 
Intermediate level variable reference 
Conrnon variable reference 
Register reference 

or 05 reg(B) load:ount(B) loadSize(B) expr 
reg=register nt.nber (0 .. 15) 

/1oad:ount=number to bllnp count by (only significant with temp 
( registers) 
: O=none (last use of reserved register) 

______}..; l=sustaining use or first&last use 
~~ 2=first use and reservation ror ruture use 

: loadSize=size of expression to load register with 
O=ro load 
l=byte 
2=word 

~- 3=long 
06 · ??????? -(A...AA ~L- r St!'iA~ temp . 
07 ,Z????'?-1'---~ Set temp 

O&-OB Multiple Bytesize 1/2/4/8 byte ternp {09=>2 byte operand} 

•A• - Dereference operator 
•A• - File dereference operator 

OC addr 
()[) e.ddr 
OE addr 
OF +offset(W) addr 

;::=-10-13 Wordsize addr expr 
/ 

•A• - Text file dereference operator 
' ' - Record field offset 
• [] • - 1/2/4/B byte BITf:t\/ index 

23-FebrUB:rJl-84 I-Code-1 



Internsls II Confi dent i sl 

14 Wordsize Wordsize addr expr 
15 Bytesize Wordsize addr expr 
16 addr 

'(]' - Long array index 
'[]' - Packed arrery access 
'I' - Address of operator 

~---·----··-·-----7 
tconstants: 

\ 17 
~>18-18 Mul~ipl~ Bytes+ze , 

/ 1 1C str1ngS1ze(B) ~ .. . 
1 1D string.Size(B) 'fEC ... ' 

1E setSize(B) 

lf 

for 1 to bytesize do 
getnextoperand(B) 

~ss1grrnent operatöts:··7 

nil 
1/2/4/8 byte constant 
String constant 
PfO: Constant 

Set constant 
[] - Null set 

2.0-2{ fl~p~lf_(B) eddr expr ':=' - 1/V4;/ byte essigl'lllent 

Flippable i~ ~ if the as~9~~n~ lett hand side can be cornputed 
after the right hsnd side.C'"!t true,.'- we=>have expr addr. 

20-22 2(8) addr expr Binery in-line assignment of byte/word/long 
expression. Evaluate addr, then expr, then assign 
value or expr to location addr. Return expr. 

20-22 3(B) expr1 addr expr2 Triple in-11ne assigrment of byte/word/long 
expression. Evaluate exprl„ then addr, tßen 
expr2, then assign value of expr2 to localon 

J.-~ ,.. U'Q.":J~~ r - ~ -
addr . Return ex pr 1. 

'
~ 24 et ·ze Wordsize addr expr ':=' - Multiple byte assigment 

r------2!> es· addr expr ' : =' - Set assigrment 
·~" 26 1 tesize 2nd8ytesize Wordsize 

if lstBytesize =21 then {PCKO~} 
addr expr expr 

else 
Bytesize expr expr 

27 Bytesize addr expr 
28 Bytesize Bytesize addr expr 
29 Bytesize addr expr 
2A Bytesize addr expr 
2B Bytesize 
2C lev(B) isptr~B) a 

2E 1 --- (W) h - (W) expr 

':=' - Packed assigrment 
':=' - String assigrment 
':=' - PACX: Assignment 
':•+' - Add to 
':=-' - Subtract from 
WITH field reference, level nnn 
Begin WITH statement, level nnn 
End WITH statement, level nnn 
2 Byte Range Check 

20 l~evB) 
2f hi-( expr String Range Check-assigrment, not index 

I-Code-2 



Internsls 

~ata Conversi~n7 
30-32 expr 
33-35 expr 
36-37 expr 
38-39 expr 
3A-3B expr 
3C-30 expr 

3E Bytesize expr 
3F Bytesize expr 

l scäi ar operat~~;~-; 
\~-."· 

40-41 expr expr 
42-43 expr expr 
44-45 expr expr 
46-47 expr expr 
48-49 expr expr 
4A-4B expr 
4C-40 expr 
4E-4F expr 
50-52 expr expr 
53-55 expr expr 
56-58 expr expr 
59-58 expr 
5C-5E expr expr 
SF-61 expr expr 
62-64 expr expr 
65-67 expr expr 
68-6A expr expr 
68-60 expr expr 

6E expr 
6F expr 

70-71 expr expr 
72-73 expr expr 
74-75 expr expr 
76-77 expr expr 
78-79 expr expr 
7A-7B expr expr 
7C-7D expr expr 
7E-7F expr expr 
80-81 expr expr 
82-83 expr expr 
84-85 expr expr 
86-87 expr 
88-89 expr 

23-Februsry-84 

1->2„ 2->4,. 1->4 integer 
2->1„4->2„4->1 integer 
4->8„8->4 real conversion 
4->4„ 4->8 Float 
4->4,8->4 Trunc 
4->4,8->4 Round 
Extract unsigned field 
Extract signed field 

2/4 Scaler Addition 
214 Scalar Subtraction 
2/4 Scalar Multplication 
2/4 Scalar Division 
2/4 Scalar Nodulus 
2/4 Scalar Negate 
2/4 See.lax Absolute Value 
2/4 Scalar Square 
1/2/4 Scalar ~ 
11214 Scaler OR 
1/2/ 4 Seal ar Xffi 
11214 Scalar tllT 
1/2/ 4 Seal ar < 
11214 Scalar > 
1/2/ 4 Seal ar < = 
1/2/4 Scalar >= 
1/2/4 Sealar = 
1/2/4 Sealar < > 
Boolean NOT 
000 
4/8 Real Addition 
4/8 Real Subtraction 
4/8 Real Multiplieation 
4/8 Real Division 
4/8 Real Modulus 
4/8 Real < 
4/8 Real > 
4/8 Real <= 
4/8 Real >= 
4/8 Real = 
4/8 Real <> 
4/8 Real Negation 
4/8 Real Absolute Value 

II Confidentisl 

l-Code-3 



Internsls 

8A-8B expr 
a: expr 

4/8 Real Square 
TRAPV 

00 ( j 
~ ~ i/l ,_,_ ' ' ,_ -< y 

90 expr expr 
91 expr expr 
92 expr expr 
93 expr expr 
94 expr expr 
95 expr expr 
96 stringsize(B) 
97 stringsize(B) 
98 stringsize(B) 
99 stringsize(B) 
9A stringsize(B) 
9B stringsize(B) 
~ 
so 
':E 
9F 

(S~t~~-~~-~;! 

stringsize(B) 
stringsize(B) 
stringsize(B) 
stringsize(B) 
stringsize(B) 
stringsize(B) 

~ setsize(B) expr expr 
Al setsize(B) expr expr 
A2 setsize(B) expr expr 
A3 setsize(B) expr expr 
A4 setsize(B) expr expr 
A5 setsize(B) expr expr 
A6 setsize(B) expr expr 
A7 setsize(B) expr expr 
AS setsize(B) expr 
A9 setsize(B) expr expr 
AA setsize(B) Bytesize expr 
tl3 ~ 
~ vv0.dl 
A) .,;GA 

~ 
AF 

23-Februm:y-84 

expr expr 
expr expr 
expr expr 
expr expr 
expr expr 
expr expr 

Set + 
Set -
Set *-
IN 
Set <= 
Set >= 
Set = 
Set <> 
Singleton Set 
Set Range 
Adjust Set 

String < 
String > 
String <= 
String >= 
String = 
String <> 
PAOC < 
PAO: > 
PACC <= 
PAOC >= 
PAOC = 
PAOC <> 

II Conridentisl 

I-Code-4 



Internals li Conf'i dertt i sl 

( Procedure/function Calls:~ 

80 index(W) 
81 index(W) 
82 key(8) 
83 key(B) 
84 addr 
85 addr 
86 room(8) 

--~ 87 addr 
__ · 88-BB expr 

OC size(W) expr 
ED setsize(B) expr 
BE 
BF index(W) 

~~t;~l;)_ 
CO label(W) 
Cl 1 e.bel (W) 
C2 label(W) expr 
C3 18.bel(W) expr 
C4 usernlß(W) label(W) 

User function Call 
User Procedure Call 
Standard function Call 
Standard Procedure Call 
Pa:rarnetric function Call 
Pa:remetric Procedure Call 
Nake Room ror function Result 
Reference Pa:rerneter 
1/2/4/8 Byte Value Pa:remeter 
La:rge Value Parameter 
Set Value Parameter 
Begin Parameter List 
User functiorvProcedure Parameter 

Define Internal Label 
Jt.np 
Jllßp False 
Jllßp True --\ 

C5 usernt.n(W) label(W) linknllR(W) 
C6 userntJn(W) label(W) 

Define Local Us~r Label 
Define Global Unr Label 
Jt.rnp to Local User Label 
Jllßp t o Global User Label 
Case Jump 

C7 lev(B) linknlß(W) 
ca expr 

\ C9 O(B) lobound(W) hibound(W) 
elselabel(W) lolabel(W) hilabel(W) 

~ C9 1(8) lobound(W) hibound(W) 
elselabel(W) count(W) 

Case Table--must foÜow case jllnp 

[value(W)„ label(W)] 
CA ctrsize(B) addr exprl expr2 expr3 

ctrsize - size of loop counter 

CB 
cc 

addr - counter 
exprl - start 
expr2 - end 
expr3 - increment 

CD linent.n(W) 
or if linenum = -1 then 

CO -l(W) length(B) fileneme 
- CD -2(W) bool (8) 

CE regset(W) 
regset=set of register (0 .. 15) 

bit on=reserve register 

Ir expr 11st-must follON case jl.ITlp 
FCR statement 

( 1„ 2„ 4) 

F~ end 
CASE end 
Li ne m.rnber 

To open an IN:LLDE or USES file 
Assernbly listing control switch 
Temp registers mask 

bit off=make register available for codegen temp use 

23-FebrUBI}•'-84 I-Code-5 



Internsls II conridentisl 

CF 

00--Df 

EO--Ef 

FO (1n) (un) (cfn) (sn) fnsw 
lev(B) varsize prmbyts 
glb regmask Begin Module 

(ln) - 8-byte Linker nerne 
( un) - 8-byt e User neme 
(cfn) - 8-byte class father nerne 
(sn) - 8-byte Segnent nerne 
fnsw - function switch (fn or proc)~ 
lev - level (l=global) 
versize - Nt.rnber of bytes of local variables 
prmbyts - Bytes of paremeters + 8 
glb - Global Label Flag is Bit 0 

Stack Expan. flag is Bit l 
re(J'nask - register mask for r1lVEM 

Fl (ln) (un) nun(W) levl(B) External. Reference Definition 
F2 (ln) nun(B) kind(B) Canrnon Reference Definition 
F3 (cn) nnnnnnn COßlllon Area Definition 
F4 (un) Bytesize textaddr4(W) Bytesize Bytesize textsize4(W) Bytesize 

globsize2(W) untType(B) Unit File Header 
~ F5-FB 

FC fn(B) size(W) const(W) In-line runction switch 
FD fn(B) level(B) method(B) Method call 
FE debugflag(B) End of module (D compiler option) 
FF End of file 

l-Code-6 



Apple GJDJputer I.nc. 
APPLE-J2 DEVEL (/Jl/ENT TtD.S - A / 

Feb. 22, 1984 
New I-cOdes far Optimizatian 

aaaa aa aa aa aa aa aaaa aaaaaaaaaa aa aaaa aa ca aaaaaaaaaaaaaa aa aa aa aaaaaaaa aaaa aaaa aaaa aa aa aaaaa ca aa cc aaoa ca ca c1 n ca er aa c caaaaa an aa Cl ca c J 11 c nna a1c111 aa aa ca a~ 

The I-code changes and new I-codes for the current optimization project 
include: 

Code Name 

$05 Register 

SCE Tenpstmt 

Operands Definition 

Reg LaadCount LoadSize Expr... Register reference. 
(B) (B) (new!} (B) 

Reg=register nuntler (0 .. 15) 
Loadcount=nunt>er to buntJ 'count' by (only 
significant with t9f1'1 registers): 

o = none (last use of reserved register) 
1 = sustaining use ar firsta1ast use 
2 = f irst use and reservatian f ar future use 

LoadSize=size af expression to load register with. 
o = no load. 
1 = byte. 
2 = ward. 
3 = lang. 

Regset 
(W) 

Regset=set of register (0 .. 15) 
bit on = reserve register 

TentJ Registers MasK. 

bit off= mal<e reg available far cOdegen tentJ use. 

Binary Inline Assign's: 
$20 2 Addr .. . 
$21 2 Addr .. . 
$22 2 Ader .. . 

(B) 

Expr .. . 
Expr .. . 
Expr .. . 

Inline assignnent af byte expr. 
Inline assignnent af ward expr. 
Inline assignnent af long expr. 

Evaluate "addr", then "expr", then assign value af "expr" ta 
location "aadr". Return "expr". 

Triple Inline Assign's: 
$20 3 Exprl. . . Addr. . . Expr2. . . Inline assignment of byte expr. 
$21 3 Exprl. . . Addr. . . Expr2. . . Inline assignment of word expr . 
$22 3 Exprl. . . Addr. . . Expr2. . . Inline assignnent of long expr. 

(B) 

Evaluate "exprl", then "addr", then "expr2", then assign value 
af "expr2" to location "addr". Return "expr1". 


	000
	001
	002
	003
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02-01
	02-02
	02-03
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	07-01
	07-02
	07-03
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-01
	12-02
	13-01
	13-02
	13-03
	14-01
	14-02
	14-03
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	16-01
	16-02
	16-03
	16-04
	16-05
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	19-04
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	21-01
	21-02
	21-03
	21-04
	21-05
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	24-01

