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The Personal Computer Lilith

-

Abstract

-

The personal work station offers significant advantages over the
large~-scale, central computing facility accessed via a terminal.
Among them are availability, reliability, simplicity of
operation, and a high bandwidth to the user. Modern technology
allows to build systems for high-level language programming with
significant computing power for a reasonable price,

At the Institut fur Informatik of ETH we have designed and built
such a personal computer tajilored to the language Modula-2, This
paper is a report on this project which encompasses language
design, development of a compiler and a single-user operating
system, design of an architecture suitable for compiling and
yielding a high density of code, and the development and
construction of the hardware. 20 Lilith computers are now in use
at ETH. :

A principal theme 1s that the requirements of software
engineering influence the design of the language, and that {ts
facilities are reflected by the architecture of the computer and
the structure of the hardware. That the hardware should be
designed according to the programming language, instead of vice=-
versa, is particularly relevant in view of the current trend
towards VLSI technology.
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1. Introduction

-

Software Engineering builds upon two pillars: methods and tools.
Their interrelation is strong. In order to apply new methods
effectively, we need the appropriate tools. In order to build
supporting tools, we must master powerful methods. Much effort
has been spent on improving our methods, particularly in
programming, and many discussions and conferences have been
devoted to the subject of furthering the state of the art by
applying more effective methods. This includes a tendency
towards the_ highly mathematical treatment of programming, the
postulation of high-level languages for programming large
systems, the method of structured programming, and the
managerial aspects of organizing the work of programmers' teams.

All of these areas are important; they form the part of a whole,
But perhaps none i{s as important as the adequate training of the
individual team number into a habit of systematic thinking. No
team can be successful without all its members being trained to
regard programming as a highly 1logical and mathematical
activity. And the success of a mathematical treatment rescts
largely on the use of an adequate notation, 1i.e. programming
"“language", The designer of algorithms might be content with the
adequate notation and regard it as his only tool needed.
However, our subject at large Is not the design of algorithms or
programs, but the design of machines. We must regard programming
as designing machinery, for programs turn "raw hardware® into
that machinery which fulfils the specified task.

Obviously a good notation must therefore be supported by an
excellent Implementation, just as a good mathematical framework
for program design must be supported by an appropriate notation.
Moving one step further, the notation's implementation must be
supported by an appropriate computer system. The measure of {ts
quality not only includes aspects of computing power, cost-
effectiveness, and software support (the so-called programming
environment), but also a simplicity and perspicuity of the
entire system, a convenience to use the system, a high degree of
availability, and - on the more technical side - a high
bandwidth of 1information transfer between computer and
programmer, The latter aspects point in the direction of a
personal work station in contrast to the remote, time-shared,
large-scale computing facility,

Fortunately, modern semiconductor technology has made |t
possible to Implement a modern programming language with
excellent support facilities on relatively small computers that
are very lnexpensive compared to conventional large computing
installations. The fact that the mechanisms for sharing a
computer - and in particular that for protecting the users from
the mistakes of others - can be discarded, reduces a system's
complexity drastically, and thereby improves both its



reliability and perspicuity. The possibility to Iimplement
"modern, high-level languages on relatively small non-shared
computers was perhaps the most significant *"discovery" during
the last five years. A personal computer, programmable in such a
language, constitutes, In my opinfion, a necessary tool for the
creative software engineer of the future.

2, Project history and overview

The decision to design and build a personal computer as
motivated above was made in the fall of 1977, after the author
had learned to appreclate the advantages of working with an Alto
computer [1). The project included the following principal parts
[2}):

- design of the programming language Modula-2.

- implementation of a multipass compller suitable for relatively
small computers,

- development of a basic, single-~user operating system,
including a file system and a linking loader.

- design and implementation of a modern, flexible text editor
taking full advantage of the computer's capabllities.

- implementation of a set of basic wutlility programs for file
directory inspection, copying, renaming, deleting, and listing
“files,

- programming and implementing an appropriate set of library
modules for file handling, access to peripheral devices - in
particular the display ~ and storage management.

- designing a sultable machine architecture as ideal Interface
between compiler and hardware, and programming this
architecture In microcode,

- design of the hardware capable of efficiently interpreting the
microcode and supporting the desirable peripheral devices.

- building two prototypas of the designed hardware, and
wodltying them according to insight gained from the
concurrent development of hard- and software.

- building a series of 20 computers, debugging and testing them.

- writing documentation and user manuals.

The language Modula-2 - the notation in which this system
presents itself to the software engineer - was designed as a
general system programming language [3). The guiding principle
was that this language would be the only language avallable on
the computer., Especially, no assembler would be available, and
hence, the language should be suitable for both high-level
programming in a machine-independent manner and low-level
programming of machine-particular aspects, such as device
handling and storage allocation. In fact, the entire operating
system, the compiler, the wutility programs, and the 1library
modules are programmed exclusively in Modula-2.



The compller Is subdivided into four parts. Each part processes
the output of 1i{ts predecessor 1In sequential fashion and is
therefore called a pass. The first pass performs lexical and
syntactic analysis, and it collects identifiers, allocating them
in a table. The second pass processes declaratlons, generating
the so-called symbol tables that are accessed In the third pass
to perform the type consistency checking in expresslons and
statements. The fourth pass generates code, Its output is called
M-code.

The operating system is conceived according to the concept of an
"open" system ([4]. Tt s divided into three principal parts,
namely the linking loader, the file system, and routines for
keyboard LInput and text output on the display. The file system
maps abstract files (sequences of words or characters) onto disk
pages and provides the necessary basic routines for creating,
naming, writing, reading, positioning, and deleting files. Both,
loader and file system present themselves to the Modula-2
programmer as modules (packages) whose routlnes can be Imported
into any program. Whenever a program terminates, the basic
operating system activates the command interpreter which
requests the file name of the next program to be loaded and
initiated.

The computer as “seen by the compiler®™ 1is implemented as a
microprogrammed interpreter of the M-code. The M-code |is
designed with the principal goals of obtaining a high density of
code and of making the process of its generation relatively
systematic and straight-forward. Although space is definitely
the scarcer resource than time, a high density of code Is
desirable not only In the interest of saving memory space, but
also for reducing the frequency of Instruction fetches, A
comparison between two different, but strongly related compllers
revealed that M-code s shorter than code for the PDP-1]1 by a
factor of almost 4. This surprising figure is clear evidence of
the inappropriate structure of "conventional® computer
Instruction sets, including those of most modern microprocessors
t;hat1 gere still designed with the human assembly language coder
n mind. .

The actual hardware consists of a central processing unit based
on an Am2981 bit-slice unit, a multi-port memory with 128K words
of 16 bits, a micro-code memory of 2K instructions implemented
with PROMs, a controller each for the display, the disk, and a
local network, and Interfaces for the keyboard, a cursor
tracking device called the mouse, and a V-24 (RS-232) serial
line interface, The central processor operates at a basic clock
cycle of 152 ns, the time required to Interpret a micro-
instruction. The most frequently occuring M-code Instructions
correspond to about S5 micro-instructions on the average.

The display is based on the raster scan technique using 594
lines of 768 dots each. Each of the 456'192 dots is represented



in main memory by one bit. If the entire screen is fully used,
its bitmap occupies 28'512 words, 1i{.e, 22% of memory. The
representation of each dot (picture element) in program
accessible main memory makes the display equally suitable for
text, technical diagrams, and graphics in general. In the case
of text, each character is generated by copying the character's
pitmap into the appropriale place ot the entire screen's bitmap.
This is done by software, supported by appropriate microcoded
routines, corresponding to special M-code lInstructions. This
solution, 1in contrast to hardware character generatotrs, offers
the possibility to wvary the characters' size, thickness
{boldface), 1inclination (italics) and even style., In short,
different fonts can be displayed, This feature, which |is
particularly attractive for text processing, reguires a
substantial amount of computing power to be avallable 1In short
oursts. The writing of a full screen, i{.e. conversion of
characters from ASCII code to correctly positioned bitmaps,
takes about 1/4 second. Usling a small font, a full screen nay
Jisplay up to 18'908 characters.

The disk used in this personal computer is a Honeyw2ll-Bull
D-128 cartridge disk with a «capaclty of 10 MBytas and a
potential transfer rate of 720 kB/s, which results in aa actual
rate of 68 kB/s for reading or writing of sequential files. Disk
sectors, each containing 256 Bytes, are allocated In multiples
of 8 on the same track. Allocation is entirely dynzaiz, and
hence no storage contraction processes are needed to retrieve
"holes”. The use of exchangeable cartridge disks in coatrast to
sealed (Winchester) disks has been considered as essential in
order that a work station may be used by different people at
different times without reliance on the exlistence of a3 network
and a central file store.

The mouse is a device that transmits slgnals to the computer
~hiczh represent the mouse's movements on the table. Tnese
aovements are translated (again by software) lnto a cursor
Jisplayed on the screen. The accuracy of position ls as high as
the resolution of the screen, because the feedback from cursor
to mouse travels via the user's eye and hand. The mouse also
contains three pushbuttons (keys) which are conveniant for
jiving commands while positioning the mouse.

The various principal parts of the projects were undertaken more
or less concurrently. The team consisted of 8 (part time) punple
in the average (not counting the production of 2¢ machlnes), and
was small enough to require neither management staff nor
methods. The hardware was designed and built by three engineers
(including the author), two computer scientists built the
compiler, one the operating system, one implemented the
microcode and most of the editor. The software effort was based
on the use of a PDP-11/408 computer (with a 28K store) and was
initiated with the development of a compilaer for Modula-2
generating code for the PDP-11 ({tself, This "preliminary"



compiler development constituted a significant part of the.
entire software effort, and resulted in a valuable software tool
that had recently been released for distribution. It also made
the development of the Lilith software quite Independent from
the progress of the hardware. Both the Modula-2 compiler for M-
code, the operating system, and even the highly display-oriented
editor were developed on the PDP-11, and the subsequent
transport to the Lilith computer proved to be quite
unproblematic due to programming In Modula-2. 1In fact, the
untested compller was transported and debugged (at least to an
acceptable degree) in a few days only.

Whereas the software development could profit from our previous
experience In designing compllers and programming in general,
such was not the case In the hardware sector, as our lnstitute
had neither hardware expertise nor facilities. To galn
experience and develop such facilities was, however, a prime
challenge, and this project offered -a welcome opportunity.

From the start it was planned to base the Lilith computer on the
2921 bit-slice processor, because one-chlp processors avallable
in 1977 did not offer the computing speed required for the
efficient handling of the planned bitmap operations. This
decision proved to be a good one. After 15 months of
development, a first prototype was operational (without disk),
proved to be too unreliable for extensive use, but confirmed the
senslbility of the overall design, An additlonal year was needed
to produce two ldentical prototypes which served to test the
software that had been developed in the meantime. In the spring
of 1989, a team was formed at the Department of Electrical
Engineering of Brigham Young Unlversity in Provo, Utah, to build
a series of 20 Lilith computers. This goal was achieved wlthin 8
months by three graduating engineers and with the ald of student
employees during the summer months. The cost per unit, not
counting the development of the prototypes nor of organizing the
production effort, but including labor and parts, in particular
the 18MB disk, was about SFr 28'@dd.

In the meantime, a few Iimportant application programs were
weitten at ETH, including a text editor, an edltor for drawing
circult diagrams, and a window handler module, Some sample
pictures 1illustrating their wuse are shown in Fig 1., They are
printed with the same resolution as seen on the scraeen.

3. Modules and interfaces In Modula-2

- - - -

Perhaps the most important criterion of a language for
programming large systems Is how well It supports program
modularization. The earliest facilitles Introduced for effective
program decomposition was the concept of locallty, i.e. the
restriction of the validity of names (ldentifiers) to well-



delineated parts of the program, such as a block or a procedure.
This concept was introduced by Algol 6@ and adopted {n Algol 68,
PL/I, and Pascal, among others. The range of validity is called
a name's scope. Scopes can be nested, and the rule ls that names
valid in the scope's environment are also valid inside tit,
whereas names declared within the scope are invisible outside.
This rule immediately suggests a connection between the range of
visibility (scope) of a name within the program text, and the
time of existence of the object associated with the name: as
soon as control enters the scope (procedure, block), the object
must be created (e.g, storage must be allocated to a varlable),
and as soon as it leaves the scope, the object can be deleted,
for it will no longer be visible, In spite of the tremendous
value of this locality concept, there are two reasons why it is
inadeguate for large programs.

- there Is a need to hide objects, {.e. to retain them while
they are invisible. This calls for a separation of visibility
and existence: visibllity as a property of names, existence as
a property of objects.

- there is a need for closer control of wvisibllity, 1.2, for
selection of particular names to be visible or invisinle, in
contrast to the "inheritance" of the total environment ints 4
local scope.

In Modula-2, we have therefore added the structure of a module
to the structure of the procedure. Both structures appear
syntactically as almost identical, but are governed by different
rules about visibility of local names and existence of the
associated objects:

Pl. An object declared local to a procedure exists only as long
as the procedure remains activated.

M1. An object local to a module exists as long as the enclosing
procedure remains activated,

P2. A name local to a procedure is invisible outside the taxt of
that procedure, one visible in the environment is also
visible inside the procedure.

M2. A name local to a module is visible inside the module, and
outside too, 1if it appears in the so~called export list in
the module heading, A name visible in a module's environment
is wvisible inside that module only if it appears in its so-
called import list.

From these rules, we can draw the followlng conclusion: A module
itself has no “existence", since its local objacts inherit their
lifetime from the module's environment (procedure). Hence, thu
module is a purely syntactlc structure acting 1like a wall
enclosing its local objects and controlling their visibility by
means of export and import lists. Modules therafore need not be
instantiated; there are no instances of a module. The module is
merely a textual unit,



A typical example of a module {s the following:

MODULE m;
IMPORT u,v;
EXPORT p,q;

VAR X: ...;
PROCEDURE pP(s+..);
BEGIN ... X ... END p;
PROCEDURE g (+.4);
BEGIN ... x ... END q;
BEGIN +.0 U s0s X o4
END m

This module owns three local objects: variable x and procedures
P and gq operating on x. It exports p and g and hides x by not
exporting lt. The body of the module serves to Inltialize x; It
is acti{vated when the environment of m [s actlivated (created).
This example is typlcal, because [t shows how an object x can be
hidden and how access from outside is restricted to occur via
speclfic procedures. This makes it possible to gquarantee the
existence of invariant conditions on x, independent of possible
errors in the environment accessing x via p and q. Such Is the
very purpose of modularization.

The typical purpose of a module {s indeed to hide a set of
interrelated objects, and the module 1Is often identifled by
these objects, e.g. a table handler hiding the table, a scanner
hiding the input stream, a terminal drlver hiding the interface,
or a disk system hiding the disk's structure and allocation
strategy.

The module concept as described above had been introduced wlth
the language Modula (5]. Modula-2 extends thls concept in two
important ways, namely by

- gualified export mode, and
- subdivision of a module into two textual parts, the so-called
definition and Implementation parts.

Qualified export serves to avoid clashes between Iidentical
identifiers exported from different modules into the same
enclosing scope. If an identifier x is exported Iin qualifled
mode from a module m, then the object assoclated with x needs to
be denoted as m.x. The gualifled mode ls therefore appropriate,
{f the writer of m does not know the environment of m. This is
not the usual case for nested modules; individual members of a
programming team more typically design modules that lie on the
same level, namely the outermost, or global level (that may be
considered as being enclosed in a universal and empty scope). It
{s this case that is particularly lmportant {n the design of
large systems, where a better separation of the specification of
import and export lists from the description of the actual



objects is desirable.

Consequently, we divide a global module into two parts, The
first is called a definition module; it contains the. export list
and specifications of the exported objects as far as relevant
for the user (client) of this module to verify the adherence to
language rules (in particular type consistency). A definition
module also specifies the types of its exported variables and
the parameter lists of its exported procedures. The second part
is called the implementation module, It contains (usually)
import lists and all the details that need not concern the
client, such as the bodies of procedures. The notlon of
textually separate definition and Implementation parts was
pioneered by the language Mesa (6] and s here smoothly
integrated with the module concept of Modula.

Example:

DEFINITION MODULE B;
EXPORT QUALIFIED p,q;
PROCEDURE pl(...);
PROCEDURE q(...);

END B.

IMPLEMENTATION MODULE B;
FROM A IMPORT u,v;
VAR x: ...;
PROCEDURE p(...};
BEGIN ... X ++. u ,.. END p;
PROCEDURE q(...);
“"BEGIN .44 V 4o« X ... END q;
BEGIN ... X ...
END B,

4. Coroutines and processes

With the design of the Lilith computer we did not follow the
fashionable trend to design a system consisting of several co-
operating concurrent processors, thereby avoiding one certain
source of difficulties, namely their synchronization. The
conseguence for the language Modula-2 was that the concept of
concurrent processes played a minor role only, whereas in
Modula-1 it had been the major theme. The primary idea had been
to distinguish the logical process from the physical processor,
allowing Iimplementations to <choose their own mechanisms for
allocating processors to processes., Loglcal processes are served
by time-sharing the processors, which may well have different
characteristics and capabilities, The processes are Implemented
as coroutines, and transfers of control between them are implied
in statements that send signals or walt to recelve signals,
where the signal s an abstract notlon represented as a data
type. Each processor executes a sequence of coroutine segments,
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and the processor scheduling can well be hidden behind the
primicive operations on signals. The principal difference
between processes (as in Modula-l) and coroutines (as in Modula-
2) 1s that the latter are eaxplicitly identified whenever a
transfer occurs, whereas processes are not, since transfers are
implied by sending a named signal to some process which remains
anonymous,

It {s well in accordance with the premise of Modula~2 - namely
to make primitives directly avallable to the programmer - to
include coroutines instead of processes, because the latter are
{mplemented by the former. As a consequence, Modula-2
implementations need no "run~time system” and no fixed, bullt-in
scheduling algorithm. There exists no data type Signal, but
instead transfer of control from a coroutine P to a coroutine @
is specified explicltly by the statement TRANSFER(P,Q). Here P
and Q are variables of the primitive type PROCESS, whose actual
values are pointers to the coroutines' workspace and state
descriptors,

Furthermore, experience with Modula-1 showed the advisability of
separating Interrupt-driven from “regular® processes, because an
interrupt signals a transfer of service among processors within
the same process. A programmer may adopt this advice by
supplying his own scheduling program, Modula-2 provides the
appropriate mechanism for encapsulating such a user-defined
scheduler in the form of {ts module structure. Naturally, such
algorithms may also be provided in the form of library modules.

As an example we list a scheduler reflecting the simple round-
robin algorithm, The module exports the data type Signal and the
operators StartProcess, Send, and Wait, which correspond to the
language facilities of Modula-l. The example excludes, however,
the treatment of interrupt-driven processes. {(Note that the type
Signal 1s exported in opaque mode such that {ts structures |3
invisible to the importer.) Both Send and Wait imply a coroutine
transfer. The primitive operation TRANSFER s, 1like the data
type PROCESS, imported from the module SYSTEM, which typically
contains low-level facilities, High-level programs should
preferrably rely on the process concept as presented by such a
ProcessScheduler module, rather than on named coroutines and
explicit transfer of control, :

DEPINITION MODULE ProcessSceduler;
FROM SYSTEM IMPORT ADDRESS;
EXPORT QUALIFIED Signal, StartProcess, Send Wait;

TYPE Signal;
PROCEDURE StartProcess{P: PROC; A: ADDRESS; n: CARDINAL);
PROCEDURE Send (VAR s: Signal);
PROCEDURE Wait (VAR s: Signal);
END ProcessScheduler.,
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IMPLEMENTATION MODULE ProcessScheduler;
FROM SYSTEM IMPORT PROCESS, ADDRESS, NEWPROCESS, TRANSFER;

TYPE Signal = POINTER TO ProcessDescriptor;
ProcessDescriptor =
RECORD ready: BOOLEAN;
pr: PROCESS;
next; Signal; (* ring *)
queue; Signal; (* walitling queue *)
END ;

VAR cp: Signal; (* current process *)

PROCEDURE StartProcess(P: PROC; A: ADDRESS; n: CARDINAL);
(* start P with workspace A of length n *)
VAR t: Signal;
BEGIN t := cp; NEW(cp);
WITH cp” DO
next := t”,next; ready := TRUE;
queue := NIL; t".next := cp
END ;
NEWPROCESS (P, A, n, cp~.pr); TRANSFER(t".pr, cp”.pr)
END StartProcess;

PROCEDURE Send (VAR s: Signal);
(* resume first process walting for s *)
VAR t: Signal;
BEGIN '
IF s § NIL THEN
t := cp; Cp := 8;
WITH cp” DO
s := queue; ready := TRUE; queue := NIL
END i
TRANSFER(t".pr, cp”.pr)
END
END Send;

PROCEDURE Walt(VAR s: Signal);
VAR t8, tl: Signal;
BEGIN (* insert current process in queue s *)
IF s = NIL THEN s := cp
ELSE t@ := s;
LOOP tl := t@".queue;
IF tl = NIL THEN
t?".queue ;= cp; EXIT

END ;
td = t1}
END
END ;

cp”.ready := FALSE; cp”.queue := NIL;
t@ := cp; (*now find next ready process¥*)



REPEAT c¢cp := cp”.next;
IF cp = t@ THEN HALT (*deadlock*) END
UNTIL cp”.ready;
TRANSFER(t@".pr, zp”.pr)
END Walt;

BEGIN NEW({cp);
WITH ¢p” DO
next := cp; ready := TRUE; queue := NIL
END
END ProcessScheduler.

Interrupts aré transfers of control that occur at unpredlictable
moments. We can regard an Interrupt as equivalent to a statement

TRANSFER({interrupted, interrupting)

that is effectively i{nserted in the program wherever control
happens to be at the moment when the external interrupt request
ls applied. The varlable "Interrupting" denotes the procaess that
ls destined to service the request, whereas the varlable
"interrupted” will be assigned the {nterrupted coroutine. The
typical interrupt handler s a device driver coroutine of the
following pattern; P and Q are variables of the primitive type
PROCESS.

PROCEDURE driver;
BEGIN initialization;
LOOP ...
start device; TRANSFER(Q,P); ...
END
END driver

The driver process is created by the primitive statement
NEWPROCESS (driver,wsp,n,Q)

which-allocates the procedure *driver" and the workspace wsp of
size n to this coroutine, now ldentified by Q. It s
subsequently activated by the statement

TRANSFER(P,Q)

which assigns the starting coroutine (e.g. the main program) to
P, After initiation of a device operation the statement
TRANSFER(Q,P), which symbolically stands for that part of the
process which is executed by the device (l.e. another processor)
actually returns control to P and assigns (the current state of)
the driver coroutine back to Q. Termination of the device
operation causes an interrupt signal which (1f enabled)
corresponds, as explained above, to an unwritten TRANSFER(P,Q).
This signal again switches control back from the interupted to
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the driver (interrupting) routine.

Bach interrupt signal - the Lilith computer offers 8 of them -
is assoclated with its own variables P and Q at fixed locations.
In order that further interrupts remain disabled while the
processor executes the interrupt routine, drivers are typically
declared inside a module with specified "priority" that causes
interrupt inhibition up to that specified "priority" level,

This elegant conceptual unification of coroutine transfers and
fnterrupt handling was made possible by an approprlately
designed computer architecture and instruction set.

5. The operating system

The most noticeable aspect of the Lilith operating system Medos
ls {ts orientation towards a single user. It is devold of any
protection mechanism against malicious programs that could
hamper another user's program, Since Medos 1is programmed in
Modula, it benefits from the safety provided by Modula's type
consistency and various run-time checks. Its safety features are
"defensive"”, but certainly not invulnerable, considering the
Modula's facilities for low-level programming offered to the
brave programmer. In thls regard, Medos follows the strategy of
Pilot {9]. In a first, superficial look it can be regarded as a
collection of modules that are imported by the current program
(and its Imported modules). Since a number of low-level modules
(such as the file system) are used by virtually every program,
they form a resident section, This set of modules consists of
three main parts:

"Program" - storage allocation, program loader
"Terminal" - drivers for keyboard and display
"FileSystem" =~ disk driver and file administration

The module Program exports the procedures

Call(name,sharedHeap,status)
AllocateHeap(size)
DeallocateHeap(size)

of which the first effectively represents the loader. The module
administers the entire store as a stack and loads called
programs sequentially., The remainder of the store is treated as
data store. In this part, the data stack grows from one end and
the heap from the other. The heap is used for variables that are
allocated dynamically by calls of AllocateHeap and
DeallocateHeap, which merely move the pointer that denotes the
separation between data stack and heap. More sophisticated
allocators can be programmed which, however, will also refer to
these basic procedures.
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1f a program P calls the loader,  the code and data segments of
the loaded module Q (and of the modules imported by Q and not
already present) are stacked on top of those of P. The set of
segments thus loaded forms a new "level"™, one higher than that
of P, The loader operates as a coroutine, and each new level of
program is represented as a coroutine too. This slight misuse of
the coroutine facility is justified by the convenlence {n which
new sections of data and program (a level) can be administered,
if described as a coroutline. Fig. 2 shows the storage layout and
the Implied transfers of control when a program is loaded from a
caller at level 1. .

The set of resident modules forms level . Its main program {s
called the Sequential Executive Kernel. It invokes the loader
which loads the command Interpreter. This Is merely a program
that outputs a prompt character, reads a flle name, and
transmits the file {dentity to the kernel, which loads this flle
after the command Interpreter has terminated and control s
returned to level 3, Loading of the maln program usually
requires the 1loadingy of further modules that are specifled in
fmport lists, Linking or binding of modules is simplified by the
architecture of the Lilith computer such that it is performed
ddirectly upon program loading. Fig. 3 shows a typical sequence
of programs, and how they occupy the store.

Since a program s loaded only after removal of the command
{nterpreter, and because the command Interpreter typlcally has
ample time to process the slow input from the keyboard, it can
be designed with additional sophistication. It <can search the
flle table for program files whose names match with the lnput so
far received and extend it as far as it 1s wunambiguous. For
example, 1f file names ABCD and ABCE are present, and no others
starting with A, it may display both names after receiving "A?"
and then allow continuation after recelving either D or E. This
{s a small but typical example of providing a convenlent wuser
interface without additional burden on the user's program.

The entire mechanism for loading and allocating is programmed
exclusively in Modula-2; this 1includes the subtle point of
changing our view of a program as data before to code after its
loading. In Modula-2, this 1{is possible without resorting to
tricky programming and without the escape to small sections of
assembly code.

The second principal part of the set of resident modules handles
input from the keyboard and output to the display. This module
is called Terminal., The input stream fetched by the procedure
Read (contained In Terminal) flows through a switch that allows
reading from a file instead of the keyboard. Because the command
interpreter alseo calls Read, that file can even be a command
file. The output stream, which {s fed by calling the procedure
Write, is fed to the low-level module TextScreen that simulates
sequential writing and generates the bit pattern faor each
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character according to a default font.

The module FileSystem constituktes the third major part of the
resident system. Files are used for three maln purposes:

- long-term storage of data on permanent, named files,
- communication among programs,
- secondary storage of data on temporary, unnamed files.

We distinguish between the naming and abstract definition of
files as extendable arrays of elements (FileSystem) and the
physical implementation of files on the disk (DiskSystem). The
programmer refers to files through the module FileSystem which
in turn calls procedures of the module DiskSystem hlding the
detalls of their physlcal representation.

FlleSystem exports the type File and operations on this type for
opening (creating), naming, reading, writing, modifyling,
positioning, and «closing files, Normally files are regarded as
streams of either words or characters; writing occurs at the end
of the stream only, and {f writing is requested at some position
other than the end, the file's tail 1Is 1lost and deallocated.
Although It 1s also possible to modify files, L.e. overwrite
them, the abstractlion of the stream is the preferred view of
files.

The module DiskSystem Implements Flles on the Honeywell-Bull
D-120 disk. It Is designed according to the following main
requirements:

- fast access, in particular if strictly sequential,

- robustness against hard- and software failures,

- accommodation of a large number of (mostly short) files,
- economical use of storage space.

The following scheme was chosen as a compromise between the
varlous deslgn objectives: Space is allocated in blocks of 2848
bytes. This results in a memory resident allocation table of 392
words (one per cylinder), each bit indicating whether or not its
corresponding block {s allocated to some file. Each block
corresponds to 8 disk sectors, equally spaced on the same
cylinder. A separate file, allocated at a fixed place, is called
FileDirectory and consists of file descriptors. Every file is
identified by the index of 1its (first) descriptor (= file
number), and each descriptor contains a table of addresses of
the blocks which constitute the file. Additionally, the
descriptor specifies various properties of the file, such as its
length, creation date, last modification date, whether it |is
permanent, protected, etc. Upon startup, the system reads the
entire FileDirectory and computes the allocation table.

Unnamed files are released either by closing them or when the
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system {s started. They are wused as temporary files during
execution® of a program. For long taerm storage of data, a file
has to be named. To administer permanent files, the module
DiskSystem malntalns another flle (alse placed in a fixed
location) called the Name Directory. Each entry consists of a
file name and the number of the assoclated flle. The procedure
Lookup(f,name,create) is used to search the name 1in the Name
Directory and <connects the £flle (if found) with the flle
variable f. The parameter "create™ allows to ask for the
creation and naming of a new file, If the speclfied name was not
found (see Fig. 4).

A fourth, but effectivly hidden part of the resident system |s
called the Monitor. It contains two auxilliary processes that are
used to monitor the third, namely the maln process of the user.
The auxiliary processes are called Clock and Trap (Fig. 5).
Clock is {nvoked 58 times per second. It updates a varlable
called time, monitors the keyboard by polling, and buffers
keyboard input, allowing for typing ahead.

Trap Is 1Invoked by various Instructions detecting abnormal
conditions, such as stack overflow, arithmetic overflow, Index
out of range, access to picture elements outside the speclfied
bitmap, the standard procedure HALT, etc. The Trap process then
may store the state of the main process (essentially a dump) on
the disk for possible later inspection by a debugger program,
and restarts the maln process at the kernel level.

Typing the control character <ctrl>C is detected by Clock and
cavuses an abortion of the main process In the same manner as a
trap. Evidently, abnormal situations are here handled by
coroutine transfers instead of an additional exceptlon facility
provided in the programming language. The auxiliary coroutine
then regards the aborted coroutine as data (Instead of as a
program) and is thereby able to reset {t to a state where
continuation is sensible.

Fig. 6 shows the principal modules of Medos with arrows denoting.
calls of procedures. Usually, these arrows are {dentical to
those denoting the j[mport/export dependences among modules,
Exceptions to thils rule occur through the use of procedure
variables,

6. Separate compilation of modules

For reasons of convenience and economy, large system programs
need to be compiled in parts. It 1is only natural that these
parts be the ones that from a 1logical point of view were
designed as relatively independent wunits., The module s the
obvious choice for the wunit of compilation. Definition and
implementation modules are therefore called compilation units.
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The ldea of compilatlon In parts is as old as Fortran and even
assembler code. In high-level languages with data types the
problem of partial compilation Is of considerable complexity: we
wish that type conslstence checking Is fully maintained across
module boundarles. In fact, experience has shown that this |is
when it is most needed to avold catastrophic errors. In order to
recognize inconsistencies such as type mismatches, lIncorrect
number or order of parameters, etc., as early as possible, they
must be detectable by the compiler. The compiler therefore must
have access to information about all imported objects. This is
accomplished as follows (7}:

Assume that a module B depends on, l.e. imports objects from a
module A, Therefore, module A has to be compiled first. During
its compilation, th compiler generates, apart from a code file
for A, a symbol file. Compilation of B subsequently accesses
that symbol file. More accurately, program B can - according to
the rules of the language - refer to information of A's
definition part only. Thus, the symbol file is an extract only
of the information available during compilation of A. Since only
definition modules are capable of exporting, the symbol file s
the result of compiling the definition module A, while code is
the result of compiling implementation (or program) modules
only.

This scheme =~ in particular the separation of definition and
implementation parts - has important consequences for the manner
in which systems are developed., A definition module constitutes
the interface between its implementation part and its clients.
Effectlively the scheme forces the programmer to define
interfaces first, for, whenever a definition module {s (changed
and) recompiled, all its importers (clients) have tol' be
recompiled too. However, it is possible to change and recompile
implementation modules without that far~reaching and costly
consequence.

It should be noted that the consequences of this chronological
ordering of compilations are 1less severe than might be
anticipated due to the fact that the importers are wusually
Implementation modules. Hence a change in a low-level module - a
module that resides low in the hierarchical chain of
dependencies - need not produce a chain reaction of
recompilation up to all wultimate <clients. The appropriate
decomposition of a planned system into modules is nevertheless a
most important aspect of competent programming. Often the
decomposition has to be decided at an early stage when insight
into many aspects of a system are still hazy. Its success
therefore largely depends on the englneer's previous experience
with similar tasks. :

Learning how to deal effectively with a new facility offered by
a programming language Is a long-term process. The module
facility forces the programmer team to make those decisions
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first that must be made first [8]. One lesson learned so far Is
that a module typically centers around a data structure, and
that it is this data structure rather than the exported
operations that characterize it,

7. The architecture of the Lilith computer

One of the challenges in designing a computer lies i{n finding a
structure and an instruction set which yield a high density of
code and a relatively simple algorithm for code generation. A
premise of this project was that the computer had to be designed
according to the language in which lt was to be programmed. This
resulted in a quite unconventional archltecture. No attempt was
made to make the instruction set suitable for "hand coding"; in
fact, programming in machine code would be quite cumbersone,
even if an assembler were available,

The Lilith computer 1is based on a Stack architecture. Stack
computers are by nc means novel as such. Thelr history dates
back to the early 6@8s with the English Electric KDF9 and the
Burroughs B5p0¢ as ploneers. The Lilith architecture adopts the
stack principle without compromise, and its instruction set is
chosen to obtain a high density of code requiring only stralght-
forward algorithms for Instruction selection., The code is a byte
stream. Each instruction consists of one or several bytes. The
high density 1is achieved not only by implicit addressing of
intermediate results in expressions, but malnly by the provision
of dlfferent address lengths and sultable addressing modes. In
order to explaln these modes, we need to Inspect the overall
storage organization at run-time, In contrast to earlier stack
computers, not only procedures play an important role, but also
modules. The underlying premise 1Is that objects local to the
location of the present computation are accessed most fequently
- and therefore require fast access by short instructlions -
whereas access to remote objects is relatively rare and requires
less efficiency. Fast access {s obtained by retaining
"Intermedlate results" of address computations in fast registers
(base address), 1In the expectation that they will be reused
frequently, and that thereby thelr recomputation can be avoided.
Several base address registers are used in the Lilith computer.

The origin of all address computations is a table with base
addresses of all currently loaded data frames (see Fig. 7). A
data frame {s a contiguous area of store allocated to the
(static) variables of a given module. By "module" we refer here
and subsequently to «compilation wunits; this excludes inner
(nested) modules. Each loaded module has a number which i{s used
as Index to that frame table., The table resldes at a fixed
location and has a fixed length. The entry belonglng to the
module of which code is executed currently, is retained in the
base address register G. It 1Is the base address of "Global
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variables” in the sense of Algol or Pascal, G has to be reloaded
whenever control transfers from one module to another. Data
frames are static in the same sense that they are "permanent"
for the duration of a program executlion, with the (rare)
exception of overlays performed by calls of the loader.

Data local to procedures are allocated in a stack which grows
when a procedure is called and shrinks when it is terminated.
Each coroutine (process) is allocated an area of the store,
called a stack frame, when it is started, and whlch serves as
the coroutine's workspace. The base address of the stack frame
belonging to the coroutine currently under execution is stored
in the register P, that of the last location allocated in this
stack frame in register S, and the end of the workspace s
designated by register H. P is used when a transfer from one
coroutine to another coroutine occurs, S when a procedure is
called or terminated. Each stack frame contains the hierarchy of
data segments representing the variables local to the activated
procedures, They are linked by the so-called dynamic chalin of
procedure activations, The base address of the last segment
created Is retained in register L (for Local data).

Local data are semi-dynamic in the sense that they are allocated
for the duration of a procedure activation only. However, their
addresses are determined by the compiler as offsets relative to
the base address of thelr owner. Truly dynamic data are those
allocated by expliclitly programmed statements in an area of the
store called heap. This storage area is managed by a utility
module called Storage; these variables are accessed via pointer
values, As In Pascal, polinters are bound to a glven type,
providing additional security In pointer handling.

Each loaded module owns a data frame and also a code frame, a
contlguous area of store containing the code of all |its
procedures. The base address of the code frame of the currently
executing module 1is retained in register F. Its value is used
when calling a procedure, which is ldentified by a number used
as Index to a table contalning the starting addresses of all
procedures {in a given module. This table resides In the header
of the c¢ode frame. Using such an index instead of absolute
addresses contributes to higher code density, particularly since
procedure calls are very frequent instructions. The value of
reglster F is changed whenever control transfers between
modules. Jump addresses are relative to the F-reglister value.

8. The Lilith instruction set

Instructions consist of one or several bytes. They can be
divided into four basic categories: Load and store instructions,
operators, control instructions, and miscellaneous instructions:
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The load and store instructions transfer data between memory
(stack or heap) and the top of the stack, where they are
accessed by operators. The top of the stack, where data are
loaded as f{ntermediate results (anonymous varlables) is also
called the expression stack. Load or store instructions require
a single address only bacause the stack address is implicit;
they are further subdivided according to the following criteria:

- data size: the transferred data are a word (16 bits), a double
wotd, or a byte (halfword).

-~ addressing mode: local, global, external, stack, indexed, and
immediate mode (the latter for load instructlons only).

- address length: 4, 8, or 16 bit address (see Fig. 8).

The presence of different address lengths suggests that
variables with frequent access be allocated with small offsets.
Our present compliler does not perform any such optimlzation. The
galn to be made does not appear to be overwhelming. The set of
directly accessed (statically declared) variables Is usually
quite small, because structured variables are addressed
indirectly.

The various addressing modes are defined as follows (m and n
denote instruction parameters, and a the resulting address):

~ Local mode: a = L+n, used for varlables local to procedures.

- Global mode: a = G+n, used for global varliables in the current
module. .

- Stack mode: a = s+n, where s is the value on top of the stack;
mode used for Indirect addressing and access vla polnters.

- External mode: a = T(m)+n, T is the table of data frame
addresses, m a module number; mode used for external varlables
imported from other modules.

- Indexed mode: a = s) + k*s2, s! is the array's base address,
s2 the computed index (sl, s2 on stack), and k ls a multiplier
dependling on the size of the accessed data type.

- Immediate mode: a = n., The loaded value s the parameter
itself; mode used to generate constants.

The above explanations are given in thls detail In order to show
that the constructs defined in the programming language are
strongly reflected by, i{.e. have directly influenced, the design
of the Lilith architecture. The beneficlial consequence s not
only ease of compilation, but simplicity of the linking loader.
Whereas our Modula-2 system for the PDP-11 computer for good
reasons requires a linker, such Is not necessary for the Lllith
implementation., A linker collects the code flles of all requlired
modules and links them together into an absolute (or
relocatable) store image. Thls task can be performed directly by
the 1loader, because it only has to lnsert module numbers (table
indices) in Instructions with external addressing mode.

The second category of instructions are the operators. They take
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operands from the top of the stack and replace them by the
result, The Lilith 1instruction set 1{includes operators for
CARDINAL (unsigned), INTEGER (signed), double-precision,
floating-point, BOOLEAN, and set arithmetic. It directly
reflects the operations avallable in Modula-2.

The ori{entatlon towards a clean stack archlitecture also required
a full set of comparison instructions which generate a BOOLEAN
result, Distlinct sets are provided for CARDINAL and INTEGER
comparison, The distinction between CARDINAL and INTEGER
arithmetic {s partially due to the desire to be able to use all
bits of a word to represent unsigned numbers, such as addresses.
It would be of a lesser importance, if the wordsize were larger.
However, our experience shows that it is desirable also from a
purely logical point of view to declare varlables to be non-
negative, {f in fact a negative value does never occur., Most of
our programs requlire variables of the type CARDINAL, whereas the
type INTEGER occurs only rarely. Although using 2's complement
representation for negative values, addition and subtraction are
implemented by the same hardware operatlons for both kinds of
arithmetic, they differ in thelr conditions indicating overflow.

Control instructions include procedure calls and jumps.
Conditional Jjumps are generated for IF, WHILE, REPEAT, and LOOP
statements, They fetch thelr BOOLEAN operand from the stack.
Special control instructions mirror the CASE and FOR statements.

Different calls are used for procedures declared in the current
module and for those iIn other modules. For 1local procedures
there exlst call instructions with short 4-bit addresses, as
they occur rather frequently. Calls for external procedures not
only 1include an address parameter, but also a module number to
be updated by the 1loader. Furthermore, an instruction is
provided for so-called formal procedures, i.e. procedures that
are elther supplied as parameters or assigned to procedure
variables.

There also exists an instruction for the transfer of control
between coroutines. Various instructions may cause a trap, 1{f
the result cannot be computed. Such a trap is considered like an
interrupt requested by the processor itself, and corresponds to
a coroutine transfer with fixed parameters, The same mechanism
is activated by the TRAP instruction (which corresponds to a
HALT statement in Modula).

Arithmetic operators generate traps when unable to compute the
correct result (e.g. overflow). Traps from CARDINAL and INTEGER
‘arithmetic can be suppressed (masked) upon request; the
programmer is then presumably aware that results are computed
modulo 2°16. Also, load and store instructions generate a trap,
if thelr address is NIL. This test requires a single micro
{nstruction only. The routines for bitmap handling generate
traps, if attempting to access data outside the specified
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bitmap. Ali these test are quite Inexpansive (but not free).

A test for an array index lying wlthin the specifled bounds, or
for a value to be within the subrange admitted by a variable, is
more complicated, It requires two comparisons with arbitrary
values, Therefore, the M-code contains an instruction for an "in
range" test. The programmer may choose to omit these tests by
selecting a compiler optlion that suppresses the generation »f
these test Instructions.

These extenslve checking faci{litles reflect our strong bellef in
designing an implementation (including the hardware) which
properly supports a lanquage's abstractions. For example, (f the
language provides the data type CARDINAL, its implementations
should signal an error, {f a negative result appears, just as |t
should signal an error, when a non-existing element of an array
is identified. Omissions in this regard are to be considered as
Inadequacy in implementation. Nevertheless, the arqument whether
or not the experienced and consclentious programmer should be
burdened with these "redundant" checks remains open. Our cholice
is to give the programmer the option to suppress at least the
morz expensive checks, at his own peril.

The category of miscellaneous instructions contains operators
for reading and writing data on the input/output channels, and
four instructions wused for operating on bitmaps: The DDT
instruction (display dot) writes a single dot at a specified
coordinate, REPL replicates a bit pattern over a rectangle - a
so-called block - in a given bitmap. The <coordinates of this
block are relative to the specified bitmap and are given in
terns of dot coordinates rather than word addresses. The BBLT
instruction (bit block transfer) coples a source block into a
destination block. The DCH instruction (display character)
copies the bitmap of a character (given its ASCII code) from a
font table Into a specified place of a bitmap.

The Etunction of these bitmap instruntions could well be coded in
Modula-2 programs. Instead, they are 1included as single
instruztions represented by micro-coded routines. The primary
rzason Is efficlency. The routines 1include checks against
inconsistent parameters, such as blocks that do not fully lie
within the bitmap. An essentlal detall Is that they use the same
convention about parameters as do regular procedures and
operators: parameters are always passed via the stack. Modula-2
for Lilith offers a facility to use these Instructions as |f
they were programmed as regular procedures. This uniformity of
parameter passing has proved to be an {nvaluable asset.

Some analysis of representative programs reveals that M-code
yields a significantly higher density of compiled code than do
conventional Instruction sets. Compared with the code compiled
for the ubiquitous PDP-11, we obtalned an Improvement factor of
3.9. This implies that code for the same program occupies about
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one quarter of the memory space in the Lilith computer than in a
PDP-11. This factor s noteworthy even 1In times of rapldly
decreasing memory prices!

The principal contribution to this result stems from the short
address flelds. Dominant are the counts of load and store
instructions; they address the stack implicitly and hence need
only one address flield. Access to local variables is most
frequent; global varlables are addressed about half as often,
and external variables occur rarely, Jumps account for about
180% of all instructions, and procedure calls are about equally
frequent. The following table displays percentage figures
obtalned from four programs (of different authors) for the most
frequent instruction classes.

l-byte instr. 70.2 M7 62.8 72.5
2-byte instr. 16.6 17.3 12.6 12.9
3-byte instr. 13,1 1.8 24.5 15.4
Load immediate 15.1 14,2 17.3 15.2
Load local 16.3 21.6 16.3 19.1
Load global 8.2 5.2 3.7 7.9
Load indirect 5.2 6.4 5.5 5.8
Store local 5.8 6.5 5.8 6.0
Store global 2.6 1.1 1.0 3.3
Store indirect 4.2 3.9 Tol 4.0
Operators 5.6 5.7 4.8 5.9
Comparators 3.9 4.4 5.6 3.7
Jumps 7.3 7.7 9.3 6.2
Calls 6.4 8.1 14,5 6.9

Total counts (180%) 11852 7370 7936 2814

Instructions are executed by a micro-coded program called the
Interpreter, which may well be expressed in Modula; this
algorithmic definition of the Lilith instruction set has proved
to be extremely valuable as interface between the micro-
programmer and the compller designer.

9. The Lilith hardware structure

The following requirements determined the design of the hardware

most significantly:

- fast {mplementation of the M-code interpreter, in particular
of its stack architecture,

- the need for efficient implementation of the bitmap
instructions which involve a large amount of bit pushing and
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partial word accesses (bit addressing).

- high bandwidth between memory and display for continuous
refreshing.

~ the desire for a simple structure with a relatively large,

homogenous store.
- ease of serviceability.

The computing power required by the bitmap {nstructions
eliminated the choice of a one-chip processor. An even stronger
reason agalinst such a choice was the project's purpose to find a
hardware architecture truly sultable for use with code compiled
from a high-level 1language. The bit-slice processor Am298}
offered an ideal solution between a one-chip processor and the
complete design of a unit built with SSI and MSI components. It
allows for a basic Instruction cycle that is about a fourth of a
memory cycle (158 ns)., This Is a good relation considering the
average amount of processing required between memory accesses.

The processor is bullt around a 16-bit wide bus connecting the
arithmetic-logic unit (ALU) with the memory for transfer of data
and addresses. Also connected are the fnstruction fetch wunit
(IFU), the disk and display controllers, and the interfaces to
the standard low-speed I/0 devices keyboard, Mouse, and serial
V24 (RS232) line. Bus sources and destinations are specified in
each micro-instruction by 4-bit fields which are directly
decoded. The bus uses tri-state logic.

The refreshing of the full screen requires a signal with a
bandwidth of 13 MHz, {f 1interlacing and a rate of 5@ half
pictures per second is assumed. This implies that on the average
one 16-~bit word has to be fetched every 1.1 us, which {implies
that memory would be available to the processor about 58% of the
time, This unacceptably low rate calls for a memory with an
access path wider than 16 bits, It was decided to implement a
64-bit wide memory.

A third candidate for direct memory access {s the instructlon
stream., Like the display, this port requires sequential reading
only and therefore can benefit from a wide access path feeding
an Internal buffer. This organization reduces the average time
that the memory 15 devoted to display and instruction fetching,
1.e. where it s inaccessible to the data port of the main
processor, to about 10%. The overall structure of the Lilith
hardware 1is shown in Fig. 9. Its heart Is the microcontrol unit
(MCU) which contains the c¢lock and controls the {nstructlon
stream,

9.1 The micro-control unit

The micro-control unit (MCU) consists primarily of a memory for
the microcode, a micro- instruction register (MIR), an address
incrementer, and some decoding logic. A micro- instruction
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consists of 4@ blts; {ts formats are shown in Fig. 18. The
micro-instruction address is a 12 bit integer, hence the memory
may have at most 4K locations. Actually, only 2K are used and
implemented as a read-only store (ROM). An additional 2K RAM may
be supplied. Approximately 1K is used by initialization routines
(bootstrap loader) and the M-code interpreter, and 1K is needed
for the bitmap routines and the floating-point instructions.

Flg. 11 shows the structure of the micro-control unit., The next
instruction's address 1s taken from one of several sources:

- the {ncrementer (normal case)

- an address stack (subroutine return)

- the current instruction (microcode jump)

- a table of addresses of routines which correspond to M-codes
- according to a pending interrupt request.

The addresses are generated by Am2911 bit-slice controllers
which contain an incrementer and a short stack for subroutine
return addresses. For jumps, the next address is supplied from
sources external to the 2911. Conventional Jjumps take the
address directly from the Instruction register (MIR). Exceptions
are the jumps to the start of the microcode routine representing
the next M-code Iinstruction. Here the address is taken from a
ROM which maps the 8-~bit M-code into a 12-bit address., This
exception Is signalled by a micro-instruction whose source fleld
value causes the address to be selected from the map ROM. An
exception to this exception occurs If an (unmasked) interrupt
request is pending, in which case the next address is the fixed
number assigned to the requesting 1line. Thereby the M-code
sequence can be i{nterrupted without requiring any additional
micro-instructions, and the transition to the next micro-
instruction routine is initlated by a single instruction at the
end of each routine,

A tag blt of each micro-instruction determines whether {t ls to
be interpreted as a regular or as a jump Instruction., :During
execution - of the latter the main processor {s disabled. Jumps
are conditional upon the state of the main processor's condition
code register determined by the ALU's result computed during the
previous cycle,

9.2 The arithmetic loglic unit

The ALU's heart is a 298t bit-slice processor. It contains the
logic for integer arithmetic (addition) and for bit-parallel
logical operations, and a set of 16 fast registers. Half of them
are used for global state variables of the M-code 1interpreter,
the others as work reglisters local to each microcode routine.
The 298} core is augmented by two facilities dictated by the
requirements of the stack architecture and by the bitmap
routines: a fast stack memory and a barrel shifter (Fig. 12).
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The fast stack is a store of 16 locations (16 bit wide) and an
address -incrementer/decrementer. This memory holds the
intermedlate results during evaluation of expressions and
Statements, and must be regarded as logically being part of the
(maln) stack, but physically separate. Load instructions fetch
data from the (maln) stack in memory and push them onto the fast
expression stack. Store instructions pop the expression stack
and deposit data 1in main memory. As a consequence, each such
Instruction takes a single main memory cycle only. More
precisely, data loaded from and stored into the main stack ara
transferred to and from a reglster in the 2981 processor [tself,
while during the same cysle this T-reglster is saved (or
restored) into {from) the expression stack:

Load: push T onto stack; Bus => T
Store: T =-> Bus; pop stack into T

Operations such as addition, comparison, AND, OR, etc., can also
be performed in a single cycle, because both operands are
immediately accessible:

Add: T + top stack -> T; pop stack

The hardware represents a qgenuine stack ln so far as the current
stack top is the only accessible element, and that Its address
s inaccessible to the programmer. This address {s generated by
a 4-bit up/down counter and directly fed to a 16x16 high-speed
RAM. A slight complication arises because address lncrementation
for a pop must occur before the data fetch, whereas the
decrementing for a push must occur after the store. However,
both address counting and data access must be performed during
the same clock cycle. The solution ls found in using an extra
adder and to operate according to the following scheme:

push: DEC(x); S[(x+1]) := data
pop: INC(x); data := S [x]

The circult of the entire stack mechanism Is shown in Fig. 13.
It may be surprising that the fast stack has a depth of only 16.
In practice, this proved to be ample. It should be noted that
the compiler can keep track of the number of stack locations
loaded, and hence no runtime stack overflow can occur, nor need
it be monitored. The stack is empty after execution of each
statement, In the case of function procedures, the expression
stack has to be saved Into the main stack before, and restored
after the call. Special M-code instructions are provided for
this purpose.

The barrel shifter is prefixed to the input lines of the 2981
processor. It allows the rotation of data by any number of bit
positions between @ and 15. Together with the logical
instructions (AND, OR) it provides the necessary speed for
partial word handling extensively used in all bitmap operations.
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It ls designed such that it can also generate masks of @ to 15
bits 1in one cycle. The shift count (mask length) can either be
taken from a field in the micro-instruction itself, or from a
special 4-bit shift count register, also contained in the ALU.

9.3. The memory

The memory is built with 16K dynamic RAM <chips distributed on
four boards, each being organized as a 16K*32 block., For
reading, 32 bits are accessed simultaneously from two of the
four boards. Multiplexors select 8 of the 32 bits for output to
the processor bus via the so-called CPU port. For writing, the
same connection 1is used, and the data are fed to four chips in
parallel, of which only one is enabled through the chip select
signal. Fig. 14 shows the scheme for two boards; together they
represent a 64K*16 bit memory for writing, or a 16K*64 bit
memory for reading..

The choice of a 64-bit wide access path guarantees the necessary
memory signal bandwidth, but it also poses significant
electrical problems that should not be underestimated. Their
mastery Is an order of magnitude more difficult than the
handling of conventional 8-bit microcomputer systems,

Processor and display operate asynchronously. Hence, an arbiter
mechanism is needed for controlling memory access., It can easily
be extended to accommodate several instead of only two ports,
Each port is assigned a fixed priority, and the request from the
source with highest rank among those pending is honoured. Fig.
15 shows the circult used; it contalns cascaded priority latches
that retaln posted requests. Also shown Is the circuit used for
the synchronization of a requestor (the CPU port as an example)
and the memory, which operate on separate clocks. The priority
latch is common to all ports, the other parts are individually
replicated for each port. Flg. 16 shows the signal timing: If
the port requests a memory cycle, the bus data, representing an
address, are latched in the memory address register MAR, the
port is marked busy, and the request 1Is passed on to the
arbiter. Unless ‘a request with higher priority i{s present, the
signal CPU.SEL goes high, indicating that the memory cycle now
started belongs to the CPU port and MAR is gated to the address
lines. When terminated, the signal CLR resets the busy latch,
Indicating to the polling CPU that its request has been served.

9.4. The instruction fetch unit

Instructions are fetched via a separate memory port controlled
by the instruction fetch unit (IFU). This unit contains its own
address registers (PC,F) and an B8-byte buffer. The buffer can be
regarded as a small cache memory and 1s particularly effective
because access is mostly sequential. Reloading occurs when
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either the buffer is empty, or when a new address is fed to the
PC by a' control instruction. The IFU contains its own address
incrementer {the PC register is a counter) and an adder forming
the sum of the PC and F values. Thls adder i{s 18 bits wide. A
byte ls fetched from the buffer and the address 1s incremented
whenever the micro-controller executes a jump enabling the map
ROM. Fig. 17 is a block diagram of the IFU.

The Mouse is a device to designate positions on the display
screen. It operates on the principle that movements of the
operator's hand on his desk are sensed, rather than on the
recording of precise, absolute coordinates. A cursor is
displayed (by appropriate programming) on the screen, changing
its position according to the signals recelved from the Mouse.
Hence, positioning of the cursor can be as accurate as the
display's resolution allows, without requiring a high-precision
digitizer device. The Mouse s also equipped with three
pushbuttons (eyes) and 15 connected to the keyboard by a thin
tail; hence its name.

The movements are transmitted via a ball to two perpendicular
wheels, whose "spokes" are seen by a light sensor. The direction
of their turning iIs perceived by sampling two signals received
from spokes which are offset. If we combine the two binary
signals and represent them as numbers to the base 4, the wheels'

turning results in sample value sequences 0,2,3,1,8, ... or
2,1,3,2,0, ... depending on the sense of their rotation (see
Fig. 18).

The interface for the Mouse contains two counters for the x- and
y-coordinates., They are incremented or decremented whenever a
transition of the input signals occurs as indicated by the two
above sequances. A state machine registers the signal values
sampled at two consecutive clock tlcks; a ROM 1is wused to map
them into the necessary countiag pulses.

The Monitor is an additional unit which is not present in the
computer under normal circumstances, but for which nevertheless
a permanent slot {s reserved, such that {t can be inserted any
time. It represents a small computer of [ts own, and it has the
capability to take full control over the Lilith processor. It is
therefore used for servicing when the Lilith hardware fails, and
it played a most crucial role during the entire development and
debugging phases of the Lilith computer.

The Monitor's heart is a Motorola 6882 one-chip microprocessor,
augmented by a 2K byte ROM and a 4K byte RAM, Iinterface
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registers to the Lilith hardware, and a serial line interface to
a terminal (UART). 1Its block dlagram 1Is given in Fig. 19, The
Monitor can

- read the microinstruction register (MIR)

- supply the next microinstruction (disabling MIR)

- read the micro-program counter (2911}

- supply the next instruction address (disabling 2911)
- read the processor bus

- feed data to the processor bus

- disable the processor clock (halt)

- 8end clock pulses (single or multiple step)

For debugging and servicing, an elaborate set of programs was
developed. In addition to a standard "operating system" residing
in the ROMs, test programs can be loaded into the RAM from a
terminal. We extensively used an HP 2645A terminal with tape
cassettes as our program library store., When a new Lilith
machine is to be tested, the Monitor ls used to first test the
MCU board, then to test the ALU board, thereafter the memory (in
conjunction with MCU and ALU), then the 1IFU, and finally the
interface boards. The Monitor not only made a front panel
superfluous, but allowed the construction of the entire computer
with the aid of only an oscllloscope and, very rarely, a small
logic state analyzer.

9.7. The physical layout

The Lilith computer is designed to fit beside or underneath a
table on which the 15"-display, the keyboard, and the mouse are
placed. The cabinet has a height of 74 cm; it is 43 cm wide and
55 cm deep. The disk cartridge is accessible from the front.

The electronic components are placed on 14 boards housed in a
rack with dimensions 42*35%*3@ cm. One board each contains the
microcontrol unit, the arithmetic-logic unit, the processor part
and interfaces to keyboard, mouse, and serial data line, the
instruction fetch unit, the display interface and the disk
interface. Four boards contaln the maln memory. Another board
slot is reserved for a 2K*408 microcode RAM, one for the Monitor,
and 5 slots are free for future experiments with other units or
interfaces. Thls makes the computer suitable as an object for
experimentation on the hardware as well as the software level.

The remaining space In the cabinet is taken by the disk drive
and the power supply. Conventional linear power supplies were
built after several disappointing -experiments with modern
switching power supplies that offer a much improved efficiency.
They turned out to be unable to cope with the European 220
Volts.
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The personal computer leads to an entirely new computing
environment. Due to the high bandwidth of information between
its user and hls tool, a close Interactlon Is possible that
cannot be provided by a central, remotely accessed facility. The
personal computer is much more than an "intelligent terminal”,
because 1t puts the «computing power near the user. A
particularly attractive Eeature (s i{ts constant avallability,
and consequently the owner's Independence of a computing
center's service hours,

Interactive usage is of particularly high wvalue 1{in the
development of softwara, where text edliting, compiling, and
testing are the prime activities. In our experlence, a personal
computer increases the effectiveness of a competent software
engineer by an order of magnitude. I stress the attribute
"competent", for he needs the wisdom t> leave his tool and
retreat to quiet deliberations when deeper problems of
algorithmlc desiqn appear. For the less competent engineer, the
personal computer amplifies the danger of seduction to
programminy by trial and error ("hacking"), a method that s
unazceptable in professional software engineering.

Tt hes now become a wldely accepted view that the software
enginger's notational tool must be a high-level programming
language. When large, complex systems are the objective, the
tool must support modularization and the specification of
interfaces. We have designed the language Modula-2, a more
modern verslon of Pascal, with the principal addition of a
module structure. Our implementation connects this feature with
the Facility of separate complilatlion. Separate compilation,
however, 1is not lndependent compilation, On the contrary, the
compiler must fully check the consistency of the separately
compiled modules as If théey were written as a single plece of
text. The separation of global modules into definition and
implementation parts makes it possible to define those aspects
of a module that are significant for {ts clients apart E£rom
those that are private to its Implementatlon. It reinforces the
strategy of Elrst breaking down a planned system Into modules,
then to define thelr Interfaces with the goal to keep them
"thin", and finally to let the members of the programming team
implement the modules with relative independence.

The exclusive use of a high-level lanquage makes It possible to
design a computer architecture without regard of its
suitability to assembler coding. The resulting architecture is
organized around a stack. The Instruction set 1Is designed to
provide a high density of code, largely due to the use of
variable address length.

It ils particularly attractive to design such an archltecture and
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instruction set, {f no conventional computer must be used for
its interpretation. We have therefore also undertaken the design
of a hardware system with the purposes to interpret this code
efficiently and to accommodate the wuse of a high-resolution
display. The latter requires a high memory bandwidth and bursts
of fast computation. The implementation of a microcoded
interpreter and the inclusion of a few special instructlons for
bitmap handling appears to be an ideal solution. These
fnstructions correspond to microcoded routines that perform the
necessary bit-pushing with greatest efficlency.

As an experiment to Integrate the design of a programming
language - the software engineer's notational tool -~ the
development of {ts compller and environment, the design of a
computer architecture and instruction set, and the construction
of the hardware - the software engineer's physical tool - the
project has been successful and exciting. The resulting system
is, of course, not without its deficiencies. Our consolation is
that, 1f we did not know of items that should have been done
differently, we would not have learned through our research.
Also, the project had to be conducted with severe restrictions
on manpower. This had the benefit that no significant management
problems were encountered.

As far as the hardware is concerned, an additional constraint
was the limited availability of modern technology. It was
therefore declded to rely on commercially avallable TTL chips
only, apart from MOS technology for the memory. The integrated,
top-down design from software to hardware outlined by this
project, s especlally relevant in view of the future role of
VLSE technology. Its unlimited possibilities require that the
designer obtain new criteria guiding his objectives. The top-
down approach crossing the soft/hardware boundary tells the
hardware designer what {s needed rather than the hardware
customer what is avallable. An aspect of this project that we
were unable to tackle was the design of LSI chips representing
the essential units of the Lilith computer, incorporating the
unconventional aspects of {ts archltecture, The chip count (as
well as power supply problems) could thereby have been reduced
quite drastlcally. We hope that someone better equipped for the
task will pursue this challenge.
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Registers: L pointer to local data segment
G pointer to global data segment
S pointer to top of stack
H pointer to stack limit
F pointer to current code frame
PC painter to current instruction
P pointer to current process
M interrupt mask
Framo Adr Table G F
Data frame Code frame
global data
Code Pt
P —

[j_. Caode P2
process

descriptor

Code PJ
local data PC

(work stack) E——

TOP

LiMIT

)

Fig. 7. The Lilith architecture
local heap
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Fig. 8. Lilith instruction formats
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3 3 3 4 2 4 3 8
Dst | Fct | RS |C B SM | SC PC Constant

3 3 3 2 4 2 4 3 4 4
Dst | Fct | RS |C B SM | 8C PC BusDest | BusSrc

12 8 5 3 10
Jump address CondMask PC

Dst, Fct, RS, A, B: 2901 control fields

PC: 2911 control field

SM, SC: Shift mode and count

S: Stack enable

Fig. 10. The micro-instruction formats
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Appendix 1

The following Modula~2 program interprets M-code instructions
and serves as a high-level definition of the Lilith computer's
instruction set and architecture. A few comments are necessary
to cover details that are not fully described by the program.

1. The array varlables stk and code stand for the data and
program stores respectively. We assume that on an actual
computer they represent the SAME physlical memory. The array
indices then denote memory addresses., Access to the code
fnvolves the wuse of the base address F (and an 18-bit wide
addition).,

2. All checks against arithmetic overflow, storage overflow, and
access with wvalue NIL are omitted from the program in the
interest of clarlty and {n order not to obscure the essentials
of the interpretation algorithm,

3. Certain instructions are explained in loose English instead
of precise Modula statements. Among them are the bitmap handling
instructions, which actually constitute tairly complex
algorithms, and also operations 1like shifts, packing, and
unpacking, which are considered as primitives, and hence not to
be defined contortiously Iin terms of even lower primitives.

4., The functions low(d), high{d), and pair(a,b) are introduced
to ‘denote selection of a part of a double word and construction
of a double word. The Ffunctions Dtrunc and Dfloat denote
conversion of floating-point values into double word integers
and vice-versa. All these functions are NOT available in Modula-
2. Also, sets of the form |[m..n} are used, although proper
Modula-2 does not allow expressions to be used within set
constructors.

5. The detailed specification of I/0 instructions is suppressed.
It 1s considered not to be part of the general M-code
definition, but should be allowed to vary among different
implementations accordling to the avallable hardware. This |is
particularly true for the Instructions DSKR, DSKW, SETRK used
for accessing the disk.

5. The interrupt mechanism is described in a rather loose manner
and requires additional explanation: At the start of each
interpretation cycle, the Boolean variable REQ determines
whether or not an Interrupt request should be honoured. REQ
means “at least one of the unmasked interrupt 1lines (numbered
8...15) is low". If we denote the request lines by the set
variable Regqlines and the presence of a request on line i by
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"NOT (!l IN Reqlines)", then REQ can be expressed as
REQ = (Reglines + Mask % {8 .. 15})

The value Mask is the wunion of the mask register M and a
variable called DevMask (Mask = M + DevMask). This global
variable allows a program (typically the operating system) to
shut out any {or all) devices from interrupting. In the Lilith
computer, DevMask is allocated in main memory at location 3. The
value ReqNo determines the interrupt line whose request is beling
accepted. It determines the transfer vector used by the TRANSFER
operation., The value ReqNo Is defined as the maximum { such that
"NOT (1 IN ReqLines + Mask).

Table of instructions

2 40 108 149 289 249 3pa 49
2 LI LLW LGW LSW@ LSW .. READ FOR! MOV
] LI LLD LGD LSW1 LSD WRITE FOR2 tMp
2 LI2 LEW LGW2 LSW2 LSD? DSKR ENTC ooT
3 LI3 LED LGW3 LSW3 LXFW DSKW EXC REPL
4 LI4 LLW4 LGW4 LSW4 LSTA SETRK TRAP BBLT
5 LIS LLW5 LGW5 LSW5 LXB UCHK CHK DCH
6 LI6 LLW6 LGW6 LSW6 LXW CHKZ UNPK
7 LI7 LLW7 LGW7 LSW7 LXD SYS CHKS PACK
10 Lrs LLW8 LGWS8 LSW8 DADD ENTP EQL GB
N LIS LLWS LGWS LSW9 DsuB EXP NEQ :h
12 LIQ LLW1@ LGW19D LSW12 DMUL ULSS LSS ALOC
13 LI LLW11 LGW11 LSwW11 DDIV ULEQ LEQ ENTR
14 LIi2 LLW12 LGW12 LSW12 UGTR GTR RTN
15 LI13 LLW13 LGW13 LSW13 UGEQ SEQ cX
16 LI4 LLW14 LGW14 LSW14 DSHL TRA ABS ClI
17 LI5S LLW15 LGW15 LSW15 DSHR RDS NEG CF
20 LIB SLW SGW SSW@ SSW LODFW OR cL
21 SLD SGD SSW1 SSD LODFD XOR cLl
22 LW SEW SGW2 SSW2 ssDe STORE AND cL2
23 LID SED SGW3 SSW3 SXFW STOFV coM cL3
24 LLA SLW4 SGW4 SSW4 TS STOT IN cL4
25 LGA SLW5 SGW5S SSW5 SXB COPT LIN CLS
26 LSA SLW6 SGW6 SSW6 SXW DECS MSK CcLé
27 LEA SLW?7 SGW7 SSW7 SXD PCOP NOT cL?
30 JpC SLW8 SGW8 SSwW8 FADD UADD ADD cL8
31 Jp SLWS SGW9 SSW9 FsuB UsuB suB cL9
32 JPFC Swwie SGW14g sSswWig FMUL uMuL MUL cLY)
33 JPF SLW11 SGW11 SSW11 FDIV UDIV DIV cLie
34 JPBC SLwi2 SGW12 SSW12 FCMP UMOD CLli2
35 JPB SLW13 SGW13 SSW13 FABS ROR BIT cL13
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MODUL
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ORJP SLW14 SGW14 SSW14 FNEG SHL NOP CL14
ANDJP SLWI15 SGW15 SSW15 FFCT SHR MOVF CL15

rved locations:

(F-register of module @)
(initialization flag of module 9)
{string pointer of module @)
device mask
P-register
saved P-register
boot flag
17 trap vector
21 interrupt vector for line 8 (clock)
23 interrupt vector for line 9 (disk)

37 interrupt vector for line 15
.177 data frame table

E Interpreter; (*N,Wirth, Ch.Jacobi; Feb.81%)
ST tlc = 168; (*trap location adr*)
dft = 498; (*data frame table adr*)
{(*global state variables*)
PC: CARDINAL; (*program counter*)
IR: CARDINAL; (*instruction register¥)
F CARDINAL; (*code frame base address*)
G CARDINAL; (*data frame base address*)
H: CARDINAL; (*stack limit address*)
L: CARDINAL; (*local segment address*)
S CARDINAL; (*stack pointer?*)
P CARDINAL; (*process base address*)
M: BITSET; (*process interrupt mask*)
REQ: BOOLEAN; {(*interrupt request*)
RegNo: CARDINAL; (*request number, 8..15%)

*auxiliary variables used over single Instructions only*)
{, j, k: CARDINAL;

sz, adr, low, hi: CARDINAL; (*used in FOR, ENTP, PCOP*)
sb, db, sbmd, dbmd, fo: CARDINAL; (*display handling*)
x, Y: REAL;

stk: ARRAY [(8..1777778B) OF CARDINAL; (*data store*)

MODULE InstructionFetch;

I
E

MPORT F,PC;
XPORT next, next2;

VAR code: ARRAY (0..77777B] OF [@..255];
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PROCEDURE next(): CARDINAL;
BEGIN

INC(PC); RETURN code[4*F+PC-1)
END next;

PROCEDURE next2(): CARDINAL; ({*get next two code bytes*)
BEGIN
INC(PC, 2); RETURN code{4*F+PC-2)*%400B + code[4*F+PC-1])
END next2;
END InstructionFetch;

MODULE ExpressionStack;
EXPORT push, pop, Dpush, Dpop, empty;

VAR sp: CARDINAL;
a: ARRAY [@..15] OF CARDINAL; (*expresslon stack®)

PROCEDURE push{x: CARDINAL);
BEGIN a(sp] := x; INC(sp)
END push;

PROCEDURE pop(): CARDINAL;
BEGIN DEC(sp):; RETURN(al[sp])
END pop;

PROCEDURE Dpush(d: REAL);
BEGIN a[spl := high(d); INC(sp); a[sp) := low(d); INC(sp)
END Dpush;

PROCEDURE Dpop(): REAL; )
BEGIN DEC(sp,2); RETURN palr(alspl, a[sp+1])
END Dpop;

PROCEDURE empty() :BOOLEAN;
BEGIN RETURN sp = 0
END empty;

BEGIN sp := 8;
END ExpressionStack;

PROCEDURE mark(x: CARDINAL; external: BOOLEAN);
VAR {: CARDINAL;
BEGIN i := §;
stk[S] := x; INC(S)
stk[S] := L; INC(S)
IF external THEN

(*static link¥)
(*dynamic link*)

.
i
i

stk[S} := PC+1000008B ELSE stk([S] := PC
END ;
INC(S,2); L := |
END mark;

PROCEDURE saveExpStack;
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VAR c: CARDINAL;

BEGIN c := B; (*expression stack counter¥*)
WHILE NOT 2mpty() DO

stk(S] := pop(); INC(S); INC(c);

END ; :
stk[S] := ¢; INC(S)

END saveExpStack;

PROCEDURE restoreExpStack;
VAR c: CARDINAL;
BEGIN DEC(S); ¢ := stk([S];
WHILE ¢>@ DO
DEC(c); DEC(S); push(stk[S])
END
END restoreExpStack;

PROCEDURE saveRegs;
BEGIN saveExpStack;
stk{P ] := G; stk(P+1] := L;
stk[P+2] := PC; stk[P+3] := CARDINAL(M);
stk{P+4]) := S; stk[P+5] := H+24;
(* stk[P+6] is reserved for error code *)
(* stk(P+7] is reserved for error trap mask *)
END saveRegs;

PROCEDURE restoreRegs(changeMask: BOOLEAN);
BEGIN
G := stk{P}; F := stk[G];
L := stk{P+1]); PC := stk(P+2];
IF changeMask THEN M := BITSET(stk(P+3]) END ;
8 1= stk[P+4]; H := stk[P+5]-24;
restoreExpStack
END restoreRegs;

PROCEDURE Transfer(changeMask: BOOLEAN; to, from: CARDINAL);

VAR j: CARDINAL;

BEGIN
j := stk(to]; saveRegs; stk{from] := P;
P := j; restoreRegs(changeMask)

END Transfer;

PROCEDURE Trap{n: CARDINAL);
BEGIN
IF NOT (n IN BITSET(stk{P+7]))) THEN
stk(P+6] := n;
Transfer (TRUE, tlc, tlc+1)
END
END Trap;

BEGIN (* readBootFile *)
P := stk[4]; restoreRegs(TRUE);
LOOP
IF REQ THEN Transfer(TRUE, 2*RegNo, 2*RegNo+1) END
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IR := next();y

CASE IR .OF
g8 .. 17B: (*LI8 - LI?5 load immediate*) push(IR MOD 15)
208: (*LIB load immediate byte*) push(next{)) |
22B: (*LIW 1load immediate word*) push(next2()) |
23B: (*LID load immediate double word¥)
push(next2()); push(next2(})) |
24B: (*LLA load local address*) push(L+next()) |
25B: (*LGA 1load global address*) push(G+nex%()) |
268: (*LSA load stack address*) push(pop({)+next()) |
27B;: {(*LEA load external address*)
push(stk(dft+next()]+next()) |
308: (*JPC Jjump conditional¥) -
IF pop() = @ THEN PC := PC + next2{)
ELSE INC(PC,2)
END |
31B: (*JP jump*) PC := PC + next2() |
32B: (*JPPC jump forward conditlonalt*)
IF pop() = @ THEN PC := PC + next() ELSE INC(PC) END
33B: (*JPF jump forward*) PC := PC + next{) |
34B: (*JPBC Jjump backward conditionalt*)
IF pop() = & THEN PC := PC ~- next() ELSE INC(PC) END
358: (*JPB jump backward*) PC := PC - next() |
36B: (*ORJP short circulit OR *)
IF pop() = @ THEN INC(PC)
ELSE push(1); PC := PC+next()
END |
37B: (*ANDJP short clrcult AND *)
IF pop() = @ THEN push(3); PC := PC+next()
ELSE INC(PC)
END |
ABB: (*LLW load local word*) push(stk{L+next()]) !
418: (*LLD 1load local double word*)
i 1= L+next(); push(stk[i]); push(stk({i+1]) |
42B: (*LEW 1load external word¥*)
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push(stk(stk{dft+next{)}+next{))) !
43B: (*LED load external double word *)

i 3= stk{dEt+next()]+next();

push({stk([i)); push(stk(i+1]) |
448 .. 57B: (*LLW4-LLW15%*) push(étk[L + (IR MOD 16)]) |
6@B: (*SLW store local word*) stk{L+next()] := pop() |

61B: (*SLD store local double word*)
I := L+next(); stk{i+1] := pop(); stk{i} := pop() |}

62B: (*SEW store external word¥*)
stk[stk[dft+next()]+next()]) := pop() |

63B: (*SED store external double word *)
i := stk{dft+next()]+next();
stk(i+1] := pop(); stk(i]) := pop{) |

64B .. 778: (*SLW4-5LW15 store local word*)
stk[L+(IR MOD 16)] := pop() |

100B: (*LGW load global word*) push(stk([G+next()]) |

1$1B: (*LGD 1load global double word*)
i := next()+G; push(stk(i]); push(stk(i+1]) |

102B .. 1178: (*LGW2 - LGW15 1load qlobal word®*)
push(stk(G + (IR MOD 16)]) !

120B: (*SGW store global word*) stk{G+next()}] := pop() I

121B: (*SGD store global double word?*)
1 := G+next(); stk([i+1] := pop(); stk(l] := pop() |

1228 .. 137B: (*SGW2 - SGW15 store global ward*)
stk(G + (IR MOD 16)] := pop{) |

149B .. 157B: (*LSW@ -~ LSW15 1load stack addressed word*)
push(stk{pop()+ (TR MOD 16)]1) |

168B .. 177B: (*SSW@ - SSW15 store stack-addressed word*)
k := pop(); 1 := pop()+(IR MOD 16); stk{i] := Kk

20¢8: (*LSW 1load stack word¥)
i := pop() + next(); push(stkfl}]) |

2818: (*LSD load stack double word*)
i := pop() + next(); push(stk{i}); pushi{stk[i+1]) |

283B: (*LXFW load indexed frame word*)
k := pop() + pop{)*4; push(stk(k]) |
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2828: (*LSD# load stack double word*)
1 := pop(); push(stk(1]); push(stk({i+1]) |

2904B: (*LSTA load string address *) push(stk{G+2)+next()) |

205B: ("LXB load Indexed bytew)
i := pop(); J := pop(); k := stk(j + (1 DIV 2)];
IF { MOD 2 = @ THEN push(k DIV 4@@B)
ELSE push(k MOD 4@8@B)

END |

2068B: (*LXW load indexed word*)
{ := pop()+pop(); push(stk(i]) |

2078: (*LXD load indexed double word *)
{ 1= 2*pop()+pop(); push(stk(i)); push(stk{i+1]) |

2168B: (*DADD double add. Subsequent operators for double
words denote unsigned ‘fixed-point arithmetic,
although the program shows REAL operands*)
y := Dpop(); x := Dpop(); Dpush(x+y) |

211B: (*DSUB double subtract?*)
y := Dpop(); x := Dpop(); Dpush(x-y) |

212B: (*DMUL double multiply*)
3 t= pop(); 1 t= pop{); (* x := i*j *) Dpush(x} |
213B: (*DDIV double divide*)
J = pop(); x := Dpop();
(* k := x DIV j; § :« x MOD j *) push(l); push(k) |

216B: (*DSHL double shift leftw*)
x := Dpop(); (*shlft x left 1 bit*) Dpush(x) |

2178: (*DSHR double shift right*)
x := Dpop(); (*shift x right 1 bit*) Dpush(x)

22@0B: (*SSW store stack word*)
k := pop(); 1 := pop{)+next(); stk{i) := k |

221B: (*SSD sgtore stack double word*)

k := pop{); J := pop(); i := pop()+next();
stk{i] := j; stk[i+1] := k |

222B: (*SSD@ store stack double word*)

k := pop(); 3 := pop(); | := pop();
stk{1] := j; stk(i+1) := k |

223B: (*SXFW store indexed frame word*)
i := pop(); k := pop() + pop()*4; stklk] := { |
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224B: (*TS test and set¥)
1 := pop(); push(stk(1]); stk([i] := 1 |

2258: (*SXB store indxed byte*)
k := pop(); I := pop(); 3 := pop() + ({1 DIV 2);
IF i MOD 2 = @ THEN
stk[j] := k*408B + (stk(3j] MOD 4@¢8)
ELSE stk[j) := (stk[3j) DIV 4@8B) * 48@8B + k
END |

226B: (*SXW store indexed word*)
k t= pop(); 1 := pop()+pop(); stk[i] := k |

227B: (*SXD store indexed double word*)
k := pop(}; J := pop(); 1 := 2*pop()+pop();
stk([1] := §; stk[i+1]) := k |

230B: (*FADD floating addr)
y := Dpop(); x := Dpop{); Dpush(x+y) |

231B: (*FSUB floating subtract*)
Y i= Dpop(); x := Dpop(); Dpush(x-y) |

232B: (*FMUL floating multiply»*)
Y := Dpop(); x := Dpop(); Dpush(x*y) |

233B: (*FDIV floating dividev)
y := Dpop(); x := Dpop(); Dpush(x/y) |

234B: (*FCMP floating compare*)
x := Dpop(); Yy := Dpop();
IF x > y THEN push(8); push(1l)
ELSIF x < y THEN push{1); push(8)
ELSE push(@); push(@)
END |

235B: (*FABS floating absolute value*) Dpush(ABS(Dpop())) |
236B: (*FNEG floating negative*) Dpush(-Dpop()) |

237B: (*FFCT floating functions*) { := next{);
IF {=3 THEN Dpush{FLOAT(pop()))
ELSIF i=] THEN Dpush(DFloat(Dpop())).
ELSIF i=2 THEN push(TRUNC(Dpop()))
BL?IF {=3 THEN Dpush(Dtrunc(Dpop(), pop()))
END .

2408: (*READ*) i := pop(); k := pop();
(* stk[i] := input from channel k *) |

241B: (*WRITE*) i := pop(); k := pop();
(* output i to channel k *) |



2428:
243B:
244B:

2458B:

2478B:

250B:

251B:

252B:

2538:

2548:

2558:

2568:

2578:

2698:

261B8:

2628:

2638:

2648B:

265B:
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(*DSKR disk read*) |
(*DSKW disk write*) |
(*SETRK set disk track*) |

{*UCHK*) k := pop(); j := pop(); 1 := pop(}); push(l);
IF (i < j) OR (1 > k) THEN Trap(4) END |

(*SYS rarely used system functions*) |

(*ENTP entry priority*)
stk{L+3] := CARDINAL(M); M := {@..next()-1} |

(*EXP exit priority"*) M := BITSET(stk{L+3}]} |

(*uLsS*) J := pop(); 1 := pop()y
IF { < j THEN push(l) ELSE push(@) END

(*ULEQ*) J := pop(); 1 := pop()i-
IF { <= 3 THEN push(1) ELSE push(@) END |

(*UGTR*) j := pop(); 1 := pop();
IF i > j THEN push()) ELSE push(@) END |

(*UGEQ*) j := pop(}; i := pop{);
IF { >= j THEN push{)) ELSE push(®) END |

(*TRA coroutine transfer®)
Transfer (BOOLEAN(next()), pop(), pop()) |

(*RDS read string¥) k := pop{); I := next();
REPEAT

stk(k) := next2(); INC(k); DEC({)
UNTIL 1 < 8 |

{*LODFW reload stack after function return*)
Il := pop(); restoreExpStack; push(i) |

(*LODFD reload stack after function return*)
1 := pop(); J := pop(); restoreExpStack;
push(j); push(i) |

(*STORE*) saveExpStack |

(*STOFV store stack with formal procedure on top*)
i := pop(); saveExpStack; stk([S] := i; INC(S) |

(*STOT copy from stack to procedure stack*)
stk(S] := pop{); INC(S) |

(*COPT copy element on top of expression stack*)
i := pop(); push(i); push(i) |
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266B: (*DECS decrement stackpointer*) DEC(S) |

2678B: (*PCOP allocation and copy of value parameter *)
stk[L+next(}] := S;
sz := pop(); k := S+sz; adr := pop();
WHILE sz>8 DO
stk[S] := stk[adrl; INC(S); INC(adr); DEC(sz)
END |

278B: (*UADD*)

pop(): i := pop(}; push(i+j) |

271B: (*USUB*) 3 pop(); | := pop(); push(i-j) |

272B: (*UMUL*) j

pop(); | := pop(); push(i*j) |

273B: (*UDIV*) j

pop(); 1 := pop(); push(i DIV j) |
274B: (*UMOD*) 3 := pop(); 1 := pop(); push(l MOD i) |

275B: (*ROR*) j := pop(); 1 := pop() MOD 15;
{* x 1= j rightrotated by i places *) push(k) |

276B: (*SHL*) j 1= pop(); i := pop() MOD 16;
(* k := j left shifted by i places *) push(k) |

i := pop() MOD 15;

277B: (*SHR*) j := pop();
shifted by i places*) push(k) |

(* k := j right

3@eB: (*FOR1 enter FOR statement *)
g i := next(); (* =@: up; >8: down ¥)
hi := pop(}); low := pop{(); adr := pop();
k := PC + next2();
IF ((1 = 8) AND (low <= hi)) OR

((1 # 8) AND (low >= hi)) THEN

stk[adr] := low;

stk([S] := adr; INC(S); stk(S] := hi; INC(S)
ELSE (* don't execute the FOR loop *)

PC := k
END |

3@1B: (*FOR2 exit FOR statement *)
hi := stk{S-1); adr := stk([S~2];
52 := INTEGER(next()); (* step range =-128..+127 *)
kK := PC + next2(); | := stk{adr]+sz;
IF ((sz >= @) AND ({1 > hi))
OR ((sz <= 8) AND (1 < hi))-
THEN (* terminate *) DEC(S,2)
ELSE (* contlnue *) stk[adr] := {; PC := K
END |

302B: (*ENTC enter CASE statement?)
PC := PC + next2{); k := popl():
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low := next2(); hi := next2();
stk[S) := PC + 2%(hi-low) + 4; INC(S);
IF (k >= low) AND (k <= hi) THEN
PC := PC + 2%(k~low+l)
END;
PC := PC + next2() |

3@3B: (*EXC exit CASE statement*) DEC(S); PC := stk[3] |
304B: (*TRAPY) 1 := pop(); Trap(i) |

3858: (*CHK*) k := pop(); 3 := pop(}; i := pop(); push(i);
IF (INTEGER(i) < INTEGER({j}) OR
(INTEGER (i) > INTEGER{k)) THEN Trap{4) END

396B: (*CHKZ*)
k := pop(); | := pop(); push(i);
IF i>k THEN Trap(4) END |

J07B: (*CHKS check sign bit¥)
k := pop(); push(k);
IF INTEGER{k) < @ THEN Trap(4) END '

313B: (*EQL*) j := pop(); | := pop();
IF { = j THEN push()) ELSE push(d) IND |

3118: (*NEQ*) j := pop(); i := pop();
IF i § j THEN push{1) ELSE push(?) END |

312B: (*LSS*) j := pop(); i := pop();
IF INTEGER(1) < INTEGER({j) THEN
push{1l) ELSE push(8)
END |

313B: (*LEQ*) j := pop(); 1 := pop();
IF INTEGER(i) <= INTEGER(Jj) THEN
push(!) ELSE push(3d)
END |

314B: (*GTR*) j := pop(); i := pop();
IF INTEGER(L) > INTEGER(J) THEN
push(l) ELSE push(9)
END |

315B: (*GEQ*) j &= pop(); I := pop(};
IF INTEGER(i) >= INTEGER(j) THEN
push (1) ELSE push(®)
END |

316B: (*ABS*) push(ABS{INTEGER(pop()})) }

317B: (*NEG*) push{-INTEGER(pop())) |
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320B: (*OR*) j r=pop(): i := pop();
push (CARDINAL(BITSET (1) +BITSET(}))) |

321B: (*XOR*) j := pop(); | := pop();
push(CARDINAL(BITSET (1) /BITSET(j))) |

3228: (*AND*) j := pop(); i := pop();
PuUsh (CARDINAL(BITSET (1) *BITSET(3j))) |

J23B: (*COM*) push(CARDINAL{{@..15}/BITSET(pop()))) |

324B: (*IN¥%) j = pop{(); i := pop();
IF { > 15 THEN push(a)
ELSIF | IN BITSET(j) THEN push(1)
ELSE push(@)
END |

325B: (*LIN load immediate NIL*) push(1777778) |
326B8: (*MSK*) j := pop() MOD 16; push(CARDINAL(([@..k=1})) |
3278: (*NOT*) { := pop(); push (CARDINAL({15}/(3})) |

33@B: (*ADD*) j := pop(); i := pop();
push (CARDINAL (INTEGER(i) + INTEGER(j))) |

331B: (*SuB*) j := pop{); i := pop();
push (CARDINAL(INTEGER (i) - INTEGER({j))) |

332B: (*MUL*) j := pop{); { := pop();
push (CARDINAL{INTEGER(i) * INTEGER()))) |

333B: (*DIV*) j := pop(); i := pop();:
push({CARDINAL(INTEGER(!) DIV INTEGER(j))) |

334B: (*MOD*) j := pop(); 1 := pop{);
push (CARDINAL (INTEGER(i) MOD INTEGER(j))) |

335B: (*BIT*). J := pop() MOD 16; (* k := {j} *) push(k) |
336B: (*NOP*) |

337B: (*MOVF move frame *) 1 := pop():
j = pop()+pop()*4; (*18 bits*)
k := pop()+pop()*4; (*18 bits*)
WHILE i>@ DO
stk[k] := stk[j); INC(k); INC(j); DEC(1)
END |

34¢B: (*MOV move block?*)
k t= pop(); j := pop(); i := pop();
WHILE k>@ DO
stk[i] := stk([j}; INC(1); INC(j); DEC(k)



3418:

3428:

343B:

3448:

3458:

3468:

3478:

35¢8:

3513:

3528:
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END |

(*CMP compare blocks*)
k := pop(); 3 := pop(); | := pop();
IF k=@ THEN push(2); push(2)
ELSE
WHILE(stk[i] ¥ stk[j]) AND (k ™ 7Y 20
INC(1l); INC(J); DEC(k)
END;
push{stk[1l])); push{st%([]]})
END |

(*DDT display dot*)

k 1= pop(); j := pop(); dbmd := pop{(); { := pop(

(* display point at <j,k> in mode | inslide
bitmap dbmd *) |

(*REPL replicate pattern *)

db := pop(): sb := pop(); dbmd-i= pop{): i := pop{

(* replicate pattern sb over block db inside
bitmap dbmd in mode 1 *) |

(*BBLT bit block transfer*)

sbmd := pop(); db := pop(); sb := pop();

dbmd := pop(); i := pop()

(* transfer block sb in bitmap sbmd to block db
inzide bitmap dbmd in mode i *) |

(*DCH display chactacter?)
j ¢= pop(); db := pop(); fo := pop(); dbmd := pop()
(* copy bit pattern for character j from font fo

to block db inside bitmap dbmd *) |

(*UNPK unpack*) k := pop(); J := pop{); i := pop();
(*extract bits i..j from k, then right adjust*)
push (k) |

(*PACK pack*)

k = pop{); J := pop(): i := pop(): adr := pop{);

(*pack the rightmost j-i+1 bits of k into positions
{..] of word stkladr] *) |

(*GB get base adr n levels down*)

L := L; 3 := next();
REPEAT

i := stk{i]; DEC(j)
UNTIL j=8;
push(i) |

(*GB1 get base adr 1 level down*) push{stk({L}) |

(*ALLOC allocate block*)
i := pop(): push(3); S := S + i;
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IF S > H THEN S := pop(); Trap(3) END |

3538: (*ENTR enter procedure*)
i := next{(); S := S+i;
IF S > H THEN S :a S-i; Trap(3) END |

354B: (*RTN return from procedure*)
S := L; L := stk[S+1]; 1 := stk[S+2];
IF i < 10009088 THEN PC := |
ELSE G := stk([S]; F := stk[G]; PC := | -~ 1@4@agen
END |

355B8: (*CX call external procedure*)
j := next(); { := next{);
mark (G, TRUE); G := stk{dft+]j];
F := stk[(G]; PC := 2*%{; PC := next2() |

356B: (*CI call procedure at intermediate levelt)
i := next(); mark(pop(), FALSE);
PC := 2%{; PC := next2() |

357B: (*CF call formal procedure*)
i := stk(S-1]; mark(G, TRUE);
j := | DIV 408B; G :> stk([dft+j];
F := stk([G]; PC := 2%({ MOD 420B); PC := next2()

360B: (*CL call local procedure*)
i := next(); mark(L, FALSE);
PC := 2*{; PC := next2() |

3618 .. 3778B: (*CL! ~ CL15 call local procedure*)
mark (L, FALSE); PC := 2*(IR MOD 16); PC := next2()
END
END (*LOOP*)
END Interpreter.
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Appendix 2

In order to provide a basls for measuring and comparing the
efficiency of {implementations of the 1language Modula-2, a
benchmark program is proposed. It measures selectlvely wvarious
specific language features. Instead of relying on a built-in
timing mechanism (which depends on an wunderlying operating
system and qulte likely impedes the program's portablility), the
program merely counts the number of times certain statements are
executed., Computation ls monitored and interrupted by the human
operator equipped with a stop watch. Each test 1Is selected by
typing its identifying character (a - o); the end of the test is
signalled by typing any character. Further details are to be
derived from the program listing.

The following figures have been measured for the Lilith, the
PDP-11/4@, and the Xerox Alto 2 computers, {(On the Alto, the
program was translated into Mesa). The timing period is
minute for each test, Implementors of Modula-2 are entouraged to
apply this test fully or partially to thelr system and to let us
know their results.

facility Lilith PpPDP~11/48 Alto 2

a empty REPEAT loop 21 184

b empty WHILE loop 334 185 116
¢ empty FOR loop 422 239 172
d CARDINAL arithmetic 187 94 54
e REAL arithmetic 130

£ sin, exp, ln, sqgrt 87

g array access 189 54 32
h same with bounds tests 89 H 25
i matrix access 197 93 44
j same wlth bounds tests 164 21 36
k call of empty procedure 144 37 40
b with 4 parameters 94 29 32
m copying arrays 63 1 56
n access via pointers 125 66 54
o reading a disk stream 207 36
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MODULE Benchmark;
(*$T~

a: empty REPEAT loop
empty WHILE loop
empty FOR loop
CARDINAL arithmetic
REAL arithmetic
standard functions
array of single dimension
same as g but with index tests
: matrix access
same as | but with Index tests
call of empty, parameterless procedure
call of empty procedure with 4 parameters
copying arrays (block moves)
pointer chaining
teading of file ¥)

o we =

e se ar e e

05 3 P Xe—rmTA MO QOO

FROM Storage IMPORT ALLOCATE;

FROM Terminal IMPORT Read, BusyRead, Write, Wrlteln;

FROM InOut IMPORT WriteCard;
FROM FileSystem IMPORT

File, Lookup, ReadWord, Reset, Response;
FROM MathLib@ IMPORT sin, exp, ln, sqrt;

TYPE NodePtr = POINTER TO Node;

Node = RECORD x,y: CARDINAL; next: NodePtr END

VAR A,B,C: ARRAY [0..255) OF CARDINAL;
M: ARRAY [@.,.99],([8..99) OF CARDINAL;
m: CARDINAL; head: NodePtr;

PROCEDURE Test(ch: CHAR);
VAR i,j,k: CARDINAL;
r@, rl, r2: REAL; p: NodePtr;

PROCEDURE P;

BEGIN

END P;

PROCEDURE Q(x,y,z,w: CARDINAL);
BEGIN

END Q;

BEGIN
CASE ch OF
"a": k := 20000;
REPEAT
k = k-1

UNTIL k = 8 |

"b": | := 20000;
WHILE i > @ DO



LFL

nan

llfll:

nhe

nin,

nkn,

L L

cof rm |
END |

FOR |
END |

j o= 8;
REPEAT

k 1= k=1;

UNTIL k

K := 500

REPEAT
k := k=1; r@

UNTIL k

k := 508
REPEAT r

r
UNTIL k
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-1

K := 1¢000;

= g |

g; rl =2 7,

=0 |

@ := sin(2.
@ := 1In(14d.
= @ |

1= 1 TO 20200 DO

3 o= j+1;

28;

7)i
8);

i := (k%3) DIV (j*5)

r2 := 34.8;

t= (r1*r2) / (rl+r2)

rl := exp(2.9);

rl := sqrt(18.0);

k := 200080; { := @; B[Q] :=2 73;

REPEAT
A(1]
UNTIL k

(*$T+*)

REPEAT
All}

UNTIL k=

FOR i
FOR j
M{i,
END
END |

(*ST+*)
FOR |
FOR j
COM(i,

END

:= B[1]; B[
2 |

k := 20000;

= B(i]; B[i
@ (*S$T-%)

= @ TO 99 DO

]

i

]
[

= 0 TO 99 DO

J] o= M[jli

;= @ TO 99 DO

]

= 9 TO 99 DO

jl = M3, 1

END (*$T-*) |

k := 200

REPEAT
P; k

UNTIL k

09;

k=1
8

=
=

k := 20008;

REPEAT
Q(iljl
UNTIL k

k,m); k :=
=0

]

:= A(l);

:= @; B{@)

= AlL]);

k

k

=

1= 73;

.
=

k=1

k=1

3

k=1
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"m": k := 508;

REPEAT
k := k=1; A := B; B := C; C := A
UNTIL k = 8 |

"n": k := 580;
REPEAT p := head;
REPEAT p := p~.next UNTIL p = NIL;
k := k=)
UNTIL k = @ |

"o": k := 5008;
REPEAT
k := k-1; ReadWord(f,1)
UNTIL k = @;
Reset(f)
END
END Test;

VAR ch,chl: CHAR;
n: CARDINAL;
€: File;

q: NodePtr;

BEGIN Lookup(f,"anyFile", FALSE);
head := NIL; n := 1460;
REPEAT q := head;
NEW(head); head”.next := g; n := n-1
UNTIL n = @;
Write(">"); Read(ch};
WHILE ("a"™ <= ch) & (ch < "p") DO
Write(ch); Writeln; n := 8;
REPEAT n := n+l; Test{(ch);
IF (n MOD 58) = @ THEN WriteLn END ;
Write("."); BusyRead(chl)
UNTIL chl § 8C;
WriteCard(n,6); WriteLn; Write(">"); Read(ch)
END ;
Write(14C)
END Benchmark.



