Katle withey
Onakpment Toals Grow
oy 1004

s cesessssMEMOcscddscsasdadddddn

To: Development Tools Group, Operating Systems Group, Numerics Group, Eric
Harslem, Larry Tesler, Pete Cressman, Steve Luckau, Paul Williams, Berry
Haynes, Susan Keohan, Chris Espinosa, Caroline Rose, Jerome Coonen

From: Katie Withey, x3596
Date: 1D February 84

re: Internals Documentation

I Y Y Y Y Y Y Y N N Y N Y N Y AR RN YN Y Y X

Attatched is the first dreft of the Lisa Development S\stem Internsls Docurneniation
Please note thet this is a living document; changes will be made, and no part of it is
guarerteed to be accurate. If you have any changes or corrections, PLEASE don't just
mark them in your copy; tell me about them. Suggestions for inclusions in the next
relesse sre also welcome.

Preface

The purpose of this document is to explain the internal structures and algorithms used
by the Lisa's run-time environment and development tools, and the internal library
units (such as OBJIOLIB and SULIB) that are related only to Lisa systems software. It
is actually a collection of documents and memos, any of which can be used
separately, all relseting to different aspects of the system.
This is a reference document for programmers working on the following:

= Maintaining or enhancing existing Lisa development software.

= Writing compilers or utilities for the Lisa Workshop, either on contract with Apple
or as third-party independants.

= Writing assembly-language programs that will interface with our compiled code.

How will they benefit from this document?

= It will save the people maintaining tools the trouble of looking through the code
themselves to find information.

= It will save outside programmers, who don't have access to the code, from calling
us to ask questions sbout things that «we have to look up in the code.

= Parts of it will be included &s & reference section in technical contracts that we
assign to outside programmers.

= It will provide assembly-language programmers with such specifics as register
conventions, parameter-passing techniques, and memory layouts used by the
compiler for different types of arrays and structures.

= It can be used to train new systerns software programmers on the existing internsals
of the system.

16-January -84 Freface

Contents

Lisa Development Software Docurnentation: A Road Map
Pascal Compiler Directives

Pascal Code-Cruncher's Handbook

The Last Whole Earth Text File Format

Pascal’'s Packing Algorithm

PASLIB Procedure Interface
PaslibCall Unit
PFaslibC Unit: Privileged PASLIB Calls

Flosting-Point Libraries
Standsrd Unit
Execution Ervironment of the Pascal Compiler

Intrinsic Units Mechanism (overview)
IUManager (old and “spring release” versions)

Object File Forrnats
Interface to OBJIOLIB

Format of .SYMBOLS File
Using LisaBug
Shell-Writer's Guide

b-February—-584

Contents

Lisa Development Software
Documentation:
A Road Map

Introduction

This road map was designed to help you to find your way sround the verious
documents describing program development for the Lisa. It will help you decide
which software you need to learn more about, which softwere you can ignore for the
moment, and how you should proceed in studying the rest of the technical
documentation.

General Overview of the Erwironments Available

There are as many ways of writing programs as there are creative programmers.
However, Apple supports only three general styles of programs that you can write for
the Liva: those written for 1) the Workshop environment, 2) the QuickPort
environment, and 3) the ToolKit erwironment. Programs written for any of these
environments can use most of the same units and libraries, but there are some
importart differences of which you should be awsare.

The {Workshop (Figure 1) provides a simple non-window, character and graphic
erwironment within which a program may run. Programs written to run in this
environment may use Pascal's built-in 1/0 for both files and textual display to the
console's terminal emulator, or they mey directly utilize the Lisa 0S's file system
primitives. They may also use the QuickDraw unit for drawing bitmep graphics and
displaying text in a veriety of fonts with various attributes, and mey utilize a veariety
of other useful library routines. These programs are not able to use the Lisa Desktop
libraries dealing with windows, menus, and dialog boxes, nor do they have easy access
to Lisa Office System documents.

In addjtion to providing these run-time facilities, the Workshop also includes a
command shell which makes available to users an extensive set of facilities for: 1)
Interactive program development in Pascal, Assembly, BASIC, and COBOL; 2) File and
device manipulation; and 3) Interactive and batch program execution and control.

QuickFort (Figure 2) provides the simplest Desktop erwironment, at least from the
programmer's viewpoint. In most respects, writing a program for the QuickPort
environment is identical to writing one for the Workshop environment. Using Pascal's
built-in 1/0 facilities, programs written for QuickPort may do textual display to &
variety of window-based terminal emulators, and may also display graphics using
QuickDraw. These programs do not directly use the Lisa Desktop libraries, and are, in
fact, unawere of such things as the window ervironmernt, the mouse, and menus. They

l4-February~84 Road Msp-1

Internals & Confidentisl

may, however, exchange information with Lisa Office System documents via the
Cut/Paste mechanism.

The ToolKit (Figure 3) provides the most complete access to the Desktop facilities.
From the prograrnmer's viewpoint, it also requires the most knowledge of these
facilities. Programs written using the ToolKit use the Generic Application and may
use any of the ToolKit building blocks, which provide easy, controlled access to the
Lisa Desktop libreries, the mouse, and menus. They may also exchange information
with Lisa Office System documents via the Cut/Paste mechanism.

Overview of the Pieces

is & set of units that are USEd and linked with a program which is to be
run in the Desktop environment. QuickPort then provides the program with a
"terminal window", to which the program's console 170 may be directed through the
use of Pascal's built-in Text 1/0 facilities. The program simply makes Readln and
WriteLn calls to display text or receive keyboard input. QuickPort code hides from
the program such issues as cutting and pasting information from other Desktop
applications, communicating with the Desktop shell, growing and shrinking the window,
covering and uncovering the window, and activating or deactivating the program. For
a program using QuickPort, such issues ere of no concern.

The ToolKR is a set of libraries that provides standard Lisa application behavior,
including windows that can be moved, resized, and scrolled, pull-down menus with
standard functions such as saving and printing, and the Cut/Paste mechanism. The (
ToolKit defines the parts of an spplication common to all Lisa applications. The
object-oriented structure of the ToolKit allows you to implement your application as
extensions to the "Generic Application".

The Lisa Operating Systern provides the program with an environment in which
multiple processes can coexist, with the ability to communicate and share date. It
provides a device-independent file system for 1/0 and information storage, and handles
exceptions (software interrupts) and memeory management for both code and data
segments.

PASLIB is the Pascal run-time support library. Most of the routines in PASLIB
support the Pascal built-in facilities, including routines for initialization, integer
arithmetic, data and string manipulation, sets, range checking, the heap, and 1/0.

Floating Poirt Libraries provide numeric routines which implement the proposed 1EEE
Floating Point Standerd (Standard 754 for Binary Floating-Point Arithmetic), and
higher-level mathematical slgorithms. FPLib provides Single (32-bit), Double (64-bit),
and Extended (80-bit) floating-point data types, a 64-bit Integer data type, conversion
from one arithmetic type to another (or to ASCII), arithmetic operations,
transcendental functions, and tools for handling exceptions. MathlLib provides, among
others, algorithms such as extra elementary functions, sorting, extended conversion
routines, financial analysis, zeros of functions, and linear slgebra.

QuickDraw is & unit for doing bit-mapped graphics. It consists of procedures,
functions, and deta types you need to perform highly complex graphic operations very
easily and very quickly. You can draw text characters in a number of fonts, with

l4-Februery~64 Rosd Mep-2

Internals & Confidential

veriations that include boldface, italic, underlined, and outlined; you can draw
arbitrary or predefined shapes, either hollow or filled; you can draw straight lines of
any length and width; or you can draw any combination of these items, with a single
procedure call.

The Deskiop Libraries provide window, graphics, mouse, and menu routines used by
all Office System applications. They are not directly called by any programs written
for the three run-time environments discussed here, but provide the hidden foundation
for both the QuickPort and the ToolKit environments.

The Haroware Imterface unit lets you access Lise herdware elements such as the
mouse, the cursor, the displey, the contrast control, the speaker, the keyboard, the
micro- and millisecond timers, and the hardware clock/calendar.

The Standard Uit lets you do string, cheracter, and file-name manipulation,
prompting, retrieval of messages from disk files, abort exec file processing, and
conversions between numbers and strings.

The DFrimitives unit provides you with rast, efficient text-file input and output.

The FProgram Cornrmunication unit allows programs to communicate with each other
and with the Workshop shell.

LisalRyy allows you to examine and modify merory, set breakpoints, assemble and
disassemble instructions, and perform other functions for run-time debugging.

More Detail

QuickPort: A program which is to meke full use of the capabilities of the Lisa Office
System will be structured as an endless loop, within which the program continually
polls the Window Manager for any events it should respond to. We will refer to such
& program a&s an /ntegrated Frogrem An integrated program must handle such
ssynchronous events as the program's window being activated or deactiveted, the
window being opened, closed, moved, resized, or needing update, the mouse button
going down or up, and 8 key going down or up. The program must also be & good
citizen in Lisa's multi-tasking but non-preemptive scheduling environment by
volurteering periodicslly to yield the CPU to any other process needing service.
These are just a few of the important characteristics of an integrated program. The
result of & program following these and other guidelines will be that it exhibits the
same consistent, responsive behaviar as other Apple-written programs like LisaDraw.

QuickFort is a collection of pieces which make writing programs for the Office
System's window environment as easy as writing them for the Workshop's non-window
environment. NOTE: In order to differentiste the QuickPort modules from the
program which uses them, we will refer to the program itself as a Vanilla Frogram
QuickPort allows the vanilla program to be more traditionally structured, as if its user
interfacing were being done through & smart text/graphics terminal; the vanilla
program presents its display to the user by a combination of text 1/0 calls (e.g.,
WriteLn/ReadLn) and QuickDraw calls (e.g.,, DrawString/PaintRect). The QuickPort
modules handle all everts from the Window Manager, provide for yielding the CPU to
competing processes et specific points, and in general shelter the program from the

- Id-February—64 Road Mep—-3

Internals & Confidential

sornetimes tricky requirements of writing an integrated program for the Lisa Office
System.

QuickPort prw1des the vanilla program with a window, which meay be divided into a
Text Farel and a QuicklDraw Fanel! for displaying both textual and graphic
information. Each of these optional panels is configurable in size and locetion, and
may be independently scrolled horizontally or vertically. Text and Graphics windows
may be overlaid, so the resulting window presents a composite of both types of
output. The window may be resized, moved, covered, or uncovered without the
vanilla program even being aware of such events. Textual and graphic information
may be exchanged between & vanilla program's document and other documents,
whether vanilla or irtegrated, by using the familiar Cut/Paste mechanism. Without
any effort on the part of the vanilla program, the end user is given a large measure
of control over the window's configuration and behavior, using mouse and menu
actions supported by QuickPort.

The user may request printing of either the text panel or the graphics panel. In
addition, vanilla programs mey produce printed output under program control by
writing to the -PRINTER logical device. Whereas, in the Workshop environment,
printing is immediate (each line printing as soon as the program “writes" it), in the
QuickPort/Desktop environment printing is all spooled. This means thaet the printed
output of a8 vanilla program will be submitted to the Office system's PrintShop, which
determines from the print queue when the document will be printed.

The Text FPare! emulates a terminal display which corresponds to the Pascal built-in
OUTPUT file, the built-in INPUT file, and the ~-CONSOLE and -KEYBOARD logical
devices. Apple provides emulators for the F7200 and SGRUC terrninals, and makes
it possible for you to either custormnize them or create entirely new terminal
emulators. These terminal emulators are actually Zilters which pre-process the
cheracter output strearn destined for the Standarda Terminsl Linit. which provides the
Text Panel display. Each emulator's job is to recognize the terminal-specific
character sequences imbedded in the output stream which are commands to the
terminal, and to call upon the Standard Terminal Unit to take the appropriate actions.
A program may eliminate the filtering step, if desired, by calling directly upon the
Standerd Terminal Unit for display actions.

The Graphics Farel allows your program to display graphics on a bitmap which is a
maximum of 720 pixels wide by 364 pixels high--the same size as Lisa's physical
screen bitmap. This panel can be resized by the user or under program control, and
can be scrolled horizontally and vertically to display different perts of the entire
bitmap. The Graphics Panel supports every QuickDraw call, including those related to
setting foreground and background colors for printed output. An application mey
write anywhere in the coordinate plane of its graphics panel (‘grafPort’, to use
QuickDraw's terminology), without having to worry about where its window is placed
on the screen or what other windows are in front of it. QuickDraw, with a little help
from the Window Manager, keeps the application's output from getting out of the
grephics panel or from clobbering other windows.

14-February~64 Road Map-4

Internals & Confidential

The ToolKit: The ToolKit is a set of libraries that provides standard behsvior that
follows the design principles cheracterizing Lisa applications:

= Extensive use of graphics, including windows and the mouse pointer.
= Use of pull-down menus for comnmands.

= Few or no operating modes.

= Data transfer between documents by simple cut and paste operations.

For example, all Lisa applications have windows thet cen be moved around the screen,
and that can usually be resized and scrolled. The ToolKit takes care of all these
functions. The ToolKit also displays a menu ber for the active application, and
provides & number of standard menu functions, such as saving, printing, and setting
aside.

However, the ToolKit is more than a set of libraries. Because the ToolKit is written
using Clascal, the ToolKit is almost a complete program by itself. You can, in fact,
write & five-line main program, compile it, link it with the ToolKit, and run it. Whsat
results is the Generic Application.

The Generic Application has many of the standard Lisa application cheracteristics. A
piece of Generic Application stationary can be torn off, and, when the new documert
is opened, it presents the user with a window with scroll bars, split controls, size
control, and & title bar. The mouse pointer is handled correctly when it is over the
window. The window can be moved, resized, and split into multiple panes. There is a
menu bar with a few standard functions, so that the generic document can be saved,
printed, and set aside. The single Generic Application process can rnanage any
number of documents. You cannot, however, do anything within the window, aside
from creating panes. The space within the window, along with the additional menu
fuctions, is the responsibility of the real application.

Therefore, when you write a Lisa application using the ToolKit, you essentially write
extensions to the Generic Application. It is very easy to write extensions to any
Clascal program. To insert your applicstion's functions, you creste & set of
subclasses, including methods to perform the work of you application, and then you
write & simple main program, and compile and link it with the ToolKit.

Whenever necessery, the ToolKit calls your applicetion's routines. For example, if the
user scrolls the document, the ToolKit tells your program to redraw the changed
portions of the window. Your progrem does not need to be concerned with when
redrawing is required.

One effect of Clascal is that you can write applications in steps. You can begin by
doing the least amount possible, and get an application that does very little, but will
run. You can then extend your application bit by bit, checking as you go. This
characteristic of Clascal makes it easy to extend the capsbilities of ToolKit programs,
even years after the original program.

The ToolKit's debugger, KitBug, provides run-time debugging of ToolKit Clascal
programs. It allows you to do performance measurements, set breakpoints and traces,
single-step through your program one statement ot a time, and do high-level
examinsations of data objects. ’

14-February—~64 Road Map-5

Internals & Conridential

The Operating System: The Opersting System provides an environment in which
multiple processes can coexist, with the ability to commmunicate and share data. It
provides a file system for 1/0 and information storage, and handles exceptions
(software interrupts) and memory management.

The File Systern provides input and output. It accesses devices, volumes, and files.
Each object, whether a printer, disk file, or any other type of object, is referenced by
a pathname. Every 1/0 operation is performed as an uninterpreted byte stream. Using
the File System, all 1/0 is device-independent. The File System also provides device-
specitic control operstions.

A process consists of an executing program and the data associsted with it. Several
processes can exist et once, and will sppesr to run simultaneously because the
processor is multiplexed among them. These processes can be broken into multiple
segments which are automatically swapped into memory as needed. Communication
between processes is accomplished through events and exceptions. An svert is a
message sent from one process to another, or from & process to itself, that is
delivered to the receiving process only when the process asks for it. An exception is
a special type of event that forces itself on the receiving process. In addition to a
set of system-defined exceptions (errors), such as division by zero, you cen use the
systemn calls provided to define any other exceptions you want.

Memory' management routines handle data segments and code segments. A dals
segment is a file that can be placed in memory and accessed directly. A code
segment is a swapping unit thet you can define. If a process uses more memory (
than the svailable RAM, the 0S will swap code segments in and out of memory as
they are needed.

PASLIB: PASLIB is the Pascal run-time support librery. It provides the procedures
and functions that are built into the Pascal language, acts as the run-time interface
to the Operating Systemn, and "completes” the 68000 instruction set by providing
{oslitin:ts. for the compiler-generated code to call upon in lieu of actual hardware
instructions.

PASLIB routines are called with all parameters passed on the stack. There is an
initializetion routine to initialize necessary veriables, libraries, and exception-handlers
and set up global file buffer addresses, and a termination routine to kill processes.
You can do four-byte integer srithmetic. Data can be moved, or scanned for &
particuler character. String manipulation routines include concatenating, copying,
inserting or deleting a substring, determining the position of a substring, and
compearing strings for equality. Set manipulation routines let you find set
intersections or differences, adjust the size of a set, and compare sets for equality.
There are range-checking and string range-checking routines. Heap routines let you
allocate memory in the heap, mark or release the heap, check available memory in
the heap, and check the heap result. 1/0 routines let you read and write lines,
characters, strings, packed arrays of characters, booleans, and integers, as well as
check for a keypress or an end-of-line, and send page marks. File 1/0 routines

14-February—84 Road Map-6

Internals & Confidentisl

include rewriting, resetting or closing a file, detecting an end-of-file, reading and
writing blocks, and get, put, and seek procedures.

Floating-Point Litraries: The Lisa provides arithmetic, elementeary functions, and
higher level mathematical algorithms in its intrinsic units FPLib and MathLib, which
are contained in the file IDSFPLIB.

FPLib provides the same functionality as the SANE and Elems units on the Apple][
and //{, including:

» Arithmetic for all floating-point and Comp types.

= Conversions between numerical types.

= Conversions between numerical types, ASCII strings, and intermediate forms.
= Control of rounding modes and numerical exception handling.

= Comrnon elementary functions.

Mathl ib provides the extra procedures available only on the Lisa:

» Extra environments procedures.

= Extra elementary functions.

= Miscellaneous utility procedures.

= Sorting.

= Free-format conversion to ASCIL

= Correctly rounded conversion between binary and decimal.
= Financial analysis.

s Zeros of functions.

= Linear slgebra.

QuickDraw: Virtually all of Lisa's graphics are perfarmed by the QuickDraw unit.
You can draw text, lines, and shapes, and you can draw pictures combining these
elements. Drawing can be done to rmany distinct “ports" on the screen, each of which
is & complete drawing environment. You can "clip" drawing to arbitrary aress, so
that you only draw where you want. You can draw to an off-screen buffer without
disturbing the screen, then quickly move your drawing to the screen.

7ext characters are avilable in a number of proportionally-spaced fonts. Any font
can be drawn in any size--if a font isn't available in a particular size, QuickDraw
will scale it to the specified size. You can draw cheracters in any combinetion of
boldface, italic, underlined, outlined, or shadowed styles. Text can be condensed or
extended, and it can be justified (aligned with both a left and a right margin).

Straight Zines can be drawn in any length and width, and can be solid-colored (black,
white, or shades of gray) or patterned.

Shapes defined by QuickDraw are rectangles, rectangles with rounded corners, full
circles or ovals, wedge-shaped sections of circles or ovals, and polygons. In addition,
you can describe any erbitrary shape you want. All shapes can be drawn either
hollow (just an outline, which has all the width and pattern characteristics of other
lines) or solid (filled in with a color or pattern that you define).

14-February -84 Road Msp—-7

Internals & Confidentisl
(

QuickDraw lets you combine any of these elements mto a picturg, which can then be
drawn--to any scale--with a single procedure call.

Three-dimensional graphics cepabilities are also aveailable, in a unit called Graf3D,
which is layered on top of the QuickDraw routines. Graf3D lets you draw three-
dimensional objects in true perspective, using real variables and world coordinates.

The Hardware Interface: The Hardweare Interface unit lets you access Lisa hardware
elements such as the mouse, the cursor, the display, the speaker, the keyboard, and
the timers and clocks.

Mouse routines determine the location of the mouse, set the frequency with which
software knowledge of the mouse location is updeted, change the relationship between
physical mouse movermnent and the movemert of the cursor on the screen, and keep
track of how far the mouse has moved since boot time.

Cursar routines let you define different cursors, track mouse movements, and display
a busy cursor when an operation tekes a long time.

Screen-comtrol routines can set the size of the screen, and set contrast and
automatic fading levels.

Speaker routines allow you to find out and set the speaker volume, and creste
sounds.

Routines are provided to handle the different Ae&yboargs available for the Liss, as
well as the mouse button and plug, the diskette buttons and insertion switches, and ¢
the power switch. You can find out which keyboard is sttached, and set the systern
to believe that a different physical keyboard is connected. You can check to see
what keys (including the mouse button) sre currently being held down, look at or
return the events in the keyboard queue, and read and set the repeat rates for
repeatable keys.

Date and time routines let you access the microsecond and millisecond timers and
check or set the dete and time.

The Standerd Unit: The Standard Unit (StdUnit) is an intrinsic unit providing a
number of standard, generally-useful functions. The functions are divided irto aress
of functionality: character and string manipuletion, file name manipulation, prompting,
retrieval of error rnessages from disk files, Workshop support, and conversions.

The unit provides types for standsrd strings and for sets of characters, definitions for
a number of standard characters (such as <CR> and <BS)), and procedures for case
conversion on characters and strings, trimming blanks and appending strings and
characters.

File name manipulation functions let you determine if & pathname is a volume or
device name only, add file name extensions (such as ".TEXT"), split a pathname into
its three basic components (the device or volume, the file name, and the extension),
put the components back together into a file name, and modify a file name given
optional defaults for missing volume, file, or extension components.

l4-Februaery—-84 Road Map-&

Internals & Confidential

Prompting procedures let you get characters, strings, file names, integers, yes or no
responses, and so forth from the console, providing for default values where

approprisate.

Special Workshop functions let you stop the execution of an EXEC file in progress,
find out the name of the boot and current process volumes, and open system files,
looking st the prefix, boot, and current process volurnes when trying to access a file.

Conversion routines let you convert between INTEGERs (or LONGINTS) and strings.

The DPrimitives Unit: The I0Primitives unit provides you with fast, efficient
text-file input and output routines with the functionality of the Pascal 1/0 routines.
It includes routines for reading characters or lines, and for writing cheracters, lines,
strings, and integers, plus the low-level routines on which the others are based.

The Program Communications Unit: The Program Communicsations unit (ProgComm)
provides three mechanisms for communication between one program and another or
between a program and the shell. The first two irvolve strings sent from a program
to the shell; one tells the shell which program to run next, the other is a "return
string” that can be read by the exec file processor to tell an exec file, for example,
whether the program completed successfully. The third mechanism involves reading
from and writing to a 1K byte communicsations buffer, global to the Workshop. Using
the unit, a program can invoke enother program and provide its input through the
buffer, without user intervention.

LisaBug LisaBug provides commands for displaying and setting memory locations and
registers, for assembling and disassembling instructions, for setting breakpoints and
traces to trace program execution, for manipulating the memory management
hardware, and for measuring execution times using timing functions. Wtility
commands are also available to clear the screen, print either the main screen or the
LisaBug screen, change between decimal and hexadecimal, change the setting of the
NMI key, and display the values of symbols.

14-Februarn,~84 Road Map-¢

Internals & Confidentisl

Where to Go from Here

The Lisa development software is not fully documented yet. The following is & list of
what is available, some of it only internally, as of this publication. Note that the
spring-release manuals will be organized differently from the current versions, and
will incorporate much of the information that is now in the internals documentation
or in separste docurmnents.

Fascal Rerference Manusl for the Lisa
includes: QuickDraw
Hardware Interface
Floeting-Point Library

Operating S\stem Rererence Manuel for the Lisa
Workshop Liser’s Guide Tor the Lisa

Lisa Developrment S)ystem lnternsls Docurnemation
includes: Pascal Run-Time Library
Standerd Unit
LisaBug
Floating-Point Libraries

QuickFort Rpplications Liser Guide*
QuickFort Frogremrmner's Guide*

An Introduction to Clascal

Clascal Selr-Stuay:

ToolKit Reference Manual

ToolKit Training Segments

Nurnerics Manual: A Guide to Lising the Rpple " Fascal SANE and Elems Units
FPLib provides the same functionality as these units.

Mathl it Guide*

*These manuals currently in rough draft form.

14-February-84 Road Msp—10

WORKSHDP PROGRAM
SLLLLLEETEEITACERRRNSNNS

[Floating-Point Litraries }J

LIEEE Numerics, Math Algorithms

{ Hardware Intexface }_

L Mouse, Keyboerd, Clocks, Speaker

{ Standard Unit
{ Strings, Prompts, Errar Msgs, misc
le { 10 Primitives }
L Fast Text File 1/0
< f Program Communication
L Inter-program and Shell Communication
i Pascal Run-Time Library) <
| — 1/0, Heap, Strings, Math J |
-{ QuickDraw]t
| — Bit-Map Graphics)
-.! Lisa Operating System
L Memory Mgmt, File System, Process Mgmt

Figuwe 1
The Workshop Run-Time Environment

KEY to Figures 1, 2, & 3

it N i its that st
r Unit 1 indicates units be used

{ Description of what it does J incicates opticnal nits that mey be used

>

Roed Mgp-11

ESEARSREREEEERESERRRARE

QUICKPORT PROGRAM

ERERA NN NI NNy

[Floating-Point Litreries
LIEEE Numerics, Math Algorithms

{ Herdwere Interface }
L Clocks, Speaker
[Stenderd Unit 1.

{ Strings, Prompts, Error Msgs, misc }

i Pascal Run-Time Library

L 170, Heap, Strings, Math J

[}

v

G) | Goo
A 4
[_Printer Support)
(m‘rm"d) { -Printer J
(QuickPart)]
L virtual-Terminal Window J
f ToolKit]
L Generic_Application, Bldg Blocks J

v

1

Desktop Libraries

]

L Window Mgr, Starage Mgr, Font Mgr, Print Mgr)

L

g—{ QuickDraw
— Bit-Map Graphics
_.f Lisa Operating System
L Memoary Mgmt, File System, Process Mgmt

Figure 2

The QuickPart Run-Time Environment

Road Mep-17

[Floating-Point Litraries)
LIEEE Numerics, Math Algorithrnsj.

e

{ Hardware Interface]‘
l Clocks, Speaker J

@——{ Pascal Run-Time Litrary

1/0, Heap, Strings, Math J‘

v
- [ToolKit J—

LGeneric Application, Bldg Blocks HW}_

r Desktop Lilreries]
| Window Mgr, Storage Mgr, Fort Mgr, Print Mr

QuickDraw L

e
— Bit-Map Graphics }

Lisa Operating System
Memory Mgmt, File System, Process Mgmt

Figure 3
The ToolKit Run-Time Environment

Road Mep-13

Pascal Compiler Directives

The following compiler commands are available:

$%+ or $%-
$C+ or $C-

$D+ or $D-

$E filename

$+ or $H-

$1 filename

$L filename

$L+ or $L-

$0+ or $0-

$OV+ or $OV-

7-Februsry -84

Allow the ¥ symbol in identifiers. The default is $%-.

Turn code generstion on (+) or off (-). This is done on a
procedure-by-procedure basis. These commands should be written
between procedures; results ere unspecified if they are written
inside procedures. The default is $C+.

Turn the generstion of procedure names in object code on (+) or off
(-). These commands should be written between procedures; results
are unspecified if they sre written inside procedures. The default
is $D+.

Start making a listing of compiler errors as they are encountered.
Analogous to $L filename (see below). The default is no error
listing.

Disables handle checking so dereferenced handles (master pointers)
may be used in with statements, on the left side of assignment
stetements, and in expressions involving procedure calls. The
default is $H+.

Start taking source code from file filename. When the end of this
file is reached, revert to the previous source file. If the filenarne
begins with + or -, there must be a space between $I and the
filename (the space is not necessery otherwise). Files may be $I
included up to five layers deep.

Start listing the cornpilation on file filename. If & listing is being
made already, that file is closed and saved prior to opening the
new file. The default is no listing. If the filename begins with +
or —, there must be & space between $L and the filename (the space
is not necessary otherwise).

The first + or - following the $L turns the source listing on (+) or
off (-} without changing the list file. You must specify the listing
file before using $L+. The default is $L+, but no listing is produced
if no listing file has been specified.

Suppress register opitimization (-). The default is $0+.

Optirmizetion limited--use the old (2.0 release) optirnization
mechanism, instead of the new one. The defsult is the new one.

Turn integer overflow checking on (#) or off (-). Overflow checking
is done sfter all integer add, subtract, 16-bit multiply, divide,
negate, abs, and 16-bit square operstions, and after 32 to 16 bit
conversions. The default is $OV—.

Cornpiler Directives-1

nternsis

R+ or R-

$S segneme

$U filename

$+ or SU-

<+ or $X-

7-February-94

& Conflideriisl

Turn range checking on (+) or off (-). At present, range checking is
done in assignrnent statements and array indexes and for string

value parameters. No range checking is done for type longint. The
default is $R+.

Start putting code modules into segment segname. The default
segrnent name is & string of blanks to designate the "blank
segment," in which the main program and all built-in support code
are always linked. All other code can be placed into any segmernt.

Search the file filename for any units subsequently specified in the
uses-clause. Does not apply to intrinsic-units.

Tell the systern not to seerch INTRINSIC.LIB for units you use (-).
The defsult is $U+ — the system searches INTRINSIC.LIB first,
then your own libreries.

Turn automatic run-time stack expansion on (+) or off (-).
Run-time stack expansion is the insertion of an extra 4-byte
instruction per procedure to ensure that the Lisa's memory-
management mechanism has mepped in enough steck space for the
execution of the procedure. With $X~, excessive use of the stack
by the procedure could cause a bus error. The default is $X+.

The $SETC command has the form:

{ﬁE!‘CID :'-'M}
or (
{$SETC ID = DR}

where ID is the identifier of a cornpile-time variable and EXPR is a8
compile-time expression. EXPR is evaluasted immedistely. The
velue of EXPR is assigned to ID.

Compile-time variables sre completely independent of program
veriables; even if a compile-time variable and & program veriable
have the sarne identifier, they can never be confused by the
compiler.

Note the following points about compile-time variables:

= Compile-time variables have no types, although their values do.
The only possible types are integer and boolean.

= At any point in the prograrmn, & compile-time variable can have
a new value assigned to it by a $SETC command.

Cormpller Directives-2

lriterngis & Confiderdtisl

$IFC, $SENDC
$ELSEC Conditional compilatior is controlled by the $IFC, $ELSEC, and
$ENDC commands, which are used to bracket sections of source text.
Whether a particular bracketed section of a program is compiled
depends on the boolean value of a compiie-time expression which
can contein compile-lirne variabies

The $ELSEC and $ENDC commands take no arguments. The $IFC
command has the form:

{$IFC EXR}
where EXPR is 8 compile-time expression with a boolean value.

These three commands form constructions sirniler to the Pascal
if-statement, except that the $ENDC command is always needed &t
the end of the $IFC construction. $ELSELC is optionsl.

$IFC constructions can be nested within each other to 10 levels.
Every $IFC must have & matching $ENDC.

Compile-time expressions appesr in the $SETC command and in the
$IFC commend. A compile-time expression is evalusted by the
compiler as soon as it is encountered in the text.

The only operands allowed in & compile-time expression are:
= Compile-time wveriables

= Constants of the types integer and boolean. (These are also the
only possible types for results of compile-tirmne expressions.)

All Pascal cperators are allowed except as follows:
= The in operstor is not allowed.
= The ® operator is not allowed.
= The / operator is automatically replaced by div.

7-Februsry -84 Cornplier Directives-3

Fred Forsman

Revision 1.0
September 28, 1983

Remove unsightly, unwanted bytes
in the privacy of your own office.

No gimmicks, pills, fads or strenuous exercise.

Pascal Code Cruncher's Handbook Page 1

PASCAL
CODE CRUNCHER'S
HANDBOOK

Fred Forsman

Introduction

This document explains how to reduce the size of Pascal code by changes
at the Pascal source level. Thus what will be presented are source
transformations which result in semantically equivalent, but smaller
code.

While these transformations will produce smaller code, they are unlikely
to produce code that is "better” in all senses. Sometimes you will be
trading off clarity for efficiency since typically you will be changing
what was the first and obvious wey of writing your code. On the other
hand, your code may benefit (and actually become clearer) just from
having been thought about a second time. Nevertheless, if it is given
that you must reduce your code size, you may find these source
transformations more palatable (and more maintainable) than rewriting in
assembly language.

Please note that this is a living document, that is, no claims are made
that this is a complete or final list of source transformation
techniques. New techniques will be added as I find out about them (so
it you are sware of some transformations not mentioned here please let
me know about them). Also, some of the techniques described will be
removed from this document when future compiler optimizations obviate
the need for them.

Thanks to Al Hoffman for his invaluable assistance in researching and
documenting much of the material presented here. Thanks also to Ken
Friedenbach and Rich Page.

Pascal Code Cruncher's Handbook - ' Page 2

How to find what code to crunch and how to
reasure your progress

Given a Pascal unit which you want to crunch, you need to identify the
procedures which are most likely to benefit from crunching and you need
a mechanism by which to measure the results of your efforts. The Pascal
code generator writes information to the console on the size of the code
generated for each procedure and the size of the code for the unit being
compiled. With a compile exec file such as the one below you can
redirect this information to a file, for use in later analysis.

$EXEC {perform a compile}

3 { the first parameter (%0) specifies what file to compile }

3 { if a second parameter is specified, it is used for the output obj
file, otherwise we default to "%0.obj" } :

$ { if a third persmeter is specified, the code generator's console
output is redirected to "%2.text"”, otherwise default to "g.text" }

3 { the intermediate file is put in a temp file on -paraport |}

P{Pascal }%0

-paraport-temp
3IF %2 & '' THEN

S{Sys-mgr }0{0OutputRedirect }%2.text
3ELSE

S{Sys-mgr }0{OutputRedirect}g.text
$ENDIF

Q{quit Sys-mgr}
G{generate}-paraport-temp
$IF %1 <> "' THEN
%1
$ELSE
%0
FENDIF
S{Sys-mgr }0{OutputRedirect }-console
N{quit}
SENDEXEC

Once you have the code generator's console output, the first step is to
identify the easy targets for crunching: most often these will be the
larger routines (code size > 250 bytes, or some similar criterion). The
above exec file can then be used to verify that any changes you make
actually result in code size improvements.

Pascal Code Cruncher's Handbook Page 3

It you are working on code that is not totally new, chances are that it
has undergone a number of major and minor changes. As code is modified,
“dead" code and variables are often left around inadvertently. These
unused objects can be discovered and removed by checking the code with
the various cross reference utilities. (While the Workshop linker will
remove dead code automatically it will not remove dead variables.)

For those of you who want to know what the compiler is really doing, use
the DumpObj utility to look at a disassembly of any of the procedures or
functions you are interested in.

Pascal Code Cruncher's Handbook - Page 4

How to crunch code: techniques

Following are a number of techniques for Pascal source transformation.

The fine print following the description of each technigue attempts to
estimate the potential space savings, the difficulty of implementation,
and probability of introducing errors.

1.

The first law of code crunching: don't use in-line code when &
procedure to do the same thing exists. The in-line code may be
faster, but space is more important in the vast majority of cases.
In order to apply this law effectively you should KNOW WHAT IS
AVAILABLE IN THE LIBRARIES. Similarly you should be familiar with
what the language provides, particularly in the area of built-in
procedures and functions.

USUQ cxxstmg code is pure q‘lh The dsnger of doing so should be minimal since the
mllﬂ’ and libreries should be error froe (or at lesst their bugs will be rooognzeo and
fixed sooner then your private code which is exercized less often).

An extension of the above law is the creation procedures which
perform code sequences which are repeated often in your code (minor
differences can be handled by parameterization). One neme for this
technique is "factaring”. Use of parameters can degrade the
optimization if the size of the code being factored is small. On
the other hand, if introduction of a parameter will allow sharing
of a long sequence of code the extra overheed should be well worth
it. A word of warning: check to see whether your factoring really
paid off — the code being factored out should not be smaller than
the procedure call (and any parameter passing) that replaces it. A
point to note is that factoring of even single statements can be
fruitful, for exsmple:

A[F(X)] := A[F(X)] + 1; becomes INCR;

Factoring can be a BIG win in many cases, often ssving more than can be schieved by any
other technique. SO it Ooften pays t0 100k TNTOUQN YOUT CoOR fOr COMMON Code
olgwulty and likelyhood Of errors are low, but m:rnse if parsmeters must be
introduced

Make procedures that are 50-100 lines long - around 300 bytes of
code - to optimize allocation of variables to register. Shorter
routines do not have enough occurrences of variables to make
register allocation wortlwhile, and longer routines create more
opportunities for register optimization than there are registers
available.

The smount of improvement using this technique is highly varisble. Difficulty is

Pascal Code Cruncher's Handbook Page 5

4a.

4b.

4c.

4d.

noderate: likelyhood Of errors is low.

Avoid the use of global scalar (1 to 4 byte) variables whenever
possible - global variables are never put into registers.
Techniques sppliceble here include:

Assign a frequently used global variable to a local variable, and
change all references to be the local quantity. Caution! Beware of
saving and restoring the global quantity around procedure calls
that might access the global quantity.

The amount of improvement will be two to four bytes per reference,
with the greatest gain appearing on assigmments like A:=A+1. There
is an overhead cost to assign the local and save registers (4 to 14
bytes). Improvement will not occur if the registers have already
been assigned to locals that are used more frequently than the
globel is.

The amount of improvement using this technique is noted sbove. Difficulty is low:
likelynood of errors is high.

Further leverage on (4a) can be obtained if the same local
temporary variable is reused in different parts of the procedure
for different global variables. In this way, less frequently used
globals still have a chance for optimization into registers.

Improvement is two Or more Dytes per saditional reference, less G Dytes per new glopal
assigned. Difficulty is moderate; likelyhood of errors is even higher than (da).

Another, more reliable way of converting a global to a local is to
pass the global varisble as a var parameter to the routine.
Parsmeters are treated like locsl variables.

Improvement is tvo or more Dytes per reference, less 8-10 Dytes per additiondl paremeter,
sub ject to register competition s noted above. Difficulty and likelyhood of errors vith
ver parameters is lov.

Move a large main program body into a main subroutine. Move all
global variables that are only accessed by the main program into
the subroutine.

Improvement is ganerally small, $ince the main program body is usually @ small part of the
total ocode. Difficulty end 1ikelyhood of erYors ere 1ow.

In a moderate to large procedure, the number of scalar (1 to 4
byte) local variables (and parameters) should be kept to a minimum,
since there is competition for registers. Briefly used integer
quantities and loop variables, for example, should all be stored in
the same variable (which might be appropriately nemed "tempint" or
some other generic neme). Beware, of course, that the variables

Pascal Code Cruncher's Handbook Page 6

usages are never simultaneous.

»

Improvement, for esch aoditional local verisble that overloads en existing register, is
typically two bytes per reference. Difficulty is low; likelyhood of errors is moderate.

6. Avoid, at all costs, passing frequently used local variables as var
parameters or using them in nested procedures. (Rlso for
frequently accessed parameters.) These actions inhibit the value
from being located in a register. Replace passing as & var
parameter with assignment to a new local varisble, passing the new
local, then doing a reverse assigmment. Replace nested procedure
usage of the variable with passing the variable as a non-var
paremeter, use of the parsmeter inside the subroutine, then, if the
nested procedure changes the velue, copy the parameter into a new
variable at the end of the subroutine copy it back into the main
local veriable after the call. The following example illustrates
optimization of nested usage of A and B:

PROCEDURE UPPER; PROCEDURE UPPER;
YAR R, B:INTEGER; VAR A, B, TEMP: INTEGER;
PROCEDURE LOWER; PROCEDURE LOWER(A, B:INTEGER):
BEGIN BEGIN
R := B; comerts to—, A :=B;
TEMP := R;
END; END;
BEGIN BEGIN
LOWER; LOWER; (
{other statements) A := TEMP;
{frequent uses of A and B} {frequent uses of R and B}
END; END;

Note that, in the sbove case, if A is not frequently used in the
subroutine, it could be eliminated as a parameter and the
assignment could be made to TEMP directly:

PROCEDURE LOWER(B:INTEGER);
BEGIN

TP = B;

END;

A final added technique that can be used with procedure calls is
to pass the local as a non-var parsmeter, change the procedure to a
function, and assign the returned functlon result back to the local
verisble. ‘

PROCEDURE PROC(YAR N:INTEGER); ' FUNCTION PR!I(N:IMEGER):INTEGER;
PROCEDURE LOCAL; FUNCTION LOCAL(A, B:INTEGER) : INTEGER
e becomes—» ..

Pascal Code Cruncher's Handbook Page 7

10.

PROC(R) R :
LOCAL; A :

PROC(R);
LOCAL(R, B);

where R is a frequently used local verisble used as a var parameter
to PROC, and used in nested procedure LOCAL. This method, although
limited in application, is elegant because no temporary-varisble
assignments have to be inserted.

Improvement is tvo Or more bytes per reference of the frequently used verieble in the main
procedure, less 2-8 bytes per extra sssignment statement, subject to register competition
&s noted sbove. Since this optuuzanon can be spplied to very frequently used varisbles
that are sbendoned by the compiler, lsrge optimizations of up to 40 or more bDytes are
possible in large procedures. Difficulty snd likelyhood of errors vith var pearsmeter
suwstitution is lov difficulty and likelyhood of errors vith nested procedures is
noderate to high.

Don't use the set construct to check ranges; instead use
comparisons against the upper and lower bounds.

Getting rid of the set construct is a BIG sawings (typically around 30 bytes for the usual
double-énded renge check). Difficulty is mininal, as are the chences of error.

Do not pass multi-word (more than 4 bytes) data structures as
non-var parameters unless necessary. Change them to VAR
parameters.

lmroveunt is 12-18 bytes seved by not D‘Vlm coge to copy the parameter mto 1ocal
storsge in the called procedure. Difficulty is low; likelyhood of errars is moderstely
lov.

Replace FOR loops with WHILEs and REPEATs. The equivalent REPEATs
and WHILEs are typically 8 to 10 bytes shorter, even with the
explicit loop varisble initialization and increments. REPEATs are
more efficient than WHILEsS which are better than FORs. Sometimes
the savings will be greater depending on the contents of the loops
and the termination condition.

Sewings are typically 8 to 13 bytes per construct. Difficulty and chences of error are
smell (just tske care to get your termination condition correct -- bevare of off-by-one
erYors).

Convert array indexing in loops to pointer arithmetic, when the
total number of indexing operations can be reduced. For example

FOR I := 1 TO 100 DO R{I]) := 3 comserts to

P := @8 ({A's origin is 1; P is typed as “A[I]}
FORI := 170 100 DO

BEGIN

P“ = 3;

P POINTER(ORD[P)+SIZEOF({R s element type}));

Pascal Code Cruncher's Handbook Page 8

11.

12.

13.

14.

15.

16.

17.

END;

Improvement is up to 18 bytes per index operation (more when the arrey origin is nonzero
or the srray element size is not byte; savings can be even higher on packed structures if
the progremmer is willing to e0d & few more contortions); difficulty is moderate;
likelyhood of errors is moderate.

IFs without ELSE parts that have a conjunctive conditional (IF a
AND b THEN ...) are more efficiently expressed as nested IFs (IF a
THEN IF b THEN . .). 1In effect, this implements your own "short
circuit" boolean evaluation.

The sevings is typxeu ly 4 bytes for each AND eliminated. Very essy to implement. Just
don't try it on ORS

Avoid packed structures whenever possible. Remember, packing is
only useful when a large smount of data has to fit in a limited
space — it does not decrease the size of the code.

Improvenent @S hignly verisble end csh be vast. Difficulty is low; likelynood of errors
is lov if tricks l1ike (10) do not pervade the code.

Repetition of expressions in the code should be removed by
pre-assigning & common expression value to s temporary variable.

Improvement is highly varisble. Difficulty is moderate:; likelyhood of errors is low.

Convert procedure parsmeters to global or local variables when the
same actual value is always passed to the subroutine, and when
there is no recursion.

Improvament is 2-4 bytes per parsmeter saved. Bevare Of creeting uplevel addressing of
‘hot’ veriebles however (see (6)). Difficulty is moderate; likelyhood of errors is low.

When groups of local or global variables are commonly passed
together as parsmeters, and are not 'hot' (assigned to registers),
they could be combined into a single record, which would then be
passed as a var parameter to the subroutine.

Il'm'ovemt is 4 bytes per parameter, with an overhesg of S bytes (varning, the cailed

procecure mey grov in sxze if it alresdy uses ail regxsters; Oifficulty is mooerate;
likelyhood of errors is lov.

If you have several instances of the same string constant in vour

code declare it as a CONST, otherwise the compiler will store
multiple versions of the same constant.

The ssvings depends on the size 0f the string snd the rumber of ocoursnces. Easy to do.

Turn range checking off after a sufficient emount of testing has

Pascal Code Cruncher ‘s Handbook Page 9

occurred.

Improvement is 4-3 bytes per reference Or assignment of & renge-checked quentity;
difficulty is to0 low; likelyhood of errors is fairly high since a sufficient smount of
;ﬁting never occurs. consicer meking this change on a proceaure-Dy-procequre contigence
evel besis.

Pascal Code Cruncher's Handbook Page 10

How to crunch code: some case studies

The following section presents some case studies demonstrating some of
the techniques presented in the previous section. These exsmples are
intended to demonstrate how some of the transformational techniques are
typically used and how a whole series of transformations may be applied
to a single body of code. The main purpose of the exsmples, however, is
to give a sense of the thought processes involved in crunching code.

If you have any good "before” and "after" examples demonstrating how fat
code was reduced please feel free to contribute them. Your efforts may
provide ideas and inspiration to others.

CASE 1:

Following is the original form of the body of a routine (SWpCh in the
StdUnit) which comverts lower case characters to upper case. The code
size for the original routine was 94 bytes.

IFCh IN ['a"..'2"] THEN
SWpCh := CHR (ORD (Ch) - 32)
ELSE
SUpCh := Ch;

The code above was replaced with the following, which replaced the set
range test with two comparisons. The code for this version of the
procedure was 66 bytes — a savings of 28 bytes (about 30% or actuallv
more, since these sizes include the overhead for the procedure and the
assignment statements). The moral here is that SET OPERATIONS ARE
EXPENSIVE .

IF ('a' <= Ch) AND (Ch <= 'z') THEN
SWpCh := CHR (ORD (Ch) - 32)
ELSE
SUUpCh := Ch;

The following change was then made which saved another 2 bytes (bringing
the procedure size down to 64 bytes) by getting rid of the branch for
the ELSE logic on the IF statement.

S.Uf.":h = Ch;
IF (‘'a’ <= Ch) AND (Ch <= 'z') THEN

Pascal Code Cruncher's Handbook Page 11

SWpCh := CHR (ORD (Ch) - 32);

A further change -—— breaking the AND in the IF into nested Ifs —
resulted in a 4 byte savings, leaving the procedure size at 60 bytes (an
improvement of 36% over the original 94 bytes). In effect this is
performing “short circuit” boolean evaluation at the source level. The
source for this version is as follows:

SWpCh := Ch;
IF 'a' <= Ch THEN
IF Ch <= 'z' THEN
SWpeCh := CHR (ORD (Ch} - 32);

Note that this last transformation would not have worthwhile if we had
not already removed the ELSE part of the IF since the nested IFs would
have required two ELSEs. ,

CASE 2

Below is the body of the original version of SUUpStr which uppercases a
string.

FOR I := 1 TO LENGTH (S*) DO
S*[1] := SwipCh (S"[1));

The following version -—— converting the FOR loop to a WHILE — saved 8
bytes.

I :=1;
WHILE I <= LENGTH (S") DO
BEGIN
S*[1] := SWpCh (S8*[1]);
I1:=1+1;
END;

A further, time-oriented optimization would be to perform the
upper-casing in reverse order with the call to LENGTH outside the loop,
which also simplifies the termination condition to a test for zero.

An aside: wnen sppropriate (vhen the 100p body will be executed at lesst once) a REPEAT will
ssve snother 2 bytes. [tested the three constructs with three test procedures (ti, t2, t3) as
follows:
procedure ti;

var

J.: integer:
begin

Pascal Code Cruncher's Handbook Page 12

T2 (WILE) saved 3 bytes over Ti (FOR), snd T3 (REPEAT) saved 10 bytes over T1 (FOR).

CASE 3

A series of small transformations was applied to the following segment
of TrimLeading (which trims leading blanks and tabs from a string).

FORI :=1T0 ORD (S*[0]) DO
IF (S*[1] = SuSpace) OR (S"[1] = SUTab) THEN
{ skip over leading spaces }
ELSE
BEGIN
DELETE (S*, 1, I - 1);
EXIT (TrimLeading);
END;
{ we fell thru — either '' or all blanks }

The first change was to change ORD (S*[0]) to LENGTH (S"), which saved 4
bytes. (I must have thought I was being clever in the original.)
Calling the built-in function saves code by leaving the array access to
the built-in.

The next change was to get rid of the ELSE in the FOR loop by reversing
the sense of the condition (which resulted in the code below). This
last change resulted in no code size change since a short branch was
removed but another logical operator was added. But this prepared us

Pascal Code Cruncher's Hendbook Page 13

for some subsequent changes.

FOR I := 1 TO LENGTH (S*) DO
IF NOT ((S"[I] = SUSpace) OR (S*[1] = SUTab)) THEN
BEGIN { delete leading as soon as we find a nor—blank char }
DELETE (S%, 1, I - 1);
EXIT (TrimLeading);
END;
{ we fell thru — either '' or all blanks }

The next step was to apply de Morgan's law (remember your boolean
algebra?) to simplify the conditional to the following form which seved
2 bytes by reducing the number of boolean operations.

FOR I := 1 TO LENGTH (S*) DO
IF (8"[1] <> SUSpace) AND (S"[1]) <> SUTab) THEN
BEGIN { delete leading as soon as we find a non-blank char }
DELETE (S*, 1, 1 - 1);
EXIT (TrimLeading);
END;
{ we fell thru — either '' or all blanks }

Now we have converted the conditional into & form in which we can apply
our short-circuit evaluation transformation by converting the AND into
nested IFs, which saves another 4 bytes.

FOR I := 1 TO LENGTH (5°) DO
IF (S*[1] <> SUSpace) THEN
IF (S"[1] <> SUTab) THEN
BEGIN { delete leading as soon as we find & non-blank char }
DELETE (8%, 1, I - 1);
EXIT (TrimLeading);
END;
{ we fell thru -- either '' or all blanks }

Finally we convert the FOR construct to a WHILE which saved another 8
bytes.

1:=1;
WHILE I <= LENGTH (S") DO
BEGIN
IF S*[1] <> SUSpace THEN
IF S*[1] <> SUTeb THEN
BEGIN { delete leading as soon as we find a non-blank char }

Pascal Code Cruncher's Handbook Page 14

DELETE (S*, 1, I - 1);
EXIT (TrimlLeading);
END;
I :=1+ 1;
END;
{ we fell thru — either '' or all blanks }

CASE 4:

The following is applicable only to programs using WRITEs and WRITELNS,
but the general technique of factoring can be applied anywhere. The
section of code below prints out the defaults (volume, file neme, and
extension) for a file name prompt.

IF Defvol <> '' THEN '

WRITE ('[', Defvol, '] ');
IF DeffN <> '' THEN

WRITE ('[', DeffN, '] ');
IF DefExt <> '' THEN

WRITE ('[', DefExt, '] ');

The following factoring out of the expensive WRITE operations resulted
in & savings of 168 bytes.

PROCEDURE WriteDefault (DefaultvValue : SUStr);
BEGIN
IF Defaultvalue <> '‘ THEN
WRITE ('[', Defaultvalue, '] ');

’

WriteDefault (Defvol);
writeDefault (DeffN);
WriteDefault (DefExt);

CASE 5:

“Factoring” of common code does not always pay off. Following is an
instance of how space was saved removing factoring. The SUStrTolnt
conversion routine had an internal procedure called BogusNumber which
set the value of the CState parsmeter to the asppropriate error return
code and then exited from SUStxrTolnt:

PROCEDURE BogusNumber (CS : ConwNState);
BEGIN

Pascal Code Cruncher's Handbook - Page 15

CState := CS;
EXIT (SUStrTolnt);

END;

BogusNumber was called 6 times in the original SUStrTolnt. By replacing
the calls to BogusNumber with BEGIN CState := ErrCode; EXIT(SUStrTolnt)
END we got rid of the 30 byte BogusNumber routine and the size of
SUStrToInt when down from 300 bytes to 380 bytes, a total saving of 170
bytes. The moral here is to CHECK YOUR FACTORING TO SEE THAT IT REALLY
PAYS OFF.

The Last Whole Earth
Text File Format

Fred Forsman

This is the latest proposal for the definition of text files. 1In creating
this definition I had thres (not always convergent) goals in mind.

1) Text files should support Pascal 's model of files of type
TEXT as well as possible —— that is, if a file was
written by Pascal WRITEs and WRITELNs it should be a
valid text file with as few exceptions as possible.

The intent here is to giuve reasonable support to Pescal's TEXT mechanism as
it is defined in the language -- while the lsnguage make:s ro statement sbout
the form of TEXT files, ore would expect that files wntten without errors
will result in valid text files of some sort. This is not to sag that all
tools $hOUIO SUPPGTT every perverse file that can be generated via Peccal
text 1/0. At & minimum, hweuex the Pascal run-time system should be as
acocomodating as possible in its supporf of Pascal TEXT 10, end the editor

should should mske similar efforts since it is the device most often used to
inspect text files (whether rormal or aberrant).

2) To make the processing of text files as straightforward
and efficient as possible.

31 To be compatible with the UCSD text file formats in the
Pascal systems on the Apple II and Apple ///.
The follwxng definition follows the UCSD text flle format famy closely
T one or tJo oevistions don't pose & very serious threat to conpatxblmv

since they involve sbnormal cases which are not likely to be encountered or
generated in NOYMRl practice.

The following definition involves compromises to all of the above gosls. The
determination of which goal has been most violated I leave as an exercise to
the reader.

The definition of a text file:
= A text file is a sequence of 1024-byte pages.

= 0One 1024-byte header page is present at the beginning of
the file. This is not considered to be part of the
actual contents of the text file, but is used by the
editor to store formatting information, etc. Anyone
creating a header page should do so with nulls in all
1024 bytes, unless there is a good reason to do
otherwise. (The format and interpretation of the header
page will be described in a forthcoming document.)

S=Joiobsr-53 Text File Formsit-1

fnternals & Confidentisl

= Each text page (i.e., those following the header page)
contains some number of complete lines of text and is
filled with null characters (ASCII O) after the last
line.
The Pascal nn-tme systen should ensure that all text files end with & CR
when CLOSEd, in paxtxcular oeallng with the case where the last action
before the CLOSE was & WRITE instead of a WRITELN. Similarly, the run-time
system should 81so ensure that pages terminate vith CRs even if inordinately
long lines are written by & series of WRITES without ahy WRITELNE (however

determining when to insert a CR can be & tncky 1ssue). (For more on
related issues, see the following two points.)

= The end of 8 text page must terminate with at least one
null. For simplicity, the first instance of a CR-null
sequence will signal the end of the page.
As 3 consaquence Of this simplifying assumption, & WRITELN followad by &

WRITE (CHR (0)) will insdvertently terminate the current psge, but anyone
writing nulls to & text file ic 1lving in & state of sin and deserves what

they get.

To b2 on the safe side, code dealing with text files at the BLOCKREAD level
should not assume that a finsl CR-nUll always exists, meking sure not to run
off the end of page buffers. Gur tools should not blow yp on invalid input.

= f line is 8 sequence of zero or more characters followed
by 8 £k, R line may be "arbitrarily long" (1023 bytes
long, counting the CR, with room for a terminating null
at the end of the page) but programs (such as development
system tools) may choose to consider as significant only (
the first N characters [where N is a reasonable and well
documented number, i.e., either 132 or 255).
The Pesca) run-time system should allov the reading end writing of
arbitrarily long lines. The contents of a long line should be obtsinable
vig 8 series of READs. The action of READIN should be to read past the next

CR. returning en IORESULT warning value if characters are skipped in the
process.

Support of "arbitrarily long® lines should not be viewed 85 @ threat to tool
implementors. Tools mey heve ressonable restrictions on what text files
they choose 1o wcept 8s long & they don't blow up on other text files.
Tools may choose to ignore the excess on unreasonably long lines, give &
warning, or signal sn error and abort processing.

= R sequence of spaces at the beginning of & line ma- be
compressed into a two-byte code, namely a JLE character

(RSCII 16) followed by a byte containing 32 plus the
number of spaces represented.

= A null text file (i.e., one which has no contents —- as
might be crested by opening a file and then closing it
before anything is written to it) consists of only the
1024-byte header page.

25-Gotober-83 Text File Formst-2

Pascal's Packing Algorithm

Packed Records

Packed records are very expensive in terms of the number of bytes of code
generated by the compiler to reference & particular field. In general, you
should avoid packing records unless there will be many more instances of the
record than there are references to it. Packed records sre packed in the
following bizarre way:

1. Fields are packed as tightly as possible without crossing word boundries,
starting at the low-ordered bit of the first byte. (Note that in a
packed record, a character or 0..255 fits into a byte.) Records will
always occupy either one byte or an even number of bytes.

Note that only scalar values and subranges ere considered packeble;
everything else must go on a word boundry.

For example, 4 booleans and & set are packed as follows:

syte 1 o 2 BYTE 2 o 7 BYTE 3
4131211 set

o 2 BYTE 4

2. Any empty bytes are filled by moving the previous field into the empty
byte if:

- The field fits into a byte.
- The field was not previously on & byte boundry.

‘ByE 1 BYTE 2 BYTE 3 BYTE 4

31211 4 set

3. Any field that fits in a byte or word and does not share that space with
other fields is now designated "unpacked".

Any field that is still considered "packed," and is closest to the high
end of a byte or word, is moved to the high end of that space.

BYTE 3 BYTE 4

0o ? 0o ? o ?
3 211 4 set

BYTE 1 BYTE 2

?

4. The last field is treated after steps 2 & 3 have been completed on the
other fields.

13Jsnuary-84 Facking-1

Internals | & Confidentisl

5.

Finally, bytes containing packed fields are flipped (bits reordered).

0o 7 BYTE 2 o 2 BYTE 3

1|2 3 4 set

0 7 BYTE 4 0

The following is a (slightly) simpler description of what appears to happen
when packed records ere packed, if you don't need to know the actual process.

1.

Fields are packed as tightly as possible without crossing word boundries,
starting at the high-ordered bit of the first byte.

All packed records take up either one byte or an even number of bytes.

Only boolean or subrange types can be packed; all other types start on
word boundries, so steps 2 and 3 only apply to these types.

. If a byte would be left empty (so the next field can start on a word

boundry), and there is more than one field in the previous byte, the last
(low-ordered) field is moved into the empty byte.

The last (low-ordered) field in any byte with unused space is moved to
the low e?d of the byte. (This happens even if it's the only field in
the byte.

Unpacked Records

Fields of unpacked records are packed in order, starting on word boundries,
except for booleans and subranges that can fit in a byte. Values that don't
take up & full byte or word will be packed at the low-ordered end of that
space.

The whole record will teke up either one byte or an even number of bytes.

For example, a record containing & subrange of 0..15, two integers, and a
boolean would be packed as follows:

Byre 1 BYTE 2 BYTE 3 BYTE 4

? 0 ? 0 ? 0 ? 0

0.15 44— intlege}’ b R ——
2 BYTE 5 9 ? BYTE 6 0o ? BYTE 7 o 7 BYTE 8 0
44— int.ege.r 22— ' B

13-Januery-84 Facking-2

Internals & Conlidential

Packed Arrays

Packed arrays are also code-expensive, except for packed arrays of char.
(These are treated as a special case, and the code associated with them is
compact .)

The number of bits per element in a packed srray is the smallest of 1,2, 4,8 or
16 bits that will accommodate the element. For example, & subrange of column
A requires the number of bits per element in column B:

A B
0..1 1
0..2 2
0..3 2
0..4 4
0..10 4
0..20 8
0..255 8
0..395 16

Booleans are packed one boolean per bit. The packed array as & whole must
occupy an even number of bytes.

A packed array[i..3] of boolean would be packed as follows:

Byte 1 BYTE 2

>14]3]2]1

A packed array[1..5] of [0..6] would be packed as follows:

BYTE 3 BYTE 4

o2) | &) o4) | &) &(5)

BYTE 1 BYTE 2

You can use the ¥ operator to poke around inside any packed value snd thereby
discover what the packing algorithm (probably) is.

Signed Subranges

Signed subranges (e.g. -5..14) are packed in packed types (unlike UCSD Pascal,
which won't pack them). The minimum field size for a signed subrange is the
minimum number of bits needed to represent any number of the subrange in two's
complement form.

The minimum field size is then subject to the rules for a particuler packed
type. For example, though -1..2 only needs three bits, if it's in a packed
array, it will take up four (see above table). If it's in a packed record, on

13-Januan~84 Facking->

Internals & Confidential
(

the other hand, it might take up only three bits, or it might use & whole
byte, depending on what's packed around it.

NOTE

A variable of type -127_.128 takes up 8 &yte.
A variable of type 0..235 takes up a word.
A variable of type char takes up & word.

13-Jsnuary-84 Facking-4

PASLIB Procedure Interface

(Workshop Release 1.0)

PASLIB is the Pascal run-time support librery. It provides the procedures and
functions thet ere built into the Pascal language, acts as the run-time interface to
the Operating Systermn, and "completes” the 68000 instruction set by providing routines
for the compiler-generated code to call upon in lieu of actusl hardware instructions.

The interface to PASLIB is very tightly coupled with the Pascal compiler, and
is very likely to be changed to improve performance and reduce code size. For
this reason, only call these routines from assembly language if you absolutely
and positively have to; stay in Pascal as much as possible when dealing with
PASLIB. Most of these routines support the Pascal built-in procedures, which
are described in detail in the Fascal Reference Manusl.

There are & few conventions for using these routines, which must be followed
to ensure correct results and successful execution. Rll the routines are
called with parameters passed on the stack. The parameters are pushed onto
the stack in the order of the parsmeter list shown in each routine. 'ST.L'
indicates a four-byte pasremeter, 'ST.W' two-byte, 'ST.B' one-byte (stored in
the upper byte of a word), and 'ST.S' a set. The paremeters passed will be
popped by these routines before return. The function results, if any, will be
returned on the stack after the paremeters are popped out. Note that the
function-type routines do not expect room for the function result to be
reserved on the stack before the call. Rlso note that these routines do not
check for room on the stack; the caller must guarantee enough room on the
stack for saved registers. The caller should follow the Pascal procedure
preamble code for expanding the stack before calling these routines. Standsrd
register preservation conventions ere followed except in the routines
indicated. Refer to the #lorkshop User ‘s Guide for the usage of the special
registers and the stack freame allocation.

Contents
1. Initialization and Termination Routines 2
2. Integer Arithmetic Routines 3
3. Data Move and Scan Routines 4
4. String Menipulation Routines 6
5. String Comparison Routines 8
6. Set Manipulation Routines 8
7. Miscellaneous Routines 10
B. Range Check Routines 11
8. Heap Routines, 12
10. Read and Write Routines 15
11. File IO Routines &0 ieueeon. .. 22

27-January—-84 FRSLIG-1

Internsls & Conlidential

(
1. Initialization and Termination Routines: X BEGIN, % END, % INIT, % TERM
None of these routines have parameters, return values, or destroy any
registers.
Every main progrem must have the following beginning and ending sequences
calling these routines:
3R %_BEGIN ; beginning sequence
LINK R6, #$0000 ; no-op for LisaBug, to look like standard module
head
MOVE.L (R7)+, A6
LINK A5, #$0000 ; set up global frame for main progrsm
SUBA.L $0010(R5),R7 ; wvariasbles for units, etc. passed by loader
JR %_INIT
. ; main progrem code goes here
iﬁ? %_TERM ; ending sequence
UNLK AS
R %_END
RTS
UNLK A6 ; no-op for LiseBug, to look like standsrd module
tail (
RTS :

Note that the size of the program globsl varisbles allocated to the loader
is offset +16 from register AS.

%_BEGIN - Beginning routine. Currently & no-op; reserved for future
extensions.

% _END - Ending routine. Currently a no-op; reserved for future extensions.

%_INIT - 1Initializes PASLIB internal global data for each process:

1. Sets up an f-line trap routine, which signals 8 "sys_terminate"
exception if an f-line trap is encountered in the user code,
terminating the program.

2. Sets up global input and output file buffer addresses. These
buffers are used for screen, keybosrd, exec files and output
redirection. The address locations are fixed on the stack: the
input buffer address is offset +8 from register RS5; the output
buffexr address is offset +12. They are set up to point to global

L7-F8nusry-84 FRSLIB-2

Internsals & Confridentisl

file buffers in the shared data area of PASLIB.
3. Initializes the OS exception handlers.
4. Initializes the Pascal hesp local variables.

NOTE: The %_INIT routine will restart at step 5 if the calling process
is a resident process.

5. Initializes the PASLIB locsal varisbles.
6. If the floating-point library IOSFPLIB is linked, it is
initialized.

%_TERM - Terminate. If the process is resident, it jumps to step 5 of
%_INIT (see sbove), if not, it calls the 0S routine "Hit_End" to
terminate the process. Control does not return after this call.

2. Integer Arithmetic Routines: XI_MA4, XI_DIV4, XI_MOID4
%I _MJL4 - Multiply two 4-byte integers

Perameters: ST.L - Argument 1
ST.L - Argument 2

Returns: ST.L - Product
Registers used: Rll registers are preserved.

The multiplication algorithm is as follows:

-argument 1's upper word is multiplied by argument 2's lower word.

-srgument 2's upper word is multiplied by argument 1's lower word.

-these two products sre added, and the sum is put in the result's
upper word.

~the two arguments’' lower words are multiplied, and this value is
put in the result's lower word.

27-Jaruery-94 FRSLIB-3

Internals & Confidential

(
%1_DIV4 - Divide two 4-byte integers

Perasmeters: ST.L - Dividend
ST.L - Divisor

Returns: ST.L - Quotient

Registers used: All registers are preserved.

The division is performed by subtracting the dividend from the

divisor 31 times (for each of the 32 bits except the sign bit).
%1_MOD4 - Remainder from the division of two 4-byte integers

Perameters: ST.L - Dividend
ST.L - Divisor

Returns: ST.L - Remainder
Registers used: All registers are preserved.

The division is performed in the same way as %I_DIv4, abhove.

3. Data Move and Scan Routines: % MOVEL, % MOVER, X FILLC, %_SCANE, %_SCANN
% MOVEL - Moveleft

Perameters: ST.L - From Address
ST.L - To Address
ST.W -~ Number of bytes to move

Returns: —
Registers used: DO, D1, D2, RO, A1, A2

If the number of bytes to move is 7 or less, they are moved & byte
at a time. If the source address + 2 is the destination address,
the data is moved one word at a time. If there are more than 7
bytes to be moved, then data is moved a long word at & time. If
the ending address is a byte address, the trailing byte is moved.

P

27~ January'-94 FSLIB-4

Internals & Confidential

% _MOVER - Moveright
Paremeters: ST.L ~ From Address
ST.L - To Address
ST.W - Numbexr of bytes to move
Returns: —
Registers used: DO, A0, Al, A2

Data is moved one byte at a time.

%_FILLC - Fillchax
Pearsmeters: ST.L - Rddress to fill
ST.W - Number of bytes to fill
ST.W - Fill cheracter
Returns: -

Registers used: DO, Di, A0, R2

Fills the address with the given character one byte at a time.

%_SCANE - Scan equal
Parameters: ST.W - Length to scan
ST.W - Charactexr to scan for
ST.L - RAddress to scan

Returns: ST.W - The position of the character (O being the
first)

Registers used: Rll registers are preserved.
Scans the string for the given character, one byte at & time.

Note that "Length to scan" can be negative, and the scan will go
in the lower address direction.

27-JBrusry -84 ' FRSLIB-5

Internals & Contfidential

(
%_SCANN - Scan not equal
Parameters: ST.W - Length to scan
ST.W - Character to scan for
ST.L - Rddress to scan
Returns: ST.W - The first character position that is not equsl
to the character to scan for (0O being the
first)
Registers used: All registers are preserved.
Scans the string for the first character not equal to the given
character, one byte at a time.
Note that "Length to scan" can be negative, and the scan will go
in the lower address direction.
4. String Manipulation Routines: ¥ CAT, X POS, X COPY, X DEL, %X_INS
All the string manipulation routines are performed one byte at a time.
(
%_CAT - Concatenate
Parameters: ST.L - Address of 1st string
ST.L - Address of 2nd string
éf:L - Rddress of Nth string
ST.L - Rddress to put result
STW-N
Returns: -—
Registers used: Rll registers are preserved.
Copies all the given strings to the result string.
(

27~ Jsnuery-84 PRSLIE-G

Internsls

& Confidentisl

% _P0S - Position of one string in another

% _COPY -

Parameters: ST.L - Address of substring
ST.L - Address of main string

Returns: ST.W - Position
Registers used: Rll registers are preserved.
Compares the substring with the main string until a match is
found. If no match is found, O is returned.
Copy a substring
Pareameters: ST.L - Source string address
ST.W - Starting index
ST.W - Size to copy
ST.L - Address of result
Returns: -
Registers used: All registers are preserved.
If the number of bytes to copy is 0, or if the source string is

longer than the number of bytes to copy, the result string has O
lenth.

% DEL - Delete & substring from a string

Paremeters: ST.L -~ Rddress of string
ST.W - Position to stert deleting
ST.W - Number bytes to delete

Returns: —

Registers used: DO, D1, D2, D3, AO, A1, A2

%_INS - Insert one string in another

Peremeters: ST.L - Address of string to insert

ST.L - Address of main string

ST.W - Position in main string to insert
Returns: —

Registers used: DO, D1, D2, D3, RO, Rl, A2

7= JENUBT V-5 FRSLIB-7

Internals & Confidentisl

(.
5. String Comparison Routines: XS_ED, XS_NE, XS_LE, %5 GE, XS_LT, %¥5_GT
Rll the string comparison routines are performed one byte at a time.
%S_EQ - String equal
%S_NE - String not equal
%S_LE - String less than or equsal
%S_GE - String greater than or equal
%S_LT - String less than
%S_GT - String greater than
Parameters: ST.L - Address of first string
ST.L - Address of second string
Returns: ST.B - Boolean result
Registers used: All registers are preserved.
6. Set Manipulation Routines: X_INTER, %X SING, % UNION, % _DIFF, %_RDIFF,
X RANGE, X ADJ, X SETGE, X SETLE, X_SETED, (

X_SETNE

The format of a set on the stack is:

S + high address
| 15-0 |
B ———
| 31 - 16 |
P —
I I
P ——————— +
|last word|
Bt 3
| # Bytes |
+——————1+ low address

S7-Januery -84 PRSLIB-8

Internals : & Confidential

%_INTER - Set intersection: setl AND set2

% _UNION - Set union: setl OR set2

% DIFF - Set difference: seti AND (NOT set2)

% RDIFF - Reverse set difference: (NOT setl) AND set2

Parametexrs: ST.S - First set
ST.S - Second set

Returns: ST.S - Result set

Registers used: All registers are preserved.

%_SING - Singleton set
Parameters: ST.W - Singleton value
Returns: ST.S - Result set

Registers used: Rll registers ere preserved.

%_RANGE - Set range

Perameters: ST.W - Minimum value
ST.W - Maximum value

Returns: ST.S - Result set

Registers used: Rll registers are preserved.

Returns the set representation of the values from minimum to
meximum. If minimum is greater than maximum, a null set is
returned.

%_ADJ - Set adjust

Parameters: ST.S - Set
ST.W - Desired size in bytes

Returns: ST.S' - Adjusted set without size word

Registers used: All registers are preserved.

Changes the size of a set to the given size. If the set is larger
than the desired size, the extra values are thrown out; if the set

is smaller than the desired size, extra fields asre added and
initialized to O.

L7-F8nusry -84 FRSLIB-@

Internals & Confidentisl

(

% SETNE - Set inequality test

% SETEQ - Set equality test

% SETGE - Set inclusion test (returns true if set2 is the same as or
included in setl)

% SETLE - Set inclusion test (returns true if setl is the same as or
included in set2)

Perameters: ST.S - First set
ST.S - Second set

Returns: ST.W - Boolean Result

Registers used: All registers are preserved.

7. Miscellaneous Routines: X_GOTOXY, % _GOTO, X HALT
%_GOTOXY - Move the cursor to a specified location

Perameters: ST.W - X coordinste
ST.W - Y coordinate

Returns: —
Registers used: DO, Di, D2, D3, RO, A1, A2

%_GOTOXY sends the following escape sequence to the screen to move
the cursor position: ESC

Y+32
X+32
Y values are between O and 31; X values between O and 79. If the

coordinate given is outside these bounds, it is set equal to the
boundry value.

%_GOTO - Global GOTO code segment remover
Paremeters: ST.L - Pointer to the desired last-segment jump table
Returns: -—
Registers used: AO

Jumps from a nested routine to the first-level process.

27-January-64 ' FRSLIB- 10

Internsls & Confidential

%_HALT - Halt

If the process is resident, it goes to step 5 of the %_INIT
routine. If not, it calls "terminate_process" with the value of
event_ptr as nil. Control does not return after this call.

8. Range Check Routines: % RCHIX, % SRCHK
%_RCHCK - Range check, to check the bounds of subrange type variables

Pereameters: ST.W - Yalue to check
ST.W - Lowexr bound
ST.W - Upper bound

Returns: —-—
Registers used: Rll registers are preserved.

Note that if the check fails, this routine causes the system
exception 'SYS_VALUE_OOB' to be signalled and the message 'VALUE
RANGE ERROR' to be displayed before the process is forced to enter
the debugger. If the process has not declared an exception
handler for this exception, the system default handler is entered
after the debugger returns control. The system default handler
terminates the process.

%_SRCHK - String range check, to check a string index against its length

Parameters: ST.B - Value to check: 0..255
ST.W - Upper bound

Returns: —
Registers used: All registers are preserved.

Note that if the check fails, this routine causes the system
exception 'SYS_VALUE_OOB' to be signalled and the message 'ILLEGAL
STRING INDEX' to be displayed before the process is forced to
enter the debugger. If the process has not declared an exception
handler for this exception, the system default handler is entered
after the debugger returns control. The system default handler
terminates the process.

27-Januery-84 FR5LIB-11

Internsals & Confidential

(
9. Heap Routines: % _NEW, X MARK, X RELSE, X _MEMAV, X HEAPRES
%_NEW - The New procedure. Allocate memory in the Pascal heap.

Parsmeters: ST.L - Address of pointer
ST.W - Number of bytes needed

Returns: ——
Registers used: DO, D1, D2, D3, RO, A1, A2
% NEW sets the address of the pointer to nil.

%_NEW checks whether the heap has been initialized (whether a dats
segment has been allocated) via the boolean Heaplnited. If
HeapInited is false, a call is made to the GrowHeap function to
create and initialize a 'new heap'. If GrowHeap is unsuccessful
(returns false} then % NEW is exited with the pointer set to nil.

The GrowHeap function initielizes a 'new heap' by celling the
PLInitHeap procedure. Growheap passes PLInitHeap the size of

the Pascal heap data segement, the memory size (HeapDelta) and
the logical data segment number (LDSN = 5). PLInitHeap then
creates a private data segment with the pathname PascallHeap, (,
and assigns the segment pointer address to the pointers
HeapStart and HeapPtr. PLInitHeap sets the pointer HespEnd to

point to the end of the segment (HeapStart + segment size -
256) .

Before assigning an address to the pointer, % _NEW determines
whether there is enough room on the heap (i.e. in the data
segment) for the variable. %_NEW makes a second call to the
GrowHesap function. If GrowHeap is unsuccessful, then %_NEW is
exited with the pointer set to nil.

The GrowHesp function calls the GetSafeAmmount procedure to
determine the maximum number of bytes by which the heap can be
increased (the amount of system memory &vailable to the calling
process). If this smount is greater than the current size of
the heap, then GrowHeap will double the size of the heap,
otherwise GrowHeap will increase the heap to the maximum amount

available. The pointer HeapEnd is incremented by the esmount of
increase.

%_NEW then sets the address of the pointer to the address of
HeapPtr, which points to the next free area on the heap. The

address of HeapPtr is increased by the size of the variable that
was placed on the heap.

27-Jenuary-84 FASLIG- 12

Internals & Confidential

% _MARK - The Mark procedure. Mark the Pascal hesp.

Parsmeters: ST.L - Rddress of pointer to be marked
ST.W - Number of bytes needed

Returns: -—

Registers used: DO, D1, D2, D3, RO, Rl1, R2

% _MARK checks whether the heap has been initialized via the

boolean HeapInited. If Heaplnited is false, & call is made to the

GrowHeap function to create and initialize a 'new heap'. If the

function is unsuccessful (returns false) then % MARK is exited.
The GrowHeap function is described under %_NEW, above.

% _MARK sets the address of the pointer to the address of HeapPtr,

which points to the next free srea on the heap.

% _RELSE - The Release procedure. Release the Pascal heap.

Perameters: ST.L - Rddress of pointer to release to.

Returns: —_—

Registers used: DO, D1, D2, D3, RO, R1, A2

%_RELSE checks whether the heap has been initialized via the

boolean Heaplnited. 1f Heasplnited is false. & call is made to the

GrowHeap function to create and initialize & '‘new heap'. If

GrowHeap is unsuccessful (returns false) then %_RELSE is exited.
The GrowHesp function is described under % _NEW, above.

If the pointer does not point within the heap (i.e., address

memory between HeapStart and HeapEnd), an error will result and

the procedure will be exited.

If the pointer is less than HeapEnd minus HeepDelta, (where

HeapDelta is the original size of the heap) the heap is reduced in

size by HeapDelta.

%_RELSE sets HespPtr (which points to the next free area on the
hesp) to the address of the pointer.

L7-I8nusry -84 FRSLIG-13

Internéis* & Confiderntial
(
% _MEMAY - The Memavail function. Memory Availeble in the Pascal heap.
Psrameters: None.
Returns: —

Registers used: Al]l registers are preserved.

%_MEMAY generates a call to the %_PHWordsfvail function, which
determines the amount of words available.

%_PHWordsAvail checks whether the heap has been initialized vis
the boolean Heaplnited. If Heaplnited is false, a call is made to
the GrowHeap function to create and initiaslize a 'new heap'. If

GrowHeap is unsuccessful (returns false) then %_PHWordsAvsil is
exited.

The GrowHeap function is described under %_NEW, above.

%_PHWordsfAvail determines the maximum number of words available
(the amount left in the heap data segment minus the maximum smount
of system memory available) and the current number of LDSN words
available (the maximum number of words you can get by the chosen
LDSN minus the number of words already used). If the maximum
number of words available is greater than the current number of (
LDSN words availasble, then the current number of LDSN words
availsble is returned, otherwise the maximum number of words
available is returned.

% HEAPRES - The HeapResult function.
Perameters: ST.W - Heap result
Returns: -—

Registers used: All registers ere preserved.

Refer to the Aorishop User ‘s Guide for the values of the heap
result.

%_HEAPRES generates a call to the %_HHeapRes function. %_HHeapRes
is assigned the integer value of HErrResult.

27-January-§+4 FPRSLIB- 14

Internsls & Confidential

10. Read and Write Routines: X KEYPRESS, %W_LN, W_C, W _STR, W _PAOC, *W_I,

All the read and write routines take 'file address’' as & parameter, which
is the address of the file variable. The address of the Pascal standsxrd

input is in offset 8 from register RS; the address of output is in offset
12 from RS.

%;KEYPRESS - The Keypress function.
Perameters: ST.L - File address
Returns: ST.B - Boolean Result
Registers used: All registers are preserved.

Note that the file address is not used in the current implementa-
tion.

%_KEYPRESS generates a call to the %_PKeyPress function and
returns the result of % PKeyFress as its result.

The % PKeyPress function determines whether any keys hsve been

pressed. It returns true if the look-ashead buffer is full,
otherwise it returns false.

ZW_LN - Writeln
Parameters: ST.L - Address of output file
Returns: -
Registers used: DO, D1, D2, D3, A0, Al, A2
%i_LN calls the FwWriteln procedure, passing it the address of the

file. FWriteln calls the FWriteChar procedure, passing it an
ASCII <CR» (end-of-line) to be appended to the string.

27-Jenusry -84 FPRSLIB-15

Internsls & Confidential
(

“W_C - wWriteChar. Display a character on the console.

Parsmeters: ST.L - ARddress of output file
ST.B - Character to be output
ST.W - Size of field to print

Returns: ——
Registers used: DO, D1, D2, D3, RO, A1, A2

%0_C calls the FuriteChar and OutCh procedures to write a
character to the file. %W_C passes OutCh the character to be
written and the address of the output file. QutCh then calls
FWriteChar to write the character to the file.

The default field size is 1. If the field size is grester than i,
%4_C calls FuriteChar to write out the appropriate number of
spaces, then calls OutCh, which calls FWriteChar to write the
character.

W_STR - UWrite string

Parameters: ST.L - Address of output file
ST.L - Rddress of string (
ST.W - Size of field to print

Returns: -—
Registers used: DO, D1, D2, D3, RO, A1, A2

If the string size is greater than 255 characters, then “W_STR
truncates it to 255.

%4_STR then compares the field size (MinwWidth) to the specified
string size. 1If the field size is less than or equal to zero,
it's set to the string size. 1If the field size is less than the
string size (but greater than zero), then the string size is set
to the field size. If the field size is greater than the string
size, then a call is made to the FWriteChar procedure to write out
[MirWidth minus string size] spaces.

%_STR then cslls FuWriteChar to write out the string with the
specified string size.

27-Janvary-84 PRSLIB-15

Internals & Confidentisl

% _PAOC - Write a packed array of characters

Parameters: ST.L - Address of output file
ST.L - Address of string
ST.W - Actual length
ST.W - Size of field to print

Returns: —
Registers used: DO, D1, D2, D3, RO, Rl, R2
The effect of %W_PROC is the same as calling %W_STR with the
specifed field size equal to the number of elements in the array.
%24_1 - Write an integer

Parameters: ST.L - Rddress of output file

ST.L - Value to print

ST.W - Size of field
Returns: _—
Registers used: DO, D1, D2, D3, RO, R1, Rz
%4_1 compares the field size (MinWidth) to the size of the
integer. 1If the field size is greater than the size of the
integer, then %W_I calls the FWriteChar procedure to write out
[MirWidth minus integer size] spaces.

%N_1 then calls FUWriteChar to write out the integer with the
specified integer size.

27~ Jenusry -84 FRSLIB-17

Internals & Confidentisl

¢

“W_B - Write a boolean
Parameters: ST.L - Address of output file
ST.B - value to print
ST.W - Size of field
Returns: -
Registers used: DO, D1, D2, D3, A0, R1l, A2
74 B calls the “W _STR procedure, passing it the string to be
written, the size of the string, and the address of the output
file.

If 'value to print' is zero, %W _B passes the string 'FALSE' to
%_STR, with a string size of 5.

If 'value to print' is 1, “W_B passes the string ‘TRE' to “W_STR,
with a string size of 4.

“W_STR then writes the string to the output file.

%_PRGE - Page procedure
Parameters: ST.L - Address of output file
Returns: -—
Registers used: DO, D1, D2, D3, A0, R1, R2
%_PAGE writes the ASCII character 'FF' to the output file by

calling the OutChar procedure. OutChar is passed the character to
be written (e.g. 'FF') and the address of the output file.

27-Januery-84 PRSLIB-185

Internals & Confidential

R_C - ReadChar
Paremeters: ST.L - File Rddress
Returns: ST.B - the cheracter read
Registers used: DO, D1, D2, D3, RO, A1, A2

%R_C reads a character from the specified file by calling the InCh
function, then returns the character on the stack.

InCh calls the FReadChar function, passing it the file eddress.
FReadChar verifies that the file has been opened, calls the
FGet procedure, reads the character that is placed in the

window buffexr area by FGet, and passes the character back to
InCh.

ZR_LN - Readln
Parameters: ST.L - Address of input file
Returns: —_—
Registers used: DO, D1, D2z, D3, A0, R1l, A2

R_LN reads a line from the specified file by calling the FReadlLn
proceduxe passing it the file address.

FReadlLn verifies that the file has been opened and then calls
the FGet procdure to read each character on the line until EOLN
is true. When EOLN is true, FReadlLn resets EOLN to false and
returns to %R_LN.
“R_PAOC - Read Packed Array of Character
Perameters: ST.L - File Address
ST.L - Array Address
ST.W - Size of array in bytes
Returns: —-—
Registers used: DO, D1, D2, D3, A0, R1, A2

The effect is the same as calling *R_STR whose specified field is
the number of elements in the array.

27-J8nuery-94 FRSLIE-19

Internals & Confidentisl
(

%R_STR - Read String

Parametexrs: ST.L - File Address
ST.L - String Address
ST.W - Max size of string

Returns: —
Registers used: DO, D1, D2, D3, RO, A1, R2

R_STR first verifies that EOLN is false, otherwise %R_STR returns
to the calling routine.

R_STR then generates a loop which reads & character from the file
by calling the InCh procedure (described under %R_C, sbove), then
checks whether EOLN is true. If EOLN is true, %R_STR returns to
the calling routine. If EOLN is false, %R_STR reads the character
and returns to the beginning of the loop to read the next
character.

After InCh returns a character, “R_STR checks whether the
character is a RUBOUT (ASCII 'DLE') or BACKSPACE (ASCII 'BS'). If
the character is either of the two, “R_STR processes the character
accordingly and then reads the next character. If the character (
is not RUBOUT or BACKSPACE, the character is read and “R_STR
returns to the beginning of the loop to read the next character.

“R_1 - Read Integer
Parameters: ST.L - File Address
Returns: ST.B - The integer read
Registers used: DO, D1, D2, D3, RO, A1, R2

R_1I consists of two main loops which reads characters from the
file to form a valid representation of an integer value.

The first loop reads a character from the file by calling the InCh
procedure (described under %R_C, above). If this character is
<CR> or space, %R_I returns to the beginning of the loop to read
the next character. If the character is not <CR»> or space, %R_I
exits the first loop.

Next, %R_1 determines whether the character read is a sign

cheracter ('+' or '-'). If it is, %R_I enters the second loop &nd
calls InCh to read the next character. If the character is not a

(

27-January-84 FRSLIG-20

Internsls

% _EOLN -

& Confidential

sign character, “R_I enters the second loop bypassing the call to
InCh.

The character is then checked to see if it's a8 RUBOUT or BACKSPACE
character; if it is, the character is processed accordingly and
%R_1 returns to the beginning of the first loop.

The character is checked once more to determine if it is a valid
integer value (0 ¢ character ¢ 9). If it is, *R_I returns to the
beginning of the second loop and calls InCh to read the next
character.

If the character is not a valid integer, then %R_I checks to see
if any characters read previously have been valid integers (by
checking register D6). If no characters have been valid integers
(D6 = 0?, then “R_I generstes an IOResult exror. If the characters

read previously have been valid integers (D6 =1), then *R_I
returns to the calling routine with an integer result.

End of line predicate
Parameters: ST.L - File sddress
Returns: ST.B - Boolesn Result

Registers used: All registers are presexrved.

%_EOLN returns true if the end of a line has been reached in the
specified file.

27-January-84 _ FRSLIG-21

Internals & Contidentisl

(

11. File 1/0 Routines: X REMRT, X RESET, X CLOSE, X EDF, X BLKRD, X BLKWR,

% IORES, % GET, % PUT, X% UPARR, X SEEK

% _REWRT - Rewrite a file

Paremeters: ST.L - File Address
ST.L - Rddress of Name String
ST.W - Kind: -2=text, -1=file, >O=number of words pex
record

Returns: ———

Registers used: DO, D1, Dz, D3, RO, Al, RZ

Creates and opens a new file.

% REWRT first initializes the file's FIB (file identification
block) by msking a call to FInit and passing it the file type vis
the parameter recBytes. Once the file type is determined, the

value of FRecSize is initialized. The values of recBytes and
FRecSize and the file types are:

YecBytes file tvpe FRecSize
-2 text -1
-1 untyped 0 (
0 intersctive -1
>0 typed value in recBytes
Other important FIB entries are initialized as follows:
FIsOpen := false .. The file is mearked as not open
FNewFile := false .. The file is merked as not new
(i.e. no creation of new files)
FEOF = true .. End Of File is set to true
FEOLN .= true .. End Of Line is set to true
FModified:= false .. The file is marked as not modified
FIs0S = true .. The file is marked as an 0S File

%_REWRT then calls FOpen. Within FOpen:

A check is made to determine whether the file has been opened
by referencing the boolean FIsOpen. If FIsOpen is true, an
IOResult error will occur; if not, it is set to true.

FOpen then determines whether the filename is one of the
character devices CONSOLE, KEYBOARD, or PRINTER. If it is,
FOpen opens the file. If the filename is PRINTER, a check is
made to detexrmine if the printer is connected. If the printer
is not connected, an IOResult error will be generated. The FIB

¢

27-January-84 FRSLIG-22

Internsls & Contidentisl

veriable FUnit is also set accordingly: 1=CONSOLE, 2=KEYBOARD,
3=PRINTER, 10=other devices (not pseudo devices).

The FIB variable FNewFile is set to true to indicate that a new
file is being created with a rewrite, otherwise its value would
remain false indicating a reset opersation.

FOpen creates and opens 8 new temporary file if the filename
does not exist (i.e. if FNewFile is true), otherwise it opens
the existing file. If the temporary file is of type TEXT,

FOpen writes two header blocks of null to the file. FOpen also

Kills the temporary file so that it may be unkilled during the
close.

%_RESET - Reset a file

Parsmeters: ST.L - File Address
ST.L - Rddress of Name String , :
ST.W - Kind: -2=text, -i=file, >O=number of words per
record

Returns: -

Registers used: DO, D1, D2, D3, AO, A1, RZ

Opens an existing File.

% _RESET behaves in the same manner as % _REWRT, by making calls to
procedures FInit and FOpen. However, % _RESET does not create a
temporary file (FNewFile is false). It attempts to open the

existing file and if it is unsuccessful will issue an IDOResult
error.

Before exiting FOpen, % _RESET makes & call to the FReset procedure
which in turn calls the FGet procedure. This has the effect of
advancing the file position to the first record of the file.

£7-JEruEY -84 FRSLIB-23

Internals & Conlidentisl

(

% _CLOSE - Close a file

Perameters: ST.L -~ File ARddress
ST.W - Mode: O=NORMAL, 1=LOCK, 2=PURGE, 3=CRUNCH

Returns: -_—

Registers-used: DO, D1, D2, D3, RO, Al, A2

If the file is a character device (e.g. console, keyboard) or if
the file is not open (FIsOpen is false), the close procedure heas
no effect.

CRUNCH and LOCK Options:

If the close option is either CRUNCH or LOCK, and the file is a
text file that had been opened by RESET (FNewFile is false), a
check will be made to determine if the number of blocks is odd.
If it is, a null block will be written to the end of the file.

If a previously existing file was opened by REWRITE (FNewFile

is true), it will be killed (i.e. deleted). Its temporary

file, which was killed by FOpen, is unkilled using the original

file name as the new file name. (
PURGE Option: ’

If the file was created by REWRITE, the temporary file will
have already been killed in FOpen.

The PURGE option will kill the original file provided it was
opened by RESET (FNewFile is false).

NORMAL Option:

If the file was created by REWRITE, the temporary file will
have already been killed in FOpen. '

The original file is left untouched.

27-January-94 FASLIB-24

Internsls & Confidential

% _EOF - End of file predicate
Parameters: ST.L - File address
Returns: ST.B - Boolean Result
Registers used: All registers are preserved.
Detects the end of a file by referencing the FIB boolean entry,
FEOF .
%_BLKRD - Blockread
Peremeters: ST.L - File Address
ST.L - Buffexr address
ST.W - Number of blocks to read
ST.W - Block Number, -1 = Sequential
*¥*kkxk ST W - DoRead, O = write, 1 = read AEEEE
Returns: ST.W - Number of blocks actually read
Registers used: DO, D1, D2, D3, RO, A1, A2
%_BLKRD generates a call to the FBlockIO function, passing the
parameters listed above. The boolean varisble DoRead is set to
true for Blockread and false for Blockwrite.
Within FBlocklO:

If the file is not open (FIsOpen=false) and the number of
blocks to transfer is less than zero, FBlockIO will generate an
I0Result error and the file will not be processed.

If the file is the character device CONSOLE or KEYBOARD, an
IOResult error will be generated and the file will not be
processed. -

If the file is the character device PRINTER, the block number
to start the transfer (RBLOCK) is set to -1.

If the boolean DoRead is true, FBlockID reads blocks from the
file via a READ_DATA call, otherwise FBlockIO writes blocks to
the file via a WRITE_DATA call.

Before these OS calls can be made, the mode and offset must be
determined.

L7-JBruETy -4 FRSLIB-25

Internals & Confidential
(
If the block number to start the transfer (RBLOCK) is less than

zero, the mode is SEQUENTIAL and the offset is zero, otherwise
the mode is ABSOLUTE and the offset is calculated as:

ord4(rblock) * FBlkSize
where FBlkSize is the Standard Disk Block Length (512)
The number of blocks actually read or transferred is calculated
as:

FBlocklO := actual div FBlkSize
where 'sctual’ is the number of bytes transferred by the
READ_DATA or WRITE_DATA OS calls.

EOF (FEOF) is set to true when the last block is read.

%_BLKWR - Blockwrite

File Address

Buffer address

Number of blocks to write

Block Number, -1 = Sequential
DoRead, O = write, 1 = resad kb

Parameters:

L
L
W
W
I W
W

Returns: ST.W - Number of Blocks actually written
%_BLKWR behaves in the same manner as %_BLKRD, except it passes
the boolean variable DoRead with a value of false when calling
FBlockID.

%_IORES - IOResult

| Parsmeters: None
Returns: ST.W - 10Result
Registers used: All registers are preserved.
Refer to the Aorkshop User's Guide for the values of IOResult.
Returns an integer value that reflects the status of the last
completed I1/0 operation. Note that the code 0 indicates

successful completions, positive codes indicate errors, and
negative codes are warnings.

27 Janusry—-94 FRSLIB-2%5

Internals & Confidential

%_IORES makes & call to function FIOResult, which in turns
references the variable IORslt. The variable 10Rslt is assigned
velues by the procedure % _SETIORSLT. This procedure is called by
FPLib and appastext only.

% _GET - Read the next record in a file
Parameters: ST.L - File Rddress
Returns: ——

Registers used: DO, D1, D2, D3, RO, A1, A2

% PUT - Write the current record in a file
Perameters: ST.L - File Address
Returns: -
Registers used: DO, D1, Dz, D3, RO, A1, R2
If % PUT is called immediastely after a file is opened with
% _RESET, the PUT will write the second record of the file (since
the % _RESET sets the current position to the first record and
%_PUT advances the position before writing).
%_UPARR - Compute the address of F*
Pearemeters: ST.L - Address of file

Returns: ST.L - Address of F”"

Registers used: All registers are preserved.

J7-Jsnuary-84 FRSLIG-27

Internals & Confidentisal
(.

%_SEEK - Rllows access to an arbitrary record in a file.

Parsmeters: ST.L - Address of file
ST.W - Record number to seek

Returns: -
Registers used: DO, D1, D2, D3, AD, A1, A2
If the record number specified does not exists,

1) %_SEEK causes the next GET to access the last record in the
last block of the file.

2) %_SEEK causes the next PUT to append the record to the end
of the file.

27- Jaruery-94 PASLIB-28

PaslibCall Unit

(from the #lorkshop User 's Guids)

The unit PASLIBCALL provides you with several system functions. In order to access
the PASLIBCALL routines, you must use the units SYSCALL and PASLIBCALL.:

USES
{$U SysCall} SYSCALL,
{$U PaslibCall} PASLIBCALL;

This gives you access to the routines listed below. These routines are contained in
I0SPASLIB.OBJ, so programs using them require no additional inputs to the Linker.

function PAbartFlag : boolean

This function tells whether or not the ®-period key combination has been pressed.
It ensbles programs to exit out of long operstions. The flag is cleared when
PAbortFlag is called. If you want your program to stop when you press ®-period,
you must use this function in the prograrn to detect thet the key combinstion has
been pressed. For example:

{This program fragment hangs in an infinite loop until &-period is pressed)

aborted :-=false

Repeat {Wait for ®&-period. You might want to do other things here)
abarted :=PAbortFlag;

until aboarted.

procedure ScreenCtr (contrfun : integer);

This procedure provides standerd screen control functions, and enables programs to
perform screen comtrol without having to to use escape sequences. (Escape
sequences are explained in Appendix C of the Workshop Liser's Guide) The
perarneter specifies the screen control function. It is defined in the constants as
follows, in the PASLIBCALL unit:

Yalue
Function nst Decimal Hex
clear screen CclearScreen 1 1
clear to the end of screen CclearEScreen 2 2
clear to end of line CclearELine 3 3
move cursor to horme position CgoHome 11 B
cursor left one position CleftArrow 12 C
cursor right one position CrightArrow 13 D
cursor up one line position CupArrow 14 E
cursor down one line position CdownArrow 15 F

January -84 Fasliblall-1

Screen control example:

{This program fragment clears the screen, and positions the cursar on the
third line}

ScreerCtr (CgoHome);

ScreenCtr (CclearSc:reen)

ScreenCtr i
ScreenCtr

procedure GetGPrefix (var prefix : pathneme);

This procedure provides your program with the first level prefix setting in the
File-Mgr in the Workshop.

procedure GetPrDevice (var PrDevice : e_name);

This procedure returns the corresponding default printer device narne so that you
can perform additional device control functions using DEVICE_CONTROL. (The
Operating Systermn Reference Manual explains the device control call) The defsult
printer device name is the one corresponding to the logical device -PRINTER.
Note that the device name returned contains a leading '-'

procedure PLINITHEAP (var errrwum, refnum:integer; (
size, delta:longint ‘
ldsn:integer;
swappable-boolean);

where:

errnum is the error number returned if the procedure has any problerns
: making ‘& deta segment having & mem_size of size bytes. (See
Appendix A of the Workshop Liser’s Guicde for an explanation of the

error codes.)
size is the number of bytes in the heap.
refnum is the refrium of the heap.
delta is the amount you want the data segment to increase when the

current space is used up. If you use a large heap, use a large
number for delta.

ldsn is the logical data segment number used for the heap. The default is
5. For more informstion see the Qoeratmg Sstern Reference Marwsl
for the Lisa.

swappable is the boolean that determines if the systemn can swap the heap data
segment out to disk if it needs to.

This procedure cean be used when you have special needs; for example, when you
want to specify your own ldsn or heap size. When you use PLINITHEAP, you

3

Janusry -84 Fasliblall-2

must call it before calling other heap routines. For more information on the heap,
see the {orkshop Lker's Guide

JBIEY -Gt Fasliblall->

PPaslibC Unit:
Privileged PASLIB Calls

The unit PPaslibC provides you with seversl useful low-level system functions.
However, they are not for everyone! They are tricky, in some cases have globsl
effects on the entire system, and should be used with caution.

In order to use these routines, you must use the units SYSCALL and PPaslibC:

\SES
{$U SysCall} SYSCALL,
{$U PPaslibC} PASLIBCALL;

This gives you access to the routines listed below. These routines are contained i‘n
10SPASLIB.OBJ, so programs using them require no additional inputs to the Linker.

procedure BlockIOinit;

Initializes all shared PASLIB data. Opens inputfile snd outputfile,
associating them with the filename —CONSDLE. : '

BlockIOinit must be called by every shell before performing any I/D;l it
will only be executed by the first shell that calls it.

It is called by the system_shell at boot time, once for the entire system.

procedure BlocklOdisinit;

PASLIB cleanup. BlockIOdisinit closes the console only for the first shell
that called the Blocklpinit procedure.

procedure LockPaslib (var errnum: integer):
where:

excrram is the error number returned if the procedure has any problems.
(See Appendix A of the Workshop User's Guide for an
explanation of the error codes.)

Locks the PASLIB1 segment in memory so it won't be swapped out. Used by
the filer for unmounting the boot device. '

procedure LockPasIOlib (var errmum: integer); .
where:
errnum is the error number returned if the procedure has any problems.

Locks the PASIOLIB segment in memory so it won't be swapped out. Used by
the filer for unmounting the boot device.

o-February-584 Fraslibl-1

Internals & Confidentisl

(

procedure MoveConsole (var exxrnum: integer; applconsole: consoledest);
where: Ot P s e
errmm’ is the error number returned if the procedure has sny problems.
applconsole tells where to move the console. (Consoledest is an

enumerated type of : alscreen, mainscreen, Xxsorocf, xsorocB,
folder, sparel, spare2, spare3.)

‘Moves the console to the main screen, an alternate screen, or an externsl
terminal connected through RS232R or RS232B. The file names are:

Rlternate Screen -ALTOONSOLE-X

Main Screen ~MATNCONSOLE-X
“ External R3232R Terminal RS232A-X

External RS232B Terminal RS2328-X

procedure ExecReset (var exrnum: integer; execfile: pathname; stopexec:
- boolean);
where: ' -
errnum is'the'efr'qr number returned if the procedure has any problems.
execfile is the exec file name.

stopexec tells whether to open or stop the exec file. (
TRE = stop; FRLSE = Qopen.

If stopexec is TRUE, ExecReset closes the input file and
reopens it, associsting it with the temporsry exec file. It
then generates two calls to the FReadchar function to read and
save the temporary file's first character into the varisble
gfirstchar, and the next character into greadahead. ExecReset
then sets the boolean gexecflag to TRLE.

If stopexec is FALSE, ExecReset calls the Resetinput procedure,
which closes and reopens the input file, associating it with
-CONSOLE. ExecReset then sets the booleasn gexecflag to FALSE.

Opens or stops an exec file.

ExecReset is called once by the Exec Command Interpreter, to open and read
from the exec temporary file and reopen the input file to the console.

function ExecFlag: boolean; ,
Tells whether an exec file is open. TRUE = open;, FALSE = closed.
ExecFlag references the input file FIB boolean entry FSOFTBUF.

b-February-84 Frasiibl-2

Internsals & Confidential

procedure OutputRedi)rect (var errnum: integer; outfile: pathname; stopoutput:
boolean);

where:)
errum is the error number returned if the procedure has any problems.
outfile is the file name.

stopoutput tells whether to close the file or leave it open.
TRLE = close; FALSE = leave open.

If stopoutput is TRUE, OutputRedirect caslls the Resetoutput
procedure, which closes and reopens the output file,
associating it with —CONSOLE.

If stopoutput is FALSE, OutputRedirect closes the output file
and reopens it, associating it with the filename outfile.

Redirects output to & file.

function OutputRFlag:- boolean;

Tells whether output has been redirected to a file. TRUE = output file
open (output redirected); FALSE = closed (output not redirected).

OutputRflag references the output file FIB boolean entry FSOFTBUF.

procedure DSPaslibCall (var ProcParem: dsProcParsm);
where:

dsProcParam = record
case ProcCode : dsProcCode of :
dsResProg : (RProcessld : longint); {must be called
befare the process starts running.}
dsSoftPwbtn : (SPButton : boolean); {result}
dsPrintDev : (PrDevice : e_name);
dsSetGPrefix : (exxnum : INTEGER: {result}
prefix : pathname);
dsEnbDi sk - (DiskEvent : boolesn);
dsCiTranlisaCar : (toTranslate : boolean);
end: {to turn on or off translation far C. Itoh}

dsProcCode = (dsResProg, dsSoftPwbtn, dsPrintDev, dsSetGPrefix,
dsEntDisk, dsCiTranlisaCar);

dsResProg passes the process ID of a process that is going to be
resident to PASLIB.

dsSoftPwbtn returns the soft power button setting. If the button is
pressed, it returns TRUE; if not, it returns FALSE.

o-rFebruary-g4 Freslibl->

Internsals

Confidentisl

(

dsPrintdev passes the physical device name of the carresponding

logical device -PRINTER to PASLIB.
. gsSetPrefix. pg;gs, hgng _qlqpql m%m

dsEntDisk tells PASLIB to erable (if Di

(if DiskEvent is FALSE] the automatic mount1ng and
ejecting of a diskette.

dsCoTranlLisaCar tells PASLIB to turn on (if toTranslate is TRUE) or off

(if toTranslate is FALSE) the Lisa character translation

for a C. Itoh printer for the calling process. The
default setting is on.

DSPaslibCall is a new call in the PPaslibC unit that communicstes to and
from PASLIB about the run-time support for the system or the calling
process. It has a variant-record parameter for indicating various

- functions. Note that most of these functions dictate system behavior; they

are not safe for any process to call except the Lisa character translation
function.

G-Februsry-84

FFaslibl-4

Floating-Point
Libraries

Introduction

The Lisa provides arithrnetic, elementary functions, and higher level mathematical
algorithms in its intrinsic units FPLib and MathLib, which are contained in the file
IDSFPLIB.

The conterts of FPLib sre described in the manuals for the Standard Apple Numeric
Ervironment. The best currently available description of the Standard Apple Nurneric
Environment is the Awmerics Meanusl: R Guide to Lsing the Rpple ' Fascal SANE
and Elems Uinits (part #030-0660-A), which will eventuslly be superseded by &
menusl applicable to all Apple products. FPLib provides the sarne functionality &s
the SANE end Elems units on the Apple] [and ///, including:

= Arithmetic for all floating-point and Comp types.

= Conversions between numerical types.

= Conversions between numerical types, ASCII strings, and intermediate forms.
= Control of rounding modes and numerical exception handling.

= Common elementary functions.

The MathLib guide (currently in draft form) describes the extra procedures available
only on the Lisa. MathLib provides:

= Extra environments procedures.

= Extra elementary functions.

= Miscellaneous utility procedures.

= Sorting.

= Free formsat conversion to ASCIIL.

« Correctly rounded corwversion between binary and decimal.
= Financial analysis.

= Zeros of functions.

= Linear algebra.

How to Use FPLib

FPLib is available as an intrinsic unit to Pascal programmers. If your only use of
floating point is as Pascal REAL variables used within the limits of standard Pascal,
then it is not necessary to include a USES statement for FPLib. But if you explicitly
require any of the types or procedures defined in the FPLib interface, be sure to
include & USES statement such as

USES FPLib;

after the program stetement in & main program or sfter the interface statemert in a
unit. If you sare also using other units, include FPLib in the list of units in your one

7~-February-84 Floating Foint-1

Internals & Confidentisl

USES statement. FPLib may be listed before or sfter other Apple-supplied units that
you are using.

~When linking, be sure to include JOSFPLIB in your list of files to be linked along wiht
IDSPASLIB and your own files, even if your only use of floating point is as Pascal
REAL wvariables.

How to Use MathlLib

MathlLib is available as an intrinsic unit to Pascal prograrnmers. When writing your
Pascal source code, be sure to include a USES statemert such as

USES FPLib, Mathl ib;

after the prograrn statement in & main program or after the irterface statemert in a
unit. If you are also using other units, include FPLib and MathLib in the list of units
in your one USES statement. They may be listed before or after other Apple-supplied
units that you are using, but FPLib muct appear in the list before MathlLib.

When linking, be sure to include JOSFPLIB in your list of files to be linked along wiht
IDSPASLIB and your own files.

(

7~February~84 Flosting Foint-Z2

8 Feb 1984 13:11:40 SUMEMO. TEXT

Puge

-

TO: Development System Group, Mark Neubieser, Lee Nolan, Steve Flournoy,
Wendell Henry

FROM: Fred Forsman
DATE: March 31, 1983
SUBJECT: Intrinsic unit providing standard functions -- the "StdUnit"

=S==s=S======Z==S=T===Z=============== INTRDDI’CTION === =====sS==zcsc==S==SSsS=SS==S===sS====

An intrinsic unit has been developed which provides a number of standard,
generally-useful functions (particularly for the development system). The
“StdUnit” unit has groups of functions dealing with (1) character and string
nanipulation, (2) file name manipulation, (3) prompting, (4) retrieval of error
messages from disk files, (5) special WorkShop-oriented features, and (6)
conversions.

The StdUnit is now available in the WorkShop R5 intrinsic library. AR
non-intrinsic Monitor-based version of the unit is available in my office.

Developmenti system tools should be converted to use the unit where possible,
especially in the area of prompting and 0S error reporting since this will help
nake the WorkShop interface more consistent.

The rest of this memo explains the standard unit and its use. The nmaterial is
organized into three sections:

(1) FUNCZIONAL RREAS -- a description of the areas of functionality
(2) SOME EXAMPLES -- sone examnples of how to use the functions
(3) THE INTERFACE -- the unit's interface

The five basic areas of functionality provided are:
(0) Initiclization of unit

This is not really an area of functionality but it should not be overlooked.
The unit needs to be initialized before it can be used. (Using the unit
without initializing it will often result in an address or bus error.)

(1) String and character manipulation

The unit provides a standard string type "SUStr”, a type for sets of
characters, definitions for a mumber of standard characters (such as CR
and BS), and procedures for case conversion on characters and strings,
trimming blanks, and appending strings and characters.

NOTE: The names of EVERYTHING in StdUnit begin with the letters "SU".

This nay seem somewhat unnatural, but it practically insures that you will
have no nane conflicts when incorporating the standard unit into your code.
It has the additional benefit of identifying where everything comes fronm.

(2) File name manipulation

A nuiber of functions dealing with file names are provided -- determining

if a pathname is a volume or device name only, adding extensions (such as
“.text") to file names (the procedure is cognizant of our various

conventions about when extensions should and should not be added), splitting
a pathnane into its three basic components (the device or volume component,
the file name component, and the extension component), putting the components
back together into a file name, and modifying a file name given optional
defaqults for missing volume, file or extension components.

NOTE: several of the procedures return overflow flags for identifying when a
file name component has exceeded its character limit. You may chose to

_

8 Feb 1884 18:11:40 SUEMO. TEXT

Page

rf

3

(4)

ignore the overflow condition, partic. -xly you think it likely to occur only
in perverse circunstances.

NOTE: you will notice that the string parameters to these procedures are
often typed differently, sometinmes SUStr’'s, or VAR SUStr's, or SUStrP's

(ie, pointers to SUStr’s). The apparent inconsistency of types is deliberate;
the goal was to avoid awkward problems with Pascal string typing when using
the procedures with strings which are not SUStr's (PathName's for example).

It might have been best to use only SUStrP’'s, but the compiler does not

allow & of a string constant, so this would have been inappropriate when
passing defaults such as '.text'. Plecse let me know if you can think of a
way ito make these procedures easier to use.

Prompting

The unit provides a number of procedures which get characters, strings, file
nanes, integers, yes/no responses, etc. from the console, providing for
default values where appropriate. BAn attempt was made to do a cosmetically
nice job of echoing responses, displaying defaults, etc. (I am open to
further suggestions.)

Most of the prompting procedures return a PromptState which indicate such
things as whether an escape (CLEAR) was typed, whether the default was
taken, or whether there was a request for options with a '?'. The states
returned are given for each procedure. The strings and prompt states
returned have been designed to allow you to ignore the prompt states you
are not interested in. For example, if you are not interested in treating
‘?° as a request for options, you may ignore the SUOptions state altogether
and treat the '?' returned as a file name or whatever.

Error Text Retrieval

The unit provides a mechanism which retrieves single-line error messages
from specially formatted error files. Error messages can be looked up by
number in one or more error files.

The original motivation for this was the aggravation of constantly looking
up 05 error numbers. f error file for 0S errors is provided in the WorkShop
release -- 'OSErrs.Err’'. This makes it simple to return a real message when
an OS error occurs, as is demonstrated in one of the examples in the
following section. (Note that OS errors are also returned via Pascal's
IORESULT.)

Whether the tool is useful for storing your program's error messages will
depend primarily on whether you think your error messages are taking up too
much space in memory. AR program (described below) is available to make your
own nessage files. One benefit of using this error mechanism is that you
nay add and modify messages without recompiling your progranm.

The "ErrTool” program is provided to construct your own compacted error
nessage files. The tool produces an error file with an ordered directory of
error nunbers at the beginning of the file, along with pointers to the
corresponding message text. The input to ErrTool consists of text lines of
the fornm:

<number > (space><message>
The error numbers may be sparse, and the messages may be up to 255 chars
long.

A cail to retrieve a message will open the error file, search the directory
for the error number, seek to the location of the message, and return the
text. This may result in several file system accesses but the response seens
reasonable (even with a large number of errors with a directory spanning
several blocks as in the 0S error message file).

R progran nay use the unit to access any number of different error files
simuttaneously. You may, for example, access different files for 0S and
your own error messages.

8 Feb 1984 13:11:40 o =@, TEXT : ‘ Pﬁge

5
(5) WorkShop Support

Speciol WorkShop-oriented functions suprzrted are: the ability to stop the
execution of an EXEC file in progress, ile ability to find out the name of
the boot and current process volumes (SysVols), and a super-RESET which will
try ito open a file first on the prefix vclume, then on the boot volume, and,
if all else fails, on the current process volune.

(6) Conversions

Routines to convert from INTEGERs (and LCNGINTs) to strings and from
strings to INIEGERs (and LONGINTs) are provided.

IMPORTANT HROTE: The standard unit ond its interface have been written so as to
work on either the Monitor or the 0S depending on the setting of a compilation
flag "For0S" which you should set before you use the unit (you will get a compile
error if you don't). Note that the Monitor version of the interface provides a
definition of "PathName"” which would normally come from SysCall when on the 0S.

{ EXAMPLE 1
Assune we are going to prompt for an output file name (OutFName) and that we
already have the input file name (InFName). We will use SUSplitFN to split
the input file name into its various components. Then we will prompt for the
output file nane (with SUGetFN) using the volume and file name components of the
input file name as defaults but with a '.ERR' extension. We then do a CASE on
the prompt state (PState) returned by SUGetFN. Our program will terminate if the
file specification was an escape (CLEAR on the keyboard); say that no options
are avaiicble if '7' is typed as an option request; prompt again if no file is
specified, since we want to require an output file; and fall through if the
default is accepted or some other file is specified. Note that we only have to
check for the prompt states we are interested in for special handling. }

9999:
WRITE (‘'Nane of Error Output File ')
SUSp1itFN (@InFName, aVolN, aFN, aExt);
SUGetFN (@0utFName, PState, VolN, FN, '.ERR’);
CASE PState OF
SU'scape: EXIT (ErrFileP); { exit from program }
SUWptions: BEGIN
WRITELN ('No options available. ‘);

GOTO 9999
END;
SUNone: GOTO 9999;
END {CASE}.
{ EXAMPLE 2

Suppose we have just made a Pascal 10 call and want to report an error (along
with the 0S message text) if we receive a non-zero IORESULT. Note that we copy
IORESULT into our I0Status variable so that the subsequent WRITELN will not
reset the)v;xlue of IORESULT before we get a chance to use it. (EMsg should be
an SUStr. ,

IF IORESULT <> D THEN
BEGIN
I0Status := IORESULT;
WRITELN ('Error openning input file. '),
SUErrText ('OsErrs.Err‘, I0Status, ®EMsg):
WRITELN (EMsg).

END; lf
EEEsSC=sEEsZsSsSE=SS=S===SES=IT===S INTERFHCE TE=CE=S===S=SC=S===sSSCSS=STSSSS=S=s===
E --------------------------------- SU: StdUnit --------------------ecemce o }
Copyright 1983, Apple Computer, Inc. }

8 Feb 1984 18:11:40 SUMEMC. TEXT ‘ ’ Poge 4
e)

1
This unit provides a number of standard type definitions and a collection of }
procedures which perform a variety of common functions. The areas covered are: }
(1) String and Character manipulation }
(2) File Name Manipulation g
(3) Prompting
(4) Reirieval of messages from disk }
(5) Development System Support
(6) Conversions

Fred Forsman 3-28-83

,

SUNOverFlow

INTERFACE
{SIFC For0S}
USES
SU SysCall.obj SysCall, { for definition of PathName, etc. }
SU PasLibCall.obj } PasLibCall,
SU PPasLibC.obj PPasLibC;
{SENDC}
CONST
SUMa<StrLeng = 255;
SUNullStr =%
SUSpace =",
SUOrdCR = 13;
{SIFC For0S}
SUMaPNLeng = 66; nax length of path name }
SUMaxVNLeng = 33; nax length of volume name, includes leading °'-' }
SUMaxFNLeng = 32; naximun length of file name }
SUVolSuffix = '-°; suffix or end of device or volume name }
{SELSEC}
SUMaxPNLeng = 39; nax length of path nare }
SUMa<VNLeng = 24; nax length of volume name, includes trailing ‘:° } (
SUMaFNLeng = 15; naximm length of file nane }
SUVolSuffix = ":°; suffix or end of device or volume name }
{SENDC}
TYPE
SUSei0fChar = SET OF CHAR;
SUStrP = “SUStr;
Sustr = STRING([255].
SUVoiNane = STRING[SUMaxVNLeng];
{SIFC NOT For0S}
Pathlione = STRING [255]; { supply definition of PathName for Monitor }
{SENDC}
SUFile = FILE;
SUFileP = “SUFile;
PromptState = (SUDefault, the default (if any) was chosen) }
SUEscape, the "Clear” key was pressed }
SUNone, nothing specified in response to prompt }
SUOptions, "?" was entered -- ie, an option query
SUValid, valid reponse }
§Ulnvalid invalid reponse -- eg, non-number to SUGetInt }
ErrTextRet = (SUOk, E successful }
SUBadEFOpen, could not open error file }
SUBadEFRead, { error reading error file }
§UErrNNotFomd { error mmber not found }
ConvNState = (SUValidN, { valid number }
SUNoN, { no number -- nothing specified }
SUBadN, invalid number } (
{ overilow -- number too big }

8 Feb 1884 13:11:40 CUMEMO. TEXT

Poge T

f

{SIFC For0S}
SUOsBootV : SUVolName; The volune the 0S was booted fron }
SUMyProcV : SUVolNanme; The volume };Process was started from }
{SENDC}
SUBe.l, SUBs, SUCr, SUTab, SUEsc, SUDle, SUNul : CHAR; { predefined ch vars
SUNullS : SUStr; predefined str var

PROCEDURE SUInit;
{ Should be called before using rest of unit. On the 0S this opens
“-KeyBoard”. It dlso initializes the standard character variables.
te that SUInit sets SUOsBootV and SUMyProcV to null strings, and
that SUInitSysVols should be called to set them to the correct values. }

PROCEDURE SUDone;
{ Can be called when done using unit (although this is not strictly
necessary). On the 0S this closes "-KeyBoard". }

FUNCTION SUUpCh (Ch : CHAR) : CHAR;
{ SUUpCh returns the ch that was passed, uppercased if it was lower case. }

FUNCTION SULowCh (Ch : CHAR) : CHAR;
{ SULowCh returns the ch that was passed, lowercased if it was upper case. }

PROCEDURE SUUpStr (S: SUStrP);
{ SULowStr uppercases the string that is passed. }

PROCEDURE SULowStr (S: SUStrP);
{ SULowStr lowercases the string that is passed. }

PROCEDURE SUTrimBlanks (S: SUStrP).
{ SUTrinBl;nks removes leading and trailing blanks and tabs in the passed
string.

PROCEDURE SURddCh (S: SUStrP; Ch : CHAR; MaxStrleng : INTEGER:
VAR OverFlow : BOOLEAN);
{ SURddCh appends the passed ch to the end of the passed string.
OverFlow is set to TRUE if adding the ch will cause the string to be
longer than MaxStrLeng. }

PROCEDURE SUConcat (S1: SUStrP; S2: SUStrP);
{ SUConcat appends the second passed str to the end of the first passed
string. It is assumed that the target string is of sufficient size to
acconodate the new value. }

PROCEDURE SURddStr (S1: SUStrP; S2: SUStrP; MaxStrLeng : INTEGER;
VAR OverFlow : BOOLEAN):
{ SUnddStr appends the second passed str to the end of the first passed
string. OverFlow is set to TRUE if adding the second string will cause
the resulting string to be longer than MaxStrlLeng. }

PROCEDURE SUSetStr (Dest: SUStrP; Src: SUStrP);
{ SUSetStr sets the target string (Dest) to the given value (Src) by
copying the value onto the target. It is assumed that the target string
is of sufficient size to accomodate the new value. }

PROCEDURE SUCopyStr (Dest: SUStrP; Src: SUStrP; Start, Count: INIEGER):

{ SUCopyStr sets the destination string (Dest) to the specified substring of
the source string (Src) by copying the appropriate part of the source to
the destination. It is assumed that the destination string is of
sufficient size to accomodate the new value, and that the Start and Count
vdiuves are reasonable. }

%

8 Feb 1884 18:11:40 SUMEMOD. TEXT

Page

~

FUNCTION SUIsVolName (FN: SUStrP): BOOLERN;
{ SUIsVolName returns a boolean indicating whether the passed file name, FN,
is a volume or device name (i.e., not a full file name) }

PROCEDIRE SUAddExtension (FN: SUStrP; DefExt: SUStr;
MaxStrLeng: INTEGER; VAR OverFlow: BOOLEAN);

{ SUnddExtension will add the default extension, DefExt, to the end of the
file name, S, if the extension is not dlready present. If the file name
ends with a dot, the dot will be removed and no extension will be added.
1f the pathname is a device or volume name only no extension will be
added. OverFlow is set true if adding the extension will overflow the
string (determined using MaxStrLeng). }

PROCEDURE SUSplitFN (PathN: SUStrP; VolN: SUStrP; FN: SUStrP; Ext: SUStrP);
{ SUSplitFN splits a PathName into its volume (device), file name, and file
nane extension components. }

PROCEDURE SUMakeFN (PathN: SUStrP; VolN: SUStrP; FN: SUStrP; Ext: SUStr;
. VAR OverFlow: BOOLEAN);

{ SUHakeFN constructs a PathName from its volume (device), file name, and
file name extension components. The 0S VolN's are assumed to have a
leading "-", while monitor VolN's are assumed to have a trailing “:".

OverFlow is set if any of the file name components are too long. This

procedure will not create a file name over SUMaxPNLeng chars long. }

PROCEDURE SUChkKFN (FN: SUStrP; VAR PState: PromptState; DefVol: SUStr;
DefFN: SUStr; DefExt: SUStr):
{ SUChKFN checks a file name specification, putting result type in PState.

I1f no file name is given, then DefFN is used. If FN does not have DefExt

in it, then the extension is appended. If no volume is specifed then

the DefVol is used. PState is set appropriately:
PState = SUOptions if ‘7' is hit to ask for options
PState = SUDefault if nothing specified when a default is present
PState = SUNone if default overriden with ‘\' or if CR with no default
PState = SUInvalid if one or more of the file name components overflowed
PState = SUValid othervise }

PROCEDURE SUGetCh (VAR Ch: CHAR):
{ SUGetCh reads a character from the console without echoing it and }
{ without interpreting <cr> <sp>, as Read (Ch) does. }

PROCEDURE SUGetLine (S: SUStrP; VAR PState: PromptState);
{ SUGetLine reads a line from the console a character at a time, performing
its own line editing. PState is set appropriately:
PState = SUEscape if <clear> was hit.
PState = SUValid otherwvise. }

PROCEDURE SUGetStr (S: SUStrP; VAR PState: PromptState; DefVal: SUStr);
{ SUGetStr reads a string from the console; it is like SUGetLine with the
addition of defaults. PState is set appropriately:
PState = SUDefault if <cr> only was hit; S is set to DefVal.
PState = SUEscape if <clear> was the first character hit.
PState = SUValid otherwise. }

PROCEDURE SUGetFN (FN: SUStrP; VAR PState: PromptState; DefVol: SUStr;
DefFN: SUStr; DefExt: SUStr). .

{ SUGetFN reads a file name from the console, with result type in PState.
SUGetFN will print out any defaults in brackets (such [FOO] [.TEXT])
before prompting for for the file name. If no file name is given, then
DefFN is used. If FN does not have DefExt in it, then the extension is
appended. If no volume is specifed then the DefVol is used. If only a
voiume name is specified then no default file name or extension will be
added. PState is set appropriately:

PState = SUEscape if <clear> hit
PState = SUOptions if ‘7’ is hit to ask for options
PState = SUDefault if nothing specified when a default is present

appiz comgatar

8 Feb 1884 13:11:4D SUMEMD. TEXT ' Page

P
PState = SUNone if default overriden with '\' or if CR with no default
PState = SUInvalid if one or more cf the file name components overflowed
PState = SUValid othervise }

PROCEDURE SUGetInt (VAR I: INTEGER: VAR PState: PromptState; DefVal: INTEGER):.
{ SUGetInt reads an INTEGER from the console, with PState set as in
SUGetStr, except that PState = SUInvalid when a non-numeric is input. }

PROCEDURE SUWaitEscOrSp (VAR PState: PromptState);
{ SUVaitEscOrSp prints a message 'Type <space> to continue, <clear> to exit.'’
& waits for the user to hit a <sp> or <clear>, setting PState appropriately:
PState = SUEscape if <clear> was hit
PState = SUValid if <sp> was hit }

PROCEDURE SUWai tSp.
{ SUWaitSp prints a message (‘'Type <space> to continue. ') and waits for the
user to hit a <sp>. }

PROCEDURE SUGetChInSet (VAR Ch: CHAR; Chars: SUSetOfChar);
{ SUGetChInSet reads characters from the console (without echoing) until
a character from the given set is typed. The accepted character is echoed
and an end-of-line is written. }

FUNCTION SUGetYesNo : BOOLEAN;
{ SUGetYesNo prints the message "(Y or N)" and reads characters from the
console (without echoing) until a ‘'y’, 'Y', 'm’, or ‘N’ is typed. If a
'y’ is typed “"Yes" will be printed followed by an end-of-line; if 'n’ is
typed “No" will be printed. The appropriate boolean value is returned. }

FUNCTION SUGetBool (Default: BOOLEAN): BOOLEAN;

{ SUGetBool prints the message "(Y or N) [<default>]” and reads characters
fron the console (without echoing) until a ‘y’, ‘Y', 'n’, ‘N’, space or
return is typed. If a 'y’ is typed "Yes" will be printed in the place
of the default. If 'n’ is typed "No" will be printed. If a space or
return is typed the default is used. The appropriate boolean value is

returned. }

PROCEDURE SUGetErrText (ErrFN: SUStr; ErrN: INTEGER; ErrMsg: SUStrP;
VAR ErrRet: ErrTextRet),

{ SWGetErrText retrieves error message text, given an error number and
and error file to look the error up in. The error file should have
been generated by the error file processor. SUGetErrText use SUSysReset
to open the error file. }

PROCEDURE SUErrText (ErrFN: SUStr; ErrN: INTEGER: ErrMsg: SUStrP);

{ SUErrText retrieves error message text, just as does SUGetErrText:
hovever, if the text is not obtainable due to a non-SUOk ErrRet value
fron SUErrText, SUErrText will return the string
“Error message text not available.” }

PROCEDURE SUStopExec (VAR ErrNum: INTEGER).
{ Kills and exec file on the 0S, returns any error conditions in errmm }

{SIFC For0S}
PROCEDURE SUInitSysVols,

{ Initializes "SUMyProcV" and "SUOsBootV”, the name of the volume on which
ny process was created and the name of the volume which the 0S was booted
off of. A message may be printed if there is trouble getting this
information from the 0S. This can be called more than once; it will only
nake the 0S calls if SUMyProcV and SUOsBootV are both null strings (as
they will be after a call to SUInit. }

{SENDC}

PROCEDURE SUSysReset (F : SUFileP; FN : SUStr; VAR IOStatus : INTEGER).

appis corvpubar

8 Feb 1884 18:11:40 SUMEMC. TEXT

Page

Ve

{ SUSysReset is for opening system files, and will try the prefix, boot,
and current process volumes (in that order) when trying to access a file.
SUSysReset assumes that the file name FN does not have a volume name.
SUSysReset may sometimes have to call SUInitSysVols. }

{====================:============= CONVERSIONS ==========================:=======}

PROCEDURE SUIntToStr (N : INTEGER; S : SUStrP):
{ SUIntToStr converts an integer into its string form; The string which S

points to should be of length >= 6 (5 digits + sign). }

PROCEDURE SULIntToStr (N : LONGINT; S : SUStrP);
{ SULIntToStr converts an longint into its string form; The string which S
points to should be of length >= 11 (10 digits + sign). }

PROCEDURE SUStrToInt (NS : SUStrP; VAR N : INTEGER; VAR CState : ConvNState);
{ SUStrToInt converts a string to an INTEGER. Leading and trailing blanks
and tabs are permitted. A leading sign ['-', ‘'+'] is permitted. The
CState variable (conversion state) will be set to indicate if the number
was valid, if no number was present, if an invalid number was specified,

or if the number overflowed. }

PROCEDURE SUStrToLInt (NS : SUStrP; VAR N : LONGINI: VAR CState : ConvNState);
{ SUStrToLInt converts a string to a LONGINT. It behaves just like
SUStrToInt otherwise. }

Rich Page
Apple Computer, Inc.
May 4, 1983

Bxecution Environment of the Lisa Pascal Compiler

Registers:
D0-D2/A0-Al User iemporaries

DO-D3/A0-A2 Compiler iemporaries
- D4-D7/A3-A4 Compiler uses for locals & pointers

AS ~ Pointer 1 giobal frame

A6 Pointer 10 local frame

- A7 Pointer 10 top of stack
Global Frame:

The global frame consists of two segments:

1) The Jump Table Segment
Z) The Stack Segment (first of N segments)
The global frame is layed out as follows:
Jump Table
Segment Table
Data Pointer Table

Shared Main Program Parameters
Private Main Program Parameters

Main Program Globals |

Regular Unit Globals

Intrinsic Unit Globals

Dynamic Users Stack

4-May-33 Compiler Execution Environment-1

The Jump Table is a an array of 6 byte JMPs used 0
transfer control between segments of the program and
the regular units used by the program. This is built by

- the Linker from Entry points and Externals reference lists.

‘The Segment Table is a structure which defines each of
the segments of the program and the regular units. This
is used by the Loader to swap in segments. For each of
. the segments, the Segment Table provides a file address,
: _sizeufcode(packed&unpackedsizes)andthelngical
-address (je. segment number).

The Data Pointer Table is an array of 4 byte painters

which is used to reference global data for intrinsic units.

This structure is built by the Loader and referenced by
| piledeode. |

~_The Shared Main Program Parameters is an area reserved
. for use by the Loader to store information about the main
- - . program. Cmremlythxsareais!lm bytes.

The Private Main Program Parameters is an area initialized
by the loader and referenced by compiled code. This area
contains pointers 1o INPUT and OUTPUT file buffers and
other information such as the size of the regular unit globals.
Currently this area is $100 bytes.

The Main Program Globals is the global data allocated by
the compiler for the program.

- The Regular Unit Globals is the combination of all global
data required by the regular units used by the program.

The Intrinsic Unit Globals is the private global data which
is required by the intrinsic units used by the program.

The Users Dynamic Stack is that area which is used by the
- program for local frames, temporary data and procedure
linkages (both pascal and assembly language).

Initially the Loader allocates enough space o cover these
areas and the user min stack requirements. The system also
" enforces a upper limit (je. max stack).

4-Meay-83 Compiler Execution Emironment-2

Local Frame:

The local frame consists of the following:
1) Function result and parameters
2) Static and dynamic links
3) Locals and compiler tempararies
- 4) Dynamic stack area
- The local frame is layed out as follows:

Punction Result *
Paramete;
) . Smﬁc Link 33
' Return Address :
Dynamic Link =

»
»

: Compiler Temps .
 Dynamic Stack Area

"' Two o fout byte fusction fesult, present only for functions.
*% N bytes depending on the parameter list.
. *** Present anly for non level 1 procedures and parameters. =

The local frame is allocated by the compiler and allows the
‘compiled code o reference locals, paramters, static links, .

The dynamic link (ie. OldA6) is pushed by the LINK Aé
instruction which allocates space for locals and compiler temps.

The static link is pushed by the caller as part of the parameter
list. The static link is a copy the parents Aé (ie. local frame).

Compiler temporaries are used o implement constructs such
as non local gotos and expressions computed by the compiler
which happen o not be in registers. These expressions may
include for loop limits or with expressions.

Parametric procedures and functions appear as follows:

Address of proc/func body

Note 2ero is used for level 1 pru:edure_s.

4-May-83 Compiler Execution Emvironment-3

Automatic Stack Expansion:

The compiler communicates the space requirements for each
procedure by preceding each LINK A6,#-sxze with one of the

sequences:
TST.W e(A7)
or ' -
MOVEL A7A0
SUBL ~ = #size,A0
TST.W (AD)

Theoffsettmdinmeﬁmwonhesizeinmesemdreﬂect
the sum of the procedures static and dynamic requirements.
This sum is inflated by at least $100 bytesﬁ:allowassembly
language procedures 1o use a small amount of stack space at :
low cost (le. they need not check). Note the code for automatic

_ stack expansion can be controlled with a compile option.

JSRs, JMPs, LEAs and PEAs:

" These instructions are used 10 transfer control and obtain the
address of a procedure or function. These instructions exist in
_threefmmsallofwhichoecupﬂbymseach:

" 1) Within a segment: PC relative
- 1) References to regular segments: Offsets from AS
3) References o intrinsic segments: IU Trap instructions

The first form is simply a reference 10 a procedure from within
the same segment which uses the PC relative addressing mode.

The second form is a reference to a procedure which is not in

the same segment but is contained in a segment of the program
or a regular unit. This is implemented by using an offset from
AS 10 reference the procedure through the Jump Table.

Thethirdformisarefereneemaprwedurewhichiswmained
in an intrinsic segment (ie. in an intrinsic unit). This form is
implemented by using Line 1010 trap mechanism o compress
the opcode and 24 bit logical address into a 4 byte instruction.

In each of the above cases the compiler emits references the

desired procedure or function and the linker constreuts the
appropiate addressing mode for JSRs, JMPs, LEAs and PEAs.

A-May-83 Compiler Execution Emvironment-4

Structure of Code for a Pascal Procedure ar Function:

The code emitted by the compiler contains three constructs Which
can be controlled via compile time options. These are as follows:

1) Automatic stack expansion.
2) Range checking for values, indexes and strings.
3) Debuggung info (je. the procedure name).

Theeodeforatypmlpmdurewﬂllmkasfollows

TSLW e(AT) Tesis for suficient stack space
LINK A6, ¥ -size Allocates space for locals
body of the procedure or function
UNLK A6 ~ Restores previous local frame
RIS ...~ Exitsequence
Elghtbytepru:edurenameand.
two byte data size. This is the
- - optional debugging information.
| mmntdataareaforsumgs&sets

The exit sequence emitted by the compiler is dependent on the
number of bytes of parameters. If there are no parameters then
the RTS is used as shown above. The compiler emits one of the
following sequences when parameters must be deleted:

Case #1: 2, 6 or 8 byes of paramters

MOVEL (A7)+,A0 2
ADDQ.W #size A7 2
JMP an %.

Case #2: 4 bytes of parameters bytes total
MOVEL (AN + (AT) 2
-

Case #3: more than 8 bytes of parameters yies
MOVEL (A7+,A0 2
ADD.W #size A7 4
JMP (AD) 2

"8 bytes total

4-May-83 Compiler Execution Environmnent -5

Se nﬁtion& constants d by value:

Since the 68000 is not restartable, (fe. use a 68010 instead) the
data (je. stack and heaps) for a given program must be present

- While the program is executing. Since code segments must be

- swapped into memoary as needed and set and string constants
“are stored with the code, large constants passed by value pose

a problem. Currently, we solve this problem by having the

- compiler use the instruction TST.B (Ai) to check o see if the

. the actual value parameter is in memory. If the TST.B (Ai)
‘.-,4_,;musesafauluhenthesystemlmdsthesegtnentmmningthe
“address in A

When copying strings the eumpﬁet emits code which depends
- only on the size of the destination. This may cause the code
to read beyond the end of a segment. The system allows for
this by mapping code segments to cover size + 256 bytes. The
heap segments also have an additional 256 bytes.

4-Mgy-83 Compiler Execution Emvironrnernt-5

Internals & Confidentisal

Intrinsic Units

ANOTE: The infarmation in this document will be in the Linits section of the Fascal
Manual in the spring relesse.

Intrinsic units provide a mechanism for Pascal programs to share common code. A
single copy of the code is kept on disk, and when loaded into memory this code can
be executed by any program that declares the intrinsic unit (via a uses clause, just as
for regular units) and has been linked against the library file. In addition, a shared
intrinsic unit provides for the sharing of common data (i.e., one copy of the data on
the system).

The code of the entire unit, or of blocks within the unit, must be placed in one or
more named segments. Segmentation is controlled by the $S cornpiler cornmand
(described in the Fascal Reference Manusl), the ChangeSeg utility, and the +M linker
option (both described in the orkshop Liser’s Guide). Code from an intrinsic unit
cannot be placed in the same segment with code from a program or & regular unit.

Writing Intrinsic Units

An intrinsic unit has the same syntax as a regular unit, except that it has an intrinsic
clause in the heading.

NOTE: For syntactic compatibility with UCSD Pascal, the Keywords code and data
may appear in the unit heading of an intrinsic unit, together with integer
constants. These keywords and constants ere accepted but sre ignored.

If the keyword shared appears in the intrinsic clause, the system will contain only a
single data ares for the unit; the data is shared among all programs thet use this unit.
If shared does not sppear in the intrinsic clause, each programn that uses the unit has
its own data area for the unit.

It an intrinsic unit contains & uses clause, it can only use other intrinsic units; an
intrinsic unit cannot use a regular unit.

Each unit used by & program (or by another unit) must be compiled, and its object file
must be accessible to the compiler, before the program (or unit) can be compiled.

A single copy of the code of an intrinsic unit is available to all programs in the
systemn; therefore, intrinsic units must be coordinated as part of system generation and
system maintenance activities. Specifically, all intrinsic units that have code in the
same run-time code segment file must be linked together into an intrinsic segment
file, and the intrinsic segment file must be referenced in the system intrinsics librery,
INTRINSIC.LIB.

17-Janusry -84 Intrinsic Units-1

Internsls & Confidentisal

(
Building Library Files
To creste intrinsic units and link them into a library file, you must perform the
following steps in order, as shown in Figure 1:
ster 18 Compile and Generate the intrinsic units.
ster 18 Define the intrinsic units, code segments, and file names, using the
IUManager. (Steps 1s and 18 can be done in either order.)
step 2 Link the intrinsic libraries.
ster 3 Install the library files, using the [UManager.
ster 4 Develop the main programns (not shown in detail).
¢ 5 Run main programs which use the library files. (The systern must be
rebooted before this step))
STEP 18 |-
Lib Dir
(
Figure 1
Developing Intringic Libreries
LEGEND :
<File> info flow >
(

STEP 5

17-Janvaxry—&4 Intrinsic Umis-2

Internsls & Conlidential

The IUManager

(For versions 1.x and 2.x software)

The IManager program is used to manage the directory of library files. You
can add, delete, or change intrinsic units, segments, and files in the
directory. To use the IUManager, you should be familiar with the way that
units and segments are handled in Pascal on the Lisa. (Information on
intrinsic units is in the Intrinsic Unit ERS by Ken Friedenbach from September
16, 1981.) This document describes the version of the IWManager in software
prior to the "spring release".

The IManager has three modes, which do the following:

Units: Add, delete, or change intrinsic units. An intrinsic unit is s
unit of Pascal code that can be accessed by different
processes. There are two kind of intrinsic units--regular and
shared. A regular intrinsic unit has a private global data
area associated with it; shared intrinsic units share dats as
well as code.

Segments: Add, delete, or change segments. Units can be broken up into
segments, so that interdependant parts of different units will
be swapped in and out of memory at the same time. You can
segment your code with either the $S Compiler option or the
ChangeSeg utility.

Files: Add, delete, or change library files. Units and segments are
arranged in library files.

When you run the IUManager, you are asked the input and output names of the
library directory that you want to edit. The default name for both is
INTRINSIC.LIB, the directory that the system looks for at boot time. (Don't
play with the INTRINSIC.LIB unless you know what you're doing, or your system
may not boot!)

When you first enter the IUManager, you're in the segments mode. The
IlManager has only one command line, so if you don't know which mode you're
in, either L(ist the current table or type S(egs, U(nits, or F(iles to get to
the mode you want. The commands available in the IUManager are:

Q(uit Quit the IUManager and rewrite the directory.

&-Januery-84 IiNanager [v1 2]-1

Internals & Confidentisl

(
S(egs Select the segments mode and list the segment teble. Entries in
the segment table have the following information:
SEGMENT The segnent name.
NUM The segment number (17-128).
F-NUM The number of the file that the segment is in.
F-LOC The byte location of the segment in the file.
PACKED/
UNPARCKED The number of packed or unpacked bytes in the segnent.
FILE-NAME The name of the file that the segment is in.
U(nits Select the units mode and list the unit table. Entries in the
unit table have the following information:
UNIT The unit neme.
NUM The unit number (1-256).
F-NUM The number of the file that the unit is in.
TYPE The type of unit: Intrinsic or Shared Intrinsic.
DATA-SIZE The number of bytes of global data (Shared Intrinsic
units only). (

FILE-NAME The neme of the file that the unit is in.

F(iles Select the files mode and list the file table. Entries in the
Tfile table have the following information:

NUM The file number (1-64).
FILE The file name.

I(ns Install a library in the directory. This stores the segment and
unit tables from the linked object file. The Install commend puts
you in the files mode if you're not in it alresdy, lists the file
table, and prompts you for the file number to install.

L(ist List the entries in the currently selected table. Use ®#-S to
stop the output for tables of more than 32 entries.

P(rt Print all three tables. This command doesn't work. If you sccept
the default [PRINTER:], the tables are not printed, but &re sent
to a file named PRINTER:. To print the tables, send them to a
.TEXT file (or change the PRINTER: file to a _TEXT file), and
print them from the Editor.

&-January-84 ItMensger (V1. 2]-2

Internals & Confidential

R(em Remove an entry from the currently selected table. You are
prompted for the segment, unit, or file number. If you try to
remove 8 file that is used by the segment table, you will get s
warning, and the file will not be removed.

C(hng Change an entry in the currently selected tsble. You will be
asked for the segment, unit, or file number, and prompted for
changes in each field. If you enter an unused number, the Change
command works just like the New command. If, in changing a unit
or segment, you specify a file name that has not been used, & new
file will be created with the next available file number.

N(ew Create a new entry in the currently selected table. You will be
asked for the segment, unit, or file number, and prompted for each
field. If you enter a number already associated with an entry,
the New command works just like the Change command. The default
entry number is the first unused number in the table. Vsalid
ranges for entry numbers are:

Segments 17 - 128
Units 1- 25
Files 1- 64

NOTE: Segment numbers 1-16 are used by the 0S, but the IUMansger
doesn't know this, and prompts you for them. DO NOT USE
THEM, or unspecified evil things will happen.

If you add & unit or segment and specify a file name that has not
been used, a new file will be created with the next available file
number .

V(erify Verify that the information in the linked object file is
consistent with the directory.

5-January—-34 ItManager [vi 2]-3

Internals & Confidential

The IUManager

(For Apple pre-release version 3.x software)

The IMManager utility is used to manage the directory of library files. You
can add, delete, or change intrinsic units, segments, and files in the
directory. To use the IUManager, you should be familiar with the way that
units and segments are handled in Pascal on the Lisa. (Information on
intrinsic units is in the Intrinsic Unit ERS by Ken Friedenbach from September
16, 1981.) This document describes the internal pre-release version of the

IManager in the "spring release”, which is liable to change without notice
(though not significantly).

The IMManager has three modes, which do the following:

UNITS: Add, delete, or change intrinsic units. An intrinsic unit is &
unit of Pascal code that can be accessed by different
processes. There are two kind of intrinsic units--regular and
shared. A regular intrinsic unit has a private global data
area associated with it; shared intrinsic units share data as
well as code.

SEGMENTS: Add, delete, or change segments. Units can be broken up into
segments, so that interdependant parts of different units will
be swapped in and out of memory at the same time. You can
segment your code with either the $S Compiler option or the
ChangeSeg utility.

FILES: Add, delete, or change library files. Units and segments are
arranged in library files.

When you run the IUManager, you sre asked the input and output names of the
library directory that you want to edit. The default name for both is
INTRINSIC.LIB, the directory that the system looks for at boot time. (Don't
play with the INTRINSIC.LIB unless you Know what you're doing, or your system
may not boot!)

4-Jarnvary-84 ItNanager [v3]-1

Internsls

& Confidentisl

(

When you first enter the IUMansger, you're in the FILES mode. To switch
between modes, the following commands are available:

S(egments Enter the SEGMENTS mode and display the segment table.
Entries in the segment table have the following information:

SegNeme The segment name.
Seg# The segment number.
File# The number of the file that the segment is in.
FileLoc The byte location of the segment in the file.
Packed/
UnPacked The number of packed or unpacked bytes in the
segment .
FileName The neame of the file that the segment is in.
U(nits Enter the UNITS mode and display the unit tsble. Entries in
the unit table have the following information:
UnitName The unit name.
Unit# The unit number.
File# The number of the file that the unit is in. (
Type The type of unit: Intrinsic or Shared Intrinsic.
DataSize The number of bytes of global data (Shared
Intrinsic units only).
F(iles Enter the FILES mode and display the file table. Entries in
the file table have the following information:
File The file number.
FileName The file name.

4-January-84

(

IlNanager [Vv3]-2

Internals

& Confidential

Other than the S(egments, U(nits, and F(iles commands, the commands available
in all three modes are the same:

C(hange

A(dd

D(elete

L(ist
Q(uit

I(nstall

VY(erify

P(rint

4-January-54

Change an entry in the currently selected table. You will be
asked for the file, unit, or segment number, and prompted for
changes in each field. If you enter an unused number, the
Change command works just like the Add command.

Add a new entry in the currently selected table. You will be
asked for the file, unit, or segment number, and prompted for
each field. If you enter a number already associated with an
entry, the Add command works just like the Change command. The
default entry number is the first unused number in the table.
If you add a unit or segment and specify a file neme that has
not been used, & new file will be created with the next
available file number.

Delete an entry from the currently selected teble. You are
prompted for the file, unit, or segment name or number. If you
try to delete a file that is used by the segment table or unit
table, you will get a warning, and the file will not be
removed. If you try to delete a segment that is used by the
system table as a Public Interface segment, the segment will
not be removed.

List the entries in the currently selected table.
Quit the IUManager and rewrite the directory.

Typing ? from the main command line displays the alternate
command line, with the following commands:

Install a library in the directory. This stores the segment
and unit tables from the linked object file. The Instsll
command puts you in the FILES mode if you're not already,
displays the file table, and prompts you for the file name or
number to install.

Verify that the information in the linked object file is
consistent with the directory. You are prompted for the name of
the file to verify.

Print all three tables. (You can send the tables to a .TEXT
file in§tead of -PRINTER if you want to look at them in the
Editor.

Typing ? from the alternate command line returns you to the
main command line.

Iianager [V3[]-3

STy e, ;:\1{

Subject: Lisa Object File Formats % Nk
Date: August 14, 1982 (0.S. 5.2, Monitor 10)
From: Ken Friedenbach
CONTENTS
1.0 Introduction ¢« ¢« ¢ ¢ ¢ « & o ¢ e o « o o o o 2
1.1 Related Documents e« & e & e e e & e o o o 2
1.2 Overview of the Lisa Hardware/Software System . . . 3
1.3 Basic Definitions e & & e e o e« & e o o o &
1.4 Types of Object Files . « « « ¢ « 4« 4« « « o+ 5
2.0 Grammatical Definition of Object Files 7
2.1 Grammar=Grammar . . « o o o 2 ¢ o o o o o 1
2.2 Software Configuration Files 8
2.3 Linked Files . =« o &« &+« =« o o o o o« o« « « 8
2.4 Unlinked Files e e ¢ o & e e 2 e e e+ « 9
3.0 Future Directions . . ¢« =« ¢ ¢« =« « o« +« o« o o« <10
3.1 Version Control . . . e e« o e o s+ e« « 10
3.2 The Software Management Utility e+ e s+ e+ « « <10
3.3 Symbolic Debugging . .« « .« ¢ o+ o+ ¢ o o+ o .10
3.4 Other Languages . .« =+ + « « ¢ o o o o« o 10
4.0 Object Record Details « ¢« « ¢ ¢ o ¢ « o o o « 12
4.1 Version Control e s+ o e+ e e o +13
4.2 Module Blocks (ModuleName, EndBlock EntryPoint,
External, StartAddress, CodeBlock, Relocation,
CommonReloc, ShortExternal) e e« e« o e o o 14
4.3 Unit Blocks (UnitBlock, Interfloc) . . « .« « . . 19
4.4 Main Program (Executable, jump table) . . 21
4.5 Intrinsic Units (SegmentTable, UnitTable, SegLocation,
UnitLocation, FilesBlock) . . .« .+ « .« . . 24
4.6 Code Compaction (PackedCode, PackTable) 28
4.7 The End ¢« ¢« =« ¢« o o o o o o o o o o « 29

References .« « ¢ o o o o o o o o o o o o

Appendix A. ObjIOLib Interface . =« « =« ¢ ¢ o

August 14, 1982 -1-

0S 5.2 Monitor 10

(AL

Lisa Object File Formats

1.0 Introduction

This document provides a detailed reference manual for the object file formats
and system conventions which define the software run-time environment for Lisa
Applications. This information is of use to developers of compilers which
emit object code to be linked with the IULinker. Object code which is in
these formats can be executed under the Monitor or the 0.S. Loaders or be
debugged with LisaBug. Fred Forsman is currently working on a Symbolic

Debugger which will assume these formats. Some of this information will be of
use to third-party software developers who develop libraries of Intrinsic

Units to support specialized applications. This information may be of use to
programmers who develop and debug programs at the machine or assembly language
level.

This document describes a set of Intrinsic Units used by programs in the
Pascal Development System which create and access object files. These units

are useful in building utility programs which can be maintained across changes

in object file formats. The units are distributed in the library file named
ObjIOLib.0OBJ. The ObjIOLib units are used by the Pascal Compiler, the Code

Generator, the Assembler, the Monitor Loader, the IULinker, the IUManager, and

a variety of utility programs including DumpObj, ChangeSeg, GXRef, SegMap,
CodeSize, PackSeg, and ReUse. The units will be used by the Symbolic

Debugger. Information on the functions and use of the above programs is
contained in the Pascal Development System Manual.

Developers of Code Generators are strongly urged to use the ObjIOLib units for

writing object files and developing object file utilities. This will reduce
maintainence difficulties caused by object file format changes.

This document describes the object files in their present form (Monitor
Release 10, 0.S. Release 5.2). Except for additions in the area of Symbolic

Debugging, this form should be the formats for First Release of the Lisa

Office System. In some places in the document, future changes or extensions
are mentioned. This information is tentative and is primarily intended to aid

in long range planning for maintenance.

1.1 Related Documents

The reader is assumed to be familiar with the following documents:

PASCAL DEVELOPMENT SYSTEM MANUAL, Bill Schottstaedt, February 16, 1982.
Sections of relevance are: The Linker, Segmentation and Intrinsic

Unit Management, and Object File Debugging.

PASCAL DEVELOPMENT SYSTEM INTERNAL DOCUMENTATION, Bill Schottstaedt,
February 16, 1982. This document is an expansion of the sections:
Linker File Layout and Jump Table Formats.

August 14, 1982 -2 - 0S 5.2 Monitor 10

Lisa Object File Formats

LISA PASCAL: LANGUAGE SPECIFICATION, Rich Page and David Casseres,
February 19, 1982. Background material is contained in Section
14: UNITS.

LISA HARDWARE REFERENCE MANUAL. Especially the sections on Memory
Mapping and address translation.

LISA OPERATING SYSTEM REFERENCE MANUAL. Especially the description of
the loader (task initialization) and the flushing of INTRINSIC.LIB.

1.2 Overview of the Lisa Hardware/Software System

The Lisa Hardware supports the mapping of a 16 M-byte logical address space
into a smaller physical address space at run-time. The 16 M-byte logical
address space is divided into 128 (logical) segments of 128 K-bytes each.

The IULinker supports Intrinsic Units (shared code) by linking main programs
and intrinsic units into absolute locations in the 16 M-byte logical address
space. The system Loaders support the execution of programs which use
Intrinsic units by swapping code into memory, setting up a Memory Management
Unit (MMU) to tramslate logical adrreses into physical addresses, and handling
the sharing of code between different programs (processes).

Uniform addressability of code is achieved by assigning an MMU number (128

K-bytes of logical address space) to each Intrinsic Unit segment. Code
segments for a Main Program are assigned MMU numbers which are not among those

assigned to Units used by the program.

Uniform addressability of data areas for Intrinsic Segments is achieved via
pointers which are at a fixed location relative to the Global Frame pointer

(register A5). This allows a "compact” allocation of global variables for
Intrinsic Units without "holes” for Units which are not used.

Unlike UCSD Pascal the assignment of numbers to Segments and Units is done at
Link time, not at compile time. Only Symbolic names are assigned at Compile
Time. Also, the control of Segmentation is much more flexible than in UCSD
Pascal. Procedures from different Units can be combined into the same
segment.

Short Jumps (4 bytes rather than 6 bytes) to Intrinsic Unit Segments are
achieved via emulated instructions. These instructions are editted by the
IULinker. They make use of the "Axxx" class of emulation instructions
supported by the hardware. See the section on the Intrimsic Unit Trap Handler
in the PASCAL DEVELOPMENT SYSTEM INTERNAL DOCUMENTATION for more details.

Current instructions emulated include:

IUJSR == JSR to an IU Segment procedure or function.
IUJMP — JMP to an IU Segment procedure or function.

IULEA LEA of an IU Segment procedure or function (except into A7).
IUPEA PEA of an IU Segment procedure or function.

August 14, 1982 -3 - 0S 5.2 Monitor 10

Lisa Object File Formats

The major advantages of this architecture are the following:

One copy of code (on the disk and in memory) can be part of several
different programs.

Code can be swapped into memory in a state that is "ready to execute”.
No patching or load-time linking is needed.

Since code segments are "read only" code never needs to be swapped out.
(However, debuggers must be aware of swapping to reinstall breakpoints.)

Some of the disadvantages are:

The size of the Intrinsic Unit library is limited by the number of MMU’s
supported by the hardware. (This could be expanded by treating the
library as a tree structure or by swapping related segments and mapping
them with a single MMU.)

The size of the largest program using Intrinsic Units is limited by the
number of MMU”s supported by the hardware.

There is a slight performance penalty in accessing global variables in
Intrinsic Units indirectly via the table of pointers. (The Pascal
Compiler puts such references into the pool of computations to optimize
by saving results in registers.)

There is a penalty in speed in emulating the instructions IUJSR, IUJMP,
TIULEA, and IUPEA. For the most common instruction (JSR) the penalty is
about 8:1 for the emulated version. This causes an overall 2:1 increase

in the average procedure overhead (including LINK, UNLINK, return,
argument passing and scrubbing, saving optimization registers, automatic
stack expansion, etc.)

1.3 Basic Definitions

Segment

This term is used in two different senses which are related but distinct.

From the hardware point of view, a segment is a portion of the logical address
space which is mapped by an MMU and can include from O to 256 blocks of 512
bytes (zero to 128 K bytes). From the software point of view, a segment is a
swappable piece of code of up to 32 K bytes. (The 32 K limitation is related
to using signed words for PC relative branches.) There are also special
segments, such as the stack segment and the jump-table segment. Where the
distinction is important, the terms "logical segment” and "code segment” will
be used.

Module (Block)

August 14, 1982 -4 - 0S 5.2 Monitor 10

Lisa Object File Formats

A module or block is a contiguous piece of memory. In unlinked files produced
by the Pascal Compiler, a module is a procedure or function including string
constants, set constants and embedded debug information. 1In unlinked files
produced by the Assembler, a module is a single .PROC or .FUNC section of

code. The IULinker also defines several other blocks of memory which are
referenced and defined implicitly by the languages and run-time environment:

the "global data” area (or initial stack), the "data pointer™ area for
accessing the global data of intrinsic units, and the jump table of a Main
Program. The heap is the only part of the run-time environment which the
Linker does not define as a block.

In a linked file, a block is a code segment (i.e. the smaller blocks of memory
have been bound together into a larger contiguous piece of memory). Code

modules (whether linked or unlinked) are represented in an object file by a
set of object file records, beginning with a ModuleName block and ending with

a EndBlock.

Note: the use of the term "module” to mean a "block" is due to historical
roots. At some time in the future it would be nice to switch to the following
terms, although this will involve massive edits to existing programs:

Block -- a contiguous piece of memory.

Module -- a block of data and one or more blocks of code.

Class =- a Module which can be instantiated with several data blocks.
Segment -- code blocks of one or more modules linked together.
ObjRecord —— a file format.

1.4 Types of Object Files

A object file contains one or more records of information relating to the
execution of machine code. There are several types of object file:

Intrinsic Unit Directory (IUDirectory)
Intrinsic library and Main Program
Unlinked Units and Code

The general function of each type of object file is discussed below. The
detailed specification of which blocks are present is given in the Section
7.0. Detailed formats of each block are given in Appendix A.

Intrinsic Unit Directory (IUDirectory)

Intrinsic Unit Dircectories are read and written by the IUManager. The
“current” or "active” directory is found by convention in the file

INTRINSIC.LIB on the 0.S. boot volume or the Monitor root volume on the
working device. Loaders read INTRINSIC.LIB to locate Intrinsic Segments. The

IULinker uses INTRINSIC.LIB to compute the transitive closure of Intrinsic
Units referenced and to assign absolute logical addresses. The Compiler reads
INTRINSIC.LIB to locate the interfaces of Intrinsic Units.

August 14, 1982 -5- 0S 5.2 Monitor 10

Lisa Object File Formats

Intrinsic Library and Main Program Files

Intrinsic library and main program files are written by the IULinker and
loaded for execution by loaders on the Monitor and the 0.S. Intrinsic library
files contain linked intrinsic unit code which 1s ready to be loaded and
executed as part of a main program. In addition, Intrinsic library files may
contain linker information and unit interfaces used in the compilation and

linking of other units and main programs. Intrinsic library and Main Program

files can be stripped and packed by the PackSeg Utility in order to minimize
disk space in a production system.

In the present development environment, the IUManager must be used to define
Intrinsic Segments and Intrinsic Units before the IULinker links them. After

the IULinker has linked an Intrinsic library file, the Intrinsic library file

must be "Installed” using the IUManager. The installation operation places
file relative location information in INTRINSIC.LIB so that the loaders can

efficiently locate and load segments.

August 14, 1982 -6 - 0S 5.2 Monitor 10

Lisa Object File Formats

2.0 Grammatical Definition of Object Files

The grammar used is a form of Extended BNF similiar to that used by Wirth in
describing Modula=2 [1]. The major differences are the adoption of a

"list-of" construct suggested by DeRemer [2] and the interpretation of {E} as

one or more occurances of E. The Extended BNF is capable of
concisely:

describing itself

2.1 GRAMMAR-GRAMMAR

Syntax:
syntax = {production}.
production = NTSym "=" expr ".".
expr = {term "|" D.
term = {factor}. — one or more factors
factor = TSym | NTSym | "(" expr ")"
| "[" expr "]" | "<" expr TSym ">"
| "{" expr "}".
Semantics:

El | E2 denotes either El or E2
that is, one of two alternatives.
{E} denotes E, EE, EEE, etc.
that is, one or more E’s.
[E] denotes the empty string or E
that is, an optional E.
<E P> denotes E, EPE, EPEPE, etc.
that is, a list of E“s separated by P s.
() are used for grouping.

NOTE: [{E}] denotes the empty string, E, EE, EEE,

Scanning:
Comments are delimited by "--" and the end-of-line.
Special character terminals are in quotes.

The string """" is a quoted ". For example:
The sentence: "It°s hot today!", he said.

etc.

would be quoted: ""*It"s hot today!"", he said.”

Conventions: :
Syntactic class names begin with a lower case letter.
Terminal class names begin with an upper case letter.

Object file formats are descibed in the form used by

System during the development and testing of software. The "

the Development
stripped and

packed” formats produced by the PackSeg utility are documented in the
comnents. The Prelink file formats are also mentioned a few places in the

comments, but have not been completely specified.

August 14, 1982 -7-

0S 5.2 Monitor 10

Lisa Object File Formats

2.2 SOFIWARE CONFIGURATION FILES

objFile =
iuDirectory | sysPackTable
| iuLibrary | mainProg
| unlinkedUnit | unlinkedModule.

iuDirectory =
VersionControl UnitLocation Seglocation FilesBlock

[CodeBlock] EOFMark.

sysPackTable = VersionControl PackTable EOFMark.

The iuDirectory defines the intrinsic units and intrinsic segments
which are available for use by main programs. By convention the name of the
active iuDirectory is INTRINSIC.LIB. The optional CodeBlock contains the IU
Trap Handler for the 0.S. without LisaBug. This file cannot be packed.

The sysPackTable file contains the PackTable record used in packing
any intrinsic library or main program files on the 0.S. By convention the
active PackTable is in PACKTABLE.LIB. This file cannot be packed.

2.3 LINKED FILES

iulibrary =
VersionControl SegLocation

[InterfLocation] -- stripped. Present if Interfaces in file.
UnitTable SegmentTable -- stripped, only used by Linker
{UnitBlock} — interfaces are stripped

{iuLibModule} EOFMark.

iuLibModule =
ModuleName

[{EntryPoint}] - stripped
[{CommonReloc | ShortExternal}] -— later, to support PreLink

CodeBlock EndBlock.

mainProg = ' :
VersionControl [UnitTable] Executable [SegmentTable]
{module} EOFMark.

module = ModuleName {otherModBlock} EndBlock.

otherModBlock =

EntryPoint | StartAddress | CommonReloc | ShortExternal
| CodeBlock | Relocation | External.

August 14, 1982 - 8 - 0S 5.2 Monitor 10

Lisa Object File Formats

The SegLocation block in iulibrary files 1is for future Loader support
of slightly different versions of files on a system, i.e. packed Lisa Office

System files and Development System versions with interfaces and linker
information. Presently, one set of numbers is installed in INTRINSIC.LIB and

is assumed valid for any file of the indicated name.

The Interflocation block is used by the Compiler to quickly access
interfaces in the UnitBlock(s). The UnitTable and the SegmentTable contain

the transitive closure of intrinsic units used and intrinsic segments from
code within a file. The UnitTable and SegmentTable are only present if

intrinsic units are referenced.

The UnitBlock contains the size of the global data area for a
particular intrinsic unit and optionally the interface or interface location
information.

Presently iulibrary modules do not contain relocation records.
However this is planned for the Prelink and InstalllLink programs which will
support third party software development and distribution.

The Executable block contains the segment table and the jump table for
the main program and regular unit segments.

2.4 UNLINKED FILES

unlinkedUnit =
— later: VersionControl

UnitBlock

[{module}] —— units can be definitions only
EOFMark

TextBlocks. - note: TextBlocks after EQOFMark.

unlinkedModule =
-— later: Version Control
{module} EOFMark.

An unlinked unit file is the output of a compiler which 1is intended
for "use™ or "import™ by another compilation. The kludge of having text
blocks tacked on the end of the file is scheduled for replacement by
compilation to an intermediate form which includes definitions.

A unlinked file is formed by a compiler or an assembler. Version
control blocks are not presently placed on unlinked files but are sheduled to
be shortly added (11.0).

August 14, 1982 -9 - 0S 5.2 Monitor 10

Lisa Object File Formats

3.0 Future Directions

3.1 Version Control

Version control will be needed for two purposes:

To prevent the execution from inconsistent library and main program
files.

For consistency checking of a software configuration, i.e to support the
Make facility and the Software Management Utility.

Version control for execution is scheduled for implementation after the second
product build (internal use).

3.2 The Software Management Utility

A Software Management Utility is being developed which will facilitate the
management of system dependencies and the automatic regeneration of a system
based on consistency checking. This facility represents an extension of the
UNIX “"make” facility to include:

Distinction between interface and implementation editing changes.
Distinction between linking with regular units (code is copied) and

intrinsic units (code is referenced).
Support for the concept of "reuseable” intrinsic library files.

Support for the concept of a "run-time"” library directory.

The Software Management will provide for management of four levels of system
implementation and configuration:

Run-time Systems
Intrinsic Library Files

Unlinked or Raw Object Files
Source Code Files

3.3 Symbolic Debugging

A new attempt at defining and implementing a Symbolic Debugger is being made.
In the previous effort, the emphasis was on dumping symbolic information from
the compiler into an independent .DBG file. 1In the current effort we are
examining the possibility of passing more information through the .I-code file
to the code generator. Some forms of debugging information will be embedded
in the CodeBlock. Other forms of debugging will be introduced as new block
types.

3.4 Other Languages

August 14, 1982 - 10 - 0S 5.2 Monitor 10

Lisa Object File Formats

Currently we are planning for COBOL to generate object files which can be
linked with the IULinker. We are also investigating the feasibility of

bringing Modula-2 up on Lisa. Over the course of the next year Lisa will
begin to support multi-language development projects.

August 14, 1982 -11 - 0S 5.2 Monitor 10

Lisa Object File Formats

4.0 Object Record Details

Object file records consist of a Header, an Invariant part and a Variant
part.

The Header consists of a byte which indicates the BlockType followed by a
three byte length field. The GetObjInvar and PutObjInvar procedures in ObjIO

manage the details of the BlockType encoding and translate the particular
encoding into an enumerated type.

The Invariant part is always a fixed length (possibly zero) for a given
BlockType. The Invariant part characterizes the record. The following
BlockTypes are currently supported:

BlockType=
(ModuleName, EndBlock, EntryPoint,
External, StartAddress, CodeBlock,
Relocation, CommonReloc,
ShortExternal,
UnitBlock, Interfloc,
Executable, VersionCtrl,
SegmentTable, UnitTable, SegLocation, UnitLocation, FilesBlock,
PackedCode, PackTable,
EOFMark);

Note: the current ObjIO Unit includes some additional BlockTypes that are
supported for compatibility reasons, but are not intended for future support.

For each of the above BlockTypes there is a corresponding invariant record
definition in ObjIO. For instance, the BlockType "ModuleName"” has an

invariant record definition "iModuleName”. These are shown in detail below.

The Variant part may be missing, optional or of varying length depending on
the BlockType. When present, the Variant part of an object file record
usually consists of a varying number of fixed size entries. There are
exceptions, however, such as the Executable block which has a complex variant
structure (segment table, jump table and a few miscellaneous entries). The
following VariantTypes are currently supported:

VariantType=
(NoVariant,
RefVariant, ShortRef, ModVariant, Comments,
SegVariant, UnitVariant, IntflLocVariant,
SeglocVariant, UnitLocVariant, FilesVariant,
JumpTVariant, JTSegVariant, ObjectCode);

August 14, 1982 -12 - 0S 5.2 Monitor 10

Lisa Object File Formats

The association of a VariantType with each BlockType is expressed in two
ways. In the invariant record definition a comment at the end documents the
corresonding VarinatType. In addition, there is an array of information in
0bjI0 which contains the mapping. GetObjInvar and PutObjInvar manage the
communication of this information to programs accessing object files.

In the definition of object file records, there are some standard types used
in addition to Integer, LongInt, Boolean, Char, etc. The following types are
introduced in the indicated Units:

(* from Unit PasDefs: *)

const NameStrLen = 8; (* Length of Identifier Names ¥*)
MaxLStringlen = 80; (* Reasonably long: error messages etc. *)

type NameString = packed array [l..NameStrLen] of char;
LString = String [MaxLStringlen];

MemPtr = “integer; (* "untyped” pointer to memory *)
ProcPtr = “integer; (* in place of Procedure variables *)

(* from Unit ObjIO: *)

type FileAddr = longint; (* O based, byte address within a file *)
MemAddr = longint; (* 24-bit virtual address *)
SegAddr = longint; (* 0 based, byte address within a segment *)

Note: the name of the type NameString may need to change in the future due to
a conflict with a different type in the 0.S. and the lack of support for
qualified names in Pascal.

4.1 VERSION CONTROL

August 14, 1982 - 13 - 0S 5.2 Monitor 10

Lisa Object File Formats

VersionCtrl:
ivVersionCtrl = record
SysNum, MinSys,
MaxSys, Reservl,
Reserv2, Reserv3: longint;
end;

= e e e e e e ———+

| 99 | size | SysNum| MinSys| MaxSys|Reservl|Reserv2|Reserv3|
R s e S T o S e e e e T S s

1 -2 5 9 13 17 21 25 28
99 - Hexadecimal 99
size - Number of bytes in this block
SysNum - (reserved)
MinSys - (reserved)
MaxSys - (reserved)

Reservl - (reserved)
Reserv2 - (reserved)
Reserv3 - (reserved)
Note:
Contents are currently ignored by loaders and system programs for all
fields.
Future plans:

See the VERSION CONTROL - SPECIFICATION document for detailed plans
for releases 11.0 and 12.0.

August 14, 1982 - 14 - 0S 5.2 Monitor 10

Lisa Object File Formats

4.2 MODULE BLOCKS

ModuleName:
iModuleName=record
ModuleName,
SegmentName: NameString;
CSize: LonglInt;
(* Comments *)
end;

s e B e R A S B S s [ST S WEE S WU S S

| 80 | size | ModuleName | SegmentName | CSize | Comments ... |
1 2 4 5 12 13 20 21 24 size ’
80 - Hexadecimal 80

size - Number of bytes in this block

ModuleName - Blank padded ASCII name of this module

SegmentName - ASCII name of segment in which this module will reside
Notes:

CSize 1is always zero. The actual CSize is in the EndBlock.
Comments are not currently generated.

Future plans:
CSize will be dropped.
Comments will be replaced with stack frame descriptor for debugging.

Linker will do language checking and size checking of args and locals.

EndBlock:
iEndBlock=record
CSize: LonglInt;
end;
| 81 | size | CSize |
1 2 4 5 8
81 - Hexadecimal 81
size = Number of bytes in this block (always 000008)
CSize = Numer of bytes in the code block for this module
Note:

CSize is the actual number of bytes of code in the CodeBlock, i.e. CSize
is equal to the number of Variant bytes in the CodeBlock. By convention, the
Monitor and 0.S. loaders load the CodeBlock header and invariant part as
well. So other records such as SeglLocation blocks and the segment table in
the Executable block generally indicate a code block size which is larger.

August 14, 1982 - 15 - 0S 5.2 Monitor 10

Lisa Object File Formats

EntryPoint:
iEntryPoint=record
LinkName,

UserName: NameString;
Loc: SegAddr;
(* Comments *)

end;

e e I T T e e e e S

| 82 | size | LinkName | UserName | Loc | Comments ... |
1 2 4 S5 12 13 20 21 24 25 size
82 - Hexadecimal 82

size - Number of bytes in this block

LinkName - Blank padded ASCII linker name of entry point

UserName - Blank padded ASCII user name of entry point

Loc - Location of entry point relative to this module
Note:

Comments are not currently generated.
In Pascal files each module has only one EntryPoint and Loc is zero.

In Assembly language files there is an EntryPoint record for the .PROC or
+FUNC and one for each .DEF

In Intrinsic library files with Linker information there is an EntryPoint
record for each procedure or function in an Interface section.

For languages with nested scopes (such as Pascal) LinkName has a special
format ("$nnnnnnn”) for nested names or names in Implementation sections which

do not need to be unique globally. LinkNames must be unique within a file.

The Linker will remap the LinkNames to preserve uniqueness when reading the
file. See Appendix C on the IULinker functions for more details.

Future plans:
Addition of UnitName to support qualified name references.
Switch from eight character case-insensitive names to longer

case-sensitive names. The length will probably be either a fixed 16
characters or a varying 31 characters (i.e. an index in a NameTable).

August 14, 1982 - 16 - 0S 5.2 Monitor 10

Lisa Object File Formats

External:
iExternal=record
LinkName,
UserName: NameString;
(* RefVariant ¥*)
end;
| 83 | size | LinkName | UserName | ref 1] ooc | ref n |
1 2 4 5 12 13 20 21 24 size
83 - Hexadecimal 83
size - Number of bytes in this block
LinkName - Blank padded ASCII linker name of external reference
UserName - Blank padded ASCII user name of external reference
ref 1 - Location of first reference relative to this block
cee - Other references
ref n - Location of last reference
Note:
See the notes and futures plans for names under EntryPoint.
StartAddress:
iStartAddress=record
Start: SegAddr;
GSize: Longlnt;
(* Comments *)
end;
| 8 | size | Start | GSize | Comments ... |
1 2 4 5 89 12 13 size
84 - Hexadecimal 84
size - Number of bytes in this block
Start - Starting address relative to this block
GSize = Number of bytes in the global data area
Comments ~ Arbitrary information. Ignored by the Linker.
Note:

Comments are not currently generated.

August 14, 198

2

-17 - 0S 5.2 Monitor 10

Lisa Object File Formats

CodeBlock:
iCodeBlock=record
Addr: SegAddr;
(* ObjectCode *)

end;

B o s S o e B B B e e e e 5
| 85 | size | Addr | ObjectCode ... |
e B B A e B e B e B e

1 2 4 5 89 size
85 ~ Hexadecimal 85
size - Number of bytes in this block
Addr - Address of first byte of code

ObjectCode - The object code. Always an even number of bytes.

Note:
For raw object files (unlinked) the address is always 0.
For linked files the address is an absolute address in the logical

address space. (MMU # times 128 K + const).

Relocation:
iRelocation=record
(* RefVariant *)
end;
iRefVariant=SegAddr;
| 86 | size | ref 1 | .ec | ref n |
1 2 4 5 8 size
86 - Hexadecimal 86
size - Number of bytes in this block
ref 1 - Location of first address to relocate

.o Other addresses .
ref n Location of last address to relocate

Note:

Relocation records are generated by the old Linker (partial links) and
by the old Library program. They are not supported by the current Linker.

Future plans:
Reloction records will be used by the Prelink and InstallLink versions

of the Linker.

August 14, 1982 - 18 - 0S 5.2 Monitor 10

Lisa Object File Formats

CommonReloc:
iCommonRelocation=record
CommonName: NameString;
(* RefVariant *)
end;

iRefVariant=SegAddr;

3 I § U U UG I |
T T ¥ Y T T T

. L L
1 4 LA L] L]
| 87 | size | CommonName | re
. : |

bl i bl 1
A\J

T
+
+

N

—
3
.

ref

e —

4+ -

1

L '

Tt = T

1 2 45 12 13 16 s

S -
® 4+ —— 4

87 - Hexadecimal 87
size - Number of bytes in this block
CommonName = Blank padded ASCII name of common block

ref 1 - Location of first reference relative to this module
eee - Other references
ref n - Location of last reference

Note:

Common relocation references in the code are zero based relative to
the beginning of the named regular unit.

ShortExternal:
iShortExternal=record
LinkName,
UserName: NameString;
(* ShortRef *)
end;

iShortRef=Integer;

S S S S S S S S S S S S S A VR SO S S S

| 89 | size | LinkName | UserName | refl| ... | refnl

S W S Y A S S S A S S S S S S S S
1 2 4 5 12 13 7 20 21 22 size

89 Hexadecimal 89
size Number of bytes in this block (always 000016)
LinkName = Blank padded ASCII linker name of external reference

UserName -~ Blank padded ASCII user name of external reference
refl - Location of first address to relocate

cee - Other addresses
refn - Location of last address to relocate

August 14, 1982 - 19 - 0S 5.2 Monitor 10

Lisa Object File Formats

4.3 UNIT BLOCKS

UnitBlock:
iUnitBlock=record
UnitName: NameString;
CodeAddr,
TextAddr: FileAddr;
TextSize,
GlobalSize: LonglInt;
UnitType: integer; (* O=Reg, l=Intrin, 2=Shared *)
(* comments = interface section of Unit (compressed) *)
end;
| 92 | size | UnitName | CodeAddr | TextAddr | TextSize |...
1 2 4 5 12 13 16 17 20 21 24

I —
T L

4
T
I SO N W | I 4

«.+| GlobalSize| UnitType! Comments ...

L L L B aama § L]

25 28 29 30 31 size
92 - Hexadecimal 92
size - Number of bytes in this block (always 00001E)
UnitName - Name of this unit

CodeAddr - Disk address of module
TextAddr - Disk address of text block

TextSize - Size of text block

GlobalSize <« Number of bytes of globals in this unit

UnitType - O=Regular, l=Intrinsic, 2=Shared

Comments - Compressed ASCII text of Interface
Note:

In an unlinked (raw) file:

CodeAddr is the address of the first Module Name Block (i.e. the
first byte after this UnitBlock).

TextAddr is the (block aligned) File Address of the Interface
(past the EOFMark).

TextSize is the size of the interface (= n*1024) where n is the
number of text pages.

Comments is missing.

The Interface is found in standard .TEXT file blocks.

In a linked (intrinsic library) file:
CodeAddr is O.
TextAddr is O.
TextSize is O.
Comments is either empty (no interfaces in the 1library) or contains
the compressed interface (blanks and meaningless comments removed).

For Pascal the Interface is defined to begin with the character after the
semicolon in the "Unit Foo;" statement and extends through the word

August 14, 1982 - 20 - 0S 5.2 Monitor 10

Lisa Object File Formats

"implementation”.

Future Plans:
The kludge of having Text blocks at the end of the file may not be

supported forever. Compilers should be designed to get interfaces from the
variant part of the UnitBlock record, whether they are stored in text form or

are represented as intermediate code.

Interfloc:
iInterfloc= record
(* IntfLocVariant *)
end;
| 86 | size | loc1 | «.. | loc n |
1 2 4 5 8 size
92 - Hexadecimal 92
size - Number of bytes in this block
loc 1 - Location record for first unit interface
- = Other location records
loc n - Location record for last unit interface
Note:

The interface location block is only present if the +I option has been
specified to the Linker to include interfaces when linking an intrinsic
library file.

IntfLocVariant:
iIntflocVariant = record

UnitName: NameString;
IfLoc: FileAddr;

end;

+—t+—t—t—t—t—t—t—t—t—t
| UnitName | 1fLoc |
+—t—t—t—t—ttt—ttttt
1 89 12

UnitName - Blank padded ASCII Unit Name
IfLloc - File Address of first byte of Interface

August 14, 1982 - 21 - 0S 5.2 Monitor 10

Lisa Object File Formats

4.4 MAIN PROGRAM

Executable:

iExecutable=record
JTLaddr: MemAddr;
JTSize,
DataSize, MainSize,
JTSegDelta, StkSegDelta,
DynStack, MaxStack,
MinHeap, MaxHeap: Longlnt;
(* Unknown = numSegs + JTSegVariants +

numDescriptors + JumpTVariants + other stuff *)
end;

e e et el e w—
| BNamih Snil Euunh I Mg § T o resre——T T | Bt

| 98] size|JTLaddr| JTSize| DataSize | MainSize |
JTSegDelta]|StkSegDeltal..

N hdend FRSEENS N UGN NUNNES NN WU W N e 1 3 e .
T T T T

+
-
s

4
-+

1 2 45 89 12 13 16 17 20 21 24 25 28
«es| DynStack | MaxStack | MinHeap | MaxHeap | jump table ... |
29 32 33 36 37 40 41 44 45 size
98 - Hexadecimal 98
size - Number of bytes in this block
JTLaddr - Absolute load address of jump table
JTsize - Number of bytes in jump table
DataSize - Total number of bytes in regular units global data areas
MainSize - Size of main program global data area

JTSegDelta - Distance from base of segment to beginning of data pointers

StkSegDelta - Distance from JTSegDelta to A5 at runtime
DynStack - Initial dynamic stack size

MaxStack - Maximum total stack size
MinHeap = Initial heap size
MaxHeap - Maximum total heap size

Jump table - The jump table itself.

August 14, 1982 - 22 - 0S 5.2 Monitor 10

Lisa Object File Formats

The format of the jump table is:

"
T

Number of segments | 2 bytes

-t
-

Main Segment Table | 12 bytes

j

|

T_ Segment Table #2 i 12 bytes
T

T Segment Table #n i 12 bytes
Igumber of Descriptorsi 2 bytes
T Start Descriptor i 6 bytes
T S#1 P#2 Descriptor i
T i

i S#1 P#nl Descriptor i

] S#2 P#1 Descriptor i
T I
I-S#Z P#n2 Descriptor i

T S#3 Pi#f1 Descriptor i
T
T-S#m P#nN Descriptor i 6 bytes
i 01d Stuff i

Note:
By convention, the main segment has a blank name, and is the first
segment in the jump table. Also, the first descriptor in the first segment is
the entry point for the main program.

August 14, 1982 - 23 - 0S 5.2 Monitor 10

Lisa Object File Formats

Segment Table Entry:
1JTSegVariant = record
SegmentAddr: FileAddr;
SizePacked: integer;
SizeUnpacked: integer;
MemLoc: MemAddr;

end;
| SegmentAddr | SizePacked| SizeUnpacked| MemLoc I
1 45 6 7 89 12
SegmentAddr - File address of either CodeBlock or PackedCode block
SizePacked - Number of bytes in PackedCode record
SizeUnpacked = Number of bytes in (unpacked) Code record
MemLoc = Absolute logical address of segment

Note:
If SizePacked = O then segment is not packed.

SizePacked and SizeUnpacked include the invariant part of the record.
Future plans:

Both SizePacked and SizeUnpacked will become LongInts at the next
non-compatible object code release.

Jump Table Descriptor:
1JumpTVariant = record
JumpL: integer;
AbsAddr: MemAddr;
end;

et
| JumpL | AbsAddr |
=t
1 23 6

JumpL - JMP.L $xxxxxxx instruction
AbsAddr - Absolute address of procedure in logical address space

August 14, 1982 - 24 - 0S 5.2 Monitor 10

Lisa Object File Formats

4.5 INTRINSIC UNITS

SegmentTable:
iSegmentTable = record

nSegments: integer;
(* SegVariant *)

end;
| 94 | size | nSegments | segInfol | ... | segInfoN |
1 2 45 7 25 size
9A -~ Hexadecimal 9A
size - Number of bytes in this block
nSegments = Number of segment descriptors in table
segInfol =~ First SegVariant record

segInfoN - Last SegVariant record
Note:

The Segment Table contains the transitive closure of the intrinsic
segments referenced by segments in this file. The transitive closure is
currently computed fairly loosely: inclusion of a file in the Linker input
1list is taken as a reference to all the segments in the file. This is
consistent with the notion of "reuseable” and the notion of "changes in
implementation” not affecting reuseability, i.e. references can be added to

other parts of a lower level library without affecting the transitive closure
computation.

iSegVariant = record
SegName: NameString;
SegNumber: integer;
Versionl: longint;
Version2: longint;

end;

| SegName | SegNumber| Versionl | Version2 |
1 9 11 15 18
SegName -~ Segment Name ‘

SegNumber - Segment (MMU) number

Versionl - (reserved)

Version2 -~ (reserved)

August 14, 1982 - 25 - 0S 5.2 Monitor 10

Lisa Object File Formats

UnitTable: :
iUnitTable = record
nUnits,
maxunit: integer;
(* UnitVariant *)
end;
| 9B | size | nUnits| maxunit |UnitInfol | ... |UnitInfoN |
1 2 4 5 7 9 21 size
9B - Hexadecimal 9B
size =~ Number of bytes in unit table block
nUnits = Number of unit descriptors in table.

maxunit - maximum unit number found in the table.
UnitInfol - First UnitVariant record
UnitInfoN

Example:
If units number 1, 7, and 11 are present then nUnits=3 and

maxunit=11.

Last UnitVariant record

iUnitVariant = record
UnitName: NameString;
UnitNumber: integer;
UnitType: integer;

end;

| UnitName | UnitNumber| UnitTypel
R B B e B B amas e L e

1 9 10 11 12

UnitName = Unit Name

UnitNumber - Index into data pointer table
UnitType -~ O=Regular, l=Intrinsic, 2=Shared

Note:
UnitType = O would be an error.

August 14, 1982 - 26 - 0S 5.2 Monitor 10

Lisa Object File Formats

SeglLocation:
iSegLocation = record
nSegments: integer;
(* SeglocVariant *)

end;
| 9c | size |nSegments| segInfol | ... | segInfoN |
1 2 45 6 7 size
9C - Hexadecimal 9C

size - Number of bytes in segLocation block
nSegments - Number of segment descriptors in table.
segInfol - First SeglocVariant record

LI)

segInfoN - Last SeglocVariant record

iSegLocVariant = record
SegName: NameString;
SegNumber: integer;
Versionl, Version2: longint;
FileNumber: integer;
FileLocation: FileAddr;
SizePacked, SizeUnpacked: integer;

end;
| SegName |SegNumber| Versionl | Version2 |....
1 9 11 15 18
eees | FileNumber| Filelocation | SizePacked| SizeUnpacked|
19 20 21 24 25 26 27 28
SegName - Segment Name
SegNumber - MMU number
Versionl - (reserved)
Version2 - (reserved)

FileNumber = Index into the FilesBlock file table
FileLocation -~ Location within file of CodeBlock
SizePacked = Number of bytes in PackedCode record
SizeUnpacked - Number of bytes in (unpacked) Code record
Note: '
If SizePacked = 0 then Segment is not packed.
FileLocation may become invalid when variations are allowed in
an intrinsic unit or main program file.
SizePacked and SizeUnpacked will become longints.

August 14, 1982 - 27 - 0S 5.2 Monitor 10

Lisa Object File Formats

UnitLocation:
iUnitLocation = record
nUnits: integer;
(* UnitLvVariant *)

end;
| 90 | size | nUnits|UnitInfol | ... |UnitInfoN |
1 2 4 5 7 23 size
9D - Hexadecimal 9D

size - Number of bytes in unitLocation block

nUnits - Number of unit descriptors in table.
UnitInfol - First UnitLVariant record
UnitInfoN - Last UnitLVariant record

iUnitLVariant = record
UnitName: NameString;
UnitNumber: integer;
FileNumber, UnitType: FileByte;
DataSize: longint;

end;

| UnitName | UnitNumber|FileNumber|UnitType| DataSize |
1 9 10 11 12 13 16
UnitName = Unit Name

UnitNumber -~ Index into data pointer table

FileNumber - Index into the FilesBlock file table
UnitType - See UnitTable above

DataSize - Size in bytes of global data area for unit

August 14, 1982 - 28 - 0S 5.2 Monitor 10

Lisa Object File Formats

FilesBlock:
iFilesBlock = record
nFiles: integer;
(* Unknown = FilesVariant + string table *)
end;
| 9 | size | nFiles | FileInfol | ... | FileInfoN | StringTable ... |
s et B B B o Bt At St A At St B =ttt —+
1 2 4 5 6 7 13 size
9E - Hexadecimal 9E
nFiles - number of file descriptors in block. Each Fileinfo record
FileInfol - First FilesVariant record
FileInfoN - Last FilesVariant record
iFilesVariant = record
FileNumber: integer;
NameAddr: FileAddr;
end;
| FileNumber| NameAddr |
1 23 6
FileNumber - Index into the FilesBlock file table
NameAddr = File address of name string
Note:

Each StringTable entry has the format of a Pascal string, i.e. the
strings begins on an even byte and the first byte is a length byte indicating

how the length of the string.

4.6 CODE COMPACTION

PackedCode:
iPackedCode = record

addr: MemAddr;
csize: longint;
(* Unknown = packed object code *)

end;

addr - Absolute address in iogical address space
csize - Size in bytes of the code when unpacked

August 14, 1982 - 29 - 0S 5.2 Monitor 10

’

Lisa Object File Formats

PackTable:
iPackTable = record
packversion: longint;
(* Unknown = translation table %)
end;
Note:

The packversion field was originally intended to indicate changes in

the packing algorithm. With the 0.S. supporting one PackTable for the system,
packversion could also be used to indicate which table.

4.7 THE END

EOFMark:

e s
Joo| 000004 |

4 3 I
T L L) T T

1 2 4

The EOFMark block marks the end of an object file (almost).
Note:
Text blocks can occur past the EOFMark.

References

(1]
(2]

Niklaus Wirth, "MODULA-2", Institut fur Informatik der ETH, 1980.

Frank DeRemer and Tom Pennello, "Translator Writing System (IWS) Manual"”,
MetaWare, Inc., 1981.

August 14, 1982 -3 - 0S 5.2 Monitor 10

Lisa Object File Formats

Appendix A. ObjIOLib Interface

(**)

(* *)
(* File: LIB:OBJIO *)
(* *)
& (C) Copyright 1981, 1982 *)
(* Apple Computer, Inc. *)
(* *)
* 9-Jul-82 *)
L T T I)
{$s LIB1 }

unit ObjIO;

intrinsic;

(* ObjIO is a unit defining and providing blockwise and bytewise read/ ¥*)
(* write access to object-format files. All 1/0 goes through FileIO. *)

interface
uses
(*$U PASDEFS.O0BJ *) PasDefs,
(*$U UTILITY.OBJ %) Utility,
(*$U FILEIO.OBJ *) FilelO;

(* Note: distinctions -- *)

(* OldExecutable (o0ld compilers, either machine) *)

(* PhysicalExec (New compiler, old linker, either machine, physical) *)
(* Executabe (New compiler, either linker, new machine, logical) *)

(* New linker links Intrinsic Units and produces a version control record. *)

type
yglockType=(Modu1eName, EndBlock, EntryPoint,
External, StartAddress, CodeBlock,
Relocation, CommonReloc, CommonDef,
ShortExternal, QuickLoad, OldExecutable,
LibModule, LibEntry, UnitBlock, Interfloc,
PhysicalExec, Executable, VersionCtrl,
SegmentTable, UnitTable, SegLocation, UnitLocation, FilesBlock,
~ PackedCode, PackTable, DebugSymbols,
DebugEntry, DebugCommon, EOFMark, UnknownBlock);

VariantType=(NoVariant, (* must be first *)
RefVariant, ShortRef, ModVariant, Comments,
SegVariant, UnitVariant, IntflocVariant,
SeglocVariant, UnitLocVariant, FilesVariant,
JumpTVariant, JTSegVariant, ObjectCode, ProcHeap,
01dJumpTV, 01dJTSegV,

(* must be last *) UnknownVariant);

FileAddr = longint; (* 0 based, byte address within a file *)

August 14, 1982 - 31 - 0S 5.2 Monitor 10

Lisa Object File Formats

MemAddr = longint; (* 24-bit virtual address *)

SegAddr = longint; (* 0 based, byte address within a segment *)

(* Variant Definitions ¥*)
iRefVariant=SegAddr;
iShortRef=Integer;
iModVariant=Integer;

iSegVariant = record
SegName: NameString;
SegNumber: integer;
Versionl: longint;
Version2: longint;

end;

iUnitVariant = record
UnitName: NameString;
UnitNumber: integer;

UnitType: integer;
end;

iIntfLocVariant = record
UnitName: NameString;
IfLoc: FileAddr;

end;

iSeglLocVariant = record
SegName: NameString;

SegNumber: integer;

Versionl: longint;

Version2: longint;

FileNumber: integer;

FileLocation: FileAddr;

SizePacked: integer; (* size of PackedCode record ¥)

SizeUnpacked: integer; (* size of CodeBlock record *)
end;))

iUnitLVariant = record
UnitName: NameString;
UnitNumber: integer;
FileNumber, UnitType: FileByte;
DataSize: longint;

end;

iFilesVariant = record
FileNumber: integer;

NameAddr: FileAddr;
(* one per file, followed by string table *)

end;

i1JumpTVariant = record

August 14, 1982 - 32 - 0S 5.2 Monitor 10

Lisa Object File Formats

JumpL: integer;
AbsAddr: MemAddr;
end;

101dJumpTV = record
RelOffset: longint;

Noop: integer; (* not in Memory = JMP.L *)
Jump: integer; (* not in Memory = Adrress of ZXZLOADIT *)
PCRel: integer;

end;

101dJTSegV = record
Addrl: MemAddr; (* Address of First Proc Descriptor #*)
FileLoc: FileAddr;
CodeSize: longint;
MemLoc: MemAddr;
RetAddr: MemAddr;
RefCount: longint;
Activelist: MemAddr; (* -1 = End Of List ?? *)
Reserved: longint;
end;

iJTSegVariant = record

SegmentAddr: FileAddr; (* points to CodeBlock or PackedCode *)
SizePacked: integer; (* size of PackedCode record *)
SizeUnpacked: integer; (* size of CodeBlock record ¥*)
MemLoc: MemAddr; (* Logical Addr *)

end;

(* Invariant Definitions: *)

iModuleName=record
ModuleName,
SegmentName: NameString;
CSize: Longlnt;
(* Comments *)

end;

iEndBlock=record
CSize: Longlnt;
end;

iEntryPoint=record
LinkName,

UserName: NameString;
Loc: SegAddr;

(* Comments *)
end;

iExternal=record

LinkName,
UserName: NameString;

August 14, 1982 - 33 - 0S 5.2 Monitor 10

Lisa Object File Formats

(* RefVariant *)
end;

iStartAddress=record

Start: SegAddr;
GSize: LonglInt;

(* Comments *)
end;

iCodeBlock=record
Addr: SegAddr;
(* ObjectCode *)

end;

iRelocation=record
(* RefVariant *)
end;

iCommonRelocation=record

CommonName: NameString;
(* RefVariant *)

end;

iCommonDefinition=record
CommonName: NameString;
DSize: Longlnt;
(* Comments *)

end;

iShortExternal=record
LinkName,

UserName: NameString;
(* ShortRef *)

end;

iQuickLoad=record
StartLoc: SegAddr;
DataSize: LonglInt;
(* ObjectCode *)
end;

iLibModule=record
ModuleName: NameString;
ModSize: LonglInt;
CodeAddr,
TextAddr: FileAddr;
TextSize: LonglInt;
NrMods: Integer;
(* ModVariant *)

end;

iLibEntry=record

LinkName: NameString;
Module: Integer;

August 14, 1982 - 34 - 0S 5.2 Monitor 10

Lisa Object File Formats

Address: SegAddr;
end;

iUnitBlock=record

UnitName: NameString;

CodeAddr,

TextAddr: FileAddr;

TextSize,

GlobalSize: LonglInt;

UnitType: integer; (* O=Reg, l=Intrin, 2=Shared *)

(* comments = interface section of Unit (compressed) ¥%)
end;

iInterfloc= record
(* IntfLocVariant %)

end;

iExecutable=record
JTLaddr: MemAddr;
JTS1ize,
DataSize, (* Global Area, Reg Units *)
MainSize, (* Global Area, Main Program *)
JTSegDelta, (* Jump Table Segment Delta *)
StkSegDelta, (* Stack Segment Delta *)
DynStack, (* Initial Dynamic Stack Size ¥%)
MaxStack, (* Max. Total Stack Size *)
MinHeap, (* Initial Heap Size *)
MaxHeap: LongInt; (* Max. Total Heap Size ¥*)

(* Unknown = numSegs + JTSegVariants +
numDescriptors + JumpTVariants + other stuff *)

end;

101dExecutable=record
JTLaddr: MemAddr;

JTSize,

DataSize: LongInt; (* Global Area, Reg Units *)

(* Unknown = numSegs + 01dJTSegVs + 01dJumpTVs + other stuff *)
end;
iPhysicalExec=record

JTLaddr: MemAddr;

JTSize,

DataSize, (* Global Area, Reg Units *)

MainSize, (* Global Area, Main Program *)

JTSegDelta, (* Jump Table Segment Delta *)

StkSegDelta: LonglInt; (* Stack Segment Delta *)
(* Unknown = numSegs + 01dJTSegVs +
DummyPtr + 01dJumpTVs + other stuff *)

end;

iVersionCtrl = record
sysNum, minSys,
maxSys, Reservl,
Reserv2, Reserv3: longint;

August 14, 1982 -3 - 0S 5.2 Monitor 10

Lisa Object File Formats

end;

iSegmentTable = record
nSegments: integer;
(* SegVariant *)
end;

iUnitTable = record
nUnits,
maxunit: integer;
(* UnitVariant *)
end;

iSegLocation = record
nSegments: integer;

(* SeglocVariant *)
end;

iUnitLocation = record
nUnits: integer;
(* UnitLVariant *)
end;

iFilesBlock = record

nFiles: integer;

(* Unknown = FilesVariant + string table *)
end;

iPackedCode = record

addr: MemAddr;

csize: longint;

(* Unknown = packed object code *)
end;

iPackTable = record
packversion: longint;
(* Unknown = translation table *)

end;

iDebugSymbols=record
UserName,
SegName: NameString;
ProcBase,
ProcSyms,
ProcStmt,
ProcNode,
UsesSize: LonglInt;
{ if UsesSize<>0 then ... these have valid values: }
HoleBase,
HoleTop,
MapBase,
MapTop: Longlnt;
MapName: NameString;
{ later }

August 14, 1982 - 36 - 0S 5.2 Monitor 10

Lisa Object File Formats

(* ProcHeap *)
end;

iDebugEntry=record
UserName: NameString;
EntrySeg: Longint;
EntryLoc: SegAddr;
(* Comments *)

end;

iDebugCommon=record
UnitName: NameString;
CommonBase: MemAddr;
(* Comments *)

end;

iUnknown=record
(* UnknownVariant #*)

end;

ObjBlock=record
Variant: VariantType;
NrVariants: LonglInt;
case BlockHeader: BlockType of

ModuleName: (bModuleName: iModuleName);
EndBlock: (bEndBlock: iEndBlock);
EntryPoint: (bEntryPoint: iEntryPoint);
External: (bExternal: iExternal);
StartAddress: (bStartAddress: iStartAddress);
CodeBlock: (bCodeBlock: iCodeBlock);
Relocation: (bRelocation: iRelocation);
CommonReloc: (bCommonReloc: iCommonReloc);
CommonDef : (bCommonDef : iCommonDef);
ShortExternal: (bShortExternal: iShortExternal);
QuickLoad: (bQuickLoad: iQuickLoad);
OldExecutable: (bOldExecutable: i01dExecutable);
LibModule: (bLibModule: iLibModule);
LibEntry: (bLibEntry: iLibEntry);
UnitBlock: (bUnitBlock: iUnitBlock);
Interfloc: (bInterfloc: iInterfloc);
PhysicalExec: (bPhysicalExec: iPhysicalExec);
Executable: (bExecutable: iExecutable);
VersionCtrl: (bVersionCtrl: iVersionCtrl);
SegmentTable: (bSegmentTable: iSegmentTable);
UnitTable: (bUnitTable: iUnitTable);
SegLocation: (bSegLocation: iSegLocation);
UnitLocation: (bUnitLocation: iUnitLocation);
FilesBlock: (bFilesBlock: iFilesBlock);
PackedCode: (bPackedCode: iPackedCode);
PackTable: (bPackTable: iPackTable);
DebugSymbols: (bDebugSymbols: iDebugSymbols);
DebugEntry: (bDebugEntry: iDebugEntry);
DebugCommon: (bDebugCommon: iDebugCommon);
UnknownBlock: (bUnknown: 1UnknownBlock);
August 14, 1982 - 37 0S 5.2 Monitor

10

Lisa Object File Formats

end;

ObjvarBlock = record
case VarHeader: VariantType of

August 14, 1982

RefVariant: (bRefVariant: iRefVariant);
ShortRef: (bShortRef: iShortRef);
ModVariant: (bModVariant: iModVariant);
SegVariant: (bSegVariant: iSegVariant);
UnitVariant: (bUnitVariant: iUnitvVariant);
IntfLocVariant: (bIntfLocVariant: iIntflLocVariant);
SeglocVariant: (bSeglocVariant: iSegLocVariant);
UnitLocVariant: (bUnitLVariant: iUnitLVariant);
FilesVariant: (bFilesVariant: iFilesVariant);
01dJumpTV: (b01dJumpTV: 101dJumpTV);
01dJTSegV: (b01dJTSegV: 101dJTSegV);
JumpTVariant: (bJumpTVariant: iJumpTVariant);
JTSegVariant: (bJTSegVariant: iJTSegVariant)

end;

ObjHandle="0ObjDesc;

ObjDesc=record

ObjFile: FileHandle;
NextBlock: FileAddr;
end;

procedure InitObjFile (var ObjPtr: ObjHandle; nBlocks: integer);
(* InitObjFile initializes ObjPtr and allocates a buffer of nBlocks *)

procedure OpenObjFile (var ObjPtr: ObjHandle; FileName: LString;
NewFile: Boolean);
(* OpenObjFile initializes ObjPtr to the file FileName.
(* scratched if NewFile is set. *)

The file is *)

procedure ZeroObjEnd (ObjPtr: ObjHandle);
(* Zero ObjEnd fills out the current block with zeroes *)

procedure CloseObjFile (ObjPtr: ObjHandle; Save: Boolean);
(* CloseObjFile closes an object file. 1If Save is set then the file is *)
(* locked. Otherwise, the file is left in the state it was in before *)
(* it was opened. *)

procedure GetObjPtr (ObjPtr: ObjHandle; var BytePtr: FileAddr);
(* GetObjPtr returns the position of ObjPtr“s "read/write head”. *)

procedure GetObjBlockPtr (ObjPtr: ObjHandle; var BytePtr: FileAddr);
(* sets BytePtr to the file location of the next ObjBlock to be read *)

procedure SetObjPtr (ObjPtr: ObjHandle; BytePtr: FileAddr);
(* SetObjPtr positions the "read/write head” BytePtr bytes from the *)
(* beginning of ObjPtr. The invariant access flow is not altered, *)
(* that is to say the next (Get/Put)ObjInvar accesses the sequentially ¥)
(* next invariant following the variant that we’re in before calling *)
(* SetObjPtr. *)

- 38 - 0S 5.2 Monitor 10

Lisa Object File Formats

procedure SetObjBlockPtr (ObjPtr: ObjHandle; BytePtr: FileAddr);
(* SetObjBlockPtr positions the "read/write head” BytePtr bytes from *)
(* the beginning of ObjPtr. BytePtr must point to the beginning of an *)
(* invariant. That invariant will be accessed with the next ¥*)
(* (Get/Put)ObjlInvar. *)

procedure SkipObjBytes (ObjPtr: ObjHandle; NrBytes: LongInt);
(* SkipObjBytes moves the file pointer of file ObjPtr NrBytes bytes. *)

procedure SetObjInvar (var B: ObjBlock; InvarType: BlockType;

VarSize: LonglInt);
(* SetObjInvar sets some fields in B. B is of InvarType type with *)
(* VarSize bytes in its variant. *)

procedure CopyObjSeq (InObj, OutObj: ObjHandle; NrBytes: Integer);
(* CopyObjSeq copies a sequence of NrBytes bytes from InObj to OutObj. *)

procedure GetObjInvar (ObjPtr: ObjHandle; var Stuff: ObjBlock);
(* GetObjInvar reads the invariant part of an object block. #*)
(* The user can read the variant part, if so desired. %)

procedure GetObjVar (ObjPtr: ObjHandle; VarType: VariantType;
var Stuff: ObjVarBlock);
(* GetObjVar reads a variant part of the specified type *)

(* into the ObjVarBlock *)

procedure GetObjName (ObjPtr: ObjHandle; var N: NameString);
(* GetObjName reads a name from file ObjPtr. *)

procedure GetObjSeq (ObjPtr: ObjHandle; Stuff: Ptr; NrBytes: Integer);
(* GetObjSeq moves NrBytes bytes from ObjPtr to the area pointed to by *)
(* Stuff. *)

procedure GetObjByte (ObjPtr: ObjHandle; var B: Byte);
(* GetObjByte reads a byte from file ObjPtr. *)

procedure GetObMord (ObjPtr: ObjHandle; var W: Integer);
(* GetObWord reads an integer from file ObjPtr. *)

procedure GetObjLong (ObjPtr: ObjHandle; var L: LonglInt);
(* GetObjLong reads a longint from file ObjPtr. *)

procedure PutObjInvar (ObjPtr: ObjHandle; var Stuff: ObjBlock);
(* PutObjInvar writes the invariant part of an object block. *)

procedure PutObjVar (ObjPtr: ObjHandle; VarType: VariantType;
var Stuff: ObjVarBlock);
(* PutObjVar writes a variant part of the specified type *)
(* from the ObjVarBlock *)

procedure PutObjName (ObjPtr: ObjHandle; N: NameString);
(* PutObjName writes a name to file ObjPtr. *)

procedure PutObjSeq (ObjPtr: ObjHandle; Stuff: Ptr; NrBytes: Integer);

August 14, 1982 -39 - 0S 5.2 Monitor 10

Lisa Object File Formats

(* PutObjSeq moves NrBytes bytes from the area pointed to by Stuff *)
(* to ObjPtr. *)

procedure PutObjByte (ObjPtr: ObjHandle; B: Byte);
(* PutObjByte writes a byte to file ObjPtr. *)

procedure PutObjord (ObjPtr: ObjHandle; W: Integer);
(* PutObord writes an integer to file ObjPtr. *)

procedure PutObjLong (ObjPtr: ObjHandle; L: LongInt);
(* PutObjLong writes a longint to file ObjPtr. *)

implementation
end.

August 14, 1982 - 40 - 0S 5.2 Monitor 10

Date: July 17, 1983
From: Ron Johnston
Subj: Format of .SYMBOLS files

- ———_—— " ——— " S e S - . — - —— - - = — - o - v - ——

The Lisa Assembler can produce a .SYMBOLS +file that gives the mapping between
symbol names and their locations within a code segment. The file format is
very simple:

A .SYMBOLS file is a sequence of 12-byte records of the following structure:
D e ———— +

! Symbol_Name (8 bytes) 'Location(4 byte)!
e e e e +

Symbol_Name - left-adjusted, with names shorter than 8 characters padded on
the right with blanks. They are case shifted, if necessary, to
be all upper case.

Location - Gives the byte offeet within the module from the beginning of code.
The symbol records are alphabetized within the file by Symbol_Name. The file
is terminated by a record of all zeros (@), The remainder, if any, of the final

block is also zeroced.

1 have included a dump of the MONITOR.SYMBOLS file as an example.

18 Jul 1883 16:16:22 MSYMBOLS. TEXT Page 0O

File: monitor. symbols Block & O
4 6 8 A Cc E ,02468ACE

[=]
[=]
N
[=]
F -
s
v
o
F-3
m
-3
&>
'
-3
(V2]
(-]
w
-3
N
o
o
o
o
o
>
]
[+]
(=)
o
N
3
[y
F
o
F-3
N
>
]
=
o
=1
>
-
x
[+]
>
(=}
@

=1
oo
DO
o0
o
1S
s
@0
wa
-
N
ow
o
om
oW
om
W
00
NN
®o
-}
nNO
50
oo
W
no
2D
we
oo
@N
wae
0
we
N
N
ow
3]
@
>3-
o
x
@
AO
]
=
o
Q
3=
®
NO

01A0: 0000 3250 4341 4ES4 5354 5220 0000 313C :..2PCANTSTR . 1<

01F0: 4144 2020 0000 1AlA 4344 5257 5849 5420 ' AD . CORUXIT *

0 2 4 6 8 A c E 02468 ACE
0000: 0000 1AAD 4344 S534B 4353 SA20 0000 1184 ° . CDSKCSZ .
0010: 4344 534B 494E 4954 0000 11SE 4344 5348 * CDSKINIT. . TCDSK
0020: 5244 2020 0000 1276 4344 534B 5245 4144 °'RD . VCDSKREAD
0030: 0000 1174 4344 S34B 5752 2020 0000 1308 ... tCDSKWR'
0040: 4344 534B 5752 5420 0000 117C 4344 5752 ° CDSKWRT ... | CDUR'
0050: 4954 4520 0000 1AD8 4348 4543 4B43 4420 ° ITECHECKCD
0060: 0000 198C 4348 4B31 3038 2020 0000 3B32 '....CHK108 ..:2
0070: 4348 4B42 4C4B 3720 0000 ODE6 4348 4B44 ' CHKBLK?CHKD
|0080: 4556 2020 0000 2628 4348 4B4S 5252 2020 'EV .. & CHKERR *
0090: 0000 OB70 4348 4B4D 5442 4C20 0000 OES0 ‘... pCHKHTBL ...P
00AD: 434A 4D50 5442 4C20 0000 114E 434C S524C " CIMPTBL ...NCLRL
0080: 4E20 2020 0000 4574 434C 524C 4E32 2020 'N .. EtCLRLN2 °
00CO: 0000 4584 434C 524C 4F47 4E20 0000 440A .. E.CLRLOGN ..D.°’
00D0: 434C 5253 4352 2020 0000 458C 434C 5253 ‘' CLRSCR_ ..E.CLRS
00ED: 4352 3220 0000 459C 434D 444C 4F4F 5020 ' CR2 ..E. CMDLOOP *
00F0: 0000 4B40 434D 5053 4658 2020 0000 21BC ° KGCHPSFX L
0100: 434D 5053 4658 5820 0000 21C8 434F 5059 * CMPSFXX . . COPY'
0110: 3620 2020 0000 1468 434F 5059 364C 5020 ' 6 hCOPVGLP
0120: 0000 1476 4350 5944 4556 4520 0000 OEBC * . VCPYDEVE .
0130: 4350 5944 4556 4E20 0000 OEB6 4350 594C * CPYDEUNCPYL
0140: 4F4F 5020 0000 O7E4 4352 4C46 2020 2020 ' OOPCRLF *
0150: 0000 46C4 4353 4C41 5348 2020 0000 25AE ‘.. F.CSLASH ..%.
0160: 4353 5A45 5849 5420 0000 116E 4445 4352 ' CSZEXIT ...nDECR'
0170: S44F 5720 0000 OC84 4445 4C31 4348 2020 ' TOWDELICH °
0180: 0000 21A2 4445 4C44 4556 2020 0000 2642 '..!. DELDEV ..8&8
0190: 4445 4C4E 5452 5920 0000 2A82 4445 S564A ' DELNTRY .. =. DEVJ
01A0: 4DSO 5420 0000 D6FA 4445 S64C 4F4F 5020 " HPYDEVLOOP °
01BO: 0000 D6F0 4445 S64E 554D 3020 0000 071A °....DEVNUMO°
01C0: 4445 SE4E 554D 3120 0000 072A 4445 564E ' DEVUNUML ... *DEVN
01D0: S54D 3220 0000 073A 4445 564E 554D 3320 'UM2 ...:DEVNUM3 °
01E0: 0000 0746 4445 S64E 554D 3420 0000 0758 ° FDEUNUH4 X
01F0: 4445 564E 554D 3520 0000 0772 4445 S64E * DEUNUHS . .. rDEVN'

o 2 4 6 8 A C E 02468ACE
0000: 554D 3620 0000 078C 4445 S64E 554D 3720 'UM6 DEUNUHM7 °
0010: 0000 07CO 4445 S64E 554D 4220 0000 265E '....DEVNUMB ..&T
0020: 4449 5253 5243 4820 0000 2876 4449 5253 'DIRSRCH .. (VvDIRS
0030: 5243 5820 0000 28E2 4449 5253 524C 5020 'RCX ..(.DIRSRLP '
0040: 0000 2892 4449 534B 4552 $220 0000 1124 '..(.DISKERR ... §
0050: 4449 534B 494F 2020 0000 11RE 4449 5348 'DISKIODISK
0060: 494F S820 0000 126E 444A 4DS0 5442 4C20 ° 10X ...nDJIMPTBL °
0070: 0000 43E8 444F 434F 5059 2020 0000 D7E2 '. . C. DOCOPY !

0080: 444F 5346 5820 2020 0000 20DC 444F 5355 'DOSFX .. .DOSU
0090: 4649 5820 0000 20C6 444F 584F 5242 2020 'FIX .. .DOXORB
00AD: 0000 4BAC 4452 4956 4552 5320 0000 0B92 '..K DRIVERS '
00BO: 4452 5652 2020 2020 0000 1C2C 4452 5652 ' DRV .

00CO: 5442 4C20 0000 1B28 4453 4B45 5252 2020 ' TBL (DSKERR *
00D00: 0000 15B6 4453 4852 4431 2020 0000 12AC KRD1 !
O0ED: 4453 4BS52 4432 2020 0000 12BC 4453 4BS2 ' DSKRD2 DSKR'
0OF0: 4433 2020 0000 12C0 4453 4B52 4434 2020 'D3 DSKRD4
0100: 0000 12D0 4453 4BS52 4435 2020 0000 12E6 DSKRDS '
0110: 4453 4B52 4436 2020 0000 12F0 4453 4B52 ' DSKRD6 DSKR

o
-
W
o
o
o
o
o
-
=
W
o
F -3
rs
n
w
»
[+
wn
~
wn
N
('
»
W
N
[N
o
o
o
o
(=]
-
W
W
m
par
N
v

0160: 0000 1376 4453 4BS7 5254 3620 0000 137A VDSKWRT6 z
0170: 4453 4B57 5254 3720 0000 138A 454C S504C ° DSKUWRT7 ELPL
0180: 2020 2020 0000 OA7A 454E 4457 4838 3520 ZENDUWHBS °

01ED: 5245 4420 0000 4CEC 4643 4C4F 5345 2020 RED .L.FCLOSE °*
01F0: 0000 2EEA 4643 4C4F 5345 3120 0000 311A ° . FCLOSEL ..1.
PFile: monitor. symbols Block & 3

0 2 4 6 8 A C E 02468ACE

\

18 Jul 1983 16:186:22

MSYMBOLS. TEXT

Page |

monitor. symbols

g 2 4 6

0000 47F6 4653 4545
4653 4545 4B31 2020
4449 5220 0000 234A
0000 251A 4654 4348
4654 4348 4452 5820
4552 5220 0000 2536
0000 34D8 4657 5254
4657 5254 4348 5820
2020 2020 0000 1B4C
0000 OCSE 4745 5443
4745 5443 4852 5820
4649 4220 0000 477€
0000 09E8 4745 5449
4745 S44A 5442 4C20
5442 4C20 0000 0C42
0000 OFBE 4745 5452
4745 5452 534C 5420
S441 5420 0000 14A8
0000 1C4C 474F 3255
474F 4F44 5043 2020
3220 2020 0000 2326
0000 2282 4841 4E44
4844 524C 4F4F 5020
4353 5A20 0000 113E
0000 1108 4B4F 4D43
494C S04C 2020 2020
4552 3020 0000 OACE
0000 OADD 494E 4954
494E 4954 464C 5320
4941 4C20 0000 020A
0000 0618 494E 4954
494E 4954 4D49 5820

monitor. symbols

0 2 4 6

5052 4720 0000 43F8
0000 023A 494E 4954
494E 4954 5554 424C
5849 5420 0000 116C
0000 2A2E 494E 5353
494E 5452 4CS6 2020
4820 2020 0000 44A6
0000 4512 494F 4558

494E 4954 0000 1716
0000 1742 4D44 S34B

monitor. symbols
0 2 4 6
4D44 534B 5245 5320

§752 2020 0000 184C
0000 1730 4D4S 4D4L

8 A c
0000 16FA

4D44 S34B
2020 2020

4554
0 °

1728

E
5348
5420

1D05A ...

" FCLOSEX .. 1+FGET'

.S FGETIL_
.7.FGET2L .. 7.
 FGETOND -6, FGET
“3RD .. 7>FGETNOP

: 'r'mbLP .0 FIND'

*FPUT2L .. 9pFPUT'
* NOP . SXFREﬁDCHR
*.. 4 FREADLN ..S('

'FREEPIZO..“.FRE'
1P124. .. FREEP136
: . FREEP140, . *.*
" FRESET_ .. (. FRES'

ETX .)$FR MEXEC'

0246BACE

‘DIR . .JFTCHD‘B
*. . % FTCHDR4 .. %(°
“ FTCHDRX . . $fFTCH'
‘ERR . %GFURITELN
‘.. & _FURTCHAR. . 4."

* FURTCHX .. 4. GET °

: ...LGETBASE *
‘... IGETCHAR . . F.
*GETCHRX ..F.GETE'
"FIB ..G GETINDX '
: . GETINFO .
'GETJTBL GETH'

S T8L . BGETRDIR

*2 ‘&GROUDIR
“. HANDLER .

'HDRLOOP (HDSK

‘csz .)HDSK]NIT

=
o x
.1.

024 6 8ACE
‘PRG INITSYS *
* lNI SYSF. .
'IN]TUTBL lNlT

XIT . llNSNTRY

—
z
=
. z‘.
e
<
—
o
(]
x

’lTS ..:DJERRORI
*..; >JINDXERR. .
CIHPTBL ... KFLU
‘SH . KILLCUR
.K.LD.85

.8
L1 BS ..(.LﬁST'
“SEG ..:.LAUNCH °

3
=<
g8

2

2

g
2.3
Su8
3
H

....LPL .. E.
LPL2 .. E. LSLA
SH ..% MAINLOOP
‘L. TMAKETHP°
* HDSKCSZ . . . BMDSK'
0 ° INIT. ... HMDSKRD
... BMDSKRERD. . . (*

02468ACE
* MDSKRES MDSK
"WR ... LMDSKURT
OMEMA R 4

18 Jul 1983 16:16:22

MOYMBULDS. [EXIT

ruye o

4DAS 4DS52 4541 4420
5249 5445 0000 1AD2
0000 OBE4 4D48 414C

4953 4B20 0000 19F6
monitor. symbols

0 2 4 6

0000 277E 4E4F 5450
4E4F 5453 5441 5220
4744 5220 0000 0546
0000 42EC 4F46 534D
4F4B 2E31 2020 2020
4F44 4520 0000 497C
0000 4BBE 4F56 4643
4F56 4643 484B 5820
4FS0 2020 0000 3C3A
0000 3C64 5041 5443
5044 534B 4353 SA20
494E 4954 0000 13BE
0000 150C 5044 534B
5044 534B 5752 2020
5752 5420 0000 13DA
0000 139E 504C 2020
504C 3220 2020 2020
4452 3253 0000 405C

0000 10A4 5345 5453

monitor. symbol s

0 2 4 6

5345 5454 5747 5920
5041 3520 0000 441A
0000 218A 5346 5843
5346 5846 4F54 4F20
5241 4620 0000 2196
0000 2190 5346 5854

8 A c
0000 QED2

5346 5842
aF 44 4520
0000 219C
§346 5849
4558 5420

3IFE8 °..

5450

E
$820

0C96

4441
4C20
0D5A
4ES2
4B20

158C
4AE46
4720

3552
414E
2020
41FC
4E44
5220

2A70 ..
5445 °

4820
4ED6

E
5455
4B20

2184

5847
4F20

217€ °

"HMEHMREAD MEMU
'RITE. ... MGOTOXY °*
‘... HMHALT .0

'NEUTHPI .. . ZNEXT'
.1 .. < NEXT.3
! NEX T.4 .. =
‘NEXTBUF .. <. NEXT'
. SEG ..?.NJ:PTBL:

....NLOADER ...,
* NOAPPL2 . .. \NOAP

sk
“WRTPIMPTBL
L PL F.

PL2 . E. PHAD'
* DR2S. . @\POKEXCP
. ALPRINT .. Ft'
* PRNTERR . . D. PROC
“NUH ... PROMPT
.. FPPRTBUSY°
"PRICLRPRTD
"RUR ... PRTEXIT
.. LPRTINIT°
| PRTREAD . . PRTS
“END . PPRTSETUP:
" PUT . <PUTB'
“ACK .. 7. PUTBAK2 '
2. PUTBAKS .. 2.*
“PUTPRF1 .. ETPUTP

02468ACE
‘RF2 .. EfPUTPRFX
. E2QUITDSK°*
*RCERRRDDA
‘TARDMTABL
‘....ROMTINIT...Z

READLP -, .. REGR'
EST CzREINlT

..JREINI J .. T
sEHﬂP . REMO

* SCNSTRC . . . @SEND
*CMD ...pSENDHDR
. xSETA1A2 .. *p'

02468BACE
*SETTWGYSETU
‘PAS ..D. SFXBACK'
.. 1. SFXCODE . :
* SFXFOTO ..!.SFXG
*RAF , . '. SFXINFO '

'USFXTEXT ..t 7

appia computar

18 Jul 1983 16:16:22

MSYMBOLS. TEXT

Page [

5343 ° SKPSYNC . SHSC'
2020 ' NFO SNDR1

3E32 *.,.6SOFTBO ..>2
4654 ° SOFTBPT .. >, SOFT
5020 ° XIT ,.>. STARTUP °
1456 '...NSTATO1 ...V
4154 * STATIMP STAT'
4E20 ' USR ..C. STILLIN °
4ABE ‘. .=\STRTOBJ . Tl.!]‘rf‘.

4F22 * .. MITHEEND ..O0"
502E * TLPL .D. ToOP. "
4320 '86 .. <. TOPSYSC '
0130 *....TOPSYSF ... 0’
4C20 'rorum. L 2TPL *
5820 ° TRsz\X
4EES ' .. N. TRP2HMCS .

5944 * TRYCRV . TRVD:
4320 ' BUG ..L. TRYEXEC '
1000 .. M. TRYHRK

594E 'mvusxr TRV
2020 * JHP ... >TRYPIP *
3 02468ACE
4CF4 ... TRYQ ..L.'
5446 ' TRYXEQT .. K TSTF'
5420 ' VID TSTSTAT °
21CC TTLCOPY .. !.°
4C52 * UBUSY UCLR'
2020 .. .
3068 =h
4954 * UNTTBL UNTT
5220 ' BSYUNITCLR '
196A *. ... UNIT ¥
4D41 ' UNITISB ..~ UNMA
2020 ' P UPSHFT -
4526 ° .. E. UPSHFTX .. E&
454C * UREAD USEL’
5820 ' VL7 .. 0. UT171DX
1CC6 * .. "BUWRITE
3120 * V10 :
2020 ° .

3E28 ©. . = V24 >(
3120 * V3 .= V31"
2020 ° ..= U31A
3DBE °.. = V31X -
2020 * V4 =

2020 ° .=

3E0A ¢ v7 L
2020 ‘ >.v9
3720 ° . >. VAL1DBY *
266E *....VOLSRCH .. %¥n’
4C53 * VOLSRCX . . (bUOLS
2020 *RXT .. (1WILPL
0BOE *.... Wl

504C ° W2LPL u2pL
E 02468ACE,
2020 ° ALT
a628 - E(WCRLFT T F."
4C43 " WELCOH2 , .. JUELC'
2020 ° OME ...

1446 ° ... “UF F
504C ° WHILESS uLPL
202 .. :
0A5C ... du

4441 *WPL2 ... fURDA
5420 ' TA ... WRITEIT
2C00 °.. WRTDIR ..,.'

§155 ' XBLKIO ..3. XEQU
3020 ' TE ..G XEQUTEOD °

4734 ' .. G XEQUTEL .. GA'
5185 ° XEOUTEZ GpXEOU'
3420 ° .G XEQUTE4
2A66 ° G\X TINTRY ., * f
4C20 ° XLPL .. F.XPL '

5020 ° .. F.XSTRTUP °*
2208 ... (Y.ERROR ..~

4C4F " Y. LEAVE ..!.Y.10
2020 “OP ..!.Y TEST °
067C *..!. ZEROMEH |

4C4F ° ZZIORESZZLO
4144 ' ADIT. . :. ZZUNLOAD
0000 =8 *
0000 "........ e X
0000 “................ :
0000 *................ !

Using LisaBug

Ed Birss

What to do when you crash, hang, ar loop

When a program crashes in the Office System, and the release has LisaBug, vyou
end up in LisaBug. You can then poke around for a while, but eventually you
will want to get on to other things. To get out of LissBug, you need to know
a few things. The register display, on the right of the third line has a
piece that says DO=0 (or 1,2, or 3). The DO stands for domsin, and if the
domain is nonzero and it does not say overridden to O, then to resume you
should type the LisaBug command G. This is the typical crash found in the
Office System, end using the G command forces the process into the terminate
exception handler, and things can be put away neatly. If you ere in domain O,
or overridden to zero, you should use the OSQUIT command.

If you are stuck and nothing is happening in response to power offs, key input
or mouse clicks, you are either looping or are hung. In either case you want
to hit NMI. If the display is not in domain O, you are probably looping. To
kill the process, you can type G 0, or PC O followed by G. This sets the
program counter to O and tries to access location O which is illegal and
causes a bus error. Typing G after this bus error will terminate the process
neatly.

If you are in domain O and you are sitting on an RTS instruction, type id
PC-4. If the result is a STOP instruction, then you mey be hung. You should
first make sure that you are not doing any I/0. Type G to continue and watch
the ProfFile lights and listen for diskette I/0. If 1/0 is in progress, you
can wait for the I/0 to complete, or you can follow instructions on looping
which follow. If however, no 1/0 is in progress, and when you hit NMI you axe
still on and RTS instruction and the STOP instruction preceed the RTS, type
OSQUIT to clean up the OS and file structures.

If you are in domain O and are not on an RTS instruction, you should type G
and then NMI again. Eventually you should get out of domain O or get to the
STOP instruction. You can also use the UBR command as described in the
breakpoints section. If you cannot get out of domain O, Type OSQUIT to clean
up.

The ground rules are do everything you can to terminate processes normally.
If you blow up in an application, type G to terminate cleanly. After looping,
type PC O ; G to again terminate the process cleanly. Use OSQUIT as a last
resort, and that means only in domain 0. You should never have to reset the
machine using the reset button on the back of the machine.

15-November-8> LisaBug-1

Internsls & Confidential

The PU/PL dunp

Frequently, a bug report will come with a three page printout that was made
with the PU ox PL LiseBug command. This command generates output similar to
pages 1,2, and 3. The first page consists of a screen dump of the primary
screen, the second page contains the screen dump of the alternate screen, and
the third page has some additional stack crawl and memory locations displayed.

There is a wealth of information provided in these three pages. The first
page gives us a big hint; some item from the arrangement menu was being
executed. The second page gives us additional information. A bus error was
detected and the access address is 0. This is a big clue because nil pointers
are O and generate a bus error if you try to access location 0. ARlso included
on page 2 is a register display, and the most interesting piece of information
is that the program counter (PC) was at SUBFMULS+94 at the time of the bus
error. Note that the first line of the register display is Level 7 interrupt.
This is basically 8 worthless piece of information, as fsr as spplicstions sre
concerned. This is because NMI, address errors, and bus errors always show
level 7 interrupt.

The third page of the dump gives us four distinct groupings of information.
The first is a register display, then a stack crewl, then & dissssembly of the
instructions surrounding the PC, and finally a portion of the stack is
displayed. Using these pieces of information we can determine what went
wrong.

To find out what the processor is objecting to, we start by looking at (
SUBFMOLS+94, the location which is at the top of the register display.

Looking at the disassembly (marked 5 on page 3) we see instructions at
SUBFMOLS+92 and at +96 but not at +94. Actually, it turns out that the PC
leads (has already sdvanced past) the instruction being executed. This time
the PC leads by 4, and the instruction being executed is at +90. There we see
a MOVE.L (RO),(R1). This is marked 6 on page 3. Looking back to the register
display, we can see that RO looks okay but that Rl is 0. It is the reference
via Al which caused the bus error.

There is also some other handy information on page 3. Register A6 points to
the stack frame (marked 1 on page 3). Matching the address contained in A6
with the stack display, we can find the parsmeters to SUBFMOLS. The address
is marked 2. The first 2 words at that address link to the calling stack
frame and the return PC for the calling procedure. Following that are the
parameterslin REVERSE order (marked 3). See the section on Parameters for
more details.

One final note on the using the PU and PL commands. These commands use &
Parallel printer connected to Slot2ChanZ or Slot2Chanl respectively. They do
not work with serial printers. The commands should be used immediately
following an occurrance of a bug so the error display is preserved. If you do
a stack crawl and the call is pretty deep, the stack crawl can wipe out the
error display, meking the information on the alternate screen less valuable.

15-November-83 Lis&Bug-2

Internals ’ & Conlidentisl

Finding out what parameters are passed and returned

Page 4 shows & more dynamic tracing of the same bus error. The first commsnd
used is the display memory command. Its arguments request using R6 indirectly
to display 40 hex words. The next command TD gives the register display. The
SC (stack crawl) command gives the trace back of who called whom.

So let's find out what parameters were passed to GEMenuCmd. This routine has
the calling sequence written in to the right of the stack crawl command. To
find the parameters we find GEMENUCM in the stack crawl display, and look down
one line to find out the stack frame. The stack frame is at F7BES88. This
part of memory was then displayed using the DM command. The first word
contains F7C21E which is the stack frame pointer for GeMenuEvent. The next
word is an address, and using the CV (convert) command shown at the bottom of
the page, we see that this is the address of GeMenuEvent+492 which is the
instruction in GeMenuEvent immediately following the call to GEMenuCmd.

Following the return PC, the stack has 0007 and 0006. The parameters are in
reverse order so item is 7 and menu is 6.

This example shows a very simple case, one where two integers were passed by
value. Now we'll do & more complicated example. Page 5 shows the calling
sequence for the Select routine in the Field Editor. First a breakpoint was
set at Select+8 and then the register display is shown when the breakpoint was
hit. (See the breakpoint section for more info on breakpoints). Once inside
the Select routine (and past the Link instruction -- more on this in
breakpoints), we proceed to display memory pointed to by AR6. Remembering to
skip the stack frame pointer and the return PC, the next word is the LAST
parameter to Select, and it is F7F32E. This is an address because it is a var
parameter —— so F7F32E is & pointer to t. Continuing, F7EE32 is a pointer to
n; D60552 is a handle to a field state; D60S4E is & handle to the field, The
point consists of the next two integers 85 and 141.

Now let's assume we want to look at the field, and specifically, what the
value of the field is currently. To do this, we have the handle to the field,
and the record declaration of the field. We can use the DM command to look at
D6054E and then access the first longint there D623d4 to get to the field, or
we can use the shorthand DM (OD6OS4E)} to get in one step to the field. The ()
means “"indirect"

Examining the fleld, the coords rectangle is the first 4 words; maxlen is 8;
growlen is 8; curlen is 1; align is 3, drawpad is 4 — both packed into one
integer; curvalue is E20802. Now we access curvalue to get the contents of
the array. Looking at the display, the first byte is a lowercase g. We know
that since curlen is 1 that is all the field contains.

Thexre are a couple of other observations we can meke. We can examine where
these heaps map to data segments. Looking at the curvalue array we know that
it is pointed to by the handle E20802. Knowing that the master pointer and
the handle are in the same segment, using the first byte of the address, we
can calculate the MM number. E2/2 gives &113 which corresponds 1o LoGH 7.
(LDSN 1 starts at 107, LDSN 2 is at 108 ...). Doing & Stop-Start calculation

18-November-83 LisaBug-3

Internsls ® Confidentiel

(
we see that the segment is 8K long and the handle, et 802 is at ZK into the
segment, a valid address.

Note that 2 heaps (and segments) are being used here by the graphics editor.
The field data structure is in one heap Dbxxxx addresses and the other is used
for the data components of the field and have addresses of E2xxxx. This is
not the usual way of using fields and heaps, but see what you can figure out
using LisaBug!

Breakpoints

Breskpoints when debugging epplications ere useful when in the spplication's
domain. This is noted on the register display. Note that domain O or another
domain overridden to O are not application domains, and you cannot set
breakpoints in the application there. There is one special case. When in the
application process, but in domain O (the case indicated with the brace on
page 6) you can use the UBR (user break) command. This sets a breskpoint at
the first instruction in the user domain, and starts executing. In the case
on page 6, the breakpoint is reached at LetOthersRun+34. From this location
you are in & user domain (domain 3) and in your process (process id 6) and can
set breakpoints. I did a stack crawl to show that the application symbols are
available at this point. Next I did a CL PC to clear the breakpoint where I
am currently stopped.

There are a few rules to remember to follow when setting breskpoints. First (
you should never set breakpoints on IUJSR or the future ILJSR instructions (or
ary other IUxxx or ILxxx instructions). However, you can trace through them
if you don't mind seeing all the code for the trap handlers. They do not
work, and will give unpredictable results. Many people have wasted hours of
time because of this. The second rule is it is frequently desireable to set
breakpoints after the LINK and before the UNLK instructions. Page 7 shows
why. ARAfter the first register displey, two breskpoints were set, one ot
GEMenuCmd, and one st GEMenuCmd+B8. I then ran until I reached the first
breakpoint. Then I did a stack crawl and displayed the stack frame. Then I
ran again, stopping after the Link instruction is executed. Then I did s
stack crawl and a display of the stack frame again. Note that they are very
different, and the one at +8 gives correct results. 1 generslly set
breakpoints at the Procedure+8. Note that this only works for code generated
with a TST.W instruction before the UNLK (the usual case, but is not
guaranteed).

To set breakpoints at the end of the procedure, you will have to use the IL
command to find the end of the procedure. You can usually spot this because
UNLK. . .RTS sequence followed by the procedure name dropped in the code. An
example of the end of a procedure is shown on page 4. You can even see the
procedure name, although the first character is not visable because the high
bit is set to indicate to LisaBug that this is a Pascal procedure. Setting a
breakpoint just before executing the UNLK instruction will permit you to
examine the var parameters that are being returned in exactly the way the

15-November-83 L1saBug-4

Internsals ® Confidentisl

input parameters were determined. However, to use this technique, beware of
nested procedures and global gotos.

So far we have always used symbols for setting breskpoints. Sometimes it is
not always possible. Sometimes the code is swapped out and LisaBug cannot
find the symbols, or the code was compiled without symbols. Then you will
have to use & logical address to set the breakpoint. The usual way of finding
out the address is to find the IUJSR call to the routine and break on the
target address. Another technique suggested by Chris Moeller, is to first let
the program fail, then do a CY on the symbolic name, and then rerun the
program setting the breakpoint at the logical address.

To set breskpoints when the program is coming up, you have to use a few
tricks. First, you'll run the Office System under the 0S shell (or Workshop
shell if you have compstible libraries). Then you use the Debug command, and
respond shell .office sytem for the program, and yes for the question to debug
all sons. Then each process launch will give you an opportunity to set
breakpoints. These breakpoints may have to be logical addresses because the
probability of the code being in memory is very low (unless the 0% has left
the program loaded). Note that this technique of remembering logical address
across process executions only works for the exact same program. Relinking
the program will invalidate the logical address assignments and you will have
to let it break first, find out the logical address, and then rerun and set
the breaskpoints.

An alternative suggest by Rod Perkins is to bring up the filer, hit NMI
opportunely in domain O, then set & breskpoint on 0:Declare_Excep_Hdl. When
it stops at the breskpoint (in domain 0), issue CL PC to clear the breakpoint,
Then issue the UBR command. It will then break in your application.

Local and Global Variables

It is frequently useful to be able to trace through a routine and determine
what the value of some variable is. To do this, you need to understand the
layout of the stack. Page 8 shows & diagram of the stack. Note that in this
diagram, the addresses go from low to high. Global variasbles are accessed by
adding negative numbers to RS, and local variables are accessed by adding
negative numbers to R6. Intrinsic unit globals are accessed by first adding
positive numbers to RS to get to the data pointer table entry, and then taking
the value found there and adding negative numbers to that.

To show how you can figure out values of local and global variables while
stepping through a procedure, I picked out a very small procedure. Its source
listing is on page 9. Page 10 contains the disassembly of the procedure. The
process of determining where a varisble is in memory requires some matching of
the source with the code generated. What I usually do is use the IUJSR
instructions to determine rough areas of code and then look in more detail at
the gererated code from there.

Page 10 also sets a breskpoint at copysel+8 and runs until the breskpoint was
hit; then the stack frame was printed out. Note that the CutCopyField

15-November-63 Lis&bug->

Internals & Confidential

procedure is not in memory. We can tell that by the fact that at CopySel+3C
there is an IUJSR to $8EOOOE instead of CutCopyS.

Looking on page 11, we see that an ID of $8EOOOE gives the invalid logical
address message. To illustrate setting a breakpoint on a logical address, I
set a breaskpoint at $8EO000E. Also a breakpoint was set at CopySel+14.

At the CopySel+14 breakpoint, we are about to compare TypeofSel with
aCellTxTS1. TypeofSel is a Variable of an enumerated type, and aCellTxTS1 is
one of the values. Its value is 1. So displaying rad+$ffffffco displays the
value of TypeofSel. Note that the instruction is CMP1.B #30001, $ffc9(a4).
The DM command uses $fFFFfrcO because we want to maintain the fact that it is
a negative quantity. RRA4+$FFFFffc9 yields 0f7cf49, an odd address. Note that
LisaBug, however, starts the display at Of7fcf48, so the byte we are testing
is the rightmost byte of the first word. Note also that the access is
relative to R4, but that R4 was loaded relative to AS. This is because this
is a global variable in an intrinsic unit, and R4 contains the pointer to the
base of the globals for this unit.

At CopySel+24 we access asnother intrinsic unit global, this time it is
tblpars.editcoltitle. It is again at an odd address. The variable is a
boolean, and hence its value is true.

At CopySel+3E we are pushing s parameter to SetPnlPort. It again is an
intrinsic unit global. The parameter is an integer, and displaying the value
shows it to be 3. Next, the trace command was used to step to the next
instruction. Note that the value of A7 has changed. and that A7 points to thé
value just pushed on the stack.

On page 12, we are pushing the effective address of a local variable, errnum.
Note that the reference is relstive to R6. When the value is displayed, its
value is BF52 (garbage since its value is set by the routine).

Continuing on, we hit the breskpoint at $8E000E. This is a digression from
the flow of finding out the value returned from CutCopyField, so I'll just
show how you can get into CutCopyField and get out. This address where we
stopped is actually a jump table entry, so we trace through the instruction
and get to CutCopyField. (A jump table is used when calling from one segment
to another). After a few more traces to get past the LINK instruction, we
check the address of the last parameter passed to CutCopyField, and it is
indeed the address of errnum we found before. Next, a breakpoint was set to
the return PC.

After continuing, we break in CopySel immediately after the return from
CutCopyField. Displaying the location containing errnum, we see CutCopyField
returned 0000. i

15-November-83 Lis&Bug-6

Internals & Confidential

Function returns

It is frequently useful to determine what a function returns. To do this
break at the instruction immediately following the JSR or IUJSR to the
function. Then the function return is on the top of the stack. DM ra7 will
display the returned value.

18-November-83 LisaBug-7

— — =

" File, orint _Edit Type Style Page Loyou. [CIFERREIEA Lines _Shades

1 untitted ||

* L] . . . [L} 1] . 1] .
+ L] 1] . L] .
. . .] L] .
. L]
. L] . . . L] L] . L]
* . » . . L]
3 L] * 1] L[] . . .] . . » . . L3 L] l. » * . L] . . . [] . L] L] L] L] L]
Text : : : : : :
. . . [] » . .
L] L] . L[] . .
1] 3 * . L] L]]
. L] . .
1] L]
CRE N BB A R N I I I B R R N R R R I N N N N N N N N N N N N N N I N R R R N R R R R R R I I xxmmmmmn,e
. . [. . .
0 . . L] L] . . .
. . . . B . -
L[] . » . .
[] . . L] . . . 1] . . L]
.
. . . 1] » 1] L[] 1] ’ (] L] » (] . * . . . L] L] . L] L3 L] . . . » . . . L] . E]
L] L] L] .
. 1] L] .
. . . A a
| . :
Te— . L[] . L]
. . . . [] L]
» . . .
O
...--oa.-o-co--oo-oo-lqc.o.ooon f allnno-lolnllcllllc.ol.oo‘.lllottl
A . . . 0 . .
. L] . 3 . .
\
. []
l.l‘..ﬁ'..!I000Il.lt0000.ll...t'l.ll'U'Cl.l'.'l..ll.llll.ll..l.l.'t...l.b.l..l..lbll..‘....‘..!.Q.'Ol.l..ll..l.‘ll..Q...lll.l.".l.l‘.‘..l.l..l.l.l..‘l‘l.ll....'l.
»
. L] . . L] .
. . 1] . . .
A L] 1] L3 . . (] * * 3 ’ . . [. . L] . . . L] L[] 1] . * . . » [] * . . L . .
.
. . . .

| -ag>sy7

jWastebasket Preferences

$49500000000 000080000 0s0000000 000

< -Grgvsry

Level 7 Interrupt

SUBFMOLS+0094 80088 5348 ORI.B #$5348,A0
PC=00281A32 SR=0660 0 US=8BF7BDCC S5S=0@CBFEDS8 DO=1 PH#=00007
D9=00000000 D1=00000100 D2=0006FFCE D3=00DGOTE4

D4=0C2800805 D5=00145760 De=0000006A D7=00DAGABS

AB=0BDABABE A1=00000008 A2=0BCEBB4C A3=00F 7F 466

A4=08F 7F 466 AS=00F 7F4A6 A6=80F 7BDDB A7=00F 7BDCC

PU

B

BUS ERROR in process of gid 7

Process is about to be terwminated.

access address = B = mmu# e , offset

inst reg = 8848 sr = 8 pc = 2628146
saved registers at 13369270 ;

Going to Lisabug, tuype g to continue.

B

Level 7 Interrupt

SUBFMOLS+0094 0008 35340

PC

ORIl .B

#$5340,A0

r 00281A32 SR=0000 0 US=00F?BDCC SS=00CBFEDS DO=1 P#=00007
{ y=00000000 D1=00000100 D2=0000FFCE D3=00D007E4
D4=0C280005 DS=00145700 Dé=0000000A D7=00DACABS
A0=00DA0ABS A1=00000000 A2=00CE004C A3=00F7F446
A4=00F7F444 AS=00F7F4As @E ﬁhoanocc

@ (At SUBFMOLS+0094
Stack fram F7BDD8 called

from COMMITLA+033A

Stack frame at 00F7BE14 called from LOCKCMD+007A
Stack frame at 00F7BE2E called #rom (GEMENUCH+02A0)
Stack frame at[00F7BEBB)called from GEMENUEV+048E
Stack frame at OOF7C21E called from PROCESST+011E
Stack frame at 0OF7C258 called from MAINPROG+008A
Stack frame at 00F7C298 called from GRAPHICS+001E
Stack frame at 00F7F4Aé
SUBFMOLS+0074 2948 0004 0004 MOVE.L $0004¢A0),30004¢A4)
SUBFMOLS+007A 4016 BRA.S #4$0018 ; 00281A30
SUBFMOLS+007C 2047 MOVE.L D7,A0
SUBFMOLS+007E 2247 MOVE.L D7,Al
SUBFMOLS+0080 2251 MOVE.L (A1),Al
SUBFMOLS+0082 2348 0004 0004 MOVE.L $0004(A0),$0004¢A1)
SUBFMOLS+0088 2047 MOVE.L D7,A0
SUBFMOLS+008A 2247 MOVE.L D7,Al
SUBFMOLS+008C 2249 0004 MOVE.L $0004¢A1),Al

p 500 2290 MOVE.L (A0 {al(©

:@ 302C 0008 MOVE.W $0008¢A4),D0
SIBFMOLS+0096 5340 SUBQ.W ¥s1,DO0

(JFMOLS+0098 3940 0008 MOVE.W D0,$0008¢A4)

© SUBFMOLS+009C 4247 CLR.W (A7)

SUBFMOLS+009E 2F07 MOVE.L D7,-(A?)
SUBFMOLS+00A0 4EBA F10A JSR CNTOFOBJ ; 00280B4A
SUBFMOLS+00A4 302C 000A MOVE.W $000A<A4) DO
SUBFMOLS+00A8 90SF SUB.W (A7)+,D0
SUBFMOLS+00AA 3940 000A MOVE.W DO,$000A(A4)
SUBFMOLS+00AE 4247 CLR.L =¢A?)
00F7BDBS 00F7 BED2 002A 353C 00F7 BDEC 00F7 EB88#5<....... .
00F7BDCS 00DA 0ASC 0000 0001 00DA 0AS4 0OFB 04BS& ...l.......du.ess

@ [0F78DDE} [©0F7 BE14 0024 2764(300DA_0AB8 00F2 FA48 «v.v o #/devusr..f
00F7BDES 0000 000A 0000 0197 00DA 0AS4 00FB 04B&o0.duss.
00F7BDF8 0002 0088 SFC2 00DA 0AB8 00F7 BE12 002A ...o_cvrvocsnss *
00F7BE0S 3548 0000 0000 0000 0000 0OF7 O0OF7 BE2E S..coevversunans
00F7BE18 0062 0888 0014 S700 0000 0001 0000 0007 .bu...Weveeosans
00F7BE28 BE30 0036 3316 00F7 BEBS 0064 1400 016E .0.83......d...n

PaeAmeree S

ddm raé 40

00F7BDDS8 00F7 BE14 002A 2744
00F7BDES 0000 000A 0000 0197
* 7BDF8 0002 0088 SFC2 00DA
0ur7BEOS 3%A8 0000 0000 0000
dtd

SUBFMOLS+0094 0008 35340 PC

00DA 0AB8 O0O0F7 Fd4é4
000A 0AS4 OOF8 04Bé
0AB8 00F7 BE12 002A
0000 00F7 OOF7 BE2E

ORI.B

#$5340,A0

l*’dll

lllll'll.lld.l..

[N ll.ll‘

.".-.l.‘..lll’*

- P (

PC=00281A32 SR=0000 0 US=00F7BDCC SS=00CBFEDS8 DO=i P#=00007
00=00000000 D1=00000100 D2=0000FFCE D3=000007E4
D4=0C280003 DS=00145700 Dé=0000000A D7=00DA0ABS
A0=00DA0AB8 A1=00000000 A2=00CE004C A3=00F7F446
A4=00F7F446 AS=00F7F4Aé A4=00F7BDDE8 A7=00F7BDCC

dsc . — ,
At SUBFMOLS+0094 C,,g_mov\uCuD LMIM&, L“em}m‘/‘j“)/
Stack frame at O00F7BDD8 called from COMMITLA+033A
Stack frame at O0OF7BE14 called from LOCKCMD+007A
Stack frame at 00F7BE2E called from
Stack frame at [QOF7BEB8|called from GEMENUEV+048
Stack frame at_DOF7C21E called from PROCESST+011E
Stack frame at/00F7C258 called from MAINPROG+008A
Stack frame atl 00F7C298 called from GRAPHICS+001E
Stack frame at\O0OF7Fd4Aé
Ydm 0f7be88 30.
00F7BESS [00F7_c21€losa 180c] [0607)10004) 0C28 0002d.......C..
00F7BEYS 0014 S7C0 2F00 4267 2F2E FFD4 201F 0A0! ..W./.Bg/vcverse
00F7BEAS 00F8 04B4 0001 1453 4574 2041 7349 6465Set.Aside
Yil 6418dc~20
GEMENUEV+0472 FFDC 3338
GFMENUEV+0474 486E FFD2 PEA $FFD2¢(A4) ;
i ENUEV+0478 486E FFD4 PEA $FFD4<A4) .
GEMENUEV+047C A088 02B4 JUJSR MENUSELE ; 008B841AC (
GEMENUEV+0480 4A4E FFD4 TST.W $FFD4(AS)
GEMENUEV+0484 470C BEQ.S #+$000E ; 006418DC
GEMENUEV+0486 3F2E FFD2 MOVE .W $FFD2¢A48) ,-(A7)
GEMENUEV+048A 3F2E FFD4 MOVE .W SFFD4(AS) ,-(A7)
GEMENUEV+048E 4EBA F882 JSR GEMENUCM ; 0084115C
GEMENUEV+0492 4267 CLR.W ={A?7)
SEMENUEV+0494 A088 022A IUJSR HILITEME ; 00885C18
GEMENUEV+0498 4CDF 18F0 MOVEM.L (A7)+,D4-D7/A3/A4
GEMENUEV+049C 4ESE UNLK Aé
GEMENUEV+049E 2E9F MOVE.L <(A?)+,(A?)
GEMENUEV+04A0 4E7S A RTS
GEMENUEV+04A2 C74S 4D4S 4ESS 4556 0040 2000 0000 0000 .EMENUEV.'......
GEMENUEV+04B2 0000 0000 0000 0000 0000 0000 0000 0000ocovv0cveees
GEMENUEV+04C2 0000 0000 0000 0000 0000 0000 0000 0000coco0c0ceuee
GEMENUEV+04D2 0000 0000 0000 0000 0000 0000 0000 0000o0vecvvvvee
GEMENUEV+04E2 0000 0000 0000 0000 0000 0000 0000 0000
c
g“l 8DC=&45599464=GEMENUEV+0492
dpr O

LisuBe -4

?AQM\ £ ees

Yhe gelect+8
{

Break Point

SELECT+0008 #*48E7 0118
PC=008C3FA8 SR=0000 O

D0=00020001 D1=00E20000
D4=0010FFFA DS5=00000001
A0=00F804B4 A1=00F7F32E
Ad4=(00F804B4 AS=00F7F4Aé

>dm raé 40
00F7C018 00F7 C034
00F7C028 0004 0552
00F7C038 0042 1884
00F7C048 0010 FFFC
Ydm 0dé034e
00D40S4E 00Dé 23D4
ddm 0dé23d4 40
000462304 007€E 0138
000423E4 00E2 0802
00D623F4 4012 0344
00062404 0004 0304
Ydm (0dé054e) 40
00062304 007E 0138
00D423E4 00E2 0802
00D623F4 4012 034A
PoNg2404 0004 0304
y (0e20802) 10
00E20832 47E2 1FF4
dev e2/2
$71=4113=00000071
dmm &113

var tinteger);

),

procedure Select (dxy:Point; hf:hndField; hfs:hndf State; var n:Rect;

MOVEM.L D7/A3/A4,-(A7)
US=00F7C010 SS=00CC0000 DO=! P#=00008

D2=00000002 D3=001FFFFF
Dé=FFFC3900 D7=0007FFFE
A2=00CE004C A3=70041080
Aé=00F7C018 A7=00F7C010

00F?
0085
0141
FFFE

002A
0004
0062
397C

08DE
034E
0085
0007

F32E
0141
00DA
7006

00F?7
00F?7
08946
1080
0006 23AE 00D6 2394 00D6
0001
0806
0008

0001

0008
0001
0024
0001

0008
00E2
0025
0001

008A
0001
001E
0006

014D
0001
FFFD
053A

0001
0804
0008
0001

0008
0001
002A
0001

0008
00E2
0025
0001

008A
0001
001E
00Dé6

014D
0001
FFFD
053A
0000 0004 00E2

00E2 1FF4

D{1] Segment[71] Originlé5C) Limit{FO] Control(7]

dYev 0cd?$$-0cb800
$1FFF=&8191=00001FFF
dev 802
40802=42050=00000802

EE32 C..4.*‘...ll0102
CO?E OICROIQNIUOAOIC~
3970 lbll.bl'lAll.l?‘
ooFa l.l.?'l'llp.".'
237A nu“...“llo“cl.“z
0304 .".;.ll"l.ll..ll
0025 LI B BB B B B B BB R B)
0008 3-.\1-...-*-;’"...
0006 cesevestesssaens
0304 .~l;..'"l.l'll.l
0025 LI B B I B B B B B AN
0008 3..J.....%.%....
00D6 sessecssdr e s
0846 g.lllll.l'.l.llF

Start[0CB800) Stop{OCD7FF]

field = record static field charocteristics
coords: Rect, : bounding rectanglie
nd_en: integer; ’g‘q—L maximus number of chars
. (should equal size of
: curvalue orray)
growlLen: integer; ¢, size by which to grow value
array - don't grow if O
curlen: integer; cubl current number of chars
align: byte; alignment of chaors when field
is disployed
drowPod: byte; ® of pixels to drow from left
~ or right (depending on
al ignment)
curVaive: hndDoto; hondle of arraoy of contents
noofnts: integer, maximum ® of format records
growFnts: integer; % of format records by which
to grow - don't grow if O
curfnts: integer; current ® of format records
fatInfo: hndRuns,; handie to array of runs
protect: boolean; trus => chonges not allowed

end;
ptrfield = “field;
hndFieid = “ptrfield;

LseB1g-5

DO=00000013 DI=GQ@00000 D2=00000002 DI=001F2714 » . .
D4=2048F900 DS=00DAS4E0Z=2046FEDD D7=00000000 Sgﬂ’wﬁ BVWO inks / Bomains

A0=00004004 A1=00CBE. 2=00208C04 A3=0020A022

A4=00CCB10E AS=0 OCBFFéA A7=Q0CBFF34 @

g

. @1 7 Interrupt

00220E62 4COF 08EQ MOVEM.L (A7)+,DS-D7/A3 (

PO=00220E62 SR=2004 0 US=00F7C254 SS=00CBFFB8 DO=0
00=00000000 D1=0000FFFF D2=000004AS D3=00CE07F3
04=0010FFFA D3=00020000 Dé=00CC4AF84 D7=00A80700
 AO=0036024E A1=00A84270 A2=00D08000 A3=00000400
A4=00AB424C AS=00CC4088 A4=00CBFFE4 A7=00CBFFBE

g

Level 7 Interrupt .

QUEUE_PR+004646. D280 ADD.L DO,D1

PC=00240BF4 SR=0700C O US=00F7DC32 SS=00CC0000 DO=C P¥=00004
- DO=FFFFB481 D1=00CCA083 D2=00000002 D3=00D007E4

D4=2D48F900 DS=00108004 Dé=2D480078 D7=00F7DCSE ?'
AO=00CCAB32 AI=00F7DCé2 A2=00CE004C A=0020A022
A4=00CCB10E AS=00CC4088 Aé=00F7DCAC A7=00F7DC32 J

= Jubre

Break Point ‘
LETOTHER+0034#4ESE UNLK Ad
PC=00868303C SR=0000 O© US=00F7DC?2 SS=00CC0000 DO=3 P#=00004
00=00002000 D1=00000002 D2=00000002 DI=001FFFFF
D4m2D48F900 D3S=0010B004 Dé=2D48FEN0 D7=4AAE0000
A0=00F7DC72 A1=00CCA083 A2=00CE004C AI=0020A022
A4=02E46010 MOF7F9A4 Aé=00F7DC74 A7=00F7DC72
\._e R -, .
. LETO‘THER+0034 ‘ . ' : (
Stack frame at 00F70C74 called from MINLOOP*M% .
" "Stack frame at OO0F7DCCA called from 00240030 =

Stack frame at OOF?F9A4 '

—>?cl pc . , .
/]

Level 7 Interrupt

00208C48 . 4840 : SWAP 0o

PC=00208C48 SR=2700 O US=00F?70C72 SS=00CBFF4A DO=3 overridden O
DO=00FEOOFE Di=40000000 D2=00000000 D3I=00D02704
D4=2D48F700 D3=0010C08D Dé=2D48FEQO0 D7=4ARE0000
A0=0000402C A1=00004000 A2=00208C2C AI=0020A022
A4=02E446010 AS=0000057A Aé=00CBFF7E A7=00CBFF4A
ds¢c

At 00208C48

Stack frame at 00CBFF7E called from 0020A%A4
Stack frame at OOCBFFAS8 called from 0020AA34
Stack frame at OOCBFFBO called from 0020CC%A
Stack frame at OOCBFFDC called from 00208444
Stack frame at OOCBFFFC :

dubr

Level ?7 lnto\rN

00208474 RTS

;" "=00208474 sa-zoo US=00F7DC72 SS=00CBFFEC DO=3 overridden 0

--=00000002 D1=000 D2=00000002 D3=00D007E4 (

A4=02E46010 C A7=00CBFFEC
Juber

Level 7 Interrupt LisaBiy- ¢

FY. LYYV VY arre MMIEN BR.&T78 N7_ L . ———— e

BeearYorn &
’g '
Level 7 Interrupt -
$32.pack+0008 4A02 TST.8 D2

| +00AC0D74 SR=0001 O US=00F7CiDC SS=00CC0000 DO=i P¥=0000O.
vwwe=FFFF0002 D1=0000000F D2=80000000- D3=00D007E4

D4=0010FFFA DI=397C0010° Dé=FFFC397C D7=43180000

AO=00F7EBJ8 A1=00F7C224 A2=00CE004C A3=00F7E0T54

A4=QO0F7EB44 AS=00F7F4Aé M-OOF?CZN: AMOF?C!DC

dbs gemenucm T

dbr gmnm‘r&

’g o

Breas Fcint e '
GEMENUCM+000034A4F EFB¢ SEMENUCM TST.W SEFB4<A7)
PC=0044113C SR=0010 Q- US=00F7BEBC SS=00CC0000. DO=t P¥=0000S
00=000000FF D1=000000FF D2=00000002 D3=001FFFFF
04=0010000% DI=397C0000 Dé=FFFC3900: D7=0000000E
AO=004418CA A1=00FB054A A2=00CEN04C A3=70041080
A4=00FB804B4 AS=00F7F4Aé Aé=00F7C21E A7=00F7BESC

dsc

At GEMENUCM+0000

Stack frame at 00F7C21E called from PROCESST+01iE

Stack frame at 00F7C238 called #rom MAINPROG+008A
Stack frame at 00F7C298 called from GRAPHICS+0CIE
Stack frame at 00F7F4Aé

ddm raéd 30 .

00F7C21E O0F7 C256 0064 1F90 GOOF7 C22E 206E FFFC .eeXeleoesooeNos
00F7C22E 00F8 03548 000! 0007 0OCS 0010 704A 0000 ...H.eceoesoople.
ONF7C23E 0000 0000 0100 04AC 0000 0000 0008 0000 coccoeccccrcocasns
(~ - ‘

.Br'.k Pdint MY s . - . . -.‘ R . ..) ‘n.. . -

SEMENUCM+0008#2F07 MOVE.L D7,-<(A7)

PC=00641144: SR=0010 O US=00F7BE3C SS=00CC0000 DO={ P#=00008
D0=000000FF Di=000000FF D2=00000002 D3=001FFFFF
D4=00100003 DI=397C0000 Dé=FFFC3900 D7=0000000E
AO=004418CA A1=00F8034A A2=00CE004C AI=70061080
A4=00FB804B4. A&OOF?FN Aé=00F7BEBS. A7=00F7BE3C
dsc

At GEMENUCM+0008

Stack frame at OOF7BESE8 called from 8818«.}8)40488
Stack frame at 00F7C21E called from PROCESST+011E
Stack frame at 0OF7C238 called from MAINPROG+008A
Stack frame at 00F7C298 called from GRAPHICS+001E
Stack frame at 00F7F4Ad

ddm raé 30

00F7BEBS 00F7 C21E 0064 18DC 000B 0004 0010 FFFA .cccelevceceeree
00F7BE98 397C 0010 FFFC 397C 0007 FFFE 7006 1080 ?1....91..cepsse
00F7BEAS 00F8 04Bé 00AC 1453 46574 2041 7369 6463Set.Aside
Yil gemenucm

GEMENUCM+0000*4A4F EFB4 GEMENUCM TST.W S$EFB4A(A?7)

GEMENUCM+0004 4ESS FFB4 LINK Aé,#SFFB4
GEMENUCM+0008%2F07 PC MOVE.L D7,-<(A7)

GEMENUCM+000A 3E2E 0008 MOVE.W $0008¢A6),D7

- RFMENUCM+000E 4EAD 096E JSR SETWRKOR ; 003632DE
(MENUCM+0012 302E 000A MOVE.W $000A(A6),D0

GEMENUCM+0014 5340 SuUBG.W ¥82,D0

GEMENUCM+0018 4B00 02C2 BMI #4402C4 $ 00641438
GEMENUCM+001C 0C40 0004 CMP1.W #8000A,D0

GEMENUCM+0020 SE00 02BA B6T 5+$02BC § 00441438
GEMENUCM+0024 E348 LSL.W ¥81,D0

SEMENUCM+0024 303B 0004 MOVE.W #+480008¢(D0.W),D0 ; 00464118A

LisaBisy =7

- - e CEOMPASNU NS DA ATEA. BONAB o e o oy v~ o= o e o= - IR, L s ABAGAL RS, us.........._aa:'c.am._..___.-__. e .

Stack Segment Layout

lou address
G A7
Dynamic. procedure local
Stack variatles
PC
.W
Intrinsic
unit
Globals
<
Program
global
Data |
44— A5
- Past.ib
Suppart
Oata Pointcr
Table
Jurp Table $F80000
SF7FFFF
—

¢,

Shared IU Globals

Lisabisg-8

PSRN

(sS smgrioUse) \jﬁz
PROCEDURE CopySel(ststus : inceger});
VAR errnum : inleger;
3EGIN
[F TrsceSMGR then Hriteln('Xtmspracs CopySel’);
if (typeafSel = aCellTxTS!) or
tblPars.EditColiTitle and (typeOfSel = aColHedSt)) or -
tblPars. EditRowTitle and (typedfSel = -RouH.cdSli) then
Begin
SetPniPore(WidePnl); .
CutCapyF ield{wavF illdH.ulvF:ta:e‘d, False, true, srraum);
Status = erraum; . .
CutCopyFie!d(sa!lFieldH, selFszacer, Faise, falze, errnum);
ENO;
€NO;

Lisnbyy -9

il cpprsetl
COPYSEL+0000
COPYSEL+0004
rOPYSEL+0008
- PYSEL+000C
. COPYSEL+0010
COPYSEL+0014&
COPYSEL+001A
COPYSEL+001C
COPYSEL+0022
COPYSEL+0024
COPYSEL+0028

. COPYSEL+002A

COPYSEL.+0Q30
COPYSEL+0032
COPYSEL+0036
COPYSEL+0038
- COPYSEL+003C

-- COPYSEL+003E -

COPYSEE+0042
COPYSEL+0046
>il

COPYSEL +0044&
COPYSEL+004E
COPYSEL+0050
COPYSEL +0054
COPYSEL +0058
COPYSEL+00SC
COPYSEL +0060
FIPYSEL+0064
{ _PYSEL+0048
COPYSEL+006C
COPYSEL+006E
COPYSEL+0070
COPYSEL +0074
COPYSEL+0078
COPYSEL+007C
- COPYSEL+007E
COPYSEL+0080

COPYSEL+008Z |
© 8ASF EFFE
4ES6 FFFE

CUTSEL+0000
CUTSEL+0004

>br copysel+@

’9
Break Point

-2F2C

4A6F EFFE

4ESé FFFE

48E7 0018
2860 02A0
264D 029C
0CacC 000t
S7ce
acac oaoy
S7Ct
C228 FFOB
80aL
gcac 0008
S7Ct

inaassssz.'

800t

g240 000.2

4734

3F28 FFCC
AQSC 0170
2F2C F442

2F2C F43C
4267
1F3C 000t
484E FFFE
ACGBE 00CE
2046E 0008
30AE FFFE
FFC4
2F2C F44E
4267
4247
484E FFFE
AQSE 00CE
4CDF 1800
4ESE
2E9F
4E?7T
C34F 3039

COPYSEL+0008 »48E7 0018
PC=00S40SEC SR=0000 O US=00F7BEE8B SS=00CC0000 DO=1 P#=0000S5S
D2=00000000 D3=001FFFFF

D0=00000000 D1=00000000
D4=000E2F2D DS=FAEA3F07
A0=005214C0 A1=Q00F7BEEO
A4=Q0F7D766 AS=00F7F73A

>am raé 40
00F7BEEA
O0F7BEFA

. TF7BF0A
‘. JF7BF1A
pr 0

00F7 BF3S2
4EAD 00035
000E 2F2D
O00F7 BF38

COPYSEL. TST.W

FFC?

FFC®

- LINK

SEFFE(A7)
Aé, #SFFFE

MOVEM.L A3/A4,-(A7)

MOVE.L

v MOVE.L

CMPI.B
SEQ

$02A0¢(A3) ,A4
$029C(AS) ,A3
#80001 ,8FFC?(A4)
00

#8000 9, $FFCP(A4)

Dt
SFFDB(A3) ,D1
D t ,.Dﬂl'

. #80008,8FFC?(A4)

DL

SFFE2¢(A3) ,DL
01,00

#$0001,D0:
#+$003C
SFFCC(A3) ,~(A7>
SETPNLPO
$F442(A4) ,~(A?)

$F43C(A4) ,~(A7)
=(A7)

#0001 ,-<A7)
SFFFE(AS)

- $008EOCQGOE

$0008¢Aé) ,A0
SFFFECAS) , (AD)
SFFCA(A4) ,~(A7)
$FA4E(A4) ,~(A?)
(A7)

-CA?)

SFEFE(AS)
$00BECOOE

(A7) +,A3/A44

Aé

(A7) +,(A7)

§ 00340635C
$ 0030089E

5345 4C20 0000 9A4F EFFE 4ESé .OPYSEL...Jo..NV
CUTSEL. TST.W SEFFE(A?7)

LINK

Aé, WSFFFE

MOVEM.L A3/A4,-(A7)

Dé=A03C0005 D7=4EADO0OS
A2=008835C00 A3=00F804B¢s
Aé=00F7BEEA A7=00F7BEES

0052 150C
00F7 D766
4E01 0002
0088 SDOE

O0OF7 BFS0 AO3C 009E ...R.R.....P.<..
OOF8 04B6 O0F7 BFOO N..ooeefocooansns
OO0F8 04BS OOF7 DF26 ../Nivsvsrsse &k
O0F7 0000 0002 O01F ...8cclccsvceses

_ lsm&g-lo

——— — — — —

e o e s . e e e e . F T e . e e s o st m e e s ce e e b e e RV R e

(. id 8e000e

Invalid log addr
>br 8e000e.

>br copysel+idg
>0

Break Point

COPYSEL+0014 »0C2C 000t FFC? CMPI.B #80001 ,$FFC9(A4)
PC=003405F8 SR=0000 O US=00F7BEEQC SS=00CC000C DO=1 P#=0000S5
D0=00000000 Di=0000000C D2=00000000 D3I=001FFFFF

D4A=0Q00E2F2D DI=FAEAIF(7 Dé=A03CU00S D7=4EADCOOS

A0=0035214C0 A1=00F7BEE0 A2=00683C00 A3=00F7D764é

A4=Q0F7CF80 AS=00F7F73A Aé=00F7BEEA A7=00F7BEEQD

> +8f$$£££c?

(§0F7CF482 0101 000C 0010 00D8 O72E 00D8 0748 00D8cscceoeceoF..
>br cop 1424 -

>g

Break Poin

COPYSEL+00 #C22B FFDB AND.B SFFDB(A3),D!

PC=00356046081SR=0009 O US=00F7BEEC SS=00CC0000 DO=i{ P#=00003
'DO=000000FF \D1=00000000 D2=00000000 D3=001FFFFF
D4=000E2F2D DI=FAEA3F07 D6=A03C000S D7=4EADOCOS
A0=003214C0 A1=00F7BEE0 A2=0088SC00 A3=00F7D764
' wmQOF7CF80 AS=00F7F73A Aé=00F7BEEA A7=00F7BEED i
(cam i;atsﬁf £$db
’ 0F7D74° - ‘01&1_ 0100 00010100 0000 0001 0000 0048 evsssssesssssceH
CV rad+sfff ’ : S R : :
$F7D741mk 16242 7@
dYcv rad+Sffffffc
$F7CFa9mu1 6240457=G0F 7CF4D
>br copysel+3e
-
Break Point
COPYSEL+003E #3F2B FFCC MOVE.W SFFCC(A3),-(A?)

PC=00340622 SR=0000 O US=00F7BEE0 SS=00CC0000 OO=i P#=00003
D0O=00000001 D1=00000000 D2=00000000 D3=QO0iFFFFF

D4=000E2F2D DS=FAEA3F07 Dé6A03C0005 D7=4EADCOOS

A0=0035214C0 A1=00F7BEE0 A2=00883SC00 A3=00F7D7é46

A4=00F7CF80 AS=00F7F73A Aé=00F7BEEA A
>dm ral3+8ffffff

00F7D732 002 0001 0000 0001 0100 0101 \\101 ceresecseseansns
>t A

Trace Point \

COPYSEL+0042 A03D 0170 IUJSR SETPNLRO ; 00S0089E

PC=00560426 SR=80Q00 O US=00F7BEDE SS=00CC0000 DO={ |P#=00005
D0=00000001 D1=00000000 D2=00000000 D3=001FFFFF
N4=000E2F20 DS=FAEA3IF07 D&=A03C000S D7=4EAD00OS

(J=005214C0 A1=00FXBEEO
A4=00F7CFB0 AS=00F/F73A

t1>dm ra?
00F7BEDE @
dbr copysel+34

g

DOF8 04B& OOF7 D786 BFS2 O00F7 BFS2 ..cees:ef.R..eR

COPYSEL+0054 #484E FFFE

.. PC=00560638 SR=0000 O

D0=00000000 D1=00000000
D4=000E2F2D DS=FAEA3F07
A0=0054042A A1=00F20BEC
+ ‘wQ0F7CF80 AS=Q00F7F73A

; FFFEELE
Yam PAS+SF I

Break Poi
O0SBEOOOE #4EF9 00SE
PC=008ECOOE \SR=0008 O

D0=00000000 D\\=00000000
D4=0Q0E2F2D DS=FAEA3F07
AO=00354062A A1x00F20BEC
A4=00F7CF80 AS=QOF7F73A
>t

Trace Point
CUTCOPYF+0000 4AéF E€FDO
PC=008EQ04B8E SR=8008 \ O
D0=00000000 D1=00000000
D4=000E2F2D DS=FAEA3F07
A0=003540462A AI=00F20BEL
A4=00F7CF80 AS=00F7F73A
>t

Trace Point
CUTCOPYF+0004 4ESS FFDO
- =008E0692 SR=8000 O
+v=00000000 D1=00000000
D4=Q00E2F2D D3S=FAEA3F07
A0=0036062A A1=00F20BEC
A4=QO0F7CF80 AS=Q0F7F73A
>t

Trace Point
CUTCOPYF+0008 48E7 0318
PC=008E0696 SR=8000 O
D0O=00000000 D1=00000000
D4=000E2F2D0 DS=FAEA3F07
AQ0=00346042A A1=00F20BEC
A4=00F7CFB80 AS=00F7F73A
s>dm raé
O00F7BECS
>br 5604640

>g
Break Point

COPYSEL+005C *204E 0008

00F7 BEEA (0056 0640

PEA SFFFE(AS)
US=00F7BED4 SS=00CC0000 DO=1 P#=00005
D2=00000000 D3=001FFFFF
Dé=A03C000S D?7=4EADO0OS
A2=00883C00 A3=00F7D764
Aé=00F7BEEA A7=00F7BED4

©

BF32 0032 150C 00F7 BFS0 AO03C .R...R.R.....P.<

048E JMP $008EOQ48E
US=0Q0F7BECC SS=00CC0000 DO=1 P#=00005
D2=00000000 D3=001FFFFF

Dé6=A03C000S D7=4EADOOOS

A2=008835C00 A3=00F7D744

A6=00F7BEEA A7=00F7BECC

CUTCOPYF TST.W S$EFDO(A7)
US=00F7BECC SS=00CC0000 DO=1 P#=0000S5S
D2=00000000 D3=001FFFFF
Dé=A03C000S D7=4EADOOOS
A2=00883C00 A3=00F7D7446
Aé=00F7BEEA A7=00F7BECC

LINK A, #SFFDO
SS=00CC0000 DO=! P#=0000S5S e
D3=001FFFFF
D7=4EADOOOS
A3=00F7D76846
A7=00F7BECC

US=0QF7BECC
02=00000000
D&=A03L000S
A2=00885C00
Aé=00F7REEA

MOVEM.L D&/D7/A3/A4,-(A7)
S=00CC0000 DO=1 P#=00005
N3=001FFFFF

US=00F7BE?8
D2=00000000
Dé=A03C0005
A2=008835C00
Aé=00F7BECS

.--..Vca...n---.

-
r/‘
s

MOVE.L $0008(Ad),A0

PC=00560640 SR=0000 _© US=00F7BEE0 SS=00CC0000 DO=1 P#=00005
D0=00002700 Di=00 000 D2=00000002 D3=001FFFFF
D4=000E2F2D DS=FAEA3F07 Dé=A03C000S D7=4EADO0CS
A0=00540440 ﬁf;000094CC A2=00CE004C A3=00F7D7 &4
A4=00F7CFBO AS=00F7F73A A4=00F7BEEA A7=00F7BEEOD

z FEEFFFE
UUF7BEE 00F7 BFS2 0052 150C 00F7 BFS0 A03CR.R.....P.<

’9

LisaBig[2

Shell-Writer's Guide

This document contains information you need to know to write & shell for the Lisa

1t describes the things a shell must do when it starts up and when it terminates. To
use this document, you should be familiar with the Operating S\'stem Relerence
Manusl! and have some knowledge of Pascal. To do any graphics, you will have to
use QuickDraw, described in the Fascal Reference Manuwal You may also want to use
calls in the PaslibCall and PPaslibC units.

The System.shell

When the 0S is booted, it starts the 'root' process, which searches the boot disk for &
shell called 'systemn.shell’. The system.shell is automatically sterted, and will be the
ancestor of all other shell processes (see Figure 1). All shells must be "plug-
compsetible” with each other so that any shell can be the system.shell without special
support from the 0S. In this way, a turn-key boot disk could be prepsred that didn't
include a selector shell.

workshop (Office Syst.em) Lomer shells)

0S shell still more
(UitraDos) : shells

Figure 1
Process Picture

7-February -84 Sheli-triter's Quide-1

Irternalis & Contfidertisl

If your shell is the first process (the system.shell), you must make the following
systern initialization calls. Normally, the selector shell takes care of this for you.

Startup: procedure BlockDDInit; Initializes Pascal I/0. (Note: if you don't have
the privileged PASLIB interface, declare BlockIDInit external.)

procedure PMinit (ver error: integer); Initializes parameter merory.
(Note: you have to be able to link against the pmm unit to
make this call.)

function enableDbg (on: boolean): boolean; Activates LisaBug if you
want to use it.

procedure setNMIkey (keyCap: integer), Makes LisaBug accessible
through the NMI key.

Terminstion: procedure BlockIDDisInit; PASLIB cleanup. (Note: if you don't have
the privileged PASLIE interface, declare BlockiDInit externsl.)
To tell if your shell is the system.shell, call:
info_process (OSErr, My_Id, PInfo)
If Pinfofather_id is 1 (the root process), then you're in the system.shell.

The Environrnents window is the standard system.shell It scans the directory of the
startup disk for files whese names begin with 'shell’. For your shell to be recognized
and available from the Environments window, the name of its object file must start
with 'shell.’.

Interprocess Communication

Event channels are used for communication between processes. The root process and
the selector shell expect information from their son processes through a
SYS_SON_TERM event channel, telling why the son terminated, and whether the father
should restart the son, select or start another shell, turn the power off, or restart the
machine. The 0S guarantees that this event will always be sent back to the father of
a terminated process via the locsal event channel, even if the son process was
unwillingly aborted.

At Shell Startup

FATHER: A process that starts a shell must do the following:

1) Establish a local event channel to allow its son to communicate with it
(OPEN_EVENT_CHN).

2) Start the son shell (MAKE_PROCESS).
3) Wait for a SYS_SON_TERM event (WAIT_EVENT_CHN).

- 7-Februan-54 Shell-writer's Guide-2

Internals & Confidential

SON: The shell that was started must do the following:
1) Declare a SYS_TERMINATE exception handler (DECLARE_EXCEP_HDL).

This exception will be signalled when the shell process is about to be
terminated for any reason: because KILL _PROCESS or TERMINATE_PROCESS
has been called; because the process ran to completion; because there has
been a bus errar, address error, illegal instruction, privilege violation, or line
1010 or 1111 emulator error.

If this procedure is declared, the 0S will a/ways give it a chance to run
before the process is terminated.

It is recommended that new sheils not assume anything about the state of the
machine (e.g. the console setting, etc.).

For more information on event channels and on starting up other processes from a
shell, refer to the fperating Systermn Relsrence Meanusl

At Shell Termination

SON: It is the shell's responsibility to meke the operating systern csll to
TERMINATE_ PROCESS to open an event channel, s_eventblk (an array of longints).
The first entry of this block (s_eventblk[1]) contains the event that tells the shell's
father what to do. The chosen meanings for these values are:

1--Restart same shell (shell crashed and needs to be restartea). To avoid infinite
loops of START - CRASH - RESTART - CRASH..., the user will be able to
intervene when the selector shell is reached. '

2--Select another shell (SELECT_ANDTHER command).

3--Stert the specified shell. The remaining longints in the event text block
(s_eventblk[2_9]) are interpreted as a packed array [1..32) cf characters (with
no length field), containing the file name of the shell to be started. The
unused portion of the array is packed with spaces.

4--Turn machine off (white power button clicked, or POWER_OFF command).
5--Reboot the machine.
other -- Unspecified.

It will be the job of the shell's terminate exception hsndler (which is just a procedure
the shell owns) to guarantee that the proper SYS_SON_TEPM event text is set before
the shell actually terminates. It can do this by calllng TERMINATE_PROCESS, one of
whose parameters is a pointer to this block.

7-Februsary -84 Shell-riter's Guide-3

lnternals ' & Confidentisl

FATHER: The father of the shell that just terminated should:

1) Reawsken because it has received the SYS_SON_TERM event vis its local
event channel.

2) Check the event text to see what to do.

Examples

Following are code segments from both a father shell and a son shell showing the
start-up and termination of the son.

These constant and type definitions are used throughout the following examples:

CONST
aRestart = 1; {Restart me }
aselectanmther = 2; {Select anotner shell)
astertanother = 3; {Start the shell named in the event text)
a0ff = 4; {Turn off Lisa)
SReset = 5; {Reszet the machime }
TYPE

{ thic is a verisnt record which allows us to sddress the packed srrey of cher)
trix = RECORD CASE BUOLEAN OF
TRUE : (evblk: s_eventblk);
FALSE: (zeroth: Tongint:
first: longint;
 yest: packed array [1..max. emne] of char:):
END: ({trix)}

FATHER: This code shows & father shell starting up a son shell and waiting for its
termination.

PROCEDURE Shellloop:

VAR OSerr: integer;
prociD: longint;
fname: pathname;
entry: namestring:
nextToDo: integer;

. ex_name: t_ex_name;

. ey_chen_refnum: integer :
ev_ch_name: pathname: -
weitlist: t_waitlist;
ev ptr: r_eventblk:

PROCEDURE SelectShell(VAR fiName: pathneme);
BEGIN

WRITE('Next Shell ?');

READIN(fname);
END; (SelectShell}

F-Februan=-8i Shell-triter's Guide-4

A

Internalis & Confidentisal

PROCEDURE StuffiName(ev_blk: s_eventblk; VAR fneme: patma-le),
VAR Dlock: trix;

i: INTEGER;
BEGIN

block.evblk := ev_blk:

i:=1;

faeme := ''; (null string}

WILE x<=32 DO BEGIN

IF freme[i) = ' ' (space} THEN BEGIN
fname(0] := chr(i-1); {stuff lengtn field}
EXIT(Sthwae)

END; {IF)

fneme[i) := block.restiil):

121+ 1

END; (WHILE)

fmeme[0] := chr(32); {stuff length field}
END; {(StuffName)

BEGIN {(Shellloop:

entry == '';

e ch name := '°;

ex nsne = '’

Open_Event_Chn(03err,ev_ch_name,ev_chan_refnum, ex_name, receive);

SelectEhell(fmsame);

REPEAT
Make_Process (0sEXy, procliD, fname, entry, ev_chen_refnum):
IF (os.Err <= 0) THEN BEGIN
wai tList. length := 1;
waitList_refnum[0] := ev_chen_refnum;
Weit_Event cm(osErr waitList which, 3ev_ptr);

{code for father shell bringing down son starts here}
Kill_Process(osEry,proclD);

IF ev_ptr.event_text[0)=call_term THEN <{called terminate_process}
NextToDo := ev_ptr.event_text[i)
ELSE

NextToDo := aSelectAnother;
END; {made the process successfully}

CASE NextToDo OF
sRestart: {do nothing);
aSelectanother: SelectShell(fnene);
aStartanother: Stuffiame(ev_ptr.event_text, fname); (get name of NextShall out of event_text)
a0ff: ShutDown(alff); (3--turn the mechine off)
aReset: ShutDown(sReset); {5--reset the machine)

OTHERVWISE SelectShell;

END; (case NextToDo)

UNTIL HellFreezesOver:;
END; (Shellloop)

7-February'-84 Skhell-writer's Guide-5

Internals & Confidentisl

SON: This procedure makes the necessary calls for the start-up of a shell

PROCEDURE Shelllnit:
VAR OSerr: INTEGER;
PInfo: ProclnfoRec:

BEGIN
info_process(0Serr,My_ID, PInfo):
IF PInvo.father_ID = 1 {root} THEN BEGIN
Blockioinit; {from PPasLinC)

PMinit; {from PMM}
B0 IF Er@dleDBC THEN SethMikey(33): {stenderd NM! keycsQ)
;o {IF}

END; (Shelllnit)

This code shows the shutdown of & shell. If the SmtDown procedure is declared as
the Sys Terminate exception handler, it will properly communicate to its father its
reason for terminating.

PROCEDURE ShutDown (why: INTEGER);
TYPE

VAR

block: trix; { the varisnt record

NextShell: e_neme:

i: INTEGER; { for the for loop })

OSerr: INTEGER; { required parsmeter for the call to terminate_process }
BEGIN

block.evblk(1i] := why: :
IF why = aStertThicOre THEN BEGIN
Nextshell := 'shell.next’';
{copy string without length field) '
FOR 1 := 1 TO length(nextshell) DD block.rest[i] := nextshell[i);
FOR i := length(nextshell) < 1 TO Max_ename DO block.restfi) := ' °;

ternirate _process(0Serr, @l ock.evtlk);
END; (ShutDown}

7-Februan -84 Sheli-writer's Guide-5

spring Workshop Shell Enhancements Page 1

*Etfxerpls from Fred's mermo 4-23-54%%¢

Summary

The Workshop's file manager has been extended to take advantsge of some new
features provided by the 0S5 — password protection and hierarchical catalog
structures. The file manager has been beefed up to allow convenient
copy/backup/transfers onto more than one diskette (a more frequent occurance with
Sonys) .

The Details

File Manager

Changes to the File msanager have revolved sround three issues: the new OS5
hierarchical catalog structures, password protection, and backup to multiple
volumnes.

Following are details on how the various File Manager commands have changed.

0 AddCatalog command. The AddCatalog command allows you to creste new
catalogs. The pathname you specify for a catalog should refer to a volume
which has been initalized with the new OS's B-tree file system structures. A
catalog specified by a psthnarmne without a volume part will be created with
respect to the current rnain prefix.

The dash is the catalog delimiter, so a file name referring to a file in a
catalog might look like "-vol-cat-file" or "-vol-catl-cat2-file”, and so on. A
file name of the form "cat-file” is interpreted relstive to the current prefix
and thus might refer to "-vol-cat-file" or "-vol-catl-cat-file" depending on
whether the current prefix was set to a volume or to a catslog.

There is no special command to put a file in a catalog. Once a catalog has
been crested, newly created files will get put into it in two ways: (1) if the
new file's name is specified by a full pathnarme with volume and catalog parts,
in which case the file is put in the specified catalog (which must exist before
a file can be put into it); and (2) if the new file's narme does not have &
volume part (i.e, it is a partial psthname) and the current prefix is to a
catalog, in which case the file is crested in the currert catalog (or the
appropriste sub-catalog if the new file's pathname includes a catslog part).

Note that when the OS tries to find a file given & partial pathnarne, the file
will be found only if (1) the pathname has no catalog part and is located in
the current prefix volume or catalog, or (2) if the pathname has a catalog part
that corresponds to a path starting with a catalog st the top level in the
current prefix volume or catalog.

0 Backup/Copy/Transfer to multiple diskettes. The Backup, Copy and Transfer
commands share a common file duplicetion mechanism that has been modified
to allow backups (or whatever) to mutilple volurnes. If a list of files is being
copied to a diskette and you run out of space, you will be told what file didn't
fit and how rnany more blocks were needed, and you will be asked whether vou
want to continue on another diskette. If you answer Yes you will be lead
through a diskette change and the operation will cortinue. Note that the
volume narnes of the subsequent disks need not match the first, even if the

Fred Forsman April 23, 1964

Spring wWaorkshop Shell Enhancements Page 2

original destination was specified with a particular volume name as opposed to
a generic device name.

0 List and Names commands. Two new attributes are indiceted for items in the
List command display. The D attribute indicates a directory (C for catalog
would have been nicer but was slready in use for closed-by-0S) and the *
attribute indicates a password protected file (see the next section).

The List and Names commmands will now indent names to show the catalog
structure when listing B-Tree catalogs. The one exception to this case is
when you do a "non-contiguous” or partial list, that is, when you use 8
wildcerd specification with something to match following the wildcard
character, causing only some of & contiguous subset of files to be listed. A
wildcard specification of the form "<(left pattern><wildcard char>" will select &
"contiguous" subset of files matching <left pattern>, while a wildcard pattern
of the form "“<left patterny<wildcard char»><right pattern;" will select only
some of the set of files matching <left pattern>, resulting in a list with any
number of discontinuities. Since a partial list is not sssured of containing
enough files to indicate the catalog hiersrchy via indentation, the List and
Names commands will prirt an unindented list of compiete pathnames
matching the wildcard specification.

NOTE: In the past the Workshop hss truncated file names in the displays of
several cornmands (such &s the List comrmand which hss & limited field in
which to print the name, and commands like Copy which display "<(source file>
copied to <destination file>"). In some cases the names would be simply
truncated and in others the last two characters would be replaced with two
periods. The new Workshop should now indicate truncation by replacing the
last character displaved with "..." (i.e., the ellipses character).

o Prefix command. Catalogs have changed the prefix command so that prefixes
may now be to arbitrary catalogs in addition to volumes. Prefixes must be
specified with complete psthnames; that is, if you are prefixing to a
subcatalog, you must specify the complete path to the catalog.

The effect of the current prefix on the interpretation of file names was
discussed in the previous section.

WARNING: Due to a recent change in the OS, the act of setting the main
prefix (or working directory) has grester consequences than it used to. In
particular, it mey cause problems in running programs which use intrinsic units
(this includes all the Workshop tools). The OS loader used to load a program's
intrineic libraries from the boot volume using the library names in
INTRINSIC.LIB (which it makes a copy of at boot time). The library narnes
used to be partial pathnames without a volume specification. Now the OS
loader tries to find the libraries according to the pathnames it found in
INTRINSIC.LIB, which means it will look on the prefix volume (or catsalog) if
the names in INTRINSIC.LIB were partial psthnames. There are two solutions
to this problem: (1) copy the intrinsic.libraries to the prefix catalog, which
could result in a proliferation of library files, or (2) change the names of the
libraries in INTRINSIC.LIB to pathnames of the form "-2BOQT-libnarme", and
then reboot so that the OS will cache the new names. The latter solution is
the best in general, but requires tarnpering with INTRINSIC.LIB (which makes
many people nervous, so I've written an exec file to do it ... see me if yvou're
interested). The first solution points out the flexibility of the new scheme,
that is, you rmay support several different library environments on the same

Fred Forsrnan April 23, 1984

Spring Workshop Shell Enhancemernts Page 3

volurne via prefixing.

0 AddPassword and RemovePassword commands. The two new commands
supporting password protection are found under the FileAttributes comrnand.
AddPassword allows you to password protect a file (or files via wildcards).
Don't forget the password! RernovePassword allows you to remove passwords
from files, but you must know the password to remove it.

A key point to note about password protected files in the Workshop is that the
Workshop tools will not be asble to open a file once it is password protected,
50 passwords rnust be rernoved to make the files useable. Admittedly this is a
less-than-optirnal password protection scheme, but short of a major redesign
of the file access methods of the Workshop and sll its tools, it does provide
reasonable protection at little expense.

o Initialize command (the new file system). Although this command has not
changed, it is useful to note that volumes initialized under the new Workshop
and OS have a new structure (B-trees) which sllows for hierarchical catalogs.
Since these structures cennot be applied retroasctively to old volumes, a device
must be reinitialized in order to take adavantage of these features.

The following fact may be of interest to speed fresks and Priam users. Since
the names in 8 B-tree catalog ere already sorted, the shell knows enough to
not sort the files corming from B-tree volurnes when performing file manager
commands which operste on lists of files. This means, for example, that
running the List cornmand on a reinitialized Priam should be much faster than
before, since the potentially very large list of files does not need to be sorted.
Incidertally, the bubble sort of days of yore has been replaced with a Shell
sort (aptly enough), which is many times faster, so life should be grestly
improved even if you don't reinitialize your Priam.

o OnLine command. The OnLine cornmand has changed in one irnmediately
obvious way -- the new device names used by the new OS. For the sake of
convenience (to make the device names intelligible to humans) the OnlLine
command has been altered to also display the old device names which the new
0S supports as device alisses. The point to note is that the aliases are no
longer the real device names, so while the new names and alisses are
accepted going into the OS, only the new names corne back out.

The OnLine command has been modified in another less obvious way. The
prefix attribute (P) is now sometimes displeyed in lower case (p). The
uppercase P indicates that the main prefix is to the indicated volurne, while a
lowercase p indicates that the prefix is to a catalog somewhere on that
volurne.

NOTE: It is possible to confuse the Online command into thinking that
devices are configured that when they are not. A typical example is getting
an error in the middle of the Online output which says that it could not find
#11 (i.e., parsport) on a Pepsi. The problem is eliminated by using Preferences
or the CDConfig program to detach the non-existant device. Similerly, instead
of an error, you may find that the Workshop pauses unexpectedly in the middle
of Online output. This problern is also caused by a device being configured
but not present (the pause in the Online output is the device driver tirning out
while trying to access the device). The point to note is that the Online
command no longer iterates through & fixed list of devices as it did before;
instead, it must rely on the information supplied by the Parameter Memory
manager (which is set when you run Preferences). So make sure that

Fred Forsrnan April 23, 1984

Spring Workshop Shell Enhancements Page 4

Preferences' idea of how the system is configured is correct!

o File Selection. The File Manager uses a common mechanisrn for file selection
for all of the comrnands which operate on lists of files (list, copy, delete,
rename, etc.). Lists of files are specified via wildcard patterns against which
file names are matched. These wildcard patterns heve the general form:

<catslog part><left pattern><wildcard char><right pattern>
Various combinations of the wildcard pattern elemerts can be ornitied.

The wildcard characters are "? and "=". These will now operate on all files in
a B-tree catalog and on any files in subcatalogs, that is, the wildcard
matching mechanism will "go down into" subcatalogs as it sttempts to find
files sstisfying the wildcerd specification. New variants of "?" and "=" have
been introduced to allow file selection to take place only on the top level of a
B-tree catalog (without going into subcatalogs). The new variants are enabled
by pressing the option key while typing "?' or "=", resulting in "é" or "=".

Please note (from the general form of 8 wildcard psttern given sbove) that
wildcards are not permitted in the <catalog part> of a wildcard specification.

Fred Forsrman April 23, 1954

Spring Workshop Shell Enhancements Page 1

Apple Computer Inc.

Macintosh Division
Developwent Tools Clump 777

April 23, 1984

10: Macintosh Software Engineering
FROM: = Fred Forsman

SUBJECT: Workshop Enhancements for Spring Release
(or what's new in the old shell game)

A number of enhancements to the Workshop Shell have been implemented for
the Spring release. The next section summarizes the changes, and the
remainder of the memo the details.

Summary

The Workshop's file manager has been extended to take advantage of some
new features provided by the 0S -- password protection and hierarchical
catalog structures. The file manager has been beefed up to allow
convenient copy/backup/transfers onto more than one diskette (a more
frequent occurence vith Sonys). The resident process mechanism has been
removed, having become obsolete with the new 0S. A number of
convenience features have been added, such as the remembering Run
command. A unit has been provided for communication between programs
and the shell or between cooperative programs.

Last, but not least, the Exec File processor has been extended so that
it now provides a fairly powerful interpretive language for controlling
development scripts. The usefulness of the exec processor has been
greatly enhanced by converting it from a preprocessor into a truly
interactive processor, by allowing it to stay present while Workshop
commands are executed and programs are run so that the exec script can
be resumed after the non-exec workshop commands have been executed.
(Formerly all exec processing took place first and then the resulting
script was run.) The exec language has been enhanced to include looping
constructs, named variables, file I/0, a directory search capability,
screen control functions, and functions to perform arithmetic
operations. The performance has also be greatly improved, due in part
to a new file caching mechanism. (R word of reassurance: your old exec
files will work just as before, only faster.)

The Details

Note that the following description assumes knowledge of the Release 1.0
Workshop and Pepsi Workshop (virtually identical to 1.0 but with support for
the new hardware).

Remembering Run Command

The Run command will remember what you ran last and offer it as a
default. Even if you don't always want to run the same thing again,

~

Fred Forsman April 23, 1984

Spring Workshop Shell Enharcements Page 2

it serves as a convenient reminder of what you did last.
Run commands in exec files will not be remembered.
No More Resident Processes

Improvements in the OS have obviated the need for the Workshop's
old resident-process mechanism (which would allow certain specified
processes to be suspended rather than killed so that they could be
rerun with less swapping).

As a result, the System manager's Process manager subsystem has
been simplified by removing the commands to support the list of
resident programs. (Note that the file LDS_RES_PROCS.TEXT that
once saved this list between invocations of the Workshop is no
longer used.) The process manager is still useful for monitoring and
killing suspended and background processes.

Programs can still achieve the rnore interesting effects of residency
(such as continuing from where they last were, as does the Mouse
Editor) by suspending themselves. When the program is reinvoked,
the shell will detect that a suspended instance of the process is still
around and will reactivate it.

Fle Manager

Changes to the File mansager have revolved around three issues: the
new OS hierarchical catalog structures, password protection, and
backup to multiple volumes.

NOTE: The discussion below assumes familiarity with the breakdown
of pathnames into volume, catalog and filename components. The
following examples of the various forms of valid pathnames should
make the division into components clear. The possible forms of
pathnames before catalogs were two:

-volname-filename { full pathname)

filname { partial pathneme; no volume }
The new forms of pathnames now possible with catalogs are:

-volname-catname-filename { full vith catalog)

-volname-catname—-catname2-filename (full vith catalogs)

catname-filename { psrtial vith catalog(s) }

Following are details on how the verious File manager commands
have changed.

o File Selection. The File manager uses a common mechanism for
file selection for all of the commands which operate on lists of
files (list, copy, delete, rename, etc.). Lists of files are specified
via wildcard patterns against which file names are matched.
These wildcard patterns have the general form:

<catalog part>(left pattern><wildcard char><right patterny

Various combinations of the wildcard pattern elements can be
omitted.

The wildcard characters are "?' and "=". These will now operate

Fred Forsman April 23, 1984

Spring Workshop Shell Enhancements Page 3

on all files in a B-tree csatalog and on any files in subcatalogs,
that is, the wildcard matching mechanism will “go down into"
subcatalogs s it attempts to find files satisfying the wildcard
specification. New variants of "?" and "=" have been introduced
to allow file selection to take place only on the top level of a
B-tree catalog (without going into subcatalogs). The new variants
are enabled by pressing the option key while typing "?' or “=",
resulting in "é" or "s".

Plesse note (from the general form of a wildcard pattern given
above) that wildcards are not permitted in the <catalog part) of a
wildcard specification.

o Initialize command (the new file system). Although this command
has not changed, it is useful to note that volumes initialized
under the new Workshop and OS have a new structure (B-trees)
which allows for hierarchical catalogs. Since these structures
cannot be applied retroactively to old volumes, a device must be
reinitialized in order to take adavantage of these features.

The following fact may be of interest to speed freaks and Priam
users. Since the names in a B-tree catalog are already sorted,
the shell knows enough to not sort the files coming from B-tree
volumes when performing file manager commands which operate
on lists of files. This means, for example, that running the List
command on a reinitialized Priam should be much faster than
before, since the potentially very large list of files does not need
to be sorted. Incidentally, the bubble sort of days of yore has
been replaced with a Shell sort (aptly enough), which is many
times faster, so life should be greatly improved even if you don't
reinitialize your Priam.

0 AddCatalog command. The AddCatalog command allows you to
create new cetalogs. The pathname you specify for a catalog
should refer to a volume which has been initalized with the new
OS's B-tree file system structures. A catalog specified by a
pathname without a volume part will be created with respect to
the current main prefix.

The dash is the catalog delimiter, so a file name referring to a
file in a catalog might look like "-vol-cat-file" or
"-vol-cat1-cat2-file", and so on. A file name of the form
"cat-file" is interpreted relative to the current prefix and thus
might refer to "-vol-cat-file" or “-vol-cat1-cat-file" depending on
whether the current prefix was set to a volume or to a catalog.

There is no special command to put a file in a catalog. Once a
catalog has been created, newly created files will get put into it
in two ways: (1) if the new file's name is specified by & full
psthname with volume and catalog parts, in which case the file is
put in the specified catalog (which must exist before a file can
be put into it); and (2) if the new file's name does not have a
volume part (i.e., it is a partial pathname) and the current prefix
is to a catalog, in which case the file is created in the current
catalog (or the appropriate sub-catalog if the new file's pathname
includes a catalog part).

Fred Forsman April 23, 1984

Spring WOrksnop sneil Ennancements rage 4

Note that when the OS tries to find a file given a partial
pathname, the file will be found only if (1) the pathname has no
catalog part and is located in the current prefix volume or
catalog, or (2) if the pathname has & catalog part that
corresponds to & path starting with a catalog at the top level in
the current prefix volume or catalog.

o Prefix command. Catalogs have changed the prefix command so
that prefixes may now be to arbitrary catalogs in addition to
volumes. Prefixes must be specified with complete pathnames:
that is, if you are prefixing to a subcatalog, you must specify the
complete path to the catalog.

The effect of the curent prefix on the interpretstion of file
names was discussed in the previous section.

WARNING: Due to a recent change in the OS, the act of setting
the main prefix (or working directory) has greater consequences
than it used to. In particular, it may cause problems in running
programs with use intrinsic units (this includes all the Workshop
tools). The OS loader used to load a program's intrinsic libreries
from the boot volume using the library names in INTRINSIC.LIB
(which it makes a copy of at boot time). The library names used
to be partial pathnames without a volume specification. Now the
OS loader tries to find the libraries according to the pathnames it
found in INTRINSIC.LIB, which means it will look on the prefix
volume (or catalog) if the names in INTRINSIC.LIB were partial
pathnames. There are two solutions to this problem: (1) copy the
intrinsic.libraries to the prefix catalog, which could result in a
proliferation of librery files, or (2) change the names of the
libraries in INTRINSIC.LIB to pathnames of the form
"-#BOOT-libname", and then reboot so that the OS will cache the
new names. The latter solution is the best in general, but
requires tampering with INTRINSIC.LIB (which makes rmany people
nervous, so I've written an exec file to do it ... see me if you're
interested). The first solution points out the flexibility of the
new scheme, that is, you may support several different library
environments on the same volume via prefixing.

o OnLine command. The OnLine command has changed in one
immedisately obvious way -- the new device names used by the
new OS. For the sake of convenience (to make the device names
intelligible to humans) the OnLine command has been altered to
also display the old device names which the new OS supports as
device aliases. The point to note is that the aliases are no
longer the real device names, so while the new names and aliases
are accepted going into the OS, only the new names come back
out. :

The OnLine command has been modified in another less obvious
way. The prefix attribute (P) is now sometimes displayed in
lower case (p). The uppercase P indicates that the main prefix is
to the indicated volume, while a lowercase p indicates that the
prefix is to a catalog somewhere on that volume.

NOTE: It is possible to confuse the Online command into

Fred Forsman April 23, 1984

Spring Workshop Shell Enhancements Page >

thinking that devices are configured that when they are not. A
typical example is getting an error in the middle of the Online
output which says that it could not find #11 (i.e.,, paraport) on a
Pepsi. The problem is eliminated by using Preferences or the
CDConfig program to detach the non-existant device. Similarly,
instead of an error, you may find that the Workshop pauses
unexpectedly in the middle of Online output. This problem is
also caused by a device being configured but not present (the
pause in the Online output is the device driver timing out while
trying to access the device). The point to note is that the Online
command no longer iterates through a fixed list of devices as it
did before; instead, it must rely on the information supplied by
the Parameter Memory manager (which is set when you run
Preferences). So make sure that Preferences' idea of how the
system is configured is correct!

o List and Names commands. Two new attributes are indicated for
items in the List cormmand display. The D attribute indicates a
directory (C for catalog would have been nicer but was already in
use for closed-by-0S) and the * attribute mdxcates a password
protected file (see the next section).

The List and Names commands will now indent names to show
the catalog structure when listing B-Tree catalogs. The one
exception to this case is when you do a “non-contiguous" or
partial list, that is, when you use a wildcard specification with
something to match following the wildcard character, causing only
some of a contiguous subset of files to be listed. A wildcard
specification of the form "(left pattern><wildcard char>" will
select a "contiguous" subset of files matching <left pattern>,
while a wildcard pattern of the form "<left pattern><wildcard
char><right pattern>" will select only some of the set of files
matching <left pattern>, resulting in a list with any number of
discontinuities. Since a pertial list is not assured of containing
enough files to indicate the catalog hierarchy via indentation, the
List and Names commands will print an unindented list of
complete pathnames matching the wildcard specification.

NOTE: In the past the Workshop has truncated file names in the
displays of several commands (such as the List command which
has a limited field in which to print the name, and commands
like Copy which displey "<source file> copied to <destination
file>"). In some cases the names would be simply truncated and
in others the last two characters would be replaced with two
periods. The new Workshop should now indicate truncation by
replacing the last character displayed with “..." (i.e., the ellipses
character).

o AddPassward and RemovePassward commands. The two new
commands supporting password protection are found under the
FileAttributes command. AddPassword allows you to password
protect a file (or files via wildcards). Don't forget the passsword!
RemovePassword allows you to remove passwords from files, but
you must know the password to remove it.

A key point to note about password protected files in the

Fred Forsman April 23, 19684

Spring Worksnop snell Ennancements Page 6

Workshop is that the Workshop tools will not be able to open a
file once it is password protected, so passwords must be removed
to make the files useable. Admittedly this is a less-than-optimal
password protection scheme, but short of a major redesign of the
file access methods of the Workshop and all its tools, it does
provide reasonable protection at little expense.

0 Delete Command. Those of you who look closely at the behavior
of the Delete command operating on B-tree catalogs may notice
a new wrinkle in the command's operation. While all the other
File manager commands perform their operatiors on an
alphabetically sorted list of files, the Delete command must
delay the deletions of catalogs which are not yet empty. Thus
the Delete commands works in two passes: in the first pass all
files are deleted in alphabetical order, as are catalogs which are
empty; in the second pass, any catalogs not deleted in the first
pass aere now deleted in reverse alphabetical order (to take care
of catalogs contaired in other catalogs).

o Backup/Copy/Transfer to multiple diskettes. The Backup, Copy
and Transfer commands share a common file duplication
mechanism that has been modified to allow backups (or whatever)
to mutilple volumes. If a list of files is being copied to a
diskette and you run out of space, you will be told what file
didn't fit and how many more blocks were needed, and you will
be asked whether you want to continue on another diskette. If
you answer Yes you will be lead through a diskette change and
the operation will continue. Note that the volume names of the
subsequent disks need not match the first, even if the original
destination was specified with a particular volume name as
opposed to a generic device name.

Program-Shell Communication

An intrinsic unit (ProgComm) has been added to SULib which allows
programs to communicate with the shell and with other programs.
Three basic mechanisms are provided.

0 Set Next Run Command A programmatic call is provided which
allows a program to tell the Workshop shell what to run next.
The specified program will be run next (after the current program
is done), taking precedence even over an exec file in progress.

o The Program Return String. A string is provided which can be
set programmatically and which can be accessed from the exec
processor (via the RETSTR function). This allows exec scripts to
be written which make choices based on program results.

0 The Communication Buffer. A 1K byte buffer (global to the
Workshop) has been provided for communication between
programs. The buffer can be used in any number of ways;
however, a set of primitives supporting character and
line-orierted 170 to and from the buffer is provided.

More detailed information of the program communication unit can be
found in the ProgComm appendix to this document.

Note that the above mechanisms can be used in conjunction with

Fred Forsman April 23, 1984

Spring Workshop Shell Enhancements Page 7

each other. For example, a program could write a series of
invocation arguments to the communication buffer and then tell the
shell to run a particular program next (via the set-next-run
command). That program could then know to check the
communication buffer to find its arguments. (In general, programs
might be written so that they check the communication buffer for
their arguments first and prompt for arguments from the console
only it the arguments are not found in the buffer).

ProgComm's program-program communication facility has been used
by several of the Spring release Workshop tools:

0 Compiler-Generator communication. The Pascal compiler will
now automatically imvoke the Generator to perform the second
step of the compilation process. This behavior can be suppressed
by specifying the "$G-" option in response to the compiler input
prompt. The third compiler prompt is now for a .OBJ output file
rather than a .1 output file (although a .l is generated when the
generator is called automatically).

NOTE: The above change will probably mean that you will have
to change your "Compile" exec file (either to eliminate the
generate step or to use the $G- option). If you haven't been
using a common compile exec file, then you probably have more
editing in store.

o Compiler-Editar communication. The compiler now provides the
option of going to the editor in the event of & compilation error
(the choices offered by the error prompt are SPACE to continue,
CLEAR to escape, and E to go to the editor). If you go to the
editor the point of error will be displayed in the appropriate
source file and the compiler error message will be displayed.

Exec Files

Major extensions have been made to the Exec File processor, &s
enumerated below:

o0 Alternate "$" corwention. Now that the exec command
language is filling out, you can create meaningful exec
files with many more exec command lines than workshop
(non-exec) command lines. Up until now these two types of
lines have been distinguiched by a "$" as the first
significant character of exec lines. RS a consequence, exec
files consisting of mostly exec command lines become
unreadable or annoying with all of the dollar signs, which
is unfortunate since the dollar signs mess up the lines
which are inherently more readable and intelligible.

Now exec files which begin with "EXEC" rather than "$ EXEC"
will be accepted and processed with the "$" convention
reversed, that is, workshop lines would then begin with a
dollar and exec lines would not. This makes exec files
consisting of mainly exec commands look more normal and
readable, and in no way affects files written using the
other convention. In fact the two conventions can be mixed,

Fred Forsman April 23, 1984

3pring worksnop snell cnnancements rage o

that is, a file written in one convention can call a file
written in the other convention. 1In the new convention,
workshop lines begin immediately following the "$" (although
leading and trailing blanks will be removed unless the "B"
option is in effect).

o Nsomed parameters and variables. Nasmes can now be associated
with the %n variables, allowing meaningful naemes to be used
to make exec files more readable and intelligible.
Parameters can still be referred to in the old "“%n" fashion,
or they can be referred to with new names, or both. The
names are declared (associated positionally with the “%n"
parameters) by having an optional perenthesized list of
names on the exec command line, as in

EXEC (volNeme, fileName)
IF UPPERCASE (volName) = '-PARAPORT' THEN
Ketc.)

ENDEXEC

The parameter names as specified on the EXEC command line
must begin with an alphabetic character, may include
subsequent alphabetic and numeric characters, and may be as
long as you like, although only the first eight characters
are significant (as in Pascal). The parameter list is not
allowed to have "holes" in it, that is, you cannot do
something like:

EXEC (pNemeO, , pName2)

Once the names are declared on the EXEC line, named
parameters can then be used as you would expect in exec
lines (see "volName" in the second line of the example
above). In workshop (non-exec) lines the name should be
surrounded by square braces so that it can be distinguished
from the surrounding text as in:

EXEC (file)
$F{filer)D{delete}[file]
$Y{yes}Q{Quit}

(etc.>

ENDEXEC

The rule is that square braces are required to offset a
parameter name in contexts where processing is done in a
text-oriented mode (i.e., when in workshop as opposed to
exec lines). Otherwise, the names cannot cannot be
distinguished (from the exec processor's point of view) from
the text in which they appear. Note that [...] constructs
in non-exec lines will be copied into the temporary file as
is if the stuff between the braces is not recognized as a
parameter name.

Symbolic nemes must also be enclosed in square braces in
order to be recognized in SUBMIT commands and in function
calls. This is required since SUBMIT and function arguments

Fred Forsman April 23, 1984

Spring Workshop Shell Enhancements Page 9

lists are scanned as if the arguments were pure text instead

of string expressions. (This form of argument scanning was chosen to be
compatible vith the scenning of arguments on the exec invocation line.
l.hfortmately this is one area that cannot be cleaned up without bresking
everyone's exec files, or else by introducing alternate versions of SUBNIT snd

function calls that teke string expression arguments.) The following
example demonstrates situations in which a neme does and
does not need to be enclosed in square braces.

EXEC (file)
$F{filer}C{copy)[file]
$-1ower-backup/[file] { name with braces }
IF file <> '' THEN { neme without braces }
SUBMIT compile ([file]) { name with braces }
<etc.>
ENDEXEC

The scope of names is the body of the defining exec file.
Up-level name references are not allowed, that is, name
references are always local (as they were before).

o WHILE and REPEAT commands. These commands allow for
repetition of command sequences under the control of an
arbitrary boolean condition. The syntax for the WHILE
command is as follows:

WHILE <boolean expr> DO
(arbitrary stuff)>
ENDWHILE

The behavior of the WHILE construct is the same as the
comparable Pascal construct. The <boolean expr> mey be a
condition of arbitrary complexity. The <(arbitrary stuff>
between the WHILE and the ENDWHILE may be anything: exec
commands (including nested WHILES) or Workshop command
lines.

Similarly, the REPEAT command syntax is:

REPEAT
(axrbitrary stuff>
UNTIL <boolean expr>

0 RESETCAT command and NEXTFILE function. These allow an
exec file to get files from an 0OS directory (based on &
wildcard pattern if desired). These new constructs are
illustrated in the following example:

EXEC (file)
RESETCAT '-paraport-=.text'
REPEAT
SET file TO NEXTFILE
<(whatever>
UNTIL file = '’
ENDEXEC

For those of you femiliar with the OS calls, RESETCAT is

Fred Forsman April 23, 1984

3Pring WOrksnop 3nell Enhancements rage 10

comparable to RESET_CATALOG and NEXTFILE is comparsble to
GET_NEXT_ENTRY. The RESETCAT command takes a <string
expression) argument which specifies the directory and the
search pattern (if any). If a filename part is specified in
addition to a volume name, the filename part will be used as
a search pattern for subsequent calls to the NEXTFILE
function. If the wildcard character (=) is present standard
wildcard matching takes place. If there is a filename part
but no wildcard, the file name part is used as & search
prefix (that is, "RESETCAT 'foo'" is equivalent to "RESETCAT
‘foo='"). The NEXTFILE function returns an empty string
when there are no more entries in the directory. The
RESETCAT command also has the side effect of setting the
value of the IORESULT function described below.

0 IORESULT function. This works in conjunction with the
RESETCAT command and the NEXTFILE function, indicating
whether an error occured in the operation (similar to the
IORESULT function in Pascal). IORESULT returns the empty
string if no error occurred in the last significant
operation (RESETCAT, NEXTFILE, OPENIN, OPENOUT). If an
exrror occured, then a string with the error number, and the
appropriate textual message is returned. An example:

EXEC (dir, icErrx)

REPEAT
REQUEST dir WITH 'Search what directory ?'
RESETCAT dir
IF IORESULT = '' THEN { successful RESETCAT }
<(search directory, etc.>
ELSE { unsuccessful RESETCAT }

SET ioErr TO IORESULT
WRITELN 'Bad directory specification’
WRITELN ‘OS error: ‘', ioErr
ENDIF
UNTIL FALSE
<etc.>
ENDEXEC

0 HALT and ABORT commands. These commands stop the exec
processor; the difference between HALT and ABORT is whether
ary accumlated Workshop commands will be processed. The
HALT command will stop exec processing and will execute the
commands that have been sent so far to the intermediate
file. The ABORT command will stop exec processing and will
not execute any accumlated commands. In a nut shell, if
something really goes wrong you probably want to ABORT; if
you have valid commands generated but not executed and you
want to stop exec processing but still execute the queued
commands, you probably want to HALT.

Both commands take an optional "string expression” argment
which will be printed to the console (replacing an "Exec
processing sborted." message in the case of the ABORT

Fred Forsman April 23, 19684

Spring Workshop Shell Enhancements Page 11

command) .

o EVAL function and numeric expressions. The EVAL function is
used to evaluate arithmetic expressions, returning a string
containing the result of the evaluation. While the exec
language still deals only with objects which are strings,
this feature introduces the capability of dealing with a
string as a number. The syntax of the EVAL function is

EVAL (<numeric expression))

where <numeric expression> is your usual arithmetic
expression allowing the +, —, %, /, MOD and (...) operators.
The numeric elements can be supplied via unquoted numeric
constants (decimal only), paremeters or variables (with
string values which must be numeric constants), string
functions returning numeric string values, or functions
which return numeric string values such as LENGTH, ORD, and
POS.

It is important to keep in mind the differences between
numeric and string expressions. You should also be aware of
the contexts in which each is required. For example, you
should understand why "EVAL(1)" is valid and "EVAL('1') is
not.

Observe that the result type of the EVAL function is &
string (not & number, not a numeric string, just a string).
The point to keep in mind is that all data objects in the
exec processor are still strings. Only within the context
of a <numeric expression> are strings treated as numbers.

Arithmetic is done with LONGINTs with no overflow detection
except when numeric constants sre too large.

Following is an example of a loop using a counter:

SET NTO 'O'{note O is expressed as a string constant}
WHILE N <> '10' DO

{whatever)

SET N TO EVAL (N + 1)
ENDWHILE

0 NMare string functions: LENGTH, COPY, POS, LOMERCASE, OR,
and ORD. A number of new stnng funtlons have been added.
Some of these take advantage of the numeric expression
capability introduced by the EVAL function. Note that some
of the functions may be used in numeric expressions (since
they return strings with numbers) in addition to string
expressions.

LENGTH (<str expr))
LENGTH takes a string expression srgument and returns a
string with a number in it. LENGTH mey be used in both
string and numeric expressions.

Fred Forsman April 23, 1984

Spring Worksnop snhell Ennancements Page 12

COPY (<stxr expr>, <mm expr), <num expr))
COPY takes three arguments: a string expression and two
numeric expressions. It returns the appropriate substring
of the first argument, as in PRSCAL with the exception that
if the third argument is too large it will return what is
available rather than the empty string. COPY can be used in
string expressions but not numeric expressions (since it
typically does not return a number). Keep in mind the
differences between the two types of arguments taken by the
copy function — string and numeric expressions. An
example:

EXEC (foo, n, ch)
SET n TO LENGTH(foo)
SET ch to COPY(foo, 1, 1) {ch := first char of foo}
SET foo TO COPY(foo,n/2,n) {foo := last half of foo)
etc.>

POS (<str expr), <(str expr))
POS takes two string expression arguments, and returns a
string with a number in it. The number is the position of
the first occurrance of the first string within the second.
If the first string does not appear in the second 'Q' is
returned. POS mey be used in both string and numeric
expressions.

LOWERCASE (<str expr>)
LOWERCASE takes & single string expression argument and
returns that string lowercased. We have UPPERCASE already
so it seemed only fair to give equal time to lowercase.

aR (<num expr))
CHR takes a numeric expression and returns a one-character
string with the character value corresponding to the numeric
value MOD 255.

ORD (<str expx>)
ORD tekes a string expression ergument. An exec-time error
will be generated if the string does not have a length of
one. ORD returns a string with a number representing the
integer value of the character. ORD may be used in both
string and numeric expressions.

0 New string comparison operatars. Previously only the = and
<> string comparison operators were supported. To this the
), & »>=, and <= operators have been added. These all
function in the expected way. Now for the confusing part.
Since the EVAL function has introduced strings which
function as numbers, we need operators which compare strings
as if they were numbers (instead of as strings). The new
numerical string compare operators are EQ, NE, LT, GT, LE,
and GE. For example, try comparing 9 and 16 with the
following exec procedure. :

EXEC (n1, n2)
IF n1 > n2 THEN

Fred Forsman April 23, 1984

Spring Workshop Shell Enhancements Page 13

WRITELN n1, ' is alphabetically greater than ', n2
ELSE

WRITELN n1, ' is not alphsbetically greater than ', n2
ENDIF

IF n1 GT n2 THEN

WRITELN ni, ' is numerically greater than ', n2

ELSE

WRITELN nl1, ' is not numerically greater than ', n2
ENDIF
ENDEXEC

o0 TRE and FALSE constants in boolean expressions. Just as
you would expect. Useful for "WHILE TRUE DO" and similar
constructs.

0 Screen control commands: GOTOXY, CLEAR and CURSOR. A number
of commands have been added to allow screen-oriented exec
procedures

GOTOXY <num expr>, <{num expr>
GOTOXY takes two numeric expression arguments separated by a
comma. The behavior is the same as Pascal's GOTOXY. Values
which are beyond the upper or lower limits for coordinates
will peg at the limit.

CLEAR <(clear option>
CLEAR tskes a <clear option> (SCREEN, ENDSCREEN, and
ENDLINE) as an argument. SCREEN will clear the screen and
leave the cursor at <0,0>. ENDSCREEN will clear to the end
of the screen from the current cursor position. ENDLINE
will clear to the end of the line from the current cursor
position.

CURSOR <cursor option> [<num expr)]

- CURSOR tekes a <cursor option) (HOME, UP, DOWN, RIGHT, LEFT)
as an argument, followed by an optional numeric expression.
The results of the various cursor options should be obvious,
and the optinal numeric expression can be used to supply a
repetition count.

0 File 1/0: RESET, REWRITE, and CLOSE commands. The current
READs and WRITEs have been extended to work with files in
addition to the console. In order to support this new
functionality three new commands have been introduced for
opening and closing files. Note that these file-oriented
commands work only on text files.

RESET <id> , <str expm>
RESET opens a file for input. An <id> (an identifier, as in
Pascal, with only the first eight characters being
significant) is used to establish a file variasble (which is
used to identify the file for subsequent reads, writes, and
closes). The RESET command serves as & dynamic declaration
of the file variable which becomes known globally for the
duration of exec processing or until the file is CLOSEd.
The string expression argument is used to specify the

Fred Forsman April 23, 1964

Spring wWorksnop snell Ennancements Page 14

pathname for the file. The value of the IORESULT function
will be set appropriately after the operation.

REWRITE <id> , <str expr>
REWRITE opens a file for output and is otherwise like the
RESET command.

CLOSE <id>
CLOSE closes the rile associated with the file variable, and
causes the file variable to be deallocated.

The READCH, READLN, WRITE, and WRITELN commands have been
extended to deal with files by adding an optional file
specifier. The form of the file specifier is:

(<id>)
where <id> is a file variable. The file specifier should
follow the command keyword, preceeding the normal command
arguments, as in the following examples:

READCH (inFile) Char

READLN (infFile) Line

WRITE (outFile) 'This is a test: ', message,
WRITELN (outfFile) { write a CR }

0 I1/0 to the ProgComm Communication Buffer. The I/0 commands
defined in the previous section (REWRITE, RESET, CLOSE,
READCH, READLN, WRITE, and WRITELN) can also be used to
write to or read from the communications buffer provided by
the ProgComm unit (see the appendix on ProgComm). There is
a predefined <id) -~ 'CommBufr' — which serves as a
pseudo-file identifier for the communications buffer. With
the exception of CLOSE, all of the 1/0 commands are the same
are the same as the file-oriented forms, as in the following
examples:

RESET CommBufr, ‘key'

REWRITE CommBufr, 'key'

READCH (CommBufr) Cher

READLN (CommBufr) Line

WRITE (CommBufr) ‘This is a test: ', message, '.'
WRITELN (CommBufr) { write aCR }

Note that when openning the communication buffer, the second
arguments of RESET and REWRITE are the access key instead of
a file name. CLOSE is syntactically different in that it
also requires a second argument specifying an access key, as
in:

CLOSE CommBufr, 'key'

WARNING: CLOSE on the CommBufr has the effect of flushing
the CommBufr. Consequently, CLOSE should not be called
after writing to the CommBufy. It should be called after
reading if the buffer is not intended to be read by somebody
else, and it should be called when you want flush the
buffer. Note that the CLOSE will only succeed if you

Fred Forsman April 23, 1984

Spring Workshop Shell Enhancemnents Page 15

specify right key or if the buffer was not keyed, thus a
CLOSE with a key is in effect a conditional flush of the
buffer. An unconditional flush can be achieved with a
REWRITE, which always clobbers the buffer, regardless of the

key.

o DOIT command. The DOIT command transforms the exec
processor into more than just a preprocessor. When & DOIT
is encountered all commands that have accumulated in the
exec temporary file will be executed and then control will
return to the current exec file following the DOIT (with the
temporary file emptied). This allows you to execute
Workshop commands and to run programs from an exec file and
then to base further exec processing on the results of these
commands. The concept is simple, yet powerful. A trivial
example of something you could not do before is print a
message after some workshop commands in an exec file have
executed, as in:

EXEC (fromVol tovol)
WRITELN 'Now starting backup ...'
$F{filer)B{backup} [fromVol]-=, [tovol]-$
$0{quit the filer}
DOIT
WRITELN 'Backup of ', fromvol, ' to ',

tovol, ' completed’
ENDEXEC

One point to note about the DOIT command is that it causes
immediate execution of what has accumulated in the temporary
file, which you may find surprising initially if you are
stepping through an exec file via the "“S" option. As a
result, the accumulated commands will be executed and then
you will return to stepping following the DOIT.

0 RN command. The RUN command allows & progrem to be run
immediately from an exec file without affecting commands
being accumulated in the temporary file. The simplest form
of the RUN command is:

RUN <(str expr>

where the <str expr> gives the pathname of the progrsm to
run. Note the RUN exec command gets executed immediately at
exec time, whereas an embedded workshop "R" command will get
executed at run time.

Since programs often require input from the console, the
following form of the RUN command is provided:

RUN <str expr> INPUT
(arbitrary stuff>
ENDRUN

Here the "stuff" between INPUT and ENDRUN is put into
another temporary file to use as exec input while the

Fred Forsman April 23, 1984

3pring Worksnop sneil cnnancements Page 10

program is being run. This "stuff” will not affect any
commands accumulating in the normal temporary file. If the
program being run requires more input that provided by the
“stufr”, input will revert to the console to complete the
program's input requirements. If too much "stuff" is
provided, the excess will be ignored.

0 The RETSTR function. The RETSTR function returns what is in
the ProgComm unit's return string. Thus a return string set
by a progrem using the ProgComm unit can be accessed from an
exec file. For example:

EXEC
RN 'foo’
IF RETSTR <> 'SUCCESS' THEN
ABORT 'Foo failed'
ENDEXEC

o The "G" irnvocation option. The "G" (or generate only)
invocation option allows you to test out your exec files
without actually running them. Note that the "G" option
disables the DOIT and RUN commands.

o The "E" invocation option. The "E" (or continue even with
exrors) invocation option allows you to run exec files which
run workshop programs which have errors which would normally
stop exec file execution. When running under this option,
run-time errors will not stop exec processing. In using
this option you run a higher-than-normal risk of your exec
file becoming out-of-synch and doing things you did not
intend. But the option can be very useful if you must run
test suites which contain errors.

o The “K" irwocation option (formerly “T"). The old "T"
option, indicating that the generated temporary file should
be saved rather than deleted after being run, has been
renamed to "K" for Keep. This change was made because the
new documentation for exec files (which will appear someday)
does not refer to the generated file as a temporary file, so
the "T" no longer makes any sense (not that it was a good
choice for an option name in the first place).

o Improved perfarmance and file caching. A file caching
mechanism has been added to the exec processor. The cache
currently consists of 5 pages (where a page is two blocks).
The caching mechanism can cache 5 small files at at time
where "small"” is defined as having a listed size of 4 blocks
(1 header page and 1 page of significant text). Small files
will be put in the cache, and subsequent SUBMITs or function
calls to that file will be read from the cache. The cache
is maintained on a LRU (least recently used) basis. This
means, for example, that if you call a sub-exec file to
compile many times from a build exec file, the compile exec
file will typically only be read once.

To further boost performance the exec processor's handling

Fred Forsman April 23, 1984

Spring Workshop Shell Enhancements Page 17

of text files now goes through a unit developed by Ira Ruben
(I0PTimitives in SULib).

These changes, along with numerous other twesks to low-level
routines in the exec processor, have resulted in more than
doubling (sometimes tripling) of the exec processor's speed
(although you may find the performance to be better or worse
than this depending on road conditions and how your exec
files are structured).

Fred Forsman April 23, 1984

ProgComm: the Program Comrmunication Unit Page 1

Appendix 1
ProgComm: the Program Communication Unit

DRWDD: DRCDDRDDNDDDPDDBDAMD D DADPDW DB DDDADNNDD DD DDDD

Summary

An intrinsic unit (ProgComm) has been added to SULib which allows
programs to communicate with the shell and with other programs.
Three basic mechanisms are provided.

0 Set Next Run Command. A procedure is provided which allows a
program to tell the Workshop shell what to run next. The
specified program will be run next (after the current program is
done), taking precedence even over an exec file in progress.

o The Program Return String A string is provided which can be
set programmatically and which can be accessed from the exec
processor (via the RETSTR function). This allows exec scripts to
be written which make choices based on program resuits.

o The Communication Buffer. A 1K byte buffer (global to the
Workshop) has been provided for communication between
programs. The buffer can be used in any number of ways;
however, a set of primitives supporting character and
line-oriented 1/0 to and from the buffer is provided.

Note that the above mechanisms can be used in conjunction with
each other. For example, 8 program could write a series of
invocation arguments to the communication buffer and then tell the
shell to run a particular program next (via the set-next-run
command). That program could then know to check the
communication buffer to find its arguments. (In genersl, programs
might be written so that they check the communication buffer for
their arguments first and prompt for arguments from the console
only if the arguments are not found in the buffer).

The Details.

The following describes the interface to the ProgComm unit. The
following procedure initializes the ProgComm unit so that a program
may use it.

PROCEDURE PClInit;
PCInit should be called before using the ProgComm unit. One
effect of note is that the program's return string (RETSTR in
the exec language) is initialized to the null string.

The following two procedures give a program the ability to set what
program will run next and to pass back a return string to the exec
processor. Note that the SUStr type comes from the 'standard unit”
-- StdUnit in SULib -- which provides, among other things, @ number
of string manipulation routines.

PROCEDURE PCSetRunCmd (RC - SUStr);
PCSetRunCmd enables a program to tell the shell what

Fred Forsman April 24, 1984

ProgComm: the Program Communication Unit Page 2

program (or exec file) to run after the current program
terminates, which allows program "chaining”. RC, the run
command you pass to PCSetRunCmd, should be a string with
the same program pathname or exec file invocation you would
give in response to the Workshop Run command prompt. The
run command set in this way will take precedence over any
keyboard type-ahead and over any pending exec file
commands.

There is an added complication when you want to use
PCSetRunCmd to run a Workshop tool that is normally invoked
from the Workshop menu line. (Note that only some of items
in the Warkshop menu are actually separate tools which can
be "run”) The complication erises from the fact that typing
'E' to invoke the editor is not always the same as typing 'R’
for run and specifying 'editor.obj’ as the program to run. The
difference is that the Run command will look for 'editor.obj'
using the three level of prefixes, while the 'E' menu command
will look on the Workshop boot volume first and then &t the
three prefix volumes. If you want to get the effect of the
menu command, your argument to PCSetRunCmd should be a
two character string with an escape (CHR(27)) as the first
character and the sppropriate menu command &s the second
character.

Another subtlety, which you are unlikely to run into unless you
.are doing tricky things with exec files, is that starting to run
an exec file while you are already running another exec file
will cause the first exec file to be terminated in order to
allow the second to be run. This means that if you run
program P from exec file A, and P calls PCSetRunCmd to run
exec file B, then, when program P terminates, exec file A will
also be terminated so that exec file B can be run. Exec file
A will not be resumed when exec file B has completed. This
is another instance of the "exec file chaining" effect.

PROCEDURE PCSetRetStr (RS : SUStr)
PCSetRetStr allows a program to set a return string which
may be accessed via the exec processor's RETSTR function.
This allows exec files to make choices based on information
passed back to the shell by cooperating prograrns. How the
return string should be used and interpreted is up to you, and
will depend on what sort of information you want to pass back
to the exec processor. (But in order to be a good citizen it is
probably best to follow whatever system-wide conventions
emerge and prevail)

The following procedures and functions operate on the communication
buffer, which is a 1K byte buffer which is global to the Workshop
shell (that is, it stays around between program invocations). The
buffer can hold essentially any type of information, but a standard
set of functions is provided for Pascal-like character or line-oriented
access to the buffer.

Following are some CONST, TYPE, and VAR declarations from the

Fred Forsman April 24, 1584

ProgComm: the Program Communication Unit Page 3

ProgComm interface which relaste to the communication buffer.

CONST

{ communication buffer content types }

PCNone = -1; { nothing in buffer }

PCAny =0 { for PCReset to match any content type }

PCText = 1. { text, as supported by PCGets & PCPuts }

PCBufrMax = 1023; { max buffer index, ie, bufr is 1K bytes }
TYPE

PCBuUfrP = “PCBuIY; { ptr to bufr }

PCBufY = PACKED ARRAY [0_PCButMax] OF CHAR;
YAR

PCBUftPtr : PCBUfYP; { points to bufr after successful open }

The communication buffer is given a type when it is opened for
writing with PCRewrite. This type will be used to determine
whether a potential reader trying to open the buffer with PCReset
will be successful. The intent is to prevent reading of the buffer
when the contents are not of the type expected by the reader. Three
predefined constants are provided far buffer typing: PCNone means
that the buffer has no contents; PCText means that the buffer
contains standard text with CR line delimiters; and PCAmy matches
any type, allowing a reader to override the typing mechanism. Other
buffer content types (such as mouse events) may be defined users,
choosing some number to identify the new type which does not
conflict with the predefined types. We make no sttempt here to
provide a complete set of predefined types; the issue is simply one
of having compatible comventions (agreemert) between communicating
programs. To use the buffer for something other than text, the
variable PCBUfTPtr may be used to access the buffer (using whatever
means of interpretation of the buffer is desired).

The buffer also has an access key, which functions in very much the
same way &s the content type (i.e., writers set it and readers must
match it to gain access to the buffer). The intent of the access key
is to prevent programs from reading the buffer when they are not
the intended recipient. The access key, again, is something that
should be established by agreement between the communicating
programs. If a buffer writer does not care about preventing
unintended access to the buffer, the null string can be used for the
access key. Note that the access key is case sensitive.

Following are the procedures and functions which open and close the
communication buffer.

PROCEDURE PCReWwrite (WriteType: INTEGER; Key: SUStr);
PCReWwrite opens the communication buffer for writing. The
content type and access key are set. PCBufrPtr is set to
point to start of the communication buffer. A PCReWwrite will
override any previous use of the buffer, i.e, it will flush any
previous buffer contents. WriteType should be an integer
identifying the type of data you plan to write to the buffer.

If you are planning to use the text-oriented primitives -~
provided, WriteType should be PCText; otherwise, WriteType
should be some integer established by agreement between the

Fred Forsman April 24, 1984

ProgComm: the Program Communication Unit Page 4

communicating programs. Key should be a string also
established by agreement between the communicating
programs. A useful form of key is one that identifies the
intended recipient, so that things that get left in the buffer do
not get read inadvertently by programs for which they were
not intended.

FUNCTION PCReset (ReadType: INTEGER; Key: SUStr: BOOLEAN;
PCReset opens the buffer for reading. The boolean result will
indicate whether the open was successful. The open will fail
if ReadType does not match the type set by the last buffer
writer or if Key does not match the key set by the last
writer.

FUNCTION PCClose (KillBufr: BOOLEAN; Key: SUStr: BOOLEAN;
PCClose will close (or empty) the communication buffer. If
KillBufr is true the buffer will be emptied. In general, the
buffer can be read more than once (by multiple readers) if
desired. If a reader is finished with the buffer and knows that
no one else should read the buffer, PCClose should be called
with KillBufr set to true. The call to PCClose will fail if the
access key does not match. Note that PCClose may be used
to flush buffers that were written by someone else, as long as
you know the access key. PCClose may be called without
calling PCReset or PCReWrite tirst.

The following functions provide a text-oriented buffer facility with
Pascal-like character and line-orierted reads and writes.

FUNCTION PCPutCh (Ch- CHAR): BOOLEAN;
PCPutCh will put a character into the buffer. The boolean
result will indicate whether the operation was successful. It
will fail if the buffer is full or if the buffer was never opened
successfully for writing. Note that PCPutCh(CR) is equivalert
to PCPutLine(").

FUNCTION PCGetCh (VAR Ch- CHAR)Y BOOLEAN;
PCGetCh will get a character from the buffer. The boolean
result will indicate whether the operation was successful. It
will fail if the buffer is empty or if the buffer was never
opened successfully for reading.

FUNCTION PCPutLine (L: SUStr: BOOLEAN;
PCPutLine will put a line into the buffer. A CR is put in the
buffer following the string passed to PCPutLine. The boolean
result will indicate whether the operation was successful. It
will fail if the buffer is full or if the buffer was never opened
successfully for writing.

FUNCTION PCGetLine (VAR L: SUStr}: BOOLEAN;
PCGetLine will get a line from the buffer, where a line is the
text from the current buffer pointer up to the next CR or the
end of file (whichever comes first). The boolean result will
indicate whether the operation was successful. It will -fail if
the buffer is empty or if the buffer was never opened
successfully for reading.

Fred Forsman April 24, 1984

ProgComm: the Program Communication Unit Page >

You will notice the following function in the ProgComm interface; it
is used for special-purpose communication between the Workshop
shell and various Warkshop tools.

FUNCTION PCShellCmd (Cmd: INTEGER; P: SUStrP: BOOLEAN;
For internal use by Workshop development system tools only.
Contact me if you have a need to know about this function.

Fred Forsman April 24, 1984

Release 3.0 Notes
CHAPTER 2, THE FILE MANAGER

Overview of Changes to the File Manager
The significant changes to the File Manager involve:

= The Opersting System's new hierarchical cetslog structure.
= Transfer operstions onto more then one micro diskette.

= Password protection.

= The new OS device narnes.

The Opersting Systern uses new physical device names, bt still supports the old
names &5 device aliases. You can specify a device using either the narne or the
alias; the Of refers to devices by name. The new narnes &re:

Name Alias Device

#10%1 RS232A Serial Fort A

#1022 RS232B Serial Port B

#11 FPARAPORT Perallel Connector (Lisa 1)

#12 UPPER or PARAPORT Built-in hard disk (Lisa 2)

#13 LOWER Micro diskette drive

#1581 ALTCONSOLE Alternate console

#1522 MAINCONSOLE Mairn console

#x SLOTx Peripheral at expansion slot x

P By SLOTxCHANy Peripheral at expansion slot x, connector vy

#x#y#z SLOTxCHANyDEVZ Peripheral at expansion slot x, connector v,
device z

AddCatalog Command
Files on a volurme can now be arranged under catalogs and subcatslogs. The
AddCstalog command lets you creaste new csatalogs. The pathname you specify for
a catalog should refer to a volurne that has been initialized using the Release 2.0
software.

The Mpmhen is the catslog delirniter, so s file name referring to & file in & catslog
might look like "-vol-cet-file" or "-vol-catl-catz-file”, and so on. A file name of
the forrn "cat-file" is interpreted relastive to the current prefix and thus might refer
to "-vol-cat-file" or "-vol-cat1-cat-file", depending on whether the prefix is set to
a volume or to & csatalog. A catalog specified by a pathnarne without a volume
part will be crested using the current main prefix.

There is no special comrnand to put a file in a catalog. Once a catslog has been
created, new files get put into it in two ways:

1. If the new file's narne is specified by & full pathnarne with volume and catslog
parts, the file is put in the specified cetalog. (A catalog must exist beforz &
file can be put into it)

e o I f . o " of v TS P - RN | .
Oraft--18 hune 84 2-1 Reiesse distes

Workshor LEer's Guide The File Mensager

2. If the new file's name is & partial psthnarne without & volume part, and the
currert prefix is & cstalog, the file is put in the prefix catelog (or &
subcatalog, if the file's pathneme includes s catalog part).

When the QS tries to find a file given s partisl pathname, the file will be found
only if (1) the pathname has no catalog pert and is locsted in the prefix wvolume or
catalog, or (2) the pathname has a catelog part correspording to & path starting
with & catalog at the top level of the prefix volume or catalog.

Backup/Copy/Transfer to Multiple Micro Diskettes (See Sections 2.3.1, 232 snd 2.3.7)
The Backup, Copy and Transfer cornmands now sllow backups, copies, and transfers
to rnultiple volurnes. If a list of files is being copied {or backed up, or transferred)
to & micro diskette and you run out of space, you will be told which file didr't fit
and how mary more blocks were needed, and you will be asked whether vou weant to
continue on another diskette. If you answer Yes, you will be led through s diskette
change and the operstion will continue. Note that the volurne narnes of the
subsequent diskettes need not match the first, even if the original destinstion was
specified with & particular volume name (instead of & device name).

List and Names Commands (See Sections 2.3.4 and 2.3.13)
There are two new attributes for iterns in the List display. The D sattribute
indicates a directory (a catalog object) and the * sttribute indicates a
paszword-protected file (see Password Protection, below).

The List and Narnes commands now indert names to show the catalog structure
whenever you list & contiguous set of files. If you specify & wildcard character
followed by & string to match, the files shown will not necessarily be contiguous,
and will not be indented.

When a file narmne hes to be truncsated to fit into a limited field of the display (as
in the List command), the missing cheracters are now indicated by an elipsis (..).

Prefix Command (See Section 2.3.5)
Prefixes may now be set to catelogs in addition to volumes. A prefix to a catalog
or subcatalog rnust be specified with a complete pathname.

The effect of the current prefix on the interpretation of file names is discussed
under AddCatsalog Command, above.

Draft--159 June 84 -2 Release MNotes

Workshor L&er's Guide The File Msansger

WARNING

Setting the rmain prefix (or working directory) rnay cause problermns when
running programs that use intrinsic units (this includes all the Workshop
tools). The QS losder tries to find 8 prograrn's irtrinsic libraries using the
pathnarnes it finds in INTRINSIC.LIB; if these names are partisl pathnames,
it looks on the prefix volurne or catslog, not the boot? volume To assine
that your program's intrinsic libraries are found, yvou can do one of two
things:

1. Copy the intrinsic libraries to the prefix catalog. This weay, vou can
support several different library environments on the sarme volume,
though you could end up with & proliferstion of librery files.

2. Change the names of the libraries in INTRINSIC.LIB to pathnames of the
form "-#BOOT-libnarne” (using the IUManager, described in Chapter 11,
Utilities), then reboot so the OS will store the new names. This rmethod
is better, but be careful changing things in INTRINSIC.LIB.

If you unrmourt the main prefix volurne by ejecting the diskette, Scavenging the
volurne, or using the Unrmount command, the boot volurne becomes the prefix
volurne.

Rename Command (See Section 2.3.6)
To rename & file to a name thet only differs from the original in the case of the
letters (e.q., DEMOGRAFHICS.0OBJ to DernoGraphics. Obj), vou rnust first Rensme the
file to a temnporary name, then Renarne that to the name you want.

Password Protection (See Section 2.3.10, FileAttributes)
Two new cornmands for password protection are found under the FileAttributes
cornrmand. AddPassword allows you to pessword-protect e file (or files, using
wildcards). RernovePassword allows you to remove a file's password, but you must
know the password to remove it.

The Workshop tools can't open & file once it is password-protected. vou must
remove the password before you can use the file.

Initialize Command (See Section 2.3.11 and 24.1)
Yolurnes initialized under the new Workshop and O% have & hiersrchical catalog
structure. Since this structure cannot be applied retroactively, an existing volurme
must be reinitislized in order to take advantage of these festwres. Commands that
operate on & list of files (e.g, List) run much faster on & reinitialized disk, because
in the new structure names ere aiready sorted.

Online Command (See Section 2.3.14)
The Online cornmeand now displeys both the new OS device names and the old
narnes, which are now device sliases. The new device narmes ere listed in the
Overview at the beginning of this section, and shown in the syntex diagrarns under
File Specifiers, below.

v~ A 15 hare it
LU QNETTLD SN U

T
I»J

Lay
I
oy
1

A
l'h

Porkshop L&er's Guids The File Msanager

The prefix attribute P is now sometimes displayed as a lowercase p. Uppercase P
indicates that the rmain prefix is the indicsted volume, while lowercase p indicstes
that the prefix is & catalog on that volurne.

NOTE

The Online comrnand uses the configuration informstion set by Preferences.
If Online cutput says that it could not find #11 (PARAPORT) on a Liza 2/10,
use Preferences to detach the non-existent device. If the Workshop pauses
unexpectedly in the middle of Online output, it means = device is configured
but not present. Make sure that Preferences’ idea of how the system is
configured is correct.

File Specifiers (See Section 2.4.2)
File specifiers have changed to allow for subcatalogs, new device names, and the
new wild cerd characters. The diasgrams that follow show the new formet of file
specifiers, replacing those on pages 2-9 and 2-10 of the manual. (The logical
device narnes have not changed, but the diagram is repested here for convenience.)

<{ART> syrtax diagrams: file-specifier,
file-name-or-peattern,
volurne/catalog-spec,
physical-device,
physical-device-name & -alies,
logical-device,
wild-card-spec.

New z and ¢ Wildcard Characters (See Section 2.5)
Because of the new hierarchical catalog structure, the rmeanings of the = and 7
wildcard characters have changed. and the new snslogous wildcards # (OPTION =)
and ¢ (OPTION ?) heve been sdded. The plain = and 7 wildcaerds rmean search for &
match only across the top level of the catalog, while the option wildcards mesn
search through all levels. The way in which the matches are rnade is the same:

= matches any string in the top level of the catalog.
* matches any string throughout all levels of the catalog.

? matches any string in the top level of the catalog, ssking for confirmation of
each file name before performing the operation.

R

matches any string throughout all levels of the catalog, ssking for confirmstion
of esch file name before perforrning the operation.

Drait--16 June 84 P Release Noies

file-specifier

file-name-or-pattern

file-name-or-patteij—»
IG)—D logical-device |

- +1 file-name
volume/cetalog-spec J L wild-cerd-spec

volume/catalog-spec

Release Hotes
workehop Manual, cn 2

Page 1

volume-narme

- subcatalog

physical-device

<4

physical-device

physicel-device-narne T
physical-device-alias

physical-device-name

#11
#12

213

Ex iy
#xdy#z
#1021
#1042

#15%1

Sllll

s

$1542 ’

|

(The device names on the left correspond to the device sliases on the right.}

physical-device-alias

——{ PARAPORT

~—»{ UPPER 1
~—+{ LOWER 1
~—»{ SLOTx D
N—»(SLOTXCHANy 1
N—»{ SLOTXCHANyDEYz)]
~—»{(RS2326A Dot
~—»{(RS232B]
~—»{ ALTCONSOLE)t

>

~—{ MAINCONSOLE

Relesse Notes
vorkshiop Menual, Ch 2

Page 2

logical-device

»{_ CONSOLE

PRINTER

KEYBOARD

wild-cerd-spec

- (>
string-1)——j L string-2 J

20020

Internsls & Confidential

[-Code Definition

- hns 0 D
The first pass of the compller generates a .1 file. Its contents are
described in this docanent Please note that this information is likely to
change without notice; there is no guarantee that it is correct.

o J/“ Abbreviations: - , &
6&%// *R¢\' expr => expression 64 s~ Toce A
Tt AT
i EAY 8
\ j N\
Vb

N V4 bﬁ(/ addr => address (W) ° \pbiis

7 ’ (N} =) size of operand is a word YA S
oY (B) => size of opersnd is a byte N
M _ % 3
% el |
\Variable references:
01 +offset (W) Global variable reference
02 +offset(W) Local varisble reference
03 lev(B) +offset(W) Intermediate level variable reference
4 04 com(B) +offset(W) Common varisble reference
05 reg(Bg o(B) Register reference
or 05 reg(B) loadSize(B) expr

or 05 reg(B) loadCount(B) loadSize(B) expr
;reg=register number (0..15)
/ loadCount=number to bump count by (only significant with temp
f registers)
] O=none (last use of reserved register)
i 1=sustaining use or first&last use
- ﬁ’ 2=first use and reservation for future use
 loadSize=size of expression to load register with

L O=po load
| 1=byte
l =word
3=long
Q6 -TrTTeRTYT T . /4§&ffﬁg—temp_,
07 220207 WL
08-08 Multiple Bytesize 1/2/4/8 byte temp {09=>2 byte operand}
| Addressin
OC addr '“' - Dereference operator
0D addr '#' - File dereference operstor
OE addr '4' -~ Text file dereference operator
OF +offset(W) addr '.'" - Record field offset
;%j10—13 Wordsize addr expr ‘11' - 1/2/4/8 byte array index

IF-Februsry-84 I-Code~1

Internals

& Confidentisal

14 Wordsize Wordsize addr expr :E]' ~ Long sxray index

15 Bytesize Wordsize addr expr

16 addr

Lgonstants ?

]' - Packed array access
'®' - Address of operator

17 n11
//:>\18—IB Multiple Byt631ze 4/8 byte constant ;;gggzﬁﬁ§Ee2§EE§gumq—
o/ iIC stringSize(B) 'ABC.. Strxng constant
/ 1D stringSize(B) ' ..' PADC Constant

1IE setSize(B)

for 1 to bytesize do
getnextoperand(B) Set constant

1F

[] = Null set

\sts1gnment operafﬁ?g?"7

20-2, mgpablﬁ(s)

Flippable
after the

addr expr Y=t - 1/2/44ﬂ7byte assignment

is e if the ass&gnment left hand side can be computed
right hand side.’ If true,° we have expr addr.

20-22 2(B) addr expr Binary in-line assignment of byte/word/long

20~-22 3(B) expri

25 ~oetened
24 Bytesize Wor

8 addr expr

expression. Evaluate addr, then expr, then assign
value of expr to location addr. Return expr.

addr expr?2 Triple in-line assignment of byte/word/long
expression. Evaluate exprl, then addr, then
expr2, then assign value of exprz to locﬁﬁg
addr. Return expri.

dSlZB addr expr - Multiple byte assignment

:=' -~ Set assignment

26 1 tesize ZndBytesize Wordsize
if 1stBytesize =21 then {PCKDARR}
addr expr expr
else
Bytesize expr expr ‘:=' - Packed assignment
27 Bytesize addr expr ::= - String assignment

28 Bytesize Byt

esize addr expr ~ PAOC Assignment

29 Bytesize addr expr : - Rdd to

2R Bytesize addr expr ':=—' - Subtract from

2B Bytesize WITH field reference, level nnn
2C lev(B) isptr(B) = Begin WITH statement, level nnn
20 1lev(B) End WITH statement, level nnn

p. | (WJ hfgizzg(w) expr 2 Byte Range Check

2F hi-(expr

DX-Februsry-94

String Range Check-assigmment, not index

I-Code-2

Internals

30-32 expr
33-35 expr
36-37 expr
36-39 expr
3A-38 expr
3C-3D expxr

3E Bytesize expr
3F Bytesize expr

e e e e R TR T |

|Scelar operators: /

{bata Conversion:/

40-41 expr
42-43 expr
44-435 expr
46-47 expr
48-49 expr
4A-4B expr
4C-4D expr
4E-4F expr
50-52 expr
53-55 expr
36~-58 expr
59-58 expr
5C-5E expr
S5F-61 expr
62-64 expr
65-67 expr
68-6R expr
6B8-6D expr

B6E expr

6F expr
70-71 expr
72-73 expr
74-75 expr
76~77 expr
78-79 expr
78-7B expr
7C-7D expr
7E-7F expr
30-81 expr
82-83 expr
34-85 expr
35-87 expr
36-89 expr

expr
expr
expr
expr
expr

expr
expr
expr

expr
expr
expr
expr
expr
expr

expr
expr
expr
expr
expr
expr
expr
expr
expr
expr
expr

L3 -February-84

1->2, 2->4, 1->4 integer
2->1,4-32,4->1 integer
4->8, 8->4 real conversion
4->4, 4->8 Float

4->4, 8->4 Trunc

4->4, 8~>4 Round

Extract unsigned field
Extract signed field

274 Scalsy Addition

2/4 Scalar Subtraction
2/4 Scalar Multplication
2/4 Scalar Division

274 Scaler Modulus

2/4 Scalar Negate

274 Scalear Absolute Value
2/4 Scalar Square

1/2/4 Scalar AND

1/2/4 Scalar OR

1/2/4 Scalar XOR

1/2/4 Scalar NOT

1/2/4 Scalar <
1/2/4 Scalar »
1/2/4 Scalar <
1/2/4 Scslar >
1/2/4 Scalar =
1/2/4 Scalar «
Boolean NOT
obD

4/8 Real Addition

4/8 Real Subtraction
4/8 Real Multiplication
4/8 Real Division

4/8 Real Modulus

4/8 Real
4/8 Real
4/8 Resal
4/8 Real
4/8 Real =
4/8 Real ¢»

4/8 Real Negation

4/8 Real Rbsolute VYalue

I v AN oA

& Confidential

I-Code-3

Internals & Confidential

8A-88 expr 4/8 Real Square
8C expr TRAPY
é) (At ;/
aF S

e e i e,

Iégg;gawbperatorsz

90 expr expr String ¢
91 expr expr String »
92 expr expr String <=
93 expr expr String »>=
94 expr expr String =
95 expr expr String ©

96 stringsize(B) stringsize(B) expr expr PROC <
97 stringsize(B) stringsize(B) expr expr PROC »
98 stringsize(B) stringsize(B) expr expr PAROC <=
99 stringsize(B) stringsize(B) expr expr PAOC »>=
9A stringsize(B) stringsize(B) expr expr PAOC =
9B stringsize(B) stringsize(B) expr expr PAOC <

oC
s & v v bi

€
9F J
(Set Uperatorg?
et Uperator:
RO setsize(B) expr expr Set +
Al setsize(B) expr expr Set -
A2 setsize(B) expr expr Set *
A3 setsize(B) expr expr IN
R4 setsize(B) expr expr Set <=
RS setsize(B) expr expr Set »>=
R6 setsize(B) expr expr Set =
A7 setsize(B) expr expr Set <
A8 setsize(B) expr Singleton Set
A9 setsize(B) expr expr Set Range
AR setsize(B) Bytesize expr Adjust Set
AB ,
ic | A
s % Jon 7
€
AF

SF-Februsry-94 I-Code-4

Internals

LProcedure/Function Calls: /

BO index(W)

Bl index(W)

B2 key(B)

B3 key(B)

B4 addr

B5 addr

B6 room(B)

B7 addr

expr

BC size(W) expr
BD setsize(B) expr

® Confidentisl

User Function Call

User Procedure Call

Standard Function Call
Standard Procedure Call
Parametric Function Call
Parametric Procedure Call
Make Room for Function Result
Reference Paremeter

1/2/4/8 Byte Yalue Parsmeter
Large VYalue Parasmeter

Set Yalue Parameter

BE Begin Parameter List

BF index(W)

CO label(W)

C1 label(W)

C2 label(W) expr

C3 label(W) expr

C4 usernum(W) label(W)

C5 usernunﬁW) label(W) linknum(W)
C6 usernum(W) lsbel(W)

C7 lev(B) linknum(W)

C8 expr

C9 0(B) lobound(W) hibound(W)
elselabel (W) lolLabel(W) hiLabel(W)
1(B) lobound(W) hibound(W)
elseLabel (W) count(W)

[value(W), label(W)]

CA ctrsize(B) addr exprl expr2 expr3

0{(39

User Function/Procedure Parameter

Define Internal Label
Jump

Jump False

Jump True N\

Define Local Useér Lsabel
Define Global User Label
Jump to Locsl User Label
Jump to Global User Label
Case Jump

Case Table--must fdilow case jump

If expr list—must follow case jump
FOR statement

ctrsize - size of loop counter (1,2, 4)

addr - counter

exprl - start

expr2z - end

expr3 - increment
CcB FOR end
cC CASE end
CD linenum(W) Line number

or if linenum = -1 then
CD -1(W) length(B) filensme
-CD -2(W) bool(B)
CE regset(W)
regset=set of register (0..15)
bit on=reserve register

To open an INCLUDE or USES file
Assembly listing control switch
Temp registers mask

bit off=make register available for codegen temp use

IF-February-94

I-Code-5

Internals

CF
DO--DF
EO--EF

FO fln) (un) (cfn) (sn) fnsw
lev(B) varsize prmbyts
glb regmask

F1 (1In) (un) num(W) levi(B)
F2 (1n) num(B) kind(B)
F3 (cn) nnnnnnn

& Confidential

Begin Module

(1n) - B-byte Linker name

(un) - 8-byte User name

(cfn) - 8-byte class father neme

(sn) - 8~byte Segment name

fnsw - function switch (fn or proc)—
lev - level (1=global)

varsize - Number of bytes of local variables

prmbyts - Bytes of parameters + 8

glb - Global Label Flag is Bit O
Stack Expan. Flag is Bit 1

regmask — register mask for MOVEM

External Reference Definition

Common Reference Definition

Common Area Definition

F4 (un) Bytesize textaddr4(W) Bytesize Bytesize textsize4(W) Bytesize

globsize2(W) untType(B)
~ F5-FB
FC fn(B; size(W) const(W)

FD fn(B) level(B) method(B)
FE debugflag(B)
FF

23-February-64

Unit File Header

In-line function switch

Method call

End of module (D compiler option)
End of file

I-Code-5

Apple Computer Inc

APPLE-32 DEVELOPWENT TOALS - A

Feb. 22, 1984

New I-codes for Optimization

The I-code changes and new I-codes for the current optimization project

include:

- Code Name

Operands pefinition

$05 Register

$CE TempStmt

Reg LoadCount LoadSize Expr...

(8) (B) (newt) (B)

Reg=register number (0..15)
Loadcount=number to bump 'count’ by (only
significant with temp registers):

0
1

none (last use of reserved register)
sustaining use or first&last use

Register reference.

2 = first use and reservation for future use
LoadSize=size of expression to load register with.

0 = no load.
1 = byte.
2 = word.
3 = long.
Regset Temp Registers Mask.

(v

Regset=set of register (0..15)
bit on = reserve register

bit off= make reg available for codegen temp use.

Binary Inline Assign's:

$20
$21
$22

2 AdOr... EXpr...
2 Addr... EXpr...

2
(8)

Inline assignment of byte expr.
Inline assignment of word expr.
Addr... EXpr... Inline assignment of long expr.

Evaluate “addr”, then "expr"”, then assign value of "expr"” to

location “addr®. Return “expr”.

Triple Inline Assign's:

$20
$21
$22

3 Expri... Addr... Expr2... Inline assignment of byte expr.
3 Expri... Addr... Expr2... Inline assignment of word expr.
3 Exprl... Addr... Expr2... Inline assignment of long expr.

(8)

Evaluate “"expri”, then "addr", then "expr2", then assign value

of “"expr2" to location "addr". Return “"expril”.

	000
	001
	002
	003
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02-01
	02-02
	02-03
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	07-01
	07-02
	07-03
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-01
	12-02
	13-01
	13-02
	13-03
	14-01
	14-02
	14-03
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	16-01
	16-02
	16-03
	16-04
	16-05
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	19-04
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	21-01
	21-02
	21-03
	21-04
	21-05
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	24-01

