
TICE HALL
NATIONAL
SERIES IN

JOMPUTER
SCIENCE

C. A. R. Hoare
C. B. Jones
Essays in
Computing
Science

C.A.R. HOARE SERIES EDITOR

Digitized by the Internet Archive
in 2017 with funding from
Kahle/Austin Foundation

https://archive.org/details/essaysincomputinOOhoar

ESSAYS IN

COMPUTING SCIENCE

Prentice Hall International
Series in Computer Science

C.A.R. Hoare, Series Editor

Welsh, J., and Elder, J., Introduction to Pascal (Now in 3rd edn)
Backhouse, R. C., Syntax of Programming Languages: Theory and practice
Duncan, F., Microprocessor Programming and Software Development
Jones, C. B., Software Development: A rigorous approach (OOP)
Welsh, J., and McKeag, M., Structured System Programming
Henderson, P., Functional Programming: Application and implementation
de Barker, J. W., Mathematical Theory of Program Correctness
Tennent, R. D., Principles of Programming Languages
Reynolds, J. C., The Craft of Programming
Bjorner, D., and Jones, C. B., Formal Specification and Software Development
Goldschlager, L., and Lister, A., Computer Science: A modern introduction

(Now in 2nd edn)
Jackson, M. A., System Development
MacCallum, I., Pascal for the Apple
Clark, K. L., and McCabe, F. G., micro-Prolog: Programming in logic
Inmos Ltd, occam Programming Manual
Joseph, M., Prasad, V. R., and Natarajan, N., A Multiprocessor Operating System
Welsh, J., Elder, J., and Bustard, D., Sequential Program Structures
Elder, J., Construction of Data Processing Software
Hehner, E. C. R., The Logic of Programming
Dromey, R. G., How to Solve it by Computer
Hoare, C. A. R., and Shepherdson, J. C. (eds), Mathematical Logic and Programming

Languages
Lew, A., Computer Science: A mathematical introduction
Johnston, H., Learning to Program
Hoare, C. A. R., Communicating Sequential Processes
Martin, J. J., Data Types and Data Structures
MacCallum, I., UCSD Pascal for the IBM PC
Welsh, J., and Hay, A., A Model Implementation of Standard Pascal
Jones, C. B., Systematic Software Development using VDM
Backhouse, R. C., Program Construction and Verification
Pomberger, G., Software Engineering and Modula-2
Hayes, E (ed.), Specification Case Studies
Bornat, R., Programming from First Principles
Sloman, M., and Kramer, J., Distributed Systems and Computer Networks
Jones, G., Programming in occam
Watt, D. A., Wichmann, B. A., and Findlay, W., ADA: Language and methodology
Peyton Jones, S. L., The Implementation of Functional Programming Languages
Welsh, J., and Elder, J., Introduction to Modula-2
Wikstrom, A., Functional Programming using Standard ML
Inmos Ltd, occam 2 Reference Manual
Bustard, D., Elder, J., and Welsh, J., Concurrent Program Structures
Bird, R., and Wadler, P., Introduction to Functional Programming
Meyer, B., Object-oriented Software Construction
Gordon, M. J. C., Programming Language Theory and its Implementation
Crookes, D., Introduction to Programming in Prolog
Hughes, J. G., Database Technology: A software engineering approach
Rydeheard, D. E., and Burstall, R. M., Computational Category Theory
Jones, G., and Goldsmith, M., Programming in occam 2
Spivey, M., The Z Notation: A reference manual

ElliotT Sir Roger, and Hoare, C. A. R., Scientific Applications of Multiprocessors
oare, . . R., and Jones, C. B., Essays in Computing Science

ESSAYS IN

COMPUTING SCIENCE

C. A. R. Hoare
Oxford University Computing Laboratory

C. B. Jones
(editor)

Department of Computer Science,
Manchester University

PRENTICE HALL

NEW YORK LONDON TORONTO SYDNEY TOKYO

First published 1989 by
Prentice Hall International (UK) Ltd,

66 Wood Lane End, Hemel Hempstead,
Hertfordshire, HP2 4RG

A Division of
Simon & Schuster International Group

© 1989 Prentice Hall International (UK) Ltd

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form, or by any means, electronic, mechanical, photo¬

copying, recording or otherwise, without the prior
permission, in writing, from the publisher.

For permission within the United States of America contact
Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Printed and bound in Great Britain at the
University Press, Cambridge.

Library of Congress Cataloging-in-Publication Data

Hoare, C. A. R. (Charles Antony Richard), 1934-
Essays in computing science / C. A. R. Hoare ;

C. B. Jones, editor.
p. cm. - (Prentice Hall international series in computer

science)
‘Bibliography of works by C. A. R. Hoare’: p.

Includes index.
ISBN 0-13-284027-8 : $40.00

1. Electronic data processing. 2. Computers.
I. Jones, C. B. (Cliff B.), 1944- . II. Title. III. Series.

QA76.H56 1989
004-dcl9 88-23169

British Library Cataloguing in Publication Data

Hoare, C. A. R. (Charles Anthony Richard), 1934-
Essays in computing science. - (Prentice

Hall International series in computer science).

1. Computer systems
I. Title II. Jones, C. B., 1944-

004

ISBN 0-13-284027-8

1 2 3 4 5 92 91 90 89 88

Contents

Foreword
ix

Preface
xi

ONE

The Emperor’s old clothes
l

TWO

Quicksort
19

THREE

A contribution to the development

of ALGOL
31

FOUR

An axiomatic basis for computer

programming
45

FIVE

Proof of a program: Find
59

SIX

Procedures and parameters:

an axiomatic approach
75

v

VI CONTENTS

SEVEN

Computer science
89

EIGHT

Proof of correctness of data

representations
103

NINE

Proof of a structured program:

the Sieve of Eratosthenes
117

TEN

A structured paging system
133

ELEVEN

An axiomatic definition of the

programming language Pascal
153

TWELVE

Monitors: an operating system

structuring concept
171

THIRTEEN

Hints on programming-language design
193

FOURTEEN

Recursive data structures
217

FIFTEEN

Parallel programming:

an axiomatic approach
245

CONTENTS Vll

SIXTEEN

Communicating sequential processes
259

SEVENTEEN

A calculus of total correctness for

communicating sequential processes
289

EIGHTEEN

Programming is an engineering

profession
315

NINETEEN

A couple of novelties in the propositional

calculus
325

TWENTY

Programs are predicates
333

TWENTY-ONE

The mathematics of programming
351

TWENTY-TWO

An overview of some formal methods

for program design
371

Envoi
389

References
393

Bibliography of works by C. A. R. Hoare
398

Index
405

Foreword

Language - notation - shapes thought and mind. Our languages, and how

they are defined, have a tremendous influence on what we can express and

how simply. Often, a concept becomes clear only when a suitable notation

for it has been defined and when rules for manipulating the notation have

been developed: a concept and its expression are inextricably intertwined.

Notation has been particularly important in computer science. For forty

years we have been searching for notations to express new algorithmic

concepts, so that algorithms can be written clearly and with more assurance

that they are correct. Complicating our search has been the need for

efficient implementation. Indeed, this entirely new requirement of efficiency

has too often overshadowed other important requirements, such as the

ability to manipulate in order to analyse and prove results.

For twenty-five years, C. A. R. Hoare has been leading the way in our

search for notations - elucidating the principles on which their design

should (or should not) be based, warning us of pitfalls, pointing out the

paths to take, and walking ahead for us to follow. Had we listened to him

more, and had more of us listened, I venture to say that we would now be

further along in our search than we are.
Why should we have been listening to Hoare? What makes him special?

First, in the mid-1960s he was made acutely aware of the problems of

software development by the absolute failure of a large software project he

was managing: thirty man-years of effort were completely abandoned (see

his Turing Award Lecture)! At the least, this failure gave him the right to

expound on how software should' not be done. Moreover, this failure

induced him to search seriously for the principles of our field, and his

amazing forward leaps in this ensuing search have established him as one

of the pre-eminent scientists of the field. There are few whom 1 consider his

equal.
In retrospect, this failure in the mid-1960s was probably the best thing

that happened to the field of programming-language design.

Let me mention briefly some of his accomplishments. First, of course,

was his brilliant sorting algorithm ‘Quicksort’, still of practical use alter 27

years. In 1968-69, when the software world was admitting that it was in the

IX

X FOREWORD

throes of a crisis, he developed a good part of the scientific insight for its

long-range solution: his axiomatic basis for computer programming pro¬

vided, at last, the basic manipulative method for reasoning about programs.

Throughout the 1970s, he continued to build on this framework, showing

how to handle procedures, parameters, for-loops, and functions. His 1972

paper on proof of correctness of data representations is still the first paper

to read on implementations of abstract data types. His axiomatic definition

of Pascal in 1973 was the first such definition of a language.

Concurrency, once the purview of operating systems, became part of the

field of programming-language design as a result of several of Hoare’s early

papers. He provided major notational tools for the two basic paradigms of

concurrency: the Monitor for shared-memory models and CSP (commu¬

nicating sequential processes) for message passing. And, although for some

time CSP was a major example of the fact that our notational studies can

have intellectual depth without an implementation, it was the major

influence in the architectural design of the transputer.

Early in the game, Hoare recognized the need for various kinds of formal

definitions. Besides his axiomatic basis for computer programming, he

was involved in the first proof of consistency of an axiomatic language

definition with an operational model, and he was responsible for several

significant theories of semantics of programming languages. His theoretical

work has been guided by his acute sense of the need to manipulate, reason
about, and analyse programs.

Until now, the Prentice Hall International Series in Computer Science,

edited by Hoare, consisted of forty-nine books. It is fitting that the fiftieth

book be a treasure-house of works by Hoare himself. Read it for a sense of

history. Read it for the facts - about Quicksort, proving programs correct,

CSP, etc. Read it for its expositions of the principles of programming and

programming language design and for its admonitions to stay on the right

path in our search. And read it for the style: the clarity, taste, elegance, and

precision that has become associated with Hoare.

David Gries

Cornell University

Editorial preface

Charles Antony Richard Hoare is one of the most productive and prolific

computer scientists. This volume contains a selection of his published

papers. There is a need, as in a Shakespearian Chorus, to offer some

apology for what the book manifestly fails to achieve. It is not a complete

‘collected works’. Selection between papers of this quality is not easy and,

given the book’s already considerable size, some difficult decisions as to

what to omit have had to be made. Pity the editor weighing the choice

between a seminal paper, perhaps widely republished, and a lesser known

gem overtaken by subsequent developments. The only defence that can be

offered is to reassure the reader that Tony Hoare was consulted.

The paper published as Chapter 1 is so placed because it provides

biographical context. With this exception, the papers appear in chronolo¬

gical order of main publication.
Each paper is introduced by ‘link material’. Here again, there is need (at

least) for explanation: how can one embellish such papers? The idea behind

the link material is to record things which could not have been written in the

original paper. Sometimes, it is possible to explain better the context in

which a paper was conceived; the subsequent development of the ideas

introduced can only be written with hindsight. Apart from these inputs, the

papers speak so well for themselves that it has been possible to keep the link

material brief. Because the editor’s text varies in length, the (abstract and)

paper follow immediately rather than being laid out on separate pages. In
order to avoid confusion, the link material is set in a smaller fount. Again

to assuage the reader’s doubts, Hoare does have the last word in the

Postscript.

An attempt has been made to trace some of the key dates of drafts,

submissions, etc. leading up to publication. For a scientist who points out

that ‘writing the paper is my method of research’ this is both necessary and

difficult. Some of Hoare’s papers go through many drafts which are

circulated to colleagues (sometimes changing title, sometimes using the

same title on a complete rewrite.) A complete historiography has not been

attempted. In particular, many of Hoare’s papers have been reprinted

(sometimes in several places): normally, only the first source is given.

xi

Xll EDITORIAL PREFACE

With some caution, Hoare’s work can be divided under a number of

headings. These themes are not disjoint, the whole output comes from a

single person. Hoare’s work on language definition is seen in Chapters 3,

13, 14, 16 (and also, to a lesser extent, in Chapters 11, 12); his contribution

to methods of reasoning about programs is covered in Chapters 4-6, 8, 9,

11, 12, 14, 15, 17, 19, 20; his seminal work on parallelism can be traced

through Chapters 10, 12, 15-17. Amidst writing these, often difficult,

papers Hoare has produced a number of articles aimed at a wider audience:

here, Chapters 1, 2, 7, 18, 21, 22 represent this form of his writing.

The papers themselves have all been re-typeset and only minimal changes

have been made. The form of references to other publications has been

made uniform and all references have been collected at the end of this

volume. In order to provide a useful snapshot, all papers by Hoare (even if

there are co-authors) have been gathered into a separate list of references.

(Except where they are referred to, Technical Reports etc. are not included:

only true ‘publications’ are listed.) The form of reference to these is ‘[72]’

or ‘Hoare([72])’, the list being ordered, and numbers accordingly assigned,

on a chronological basis. (This results in the use of ‘Hoare’ as a key even

where the article lists a co-author before Hoare. No disrespect to his

erstwhile colleagues is intended.) The other list of references gives works to

which Hoare has not contributed. It is listed alphabetically, and references

take the form ‘Dijksta (1976)’, with a, b etc. to distinguish publications in
the same year.

The editor and the publishers acknowledge, with thanks, permission to

reprint the copyrighted articles in this book that have been published in

various journals, proceedings, and books. Individual credits, with details of

the sources of the papers, are given as a footnote to each chapter opening.

The task of editing these essays has been most rewarding. The fact that it

did not become a burden is largely thanks to the support I have received. I

should like to thank Julie Hibbs who has typed and controlled the evolving

book; Alison McCauley undertook all of the bibliographic research with

real enthusiasm. Thanks are also due to the staff at Prentice Hall Interna¬

tional who provided enormous support and encouragement. I am also very

grateful to those other computer scientists who have offered advice and/or

references. In particular I should like to thank John Reynolds, Jim

Horning, Bob Tennant, Brian Randell, David Gries, and Jim King. Finally,

I should like to thank Tony Hoare, with whom co-operation is always so
stimulating.

C. B. Jones

ONE

The Emperor’s old clothes

The ACM Turing Award is the most prestigious given in Computer Science.

Hoare received it in 1980. The citation includes:

Professor Hoare was selected by the General Technical Achievement
Award Committee for his fundamental contributions to the definition
and design of programming languages. His work is characterized by an
unusual combination of insight, originality, elegance, and impact. He is
best known for his work on axiomatic definitions of programming
languages through the use of techniques popularly referred to as
axiomatic semantics. He developed ingenious algorithms such as Quick¬
sort and was responsible for inventing and promulgating advanced
data-structuring techniques in scientific programming languages. He
has also made important contributions to operating systems through the
study of monitors. His most recent work is on communicating sequen¬
tial processes.

Prior to his appointment to the University of Oxford in 1977,
Professor Hoare was Professor of Computer Science at The Queen’s
University in Belfast, Ireland from 1968 to 1977 and was a Visiting
Professor at Stanford University in 1973. From 1960 to 1968 he held a
number of positions with Elliott Brothers, Ltd, England.

Professor Hoare has published extensively and is on the editorial
boards of a number of the world’s foremost computer science journals.
In 1973 he received the ACM Programming Systems and Languages
Paper Award. Professor Hoare became a Distinguished Fellow of the
British Computer Society in 1978 and was awarded the degree of Doctor
of Science Honoris Causa by the University of Southern California in
1979.

This paper is placed first in the collection because of its autobiographical

comments. Hoare was born in 1934 and studied at Oxford before doing

National Service in the Royal Navy where he obtained an interpreter’s

qualification in Russian. (This explains his work on [1].) He joined Elliott

Bros, in 1960. The ‘Miss Pym’ in this article is now Mrs Jill Hoare. Since 1977

C. A. R. Hoare, The Emperor’s old clothes, Comm. ACM 24(2), 75-83 (February 1981).
Copyright © 1981, Association for Computing Machinery, Inc., reprinted by permission.

This paper was originally given as the ACM Turing Award Lecture in 1980, and appeared as

[73],

1

2 ESSAYS IN COMPUTING SCIENCE

he has been Professor of Computation at the University of Oxford. Further

Honorary Doctorates have followed that from the University of Southern

California. Hoare was also awarded the 1EE Faraday medal in 1985.

Apart from its ability to set the context of the scientific material in

subsequent chapters, this account provides an unusual opportunity to learn

from mistakes as well as successes. Hoare’s industrial career also shows the

origin of the practical insight which guides so much of his theoretical work.

The text leads up to a very severe warning about the dangers inherent in

using the Ada language for safety-critical systems. The stimulus for this was

the claim that this language could be used as a basis for proven programs.

Hoare spoke in disappointment rather than in rage and used a stern tone

because the danger appeared imminent. In the event it took far longer to

create implementations of Ada than had been expected and people’s expecta¬

tions of its security have moderated. This must in part be due to the impact of
this article.

The Turing Award Lecture was delivered at the ACM ’80 Conference in

Nashville, Tennessee on 27 October 1980; the original publication is [73].

Abstract

The author recounts his experiences in the implementation, design, and standardization
of computer programming languages, and issues a warning for the future.

My first and most pleasant duty in this lecture is to express my pro¬

found gratitude to the Association for Computing Machinery for the

great honour which they have bestowed on me and for this opportunity to

address you on a topic of my choice. What a difficult choice it is! My

scientific achievements, so amply recognized by this award, have already

been amply described in the scientific literature. Instead of repeating the

abstruse technicalities of my trade, I would like to talk informally about

myself, my personal experiences, my hopes and fears, my modest successes,

and my rather less modest failures. I have learned more from my failures

than can ever be revealed in the cold print of a scientific article and now I

would like you to learn from them, too. Besides, failures are much more fun

to hear about afterwards; they are not so funny at the time.

I start my story in August 1960, when I became a programmer with a

small computer manufacturer, a division of Elliott Brothers (London) Ltd,

where in the next eight years I was to receive my primary education in

computer science. My first task was to implement for the new Elliott 803

computer, a library subroutine for a new fast method of internal sorting

just invented by Shell. I greatly enjoyed the challenge of maximizing

efficiency in the simple decimal-addressed machine code of those days. My

boss and tutor, Pat Shackleton, was very pleased with my completed

THE EMPEROR’S OLD CLOTHES 3

program. I then said timidly that I though I had invented a sorting method

that would usually run faster than Shellsort, without taking much extra

store. He bet me sixpence that I had not. Although my method was very

difficult to explain, he finally agreed that I had won my bet.

I wrote several other tightly coded library subroutines but after six

months I was given a much more important task—that of designing a new

advanced high-level programming language for the company’s next com¬

puter, the Elliott 503, which was to have the same instruction code as the

existing 803 but run sixty times faster. In spite of my education in classical

languages, this was a task for which I was even less qualified than those who

undertake it today. By great good fortune there came into my hands a copy

of the Report on the International Algorithmic Language ALGOL 60. Of

course, this language was obviously too complicated for our customers.

How could they ever understand all those begins and ends when even our

salesmen couldn’t?
Around Easter 1961, a course on ALGOL 60 was offered in Brighton,

England, with Peter Naur, Edsger W. Dijkstra, and Peter Landin as tutors.

I attended this course with my colleague in the language project, Jill Pym,

our divisional Technical Manager, Roger Cook, and our Sales Manager,

Paul King. It was there that I first learned about recursive procedures and

saw how to program the sorting method which I had earlier found such

difficulty in explaining. It was there that I wrote the procedure, immodestly

named Quicksort, on which my career as a computer scientist is founded.

Due credit must be paid to the genius of the designers of ALGOL 60 who

included recursion in their language and enabled me to describe my

invention so elegantly to the world. I have regarded it as the highest goal

of programming language design to enable good ideas to be elegantly

expressed.
After the ALGOL course in Brighton, Roger Cook was driving me and

my colleagues back to London when he suddenly asked, ‘Instead of

designing a new language, why don’t we just implement ALGOL 60?’ We

all instantly agreed - in retrospect, a very lucky decision for me. But we

knew we did not have the skill or experience at that time to implement the

whole language, so I was commissioned to design a modest subset. In that

design I adopted certain basic principles which I believe to be as valid today

as they were then.

(1) The first principle was security: The principle that every syntactically

incorrect program should be rejected by the compiler and that every

syntactically correct program should give a result or an error message that

was predictable and comprehensible in terms of the source-language

program itself. Thus no core dumps should ever be necessary. It was

logically impossible for any source-language program to cause the computer

to run wild, either at compile time or at run time. A consequence of this

4 ESSAYS IN COMPUTING SCIENCE

principle is that every occurrence of every subscript of every subscripted

variable was on every occasion checked at run time against both the upper

and the lower declared bounds of the array. Many years later we asked our

customers whether they wished us to provide an option to switch off these

checks in the interests of efficiency on production runs. Unanimously, they

urged us not to - they already knew how frequently subscript errors occur

on production runs where failure to detect them could be disastrous. I note

with fear and horror that even in 1980, language designers and users have

not learned this lesson. In any respectable branch of engineering, failure to

observe such elementary precautions would have long been against the law.

(2) The second principle in the design of the implementation was brevity

of the object code produced by the compiler and compactness of run time

working data. There was a clear reason for this: The size of main storage on

any computer is limited and its extension involves delay and expense. A

program exceeding the limit, even by one word, is impossible to run,

especially since many of our customers did not intend to purchase backing
stores.

This principle of compactness of object code is even more valid today,

when processors are trivially cheap in comparison with the amounts of main

store they can address, and backing stores are comparatively even more

expensive and slower by many orders of magnitude. If as a result of care

taken in implementation the available hardware remains more powerful

than may seem necessary for a particular application, the applications

programmer can nearly always take advantage of the extra capacity to

increase the quality of his program, its simplicity, its ruggedness, and its
reliability.

(3) The third principle of our design was that the entry and exit

conventions for procedures and functions should be as compact and

efficient as for tightly coded machine-code subroutines. I reasoned that

procedures are one of the most powerful features of a high-level language,

in that they both simplify the programming task and shorten the object

code. Thus there must be no impediment to their frequent use.

(4) The fourth principle was that the compiler should use only a single

pass. The compiler was structured as a collection of mutually recursive

procedures, each capable of analysing and translating a major syntactic unit

of the language - a statement, an expression, a declaration, and so on. It

was designed and documented in ALGOL 60, and then coded into decimal

machine code using an explicit stack for recursion. Without the ALGOL 60

concept of recursion, at that time highly controversial, we could not have
written this compiler at all.

THE EMPEROR’S OLD CLOTHES 5

I can still recommend single-pass top-down recursive descent both as an

implementation method and as a design principle for a programming

language. First, we certainly want programs to be read by people and

people prefer to read things once in a single pass. Second, for the user of a

time-sharing or personal computer system, the interval between typing in

a program (or amendment) and starting to run that program is wholly

unproductive. It can be minimized by the high speed of a single-pass

compiler. Finally, to structure a compiler according to the syntax of its

input language makes a great contribution to ensuring its correctness.

Unless we have absolute confidence in this, we can never have confidence in

the results of any of our programs.
To observe these four principles, I selected a rather small subset of

ALGOL 60. As the design and implementation progressed, 1 gradually

discovered methods of relaxing the restrictions without compromising any

of the principles. So in the end we were able to implement nearly the full

power of the whole language, including even recursion, although several

features were removed and others were restricted.
In the middle of 1963, primarily as a result of the work of Jill Pym and

Jeff Flillmore, the first version of our compiler was delivered. After a few

months we began to wonder whether anyone was using the language or

taking any notice of our occasional re-issue, incorporating improved

operating methods. Only when a customer had a complaint did he contact

us and many of them had no complaints. Our customers have now moved

on to more modern computers and more fashionable languages but many

have told me of their fond memories of the Elliott ALGOL System, and the

fondness is not due just to nostalgia, but to the efficiency, reliability, and

convenience of that early simple ALGOL System.
As a result of this work on ALGOL, in August 1962 I was invited to serve

on the new Working Group 2.1 of IFIP, charged with responsibility for

maintenance and development of ALGOL. The group’s first main task was

to design a subset of the language which would remove some of its less

successful features. Even in those days and even with such a simple

language, we recognized that a subset could be an improvement on the

original. I greatly welcomed the chance of meeting and hearing the wisdom

of many of the original language designers. I was astonished and dismayed

at the heat and even rancour of their discussions. Apparently the original

design of ALGOL 60 had not proceeded in that spirit of dispassionate

search for truth which the quality of the language had led me to suppose.

In order to provide relief from the tedious and argumentative task of

designing a subset, the working group allocated one afternoon to discussing

the features that should be incorporated in the next design of the language.

Each member was invited to suggest the improvement he considered most

important. On 11 October 1963, my suggestion was to pass on a request of

6 ESSAYS IN COMPUTING SCIENCE

our customers to relax the ALGOL 60 rule of compulsory declaration of

variable names and adopt some reasonable default convention such as that

of FORTRAN. I was astonished by the polite but firm rejection of this

seemingly innocent suggestion: It was pointed out that the redundancy of

ALGOL 60 was the best protection against programming and coding errors

which could be extremely expensive to detect in a running program and even

more expensive not to. The story of the Mariner space rocket to Venus, lost

because of the lack of compulsory declarations in FORTRAN, was not to

be published until later. I was eventually persuaded of the need to design

programming notations so as to maximize the number of errors which

cannot be made, or if made, can be reliably detected at compile time.

Perhaps this would make the text of programs longer. Never mind!

Wouldn’t you be delighted if your Fairy Godmother offered to wave her

wand over your program to remove all its errors and only made the

condition that you should write out and key in your whole program three

times! The way to shorten programs is to use procedures, not to omit vital

declarative information.

Among the other proposals for the development of a new ALGOL was

that the switch declaration of ALGOL 60 should be replaced by a more

general feature, namely an array of label-valued variables, and that a

program should be able to change the values of these variables by

assignment. I was very much opposed to this idea, similar to the assigned

GOTO of FORTRAN, because I had found a surprising number of tricky

problems in the implementation of even the simple labels and switches of

ALGOL 60. I could see even more problems in the new feature including

that of jumping back into a block after it had been exited. I was also

beginning to suspect that programs that used a lot of labels were more

difficult to understand and get correct and that programs that assigned new

values to label variables would be even more difficult still.

It occurred to me that the appropriate notation to replace the ALGOL 60

switch should be based on that of the conditional expression of ALGOL 60,

which selects between two alternative actions according to the value of a

Boolean expression. So I suggested the notation for a ‘case expression’

which selects between any number of alternatives according to the value of

an integer expression. That was my second language-design proposal. I am

still most proud of it, because it raises essentially no problems either for the

implementor, the programmer, or the reader of a program. Now, after more

than fifteen years, there is the prospect of international standardization

of a language incorporating this notation - a remarkably short interval

compared with other branches of engineering.

Back again to my work at Elliott’s. After the unexpected success of our

ALGOL Compiler, our thoughts turned to a more ambitious project: To

provide a range of operating-system software for larger configurations of

the 503 computer, with card readers, line printers, magnetic tapes, and even

THE EMPEROR’S OLD CLOTHES 7

a core backing store which was twice as cheap and twice as large as main

store, but fifteen times slower. This was to be known as the Elliott 503 Mark

II software system.

It comprised:

(1) An assembler for a symbolic assembly language in which all the rest of

the software was to be written.

(2) A scheme for automatic administration of code and data overlays,

either from magnetic tape or from core backing store. This was to be

used by the rest of the software.

(3) A scheme for automatic buffering of all input and output on any

available peripheral device - again, to be used by all the other software.

(4) A filing system on magnetic tape with facilities for editing and job

control.

(5) A completely new implementation of ALGOL 60, which removed all

the nonstandard restrictions which we had imposed on our first

implementation.

(6) A compiler for FORTRAN as it was then.

I wrote documents which described the relevant concepts and facilities and

we sent them to existing and prospective customers. Work started with a

team of fifteen programmers and the deadline for delivery was set some

eighteen months ahead in March 1965. After initiating the design of the

Mark II software, I was suddenly promoted to the dizzying rank of

Assistant Chief Engineer, responsible for advanced development and design

of the company’s products, both hardware and software.

Although I was still managerially responsible for the 503 Mark II

software, I gave it less attention than the company’s new products and

almost failed to notice when the deadline for its delivery passed without

event. The programmers revised their implementation schedules and a new

delivery date was set some three months ahead in June 1965. Needless to

say, that day also passed without event. By this time, our customers were

getting angry and my managers instructed me to take personal charge of the

project. I asked the senior programmers once again to draw up revised

schedules, which again showed that the software could be delivered within

another three months. I desperately wanted to believe it but I just could not.

I disregarded the schedules and began to dig more deeply into the project.

It turned out that we had failed to make any overall plans for the

allocation of our most limited resource - main storage. Each programmer

expected this to be done automatically, either by the symbolic assembler or

by the automatic overlay scheme. Even worse, we had failed to simply count

the space used by our own software which was already filling the main store

of the computer, leaving no space for our customers to run their programs.

Hardware address length limitations prohibited adding more main storage.

Clearly, the original specifications of the software could not be met and

8 ESSAYS IN COMPUTING SCIENCE

had to be drastically curtailed. Experienced programmers and even man¬

agers were called back from other projects. We decided to concentrate first

on delivery of the new compiler for ALGOL 60, which careful calculation

showed would take another four months. I impressed upon all the

programmers involved that this was no longer just a prediction; it was a

promise; if they found they were not meeting their promise, it was their

personal responsibility to find ways and means of making good.

The programmers responded magnificently to the challenge. They

worked nights and days to ensure completion of all those items of software

which were needed by the ALGOL compiler. To our delight, they met the

scheduled delivery date; it was the first major item of working software

produced by the company over a period of two years.

Our delight was short-lived; the compiler could not be delivered. Its speed

of compilation was only two characters per second which compared

unfavourably with the existing version of the compiler operating at about

a thousand characters per second. We soon identified the cause of the

problem: It was thrashing between the main store and the extension core

backing store which was fifteen times slower. It was easy to make some

simple improvements, and within a week we had doubled the speed of

compilation - to four characters per second. In the next two weeks of

investigation and reprogramming, the speed was doubled again - to eight

characters per second. We could see ways in which within a month this

could be still further improved; but the amount of reprogramming required

was increasing and its effectiveness was decreasing; there was an awful long

way to go. The alternative of increasing the size of the main store so

frequently adopted in later failures of this kind was prohibited by hardware
addressing limitations.

There was no escape: The entire Elliott 503 Mark II software project had

to be abandoned, and with it, over thirty man-years of programming effort,

equivalent to nearly one man’s working life, and I was responsible, both as
designer and as manager, for wasting it.

A meeting of all our Elliott 503 customers was called and Roger Cook,

who was then manager of the computing division, explained to them that

not a single word of the long-promised software would ever be delivered to

them. He adopted a very quiet tone of delivery, which ensured that none of

the customers could interrupt, murmur in the background, or even shuffle

in their seats. I admired but could not share his calm. Over lunch our

customers were kind to try to comfort me. They had realized long ago that

software to the original specification could never have been delivered, and

even if it had been, they would not have known how to use its sophisticated

features, and anyway many such large projects get cancelled before delivery.

In retrospect, I believe our customers were fortunate that hardware

limitations had protected them from the arbitrary excesses of our software

designs. In the present day, users of microprocessors benefit from a similar
protection — but not for much longer.

THE EMPEROR’S OLD CLOTHES 9

At that time I was reading the early documents describing the concepts
and features of the newly announced OS 360, and of a new time-sharing
project called Multics. These were far more comprehensive, elaborate, and
sophisticated than anything I had imagined, even in the first version of the
503 Mark II software. Clearly IBM and MIT must be possessed of some
secret of successful software design and implementation whose nature I
could not even begin to guess at. It was only later that they realized they

could not either.
So I still could not see how I had brought such a great misfortune upon

my company. At the time I was convinced that my managers were planning
to dismiss me. But no, they were intending a far more severe punishment.
‘O.K. Tony,’ they said. ‘You got us into this mess and now you’re going to
get us out.’ ‘But I don’t know how,’ I protested, but their reply was simple.
‘Well then, you’ll have to find out.’ They even expressed confidence that I
could do so. I did not share their confidence. I was tempted to resign. It was
the luckiest of all my lucky escapes that I did not.

Of course, the company did everything they could to help me They took
away my responsibility for hardware design and reduced the size of my
programming teams. Each of my managers explained carefully his own
theory of what had gone wrong and all the theories were different. At last,
there breezed into my office the most senior manager of all, a general
manager of our parent company, Andrew St Johnston. I was surprised that
he had even heard of me. ‘You know what went wrong?’ he shouted - he
aways shouted - ‘You let your programmers do things which you yourself
do not understand.’ I stared in astonishment. He was obviously out of
touch with present-day realities. How could one person ever understand the
whole of a modern software product like the Elliott 503 Mark II software

system?
I realized later that he was absolutely right; he had diagnosed the true

cause of the problem and he had planted the seed of its later solution.
I still had a team of some forty programmers and we needed to retain the

goodwill of customers for our new machine and even regain the confidence
of the customers for our old one. But what should we actually plan to do
when we knew only one thing — that all our previous plans had failed? I
therefore called an all-day meeting of our senior programmers on 22
October 1965, to thrash out the question between us. I still have the notes of
that meeting. We first listed the recent major grievances of our customers:
Cancellation of products, failure to meet deadlines, excessive size of
software, ‘...not justified by the usefulness of the facilities provided,’
excessively slow programs, failure to take account of customer feedback;
‘Earlier attention paid to quite minor requests of our customers might have
paid as great dividends of goodwill as the success of our most ambitious

plans.’
We then listed our own grievances: Lack of machine time for program

testing, unpredictability of machine time, lack of suitable peripheral

10 ESSAYS IN COMPUTING SCIENCE

equipment, unreliability of the hardware even when available, dispersion

of programming staff, lack of equipment for keypunching of programs,

lack of firm hardware delivery dates, lack of technical writing effort for

documentation, lack of software knowledge outside of the programming

group, interference from higher managers who imposed decisions, ‘... with¬

out a full realization of the more intricate implications of the matter,’

and over-optimism in the face of pressure from customers and the Sales

Department.

But we did not seek to excuse our failure by these grievances. For

example, we admitted that it was the duty of programmers to educate their

managers and other departments of the company by ‘...presenting the

necessary information in a simple palatable form.’ The hope ‘...that

deficiencies in orginal program specifications could be made up by the skill

of a technical writing department... was misguided; the design of a program

and the design of its specification must be undertaken in parallel by the

same person, and they must interact with each other. A lack of clarity in

specification is one of the surest signs of a deficiency in the program it

describes, and the two faults must be removed simultaneously before the

project is embarked upon.’ I wish I had followed this advice in 1963; I wish

we all would follow it today.

My notes of the proceedings of that day in October 1965 include a

complete section devoted to failings within the software group; this section

rivals the most abject self-abasement of a revisionist official in the Chinese

cultural revolution. Our main failure was over-ambition. ‘The goals which

we have attempted have obviously proved to be far beyond our grasp.’

There was also failure in prediction, in estimation of program size and

speed, of effort required, in planning the co-ordination and interaction of

programs, in providing an early warning that things were going wrong.

There were faults in our control of program changes, documentation,

liaison with other departments, with our management, and with our

customers. We failed in giving clear and stable definitions of the respon¬

sibilities of individual porgrammers and project leaders - Oh, need I go on?

What was amazing was that a large team of highly intelligent programmers

could labour so hard and so long on such an unpromising project. You

know, you shouldn’t trust us intelligent programmers. We can think up such

good arguments for convincing ourselves and each other of the utterly

absurd. Especially don’t believe us when we promise to repeat an earlier
success, only bigger and better next time.

The last section of our inquiry into the failure dealt with the criteria of

quality of software. ‘In the recent struggle to deliver any software at all,

the first casualty has been consideration of the quality of the software

delivered. The quality of software is measured by a number of totally

incompatible criteria, which must be carefully balanced in the design and

implementation of every program.’ We then made a list of no less than

THE EMPEROR’S OLD CLOTHES 11

seventeen criteria which has been published in a guest editorial in Volume 2

of the journal, Software Practice and Experience.
How did we recover from the catastrophe? First, we classified our Elliott

503 customers into groups, according to the nature and size of the hardware

configurations which they had bought - for example, those with magnetic

tapes were all in one group. We assigned to each group of customers a small

team of programmers and told the team leader to vist the customers to find

out what they wanted; to select the easiest request to fulfil, and to make

plans (but not promises) to implement it. In no case would we consider a

request for a feature that would take more than three months to implement

and deliver. The project leader would then have to convince me that the

customers’ request was reasonable, that the design of the new feature was

appropriate, and that the plans and schedules for implementation were

realistic. Above all, I did not allow anything to be done which I did not

myself understand. It worked! The software requested began to be delivered

on the promised dates. With an increase in our confidence and that of our

customers, we were able to undertake fulfilling slightly more ambitious

requests. Within a year we had recovered from the disaster. Within two

years, we even had some moderately satisfied customers.

Thus we muddled through by common sense and compromise to

something approaching success. But I was not satisfied. I did not see why

the design and implementation of an operating system should be so much

more difficult than that of a compiler. This is the reason why 1 have devoted

my later research to problems of parallel programming and language

constructs which would assist in clear structuring of operating systems -

constructs such as monitors and communicating processes.

While I was working at Elliott’s, I became very interested in techniques

for formal definition of programming languages. At that time, Peter

Landin and Christopher Strachey proposed to define a programming

language in a simple functional notation that specified the effect of each

command on a mathematically defined abstract machine. I was not happy

with this proposal because I felt that such a definition must incorporate a

number of fairly arbitrary representation decisions and would not be much

simpler in principle than an implementation of the language lor a real

machine. As an alternative, I proposed that a programming language

definition should be formalized as a set of axioms, describing the desired

properties of programs written in the language. I felt that carefully

formulated axioms would leave an implementation the necessary freedom

to implement the language efficiently on different machines and enable the

programmer to prove the correctness of his programs. But I did not see how

to actually do it. 1 thought that it would need lengthy research to develop

and apply the necessary techniques and that a university would be a better

place to conduct such research than industry. So I applied for a chair in

Computer Science at the Queen’s University of Belfast where I was to spend

12 ESSAYS IN COMPUTING SCIENCE

nine happy and productive years. In October 1968, as I unpacked my papers

in my new home in Belfast, I came across an obscure preprint of an article

by Bob Floyd entitled, ‘Assigning Meanings to Programs’. What a stroke of

luck! At last 1 could see a way to achieve my hopes for my research. Thus I

wrote my first paper on the axiomatic approach to computer programming,

published in the Communications of the ACM in October 1969 (Chapter 4
of this book).

Just recently, I have discovered that an early advocate of the assertional

method of program proving was none other than Alan Turing himself. On

24 June 1950 at a conference in Cambridge, he gave a short talk entitled,

‘Checking a Large Routine’ which explains the idea with great clarity. ‘How

can one check a large routine in the sense of making sure that it’s right? In

order that the man who checks may not have too difficult a task, the

programmer should make a number of definite assertions which can be

checked individually, and from which the correctness of the whole program
easily follows.’

Consider the analogy of checking an addition. If the sum is given (just as

a column of figures with the answer below) one must check the whole at one

sitting. But if the totals for the various columns are given (with the carries

added in separately), the checker’s work is much easier, being split up into

the checking of the various assertions (that each column is correctly added)

and the small addition (of the carries to the total). This principle can be

applied to the checking of a large routine but we will illustrate the method

by means of a small routine viz. one to obtain n factorial without the use of

a multiplier. Unfortunately there is no coding system sufficiently generally

known to justify giving this routine in full, but a flow diagram will be

sufficient for illustration. That brings me back to the main theme of my
talk, the design of programming languages.

During the period, August 1962 to October 1966, I attended every

meeting of the IFIP ALGOL working group. After completing our labours

on the IFIP ALGOL subset, we started on the design of ALGOL X, the

intended successor to ALGOL 60. More suggestions for new features were

made and in May 1965, Niklaus Wirth was commissioned to collate them

into a single language design. I was delighted by his draft design which

avoided all the known defects of ALGOL 60 and included several new

features, all of which could be simply and efficiently implemented, and
safely and conveniently used.

The description of the language was not yet complete. I worked hard on

making suggestions for its improvement and so did many other members of

our group. By the time of the next meeting in St Pierre de Chartreuse,

France in October 1965, we had a draft of an excellent and realistic

language design which was published in June 1966 as ‘A Contribution to the

Development of ALGOL’, in the Communications of the ACM. It was

implemented on the IBM 360 and given the title ALGOL W by its many

THE EMPEROR’S OLD CLOTHES 13

happy users. It was not only a worthy successor of ALGOL 60, it was even a

worthy predecessor of Pascal.

At the same meeting, the ALGOL committee had placed before it, a

short, incomplete and rather incomprehensible document, describing a

different, more ambitious and, to me, a far less attractive language. I was

astonished when the working group, consisting of all the best-known

international experts of programming languages, resolved to lay aside the

commissioned draft on which we had all been working and swallow a line

with such an unattractive bait.

This happened just one week after our inquest on the 503 Mark II

software project. I gave desperate warnings against the obscurity, the

complexity, and over-ambition of the new design, but my warnings went

unheeded. I conclude that there are two ways of constructing a software

design: One way is to make it so simple that there are obviously no

deficiencies and the other way is to make it so complicated that there are no

obvious deficiencies.
The first method is far more difficult. It demands the same skill, devotion,

insight, and even inspiration as the discovery of the simple physical laws

which underlie the complex phenomena of nature. It also requires a

willingness to accept objectives which are limited by physical, logical, and

technological constraints, and to accept a compromise when conflicting

objectives cannot be met. No committee will ever do this until it is too late.

So it was with the ALGOL committee. Clearly the draft which it

preferred was not yet perfect. So a new and final draft of the new ALGOL

language design was promised in three months’ time; it was to be submitted

to the scrutiny of a subgroup of four members including myself. Three

months came and went, without a word of the new draft. After six months,

the subgroup met in the Netherlands. We had before us a longer and thicker

document, full of errors corrected at the last minute, describing yet another,

but to me equally unattractive, language. Niklaus Wirth and I spent some

time trying to get removed some of the deficiencies in the design and in the

description, but in vain. The completed final draft of the language was

promised for the next meeting of the full ALGOL committee in three

months’ time.
Three months came and went - not a word of the new draft appeared.

After six months, in October 1966, the ALGOL working group met in

Warsaw. It had before it an even longer and thicker document, full of errors

corrected at the last minute, describing equally obscurely yet another

different, and to me equally unattractive, language. The experts in the

group could not see the defects of the design and they firmly resolved to

adopt the draft, believing it would be completed in three months. In vain,

I told them it would not. In vain, I urged them to remove some of the

technical mistakes of the language, the predominance of references, the

default type conversions. Far from wishing to simplify the language, the

14 ESSAYS IN COMPUTING SCIENCE

working group actually asked the authors to include even more complex

features like overloading of operators and concurrency.

When any new language design project is nearing completion, there is

always a mad rush to get new features added before standardization. The

rush is mad indeed, because it leads into a trap from which there is no

escape. A feature which is omitted can always be added later, when its

design and its implications are well understood. A feature which is included

before it is fully understood can never be removed later.

At last, in December 1968, in a mood of black depression, I attended the

meeting in Munich at which our long-gestated monster was to come to birth

and receive the name ALGOL 68. By this time, a number of other members

of the group had become disillusioned, but too late: The committee was

now packed with supporters of the language, which was sent up for

promulgation by the higher committees of IFIP. The best we could do was

to send with it a minority report, stating our considered view that, ‘...as a

tool for the reliable creation of sophisticated programs, the language was a

failure.’ This report was later suppressed by IFIP, an act which reminds me

of the lines of Hilaire Belloc,

But scientists, who ought to know,
Assure us that it must be so.
Oh, let us never, never doubt
What nobody is sure about.

I did not attend any further meetings of that working group. I am pleased

to report that the group soon came to realize that there was something

wrong with their language and with its description; they laboured hard for

six more years to produce a revised description of the language. It is a great

improvement but I’m afraid that, in my view, it does not remove the basic

technical flaws in the design, nor does it begin to address the problem of its

overwhelming complexity.

Programmers are always surrounded by complexity; we cannot avoid

it. Our applications are complex because we are ambitious to use our

computers in ever more sophisticated ways. Programming is complex

because of the large number of conflicting objectives for each of our

programming projects. If our basic tool, the language in which we design

and code our programs, is also complicated, the language itself becomes

part of the problem rather than part of its solution.

Now let me tell you about yet another over-ambitious language project.

Between 1965 and 1970 I was a member and even chairman of the Technical

Committee No. 10 of the European Computer Manufacturers Association.

We were charged first with a watching brief and then with the standard¬

ization of a language to end all languages, designed to meet the needs

of all computer applications, both commercial and scientific, by the

greatest computer manufacturer of all time. I had studied with interest

THE EMPEROR’S OLD CLOTHES 15

and amazement, even a touch of amusement, the four initial documents

describing a language called NPL, which appeared between 1 March and 30

November 1964. Each was more ambitious and absurd than the last in its

wishful speculations. Then the language began to be implemented and a

new series of documents began to appear at six-monthly intervals, each

describing the final frozen version of the language, under its final frozen

name PL/I.
But to me, each revision of the document simply showed how far the

initial F-level implementation had progressed. Those parts of the language

that were not yet implemented were still described in free-flowing flowery

prose giving promise of unalloyed delight. In the parts that had been

implemented, the flowers had withered; they were choked by an under¬

growth of explanatory footnotes, placing arbitrary and unpleasant restric¬

tions on the use of each feature and loading upon a programmer the

responsibility for controlling the complex and unexpected side-effects and

interaction effects with all the other features of the language.

At last, 11 March 1968, the language description was nobly presented to

the waiting world as a worthy candidate for standardization. But it was not.

It had already undergone some 7000 corrections and modifications at the

hand of its original designers. Another twelve editions were needed before it

was finally published as a standard in 1976. I fear that this was not because

everybody concerned was satisfied with its design, but because they were

thoroughly bored and disillusioned.
For as long as I was involved in this project, I urged that the language be

simplified, if necessary by subsetting, so that the professional programmer

would be able to understand it and be able to take responsibility for the

correctness and cost-effectiveness of his programs. I urged that the danger¬

ous features such as defaults and ON- conditions be removed. I knew that it

would be impossible to write a wholly reliable compiler for a language of

this complexity and impossible to write a wholly reliable program when the

correctness of each part of the program depends on checking that every

other part of the program has avoided all the traps and pitfalls of the

language.
At first I hoped that such a technically unsound project would collapse

but I soon realized it was doomed to success. Almost anything in software

can be implemented, sold, and even used given enough determination.

There is nothing a mere scientist can say that will stand against the flood of

a hundred million dollars. But there is one quality that cannot be purchased

in this way - and that is reliability. The price of reliability is the pursuit of

the utmost simplicity. It is a price which the very rich find most hard to pay.

All this happened a long time ago. Can it be regarded as relevant in a

conference dedicated to a preview of the Computer Age that lies ahead? It is

my gravest fear that it can. The mistakes which have been made in the last

twenty years are being repeated today on an even grander scale. I refer to a

16 ESSAYS IN COMPUTING SCIENCE

language design project which has generated documents entitled strawman,

woodenman, tinman, ironman, steelman, green and finally now Ada. This

project has been initiated and sponsored by one of the world’s most

powerful organizations, the United States Department of Defense. Thus it

is ensured of an influence and attention quite independent of its technical

merits and its faults and deficiencies threaten us with far greater dangers.

For none of the evidence we have so far can inspire confidence that this

language has avoided any of the problems that have afflicted other complex

language projects of the past.

1 have been giving the best of my advice to this project since 1975. At first

I was extremely hopeful. The original objectives of the language included

reliability, readability of programs, formality of language definition, and

even simplicity. Gradually these objectives have been sacrificed in favour of

power, supposedly achieved by a plethora of features and notational

conventions, many of them unnecessary and some of them, like exception

handling, even dangerous. We relive the history of the design of the motor

car. Gadgets and glitter prevail over fundamental concerns of safety and
economy.

It is not too late! I believe that by careful pruning of the Ada language, it

is still possible to select a very powerful subset that would be reliable and

efficient in implementation and safe and economic in use. The sponsors of

the language have declared unequivocally, however, that there shall be no

subsets. This is the strangest paradox of the whole strange project. If you

want a language with no subsets, you must make it small.

You include only those features which you know to be needed for every

single application of the language and which you know to be appropriate

for every single hardware configuration on which the language is implemen¬

ted. Then extensions can be specially designed where necessary for par¬

ticular hardware devices and for particular applications. That is the great

strength of Pascal, that there are so few unnecessary features and almost no

need for subsets. That is why the language is strong enough to support

specialized extensions - Concurrent Pascal for real time work, Pascal Plus

for discrete event simulation, UCSD Pascal for microprocessor work

stations. If only we could learn the right lessons from the successes of the

past, we would not need to learn from our failures.

And so, the best of my advice to the originators and designers of Ada has

been ignored. In this last resort, I appeal to you, representatives of the

programming profession in the United States, and citizens concerned with

the welfare and safety of your own country and of mankind: Do not allow

this language in its present state to be used in applications where reliability

is critical, i.e., nuclear power stations, cruise missiles, early warning

systems, anti-ballistic missile defence systems. The next rocket to go astray

as a result of a programming language error may not be an exploratory

space rocket on a harmless trip to Venus: It may be a nuclear warhead

THE EMPEROR’S OLD CLOTHES 17

exploding over one of our own cities. An unreliable programming language

generating unreliable programs constitutes a far greater risk to our environ¬

ment and to our society than unsafe cars, toxic pesticides, or accidents at

nuclear power stations. Be vigilant to reduce that risk, not to increase it.

Let me not end on this sombre note. To have our best advice ignored is

the common fate of all who take on the role of consultant, ever since

Cassandra pointed out the dangers of bringing a wooden horse within the

walls of Troy. That reminds me of a story I used to hear in my childhood.

As far as I recall, its title was:

The Emperor’s old clothes

Many years ago, there was an Emperor who was so excessively fond of

clothes that he spent all his money on dress. He did not trouble himself with

soldiers, attend banquets, or give judgement in court. Of any other king or

emperor one might say, ‘He is sitting in council,’ but it was always said of

him, ‘The emperor is sitting in his wardrobe.’ And so he was. On one

unfortunate occasion, he had been tricked into going forth naked to his

chagrin and the glee of his subjects. He resolved never to leave his throne,

and to avoid nakedness, he ordered that each of his many new suits of

clothes should be simply draped on top of the old.

Time passed away merrily in the large town that was his capital. Ministers

and courtiers, weavers and tailors, visitors and subjects, seamstresses and

embroiderers went in and out of the throne room about their various tasks,

and they all exclaimed, ‘How magnificent is the attire of our Emperor.’

One day the Emperor’s oldest and most faithful Minister heard tell of a

most distinguished tailor who taught at an ancient institute of higher

stitchcraft, and who had developed a new art of abstract embroidery using

stitches so refined that no one could tell whether they were actually there at

all. ‘These must indeed be splendid stitches,’ thought the minister. ‘If we

can but engage this tailor to advise us, we will bring the adornment of our

Emperor to such heights of ostentation that all the world will acknowledge

him as the greatest Emperor there has ever been.’

So the honest old Minister engaged the master tailor at vast expense. The

tailor was brought to the throne room where he made obeisance to the heap

of fine clothes which now completely covered the throne. All the courtiers

waited eagerly for his advice. Imagine their astonishment when his advice

was not to add sophistication and more intricate embroidery to that which

already existed, but rather to remove layers of the finery, and strive for

simplicity and elegance in place of extravagant elaboration. ‘This tailor is

not the expert that he claims’, they muttered. ‘His wits have been addled by

long contemplation in his ivory tower and he no longer understands the

18 ESSAYS IN COMPUTING SCIENCE

sartorial needs of a modern Emperor.’ The tailor argued loud and long for

the good sense of his advice but could not make himself heard. Finally, he

accepted his fee and returned to his ivory tower.

Never to this very day has the full truth of this story been told: That one

fine morning, when the Emperor felt hot and bored, he extricated himself

carefully from under his mountain of clothes and is now living happily as a

swineherd in another story. The tailor is canonized as the patron saint of all

consultants, because in spite of the enormous fees that he extracted, he was

never able to convince his clients of his dawning realization that their

clothes have no Emperor.

TWO

Quicksort

The background to the Quicksort algorithm is given in Hoare’s Turing

Lecture (cf. Chapter 1). The algorithm was discovered whilst Hoare was a

British Council Exchange Student at Moscow State University. His original

purpose was to study probability theory in Kolmogorov’s department. While

he was there, he received an offer of employment from the National Physical

Laboratory (NPL) at Teddington to work on a new project for mechanical

translation from Russian to English (cf. [2]). At that time, dictionaries were

held on magnetic tape, so it was necessary to sort the words of a sentence into

alphabetical order before they could be located. The first method that

occurred to Hoare would have taken time proportional to the square of the

length of the sentence. The second method was the algorithm ‘Quicksort\

The only language he knew was Mercury Autocode and his attempts to code it

foundered after the first partition. (Hoare later decided that machine transla¬

tion of natural languages was impractical, and declined the NPL offer of

employment.)
The original difficulty in describing the algorithm and the part played by

ALGOL 60 illustrate the role of programming languages in design. This

paper, which was published as [4] in 1962, is included because of its clarity of

description and discussion of performance; the algorithm itself is given in [3].

In fact, it was the discovery of the recurrence equation which predicts the

speed of the algorithm that prompted Hoare to write the paper. A related

algorithm is used as an example of formal program development in Chapter 5

and a proof of this algorithm is covered in [19].

Abstract

A description is given of a new method of sorting in the random-access store of a
computer. The method compares very favourably with other known methods in speed,

in economy of storage, and in ease of programming. Certain refinements of the method,

which may be useful in the optimization of inner loops, are described in the second part

of the paper.

C. A. R. Hoare, QUICKSORT, BCS Computer Journal, 5(1), 10-15 (1962). This paper is
republished by kind permission of the British Computer Society.

19

20 ESSAYS IN COMPUTING SCIENCE

2.1 Theory

The sorting method described in this paper is based on the principle of

resolving a problem into two simpler subproblems. Each of these

subproblems may be resolved to produce yet simpler problems. The process

is repeated until all the resulting problems are found to be trivial. These

trivial problems may then be solved by known methods, thus obtaining a

solution of the original more complex problem.

2.1.1 Partition

The problem of sorting a mass of items, occupying consecutive locations

in the store of a computer, may be reduced to that of sorting two lesser

segments of data, provided that it is known that the keys of each of the

items held in locations lower than a certain dividing line are less than the

keys of all the items held in locations above this dividing line. In this case

the two segments may be sorted separately, and as a result the whole mass of
data will be sorted.

In practice, the existence of such a dividing line will be rare, and even if it

did exist its position would be unknown. It is, however, quite easy to

rearrange the items in such a way that a dividing line is brought into

existence, and its position is known. The method of doing this has been

given the name partition. The description given below is adapted for a

computer which has an exchange instruction; a method more suited for

computers without such an instruction will be given in the second part of
this paper.

The first step of the partition process is to choose a particular key value

which is known to be within the range of the keys of the items in the

segment which is to be sorted. A simple method of ensuring this is to choose

the actual key value of one of the items in the segment. The chosen key

value will be called the bound. The aim is now to produce a situation in

which the keys of all items below a certain dividing line are equal to or less

than the bound, while the keys of all items above the dividing line are equal

to or greater than the bound. Fortunately, we do not need to know the

position of the dividing line in advance; its position is determined only at
the end of the partition process.

The items to be sorted are scanned by two pointers; one of them, the

lower pointer, starts at the item with lowest address, and moves upward in

the store, while the other, the upper pointer, starts at the item with the

highest address and moves downward. The lower pointer starts first. If the

item to which it refers has a key which is equal to or less than the bound, it

moves up to point to the item in the next higher group of locations. It

continues to move up until it finds an item with key value greater than the

QUICKSORT 21

bound. In this case the lower pointer stops, and the upper pointer starts its

scan. If the item to which it refers has a key which is equal to or greater than

the bound, it moves down to point to the item in the next lower locations. It

continues to move down until it finds an item with key value less than the

bound. Now the two items to which the pointers refer are obviously in the

wrong positions, and they must be exchanged. After the exchange, each

pointer is stepped one item in its appropriate direction, and the lower

pointer resumes its upward scan of the data. The process continues until the

pointers cross each other, so that the lower pointer refers to an item in

higher-addressed locations than the item referred to by the upper pointer. In

this case the exchange of items is suppressed, the dividing line is drawn

between the two pointers, and the partition process is at an end.

An awkward situation is liable to arise if the value of the bound is the

greatest or the least of all the key values in the segment, or if all the key

values are equal. The danger is that the dividing line, according to the rule

given above, will have to be placed outside the segment which was supposed

to be partitioned, and therefore the whole segment has to be partitioned

again. An infinite cycle may result unless special measures are taken. This

may be prevented by the use of a method which ensures that at least one

item is placed in its correct position as a result of each application of the

partitioning process. If the item from which the value of the bound has been

taken turns out to be in the lower of the two resulting segments, it is known

to have a key value which is equal to or greater than that of all the other

items of this segment. It may therefore be exchanged with the item which

occupies the highest-addressed locations in the segment, and the size of the

lower resulting segment may be reduced by one. The same applies, mutatis

mutandis, in the case where the item which gave the bound is in the upper

segment. Thus the sum of the numbers of items in the two segments,

resulting from the partitioning process, is always one less than the number

of items in the original segment, so that it is certain that the stage will be

reached, by repeated partitioning, when each segment will contain one or no

items. At this stage the process will be terminated.

2.1.2 Quicksort

After each application of the partitioning process there remain two

segments to be sorted. If either of these segments is empty or consists of a

single item, then it may be ignored, and the process will be continued on the

other segment only. Furthermore, if a segment consists of less than three or

four items (depending on the characteristics of the computer), then it will be

advantageous to sort it by the use of a program specially written for sorting

a particular small number of items. Finally, if both segments are fairly

large, it will be necessary to postpone the processing of one of them until the

22 ESSAYS IN COMPUTING SCIENCE

other has been fully sorted. Meanwhile, the addresses of the first and last

items of the postponed segment must be stored. It is very important to

economize on storage of the segment details, since the number of segments

altogether is proportional to the number of items being sorted. Fortunately,

it is not necessary to store the details of all segments simultaneously, since

the details of segments which have already been fully sorted are no longer

required.
The recommended method of storage makes use of a nest, i.e. a block of

consecutive locations associated with a pointer. This pointer always refers

to the lowest-addressed location of the block whose contents may be

overwritten. Initially the pointer refers to the first location of the block.

When information is to be stored in the nest, it is stored in the location

referred to by the pointer, and the pointer is stepped on to refer to the next

higher location. When information is taken from the nest, the pointer is

stepped back, and the information will be found in the location referred to

by the pointer. The important properties of a nest are that information is

read out in the reverse order to that in which it is written, and that the

reading of information automatically frees the locations in which is has

been held, for the storage of further information.

When the processing of a segment has to be postponed, the necessary

details are placed in the nest. When a segment is found to consist of one or

no items, or when it has been sorted by some other method which is used on

small segments, then it is possible to turn to the processing of one of the

postponed segments; the segment chosen should always be the one most

recently postponed, and its details may therefore be read from the nest.

During the processing of this segment, it may be necessary to make further

postponements, but now the segment details may overwrite the locations

used during the processing of the previous segment. This is, in fact,

achieved automatically by the use of a nest.

It is important to know in advance the maximum number of locations

used by the nest; in order to ensure that the number of segments postponed

at any one time never exceeds the logarithm (base 2) of the number of items

to be sorted, it is sufficient to adopt the rule of always postponing the

processing of the larger of the two segments.!

2.1.3 Estimate of time taken

The number of key comparisons necessary to partition a segment of N items

will depend on the details of the method used to choose the bound, or to test

|A description of Quicksort in ALGOL [3] is rather deceptively simple, since the use of
recursion means that the administration of the nest does not have to be explicitly described.

The claim to a negative sorting time in the reference is, of course, due to a misprint.

QUICKSORT 23

for the completion of the partition process. In any case the number of

comparisons is of the form N + k, where k may be -1,0, 1,2.

The number of exchanges will vary from occasion to occasion, and

therefore only the expected number can be given. An assumption has to be

made that the value of the bound is a random sample from the population

of key values of the items in the segment. If this assumption is not justified

by the nature of the data being sorted, it will be advisable to choose the item

which yields the bound value at random, so that in any case the assumption

of randomness will be valid.

In the calculations which follow, use is made of the principle of

conditional expectation. We consider separately the case where the bound is

the rth in order of magnitude of all the key values in the segment; the value

of the conditional expectation of the quantity which interests us may now

be expressed quite simply as a function of r. The rule of conditional

expectation states that if each conditional expectation is multiplied by the

probability of occurrence of the condition, and they are summed over the

whole range of conditions, the result gives the unconditional or absolute

expectation. According to the assumption of randomness, all the values of r

between 1 and N inclusive are equally likely, so that they each have a

probability of l/N. If, therefore, the expression which gives the conditional

expectation on assumption of a given r is summed with respect to r and

divided by N, we obtain the value of the absolute expectation of the

quantity concerned.

Consider the situation at the end of the partition process, when the bound

was the rth key value in order of magnitude. As a result of the final

exchange, the item which yielded this key value will occupy the rth position

of the segment, and the r - 1 items with lesser key value will occupy the

r - 1 positions below it in the store. The number of exchanges made in the

course of the partition process is equal to the number of items which

originally occupied the r - 1 positions of the lower resulting segment, but

which were removed because they were found to have key values greater

than the bound. The probability of any key value being greater than the

bound is {N — r- 1)/N, and therefore the expected number of such items

among the r- 1 items which originally occupied what was to be the lower

resulting segment is:

(N-r- l)(r - 1)

N

Summing with respect to r, dividing by N, and adding one for the final

exchange of the item which yielded the bound, we get the absolute

expectation of the number of exchanges:

N 5

6 + 6N

24 ESSAYS IN COMPUTING SCIENCE

This figure may be reduced by 1 /TV if the final exchange is always omitted in

the case when the item which provided the bound is already in its correct

position. In general it will not be worthwhile to test for this case.

Given the expected theoretical number of comparisons and exchanges, it

should be quite easy to calculate the expected time taken by a given program

on a given computer. The formula for the time taken to partition a segment

of TV items will take the form

TV*

where the coefficients a, b and c are determined by the loop times of the

program. The expected time taken to sort TV items will be denoted Tn. We

shall suppose that a different method of sorting is used on segments of size

less than M. The values of Tr for r < Mare taken as given. We shall find a

recursive relationship to give the values of Tr for r ^ M.

Suppose that the value of the bound chosen for the first partition is the

rth in order of magnitude. Then the time taken to sort the whole segment of

TV items is equal to the time taken to partition the TV items, plus the time

taken to sort the r- 1 items of the lower resulting segment, plus the time

taken to sort the TV -r- 1 items of the upper resulting segment. This

assertion must also be true of the expected times

Tn — Tr + TN.r + tfTV + b + —_,
N

on condition that the first bound was the rth. Summing with respect to r

and dividing by AT we get the unconditional expectation

2 v-1 r
Tn = - 2 Tr+ aN+ b + —, TV^M.

TV i TV

The exact solution of this recurrence equation is t

j 2(N+ 1) My' { (N+l)c

N M(M + 1) 1 r M(M+ 1)

+
2 (TV+ 1)

M+ 1
b

+ 2(TV+1) S -
m +1 r

4 (TV+ 1)

M + 1
+ N+ 4 a.

The validity of the solution may be proved by substituting in the original

equation, and showing that the result is an algebraic identity. For sim¬

plicity, the coefficients of 1 Tr, c, A, and a should be considered

fWe adopt the convention that a sum is zero if its upper bound is less than its lower bound.

QUICKSORT 25

separately. The correctness of the first three coefficients is easily established.

In verifying the coefficient of a, the following identities are used. Writing

WN for

V 1 , 2 2
a}i\ r + N+ 1 M + 1

and Vn for the coefficient of a in 7V, we get

Vn=(N+ 1)(7V+ 2)Wn+{ - N(N+ 1)WN (1)

= |/V(/V+ 1)WN+ N

4, S Vr + N. from (1)

It is interesting to compare the average number of comparisons required

to sort N items, where N is very large, with the theoretical minimum

number of comparisons. We consider the case M— 2, and find the expected

number of comparisons by putting a = \ , b = c = T\ = 0m the formulae of

the last paragraph. When N\s very large, all terms except the largest may be

ignored. The figure obtained for the expected number of comparisons is

2N Y. - ~ 27V loge N.
i r

The theoretical minimum average number of comparisons required to

sort N unequal randomly ordered items may be estimated on information-

theoretic considerations. As a result of a single binary comparison, the

maximum entropy which may be destroyed is - log 2, while the original

entropy of the randomly ordered data is -log N\; the final entropy of the

sorted data is zero. The minimum number of comparisons required to

achieve this reduction in entropy is

- log N’
, V = log2 N\ ~ N log2 N.

- log 2

The average number of comparisons required by Quicksort is greater

than the theoretical minimum by a factor of 2 loge 2 ~ 1.4. This factor could

be reduced by the expedient of choosing as the bound for each partition the

median of a small random sample of the items in the segment. It is very

difficult to estimate the saving which would be achieved by this, and it is

possible that the extra complication of the program would not be justified.

Probably more worthwhile is the attempt to reduce as far as possible the

actual time taken by the innermost comparison cycle, and a number of

simple programming devices to achieve this will be described in Part 2 of

this paper.

26 ESSAYS IN COMPUTING SCIENCE

2.1.4 A comparison of Quicksort with merge sorting

The National-Elliott 405 computer has a delay-line working store of 512

locations, and a magnetic-disk backing store of 16 384 words. The average

access time for the working store is 0.8 ms and the average access time for a

block of 64 words in the backing store is 32 ms. There are 19 words of

immediate-access storage, which are used to contain instructions and

working space of the inner loops; the time taken by such loops is about

0.15 ms per instruction.

Table 2.1 gives a comparison of times taken by Quicksort and a

merge-sorting method, both programmed by Mr P. Shackleton for the 405.

The times were measured automatically by the computer in tests on random

data conducted by Mr D. J. Pentecost. The figures relate to six-word items

with a single-word key.

Table 2.1

Number of items Merge sort Quicksort

500 2 min 8 s 1 min 21 s

1000 4 min 48 s 3 min 8 s

1500 8 min 15 s* 5 min 6 s

2000 11 min 0 s* 6 min 47 s

These figures were computed by formula, since they cannot be
achieved on the 405 owing to limited store size.

2.2 Implementation

In the implementation of a sorting method on a given computer, it is often

possible to make adaptations which will ensure optimization of the

innermost loops. Quicksort turns out to be exceptionally flexible; a number

of possible variations are described below. The choice of which variation is

adopted on any given computer will, of course, depend on the characteris¬

tics of the computer. In making the decision, the theoretical estimate of

time taken for various values of a, b, c, and M should be used to determine

the optimal method; it will not be necessary to write and test a large number

of different programs.

2.2.1 Partition without exchange

On some computers the exchange operation would involve copying one

QUICKSORT 27

of the items into workspace while the other item overwrites the locations

which it occupied. On such a computer it would be advantageous to avoid

exchanging altogether, and a method of achieving this is described below.

The item chosen to yield the bound should always be that which occupies

the highest-addressed locations of the segment which is to be partitioned. If

it is feared that this will have a harmfully nonrandom result, a randomly

chosen item should be initially placed in the highest-addressed locations.

The item which yielded the bound is copied into working space. Then the

upper and lower pointers are set to their initial values, and the lower pointer

starts its upward scan of the store. When it finds an item with key greater

than the bound, this item is copied into the locations to which the upper

pointer now refers. The upper pointer is stepped down, and proceeds on its

downward scan of the data. When it finds an item with key lower than the

bound, this item is copied into the locations referred to by the lower

pointer. The lower pointer is then stepped up, and the process is repeated

until both the pointers are referring to the same item. Then the item which

has supplied the bound is copied from working space into the locations to

which the pointers refer. Throughout the process, the stationary pointer

refers to locations whose contents have been copied elsewhere, while the

moving pointer searches for the item to be copied into these locations. The

expected number of copying operations is obviously twice the correspond¬

ing figure for exchanges.

2.2.2 Cyclic exchange

On a machine with single-address instructions and the facility of exchanging

the contents of accumulator and store, it is more economicalto perform

long sequences of exchanges at one time. A single-exchange operation

involves reading to the accumulator, exchanging with store, and writing to

store, giving 3TV instructions to perform TV exchanges. If these exchanges

are perfomed cyclically all at the same time, one exchange instruction can

take the place of a read and a write instruction in all the exchanges except

the first and the last. Thus only one read instruction, one write instruction,

and 2TV- 1 exchange instructions are required. Further economy is

achieved in the case of multi-word items by the fact that the count of words

exchanged need be tested only once for each TV-fold exchange of each word

of the item.
The method of Quicksort allows all exchanges to be saved up until the

end of the partitioning process, when they may be executed together in a

cyclic movement. In practice, the values of the pointers at the time when

they come to a halt are stored in a list for later exchanging. The number of

locations which can be spared to hold this list will be a limiting factor in the

gain of efficiency.

28 ESSAYS IN COMPUTING SCIENCE

2.2.3 Optimization of the key-comparison loop

Most sorting methods require that a test be made every time that a pointer is

stepped, to see whether it has gone outside its possible range. Quicksort is

one of the methods which can avoid this requirement by the use of sentinels.

Before embarking on the sort, sentinels in the form of items with impossibly

large and small key values are placed at each end of the data to be sorted.

Now it is possible to remove the pointer test from the key comparison cycle;

the test is made only when both pointers are stopped and an exchange is just

about to be made. If, at this time, the pointers have not crossed, the

exchange is made and the partition process is continued. If they have

crossed over, the partition process is at an end.

If the value of the bound is the greatest or the least (or both) of the key

values of items in the segment being partitioned, then one (or both) of the

pointers will move outside the segment; but no harm can result, provided

neither pointer moves outside the area in which the whole mass of data is

stored. The upper sentinel, having a key value necessarily greater than that

of the bound, will stop the lower pointer, while the lower sentinel will stop

the upper pointer. The fact that two extra key comparisons are made on

every application of the partition process will be more than compensated

on fairly large segments by the omission of pointer comparison from the

innermost loop.

2.2.4 Multiword keys

When the keys, with respect to which the sorting is performed, extend over

more than one computer word, then a long time may be spent on comparing

the second and subsequent words of the key. This is a serious problem, since

it often happens that a large number of items share a very few values for the

first words of their keys. The problem is aggravated when the items are

nearly sorted, and it is necessary to make many comparisons between keys

which are identical except in their last word. The method described below is

due to Mr P. Shackleton.

The principle of the method is to compare only a single word of the keys

on each application of the partitioning process. When it is known that a

segment comprises all the items, and only those items, which have key

values identical to a given value over their first n words, then, in

partitioning this segment, comparison is made of the (n + l)th word of the

keys. A variation of the method of partitioning is adopted to ensure that

all items with identical values of the key word currently being compared

(and consequently identical over earlier words of their keys) are gathered

together in one segment as quickly as possible.

The variation consists in altering the criteria which determine the

QUICKSORT 29

stopping of the pointers. If we ensure that all items with key values equal to

the bound are placed in the upper of the resulting segments, then we may

associate with each segment its so-called characteristic value, which is the

greatest value equal to or less than all the key values of the segment (using

the expression key value to mean the value of the word of the key which will

be compared when the segment is partitioned). Furthermore, each segment

must contain all the items with key value equal to the characteristic value of

the segment. This is easily achieved by making the lower pointer stop

whenever it meets an item with key value equal to the bound, so that such an

item will be transferred to the upper segment. The value of the bound may

obviously be taken as the characteristic value of the upper resulting

segment, while the characteristic value of the lower resulting segment is the

same as that of the original segment which has just been partitioned. Where

this rule does not determine the characteristic values (as in the case of the

original mass of data), then no harm will be occasioned by choosing as

characteristic value the lowest possible value of the key word.

Now whenever a segment is to be partitioned, the value chosen as the

bound is compared with the characteristic value of the segment. If it is

greater, partitioning is performed with the modification described in the last

paragraph. If, however, they are equal, then it is the upper pointer which is

made to stop on encountering an item with key value equal to the bound.

Thus all items with key values equal to the characteristic value are collected

together in the lower resulting segment, and when this segment comes to be

partitioned, comparison may be made of the next word of the keys (if any).

The adoption of this refinement means that when the processing of a

segment is postponed, the position of the key word which is next to be

considered, and the characteristic value for the segment, must be stored

together with the positions of the first and last items. On many machines,

the extra book-keeping will be justified by the consequent optimization of

the innermost comparison loop.

2.2.5 Multilevel storage

Quicksort is well suited to machines with more than one level of storage, for

instance a fast-access working store on magnetic cores and a backing store

on magnetic disks or drums. The data in the backing store are partitioned

repeatedly until each resulting segment may be contained in the fast-access

store, in which it may be sorted at high speed.
The partitioning process can be applied quite economically to data held

on a magnetic drum or disk backing store. The reason for this is that the

movement of the pointers allows serial transfer of information held

adjacently in the backing store, and such transfers are usually faster than if

more scattered random access were required. This is particularly true if

30 ESSAYS IN COMPUTING SCIENCE

information can only be transferred between the backing store and main

store in large blocks. The time lost in searching for information on the

backing store may be reduced to insignificant proportions, provided that it

does not take an exceptionally long time to search for information at one

end of the store immediately after transferring information at the other end.

This condition is satisfied by many magnetic drums or disk stores; it is

obviously not satisfied by a magnetic-tape store, on which the method of

Quicksort cannot usefully be applied.

2.3 Conclusion

Quicksort is a sorting method ideally adapted for sorting in the random-

access store of a computer. It is equally suited for data held in core storage

and data held in high-volume magnetic drum or disk backing stores. The

data are sorted in situ, and therefore the whole store may be filled with data

to be sorted. There is no need to sort simultaneously with input or output.

The number of cycles of the innermost comparison loop is close to the

theoretical minimum, and the loop may be made very fast. The amount of

data movement within the store is kept within very reasonable bounds.

Quicksort is therefore likely to recommend itself as the standard sorting

method on most computers with a large enough random-access store to

make internal sorting worthwhile.

THREE

A contribution to the

development of ALGOL

One of the themes of the work in this collection is the design of programming

languages. The language described in this paper (co-authored with Niklaus

Wirth) was implemented as ALGOL W and is referred to in Hoare’s Turing

Lecture as ‘a worthy successor of ALGOL 60, ... a worthy predecessor of

Pascal.’ Interesting features include the case construct and result parameters.

The most important contribution was undoubtedly the record construct.

Hoare discussed this at greater length in a paper presented at the IFIP

Working Conference on Symbol Manipulation Languages in Pisa, September

1966 (subsequently published as [11]). It is interesting to note that the idea of

records is here linked to that of heap storage and even automatic garbage

collection. The discussion of possible ‘language extensions’ is interesting, as is

the allusion (in 1966) to the need for ‘a conceptual framework for teaching,

reasoning and research in both theoretical and practical aspects of the science

of computation.’
This paper was submitted in January 1966, revised in February and

published in June of the same year. Here, only Part I of the paper is reprinted;

the subsquent parts contain a full description of the language in the style of

the ALGOL report and can be found in the original publication ([9]).

ALGOL W was implemented by Niklaus Wirth at Stanford and by Sue

Graham and others for the then new IBM/360 architecture. Although now

defunct, the language was used for teaching in several universities in Europe.

Abstract

A programming language similar in many respects to ALGOL 60, but incorporating a

large number of improvements based on six years’ experience with that language, is

described in detail. The original paper consists of three Parts, of which only Part I is

presented here. Part I consists of an introduction to the new language and a summary of

the changes made to ALGOL 60, together with a discussion of the motives behind the

N. Wirth and C. A. R. Hoare, ‘A contribution to the development of ALGOL’, Comm. ACM
9(6) 413-32 (June 1966). Copyright © 1966, Association for Computing Machinery, Inc.,

reprinted by permission.

31

32 ESSAYS IN COMPUTING SCIENCE

revisions. Part II is a rigorous definition of the proposed language. Part III describes a

set of proposed standard procedures to be used with the language, including facilities

for input/output.

3.1 Historical background

A preliminary version of this report was originally drafted by the first

author on an invitation made by IFIP Working Group 2.1 at its

meeting in May 1965 at Princeton. It incorporated a number of opinions

and suggestions made at that meeting and in its subcommittees, and it was

distributed to members of the Working Group (Wirth 1965).

However, at the following meeting of the Group at Grenoble in October

1965, it was felt that the report did not represent a sufficient advance of

ALGOL 60, either in its manner of language definition or in the content of

the language itself. The draft therefore no longer had the status of an

official Working Document of the Group and by kind permission of the

Chairman it was released for wider publication.

At that time the authors agreed to collaborate on revising and

supplementing the draft. The main changes were:

(1) Verbal improvements and clarifications, many of which were kindly

suggested by recipients of the original draft.

(2) Additional or altered language features, in particular the replacement of

tree structures by records as proposed by the second author.

(3) Changes which appeared desirable in the course of designing a simple

and efficient implementation of the language.

(4) Addition of introductory and explanatory material, and further sug¬

gestions for standard procedures, in particular on input/output.

(5) Use of a convenient notational facility to abbreviate the description of

syntax, as suggested by van Wijngaarden (1965).

The incorporation of the revisions is not intended to reinstate the report

as a candidate for consideration as a successor to ALGOL 60. However, it is

believed that its publication will serve three purposes:

(1) To present to a wider public a view of the general direction in which the

development of ALGOL is proceeding.

(2) To provide an opportunity for experimental implementation and use of

the language, which may be of value in future discussions of language

development.

(3) To describe some of the problems encountered in the attempt to extend
the language further.

A CONTRIBUTION TO THE DEVELOPMENT OF ALGOL 33

3.2 Aims of the language

The design of the language is intended to reflect the outlook and intentions

of IFIP Working Group 2.1, and in particular their belief in the value of a

common programming language suitable for use by many people in many

countries. It also recognizes that such a language should satisfy as far as

possible the following criteria:

(1) The language must provide a suitable technique for the programming

of digital computers. It must therefore be closely oriented toward the

capabilities of these machines, and must take into account their inherent

limitations. As a result it should be possible to construct a fast, well-

structured and reliable translator, translating programs into machine code

which makes economic use of the power and capacity of a computer. In

addition, the design of the language should act as an encouragement to the

programmer to conceive the solution of his problems in terms which will

product effective programs on the computers he is likely to have at his

disposal.
(2) The language must serve as a medium of communication between

those engaged in problems capable of algorithmic solution. The notational

structure of programs expressed in the language should correspond closely

with the dynamic structure of the processes they describe. The programmer

should be obliged to express himself explicitly clearly and fully, without

confusing abbreviations or implicit presuppositions. The perspicuity of

programs is believed to be a property of equal benefit to their readers and

ultimately to their writers.
(3) The language must present a conceptual framework for teaching,

reasoning and research in both theoretical and practical aspects of the

science of computation. It must therefore be based on rigorous selection

and abstraction of the most fundamental concepts of computational

techniques. Its power and flexibility should derive from unifying simplicity,

rather than from proliferation of poorly integrated features and facilities.

As a consequence, for each purpose there will be exactly one obviously

appropriate facility, so that there is minimal scope for erroneous choice and

misapplication of facilities, whether due to misunderstanding, inadvertence

or inexperience.
(4) The value of a language is increased in proportion to the range of

applications in which it may effectively and conveniently be used. It is

hoped that the language will find use throughout the field of algebraic and

numeric applications, and that its use will begin to spread to non-numeric

data processing in areas hitherto the preserve of special-purpose languages,

for example, the fields of simulation studies, design automation, informa¬

tion retrieval, graph theory, symbol manipulation and linguistic research.

To meet any of these four requirements, it is necessary that the language

34 ESSAYS IN COMPUTING SCIENCE

itself be defined with utmost clarity and rigor. The Report on ALGOL 60
has set a high standard in this respect, and in style and notation its example
has been gratefully followed.

3.3 Summary of new features

A large part of the language is, of course, taken directly from ALGOL 60.
However, in some respects the language has been simplified, and in others
extended. The following paragraphs summarize the major changes to
ALGOL 60, and relate them to the declared aims of the language.

3.3.1 Data types

The range of primitive data types has been extended from three in ALGOL
60 to seven, or rather nine, if the long variants are included. In compensa¬
tion, certain aspects of the concept of type have been simplified. In
particular, the own concept has been abandoned as insufficiently useful
to justify its position, and as leading to semantic ambiguities in many
circumstances.

3.3.7.7 Numeric data types

The type complex has been introduced into the language to simplify the
specification of algorithms involving complex numbers.

For the types real and complex, a long variant is provided to deal with
calculations or sections of calculations in which the normal precision for
floating-point number representation is not sufficient. It is expected that the
significance of the representation will be approximately doubled.

No provision is made for specifying the exact required significance of
floating-point representation in terms of the number of binary or decimal
digits. It is considered most important that the value of primitive types
should occupy a small integral number of computer words, so that their
processing can be carried out with the maximum efficiency of the equipment
available.

3.3.7.2 Sequences

The concept of a sequence occupies a position intermediate between that of
an array and of other simple data types. Like single-dimensional arrays,
they consist of ordered sequences of elements; however, unlike arrays, the
most frequent operations performed on them are not the extraction or

A CONTRIBUTION TO THE DEVELOPMENT OF ALGOL 35

insertion of single elements, but rather the processing of whole sequences,

or possibly subsequences of them.

Sequences are represented in the language by two new types, bits

(sequence of binary digits), and string (sequence of characters). Operations

defined for bit sequences include the logical operations —l5 A and V, and

those of shifting left and right.

The most important feature of a bit sequence is that its elements are

sufficiently small to occupy only a fraction of a ‘computer word’, i.e. a unit

of information which is in some sense natural to the computer. This means

that space can be saved by ‘packing,’ and efficiency can be gained by

operating on such natural units of information. In order that use of such

natural units can be made by an implementation, the maximum number of

elements in a sequence must be specified, when a variable of that type is

declared. Operations defined for string sequences include the catenation

operator cat.

3.3.1.3 Type determination at compile time

The language has been designed in such a way that the type and length of

the result of evaluating every expression and subexpression can be uniquely

determined by a textual scan of the program, so that no type testing is

required at run time, except possibly on procedure entry.

3.3.1.4 Type conversions

The increase in the number of data types has caused an even greater number

of possibilities for type conversion; some of these are intended to be

inserted automatically by the translator, and others have to be specified by

the programmer by use of standard transfer functions provided for the

purpose.
Automatic insertion of type conversion has been confined to cases where

there could be no possible confusion about which conversion is intended:

from integer to real, and real to complex, but not vice versa. Automatic

conversions are also performed from shorter to longer variants of the data

types; and in the case of numbers, from long to short as well.

For all other conversions explicit standard procedures must be used. This

ensures that the complexity and possible inefficiency of the conversion

process is not hidden from the programmer; furthermore, the existence of

additional parameters of the procedure, or a choice of procedures, will

draw his attention to the fact that there is more than one way of performing

the conversion, and he is thereby encouraged to select the alternative which

corresponds to his real requirements, rather than rely on a built-in ‘default

conversion, about which he may have only vague or even mistaken ideas.

36 ESSAYS IN COMPUTING SCIENCE

3.3.2 Control of sequencing

The only changes made to facilities associated with control of sequencing
have been made in the direction of simplification and clarification, rather
than extension.

3.3.2.1 Switches and the case construction

The switch declaration and the switch designator have been abolished. Their
place has been taken by the case construction, applying to both expressions
and statements. This construction permits the selection and execution (or
evaluation) of one from a list of statements (or expressions); the selection is
made in accordance with the value of an integer expression.

The case construction extends the facilities of the ALGOL conditional to
circumstances where the choice is made from more than two alternatives.
Like the conditional, it mirrors the dynamic structure of a program more
clearly than goto statements and switches, and it eliminates the need for
introducing a large number of labels in the program.

3.3.2.2 Labels

The concept of a label has been simplified so that it merely serves as a link
between a goto statement and its destination; it has been stripped of all
features suggesting that it is a manipulate object. In particular, designa-
tional expressions have been abolished, and labels can no longer be passed
as parameters of procedures.

A further simplification is represented by the rule that a goto statement
cannot lead from outside into a conditional statement or case statement, as
well as iterative statement.

The ALGOL 60 integer labels have been eliminated.

3.3.2.3 Iterative statements

The purpose of iterative statements is to enable the programmer to specify
iterations in a simple and perspicuous manner, and to protect himself from
the unexpected effects of some subtle or careless error. They also signalize
to the translator that this is a special case, susceptible of simple optimiz¬
ation.

It is notorious that the ALGOL 60 for statement fails to satisfy any of
these requirements, and therefore a drastic simplification has been made.
The use of iterative statements has been confined to the really simple and
common cases, rather than extended to cover more complex requirements,
which can be more flexibly and perspicuously dealt with by explicit program
instructions using labels.

A CONTRIBUTION TO THE DEVELOPMENT OF ALGOL 37

The most general and powerful iterative statement, capable of covering

all requirements, is that which indicates that a statement is to be executed

repeatedly while a given condition remains true. The only alternative type of

iterative statement allows a formal counter to take successive values in a

finite arithmetic progression on each execution of the statement. No explicit

assignments can be made to this counter, which is implicitly declared as

local to the iterative statement.

3.3.3 Procedures and parameters

A few minor changes have been made to the procedure concept of ALGOL

60, mainly in the interests of clarification and efficiency of implementation.

3.3.3.1 Value and result parameters

As in ALGOL 60, the meaning of parameters is explained in terms of the

‘copy rule’, which prescribes the literal replacement of the formal param¬

eter by the actual parameter. As a counterpart to the ‘value parameter’,

which is a convenient abbreviation for the frequent case where the formal

parameter can be considered as a variable local to the procedure and

initialized to the value of the actual parameter, a ‘result parameter’ has been

introduced. Again, the formal parameter is considered as a local variable,

whose value is assigned to the corresponding actual parameter (which

therefore always must be a variable) upon termination of the procedure.

The facility of calling an array parameter by value has been removed. It

contributes no additional power to the language, and it contravenes the

general policy that operations on entire arrays should be specified by means

of explicit iterations, rather than concealed by an implicit notation.

3.3.3.2 Statement parameters

A facility has been provided for writing a statement as an actual parameter

corresponding to a formal specified as procedure. The statement can be

considered as a proper procedure body without parameters. This represents

a considerable notational convenience, since it enables the procedure to be

specified actually in the place where it is to be used, rather than disjointly in

the head of some embracing block.

The label parameter has been abolished; its function may be taken over

by placing a goto statement in the corresponding actual parameter position.

3.3.3.3 Specifications

The specification of all formal parameters, and the correct matching of

38 ESSAYS IN COMPUTING SCIENCE

actuals to formals, has been made obligatory. The purpose of specifications

is to inform the user of the procedure of the correct conditions of its use,

and to ensure that the translator can check that these conditions have been

met.
One of the most important facts about a procedure which operates on

array parameters is the dimensionality of the arrays it will accept as actual

parameters. A means has therefore been provided for indicating this in the

specification of the parameter.

To compensate for the obligatory nature of specifications, their notation

has been simplified by including them in the formal parameter list, rather

than placing them in a separate specification part, as in ALGOL 60.

3.3.4 Data structures

The concept of an array has been taken from ALGOL 60 virtually

unchanged, with the exception of a slight notational simplification.

To supplement the array concept, the language has been extended by the

addition of a new type of structure (the record) consisting, like the array, of
C

one or more elements (or fields). With each record there is associated a

unique value of type reference which is said to refer to that record. This

reference may be assigned as the value of a suitable field in another record,

with which the given record has some meaningful relationship. In this way,

groups of records may be linked in structural networks of any desired

complexity.

The concept of records has been pioneered in the AED-I language by

D. T. Ross.

3.3.4.1 Records and fields

Like the array, a record is intended to occupy a given fixed number of

locations in the store of a computer. It differs from the array in that the

types of the fields are not required to be identical, so that in general each

field of a record may occupy a different amount of storage. This, of course,

makes it unattractive to select an element from a record by means of a

computed ordinal number, or index; instead, each field position is given a

unique invented name (identifier), which is written in the program whenever

that field is referred to.

A record may be used to represent inside the computer some discrete

physical or conceptual object to be examined or manipulated by the

program, for example, a person, a town, a geometric figure, a node of a

graph, etc. The fields of the record then represent properties of that object,

for example, the name of a person, the distance of a town from some

starting point, the length of a line, the time of joining a queue, etc.

A CONTRIBUTION TO THE DEVELOPMENT OF ALGOL 39

Normally, the name of the field suggests the property represented by that

field.

In contrast to arrays, records are not created by declarations; rather, they

are created dynamically by statements of the program. Thus their lifetimes

do not have to be nested, and stack methods of storage control must be

supplemented by more sophisticated techniques. It is intended that auto¬

matic ‘garbage collection’ will be applicable to records, so that records

which have become inaccessible may be detected, and the space they occupy

released for other purposes.

3.3.4.2 References

The normal data types (string, real, integer, etc.) are sufficient to represent

the properties of the objects represented by records; but a new type of data

is required to represent relationships holding between these objects. Pro¬

vided that the relationship is a functional relationship (i.e. many-one

or one-one), it can be represented by placing as a field of one record a

reference to the other record to which it is related. For example, if a record

which represents a person has a field named father, then this is likely to be

used to contain a reference to the record which represents that person’s

father. A similar treatment is possible to deal with the relationship between

a town and the next town visited on some journey, between a customer and

the person following him in some queue, between a directed line and its

starting point, etc.

References are also used to provide the means by which the program

gains access to records; for this purpose, variables of type reference should

be declared in the head of the block which uses them. Such variables will at

any given time refer to some subset of the currently existing records. Fields

of records can be referred to directly by associating the name of the field

with the value of the variable holding a reference to the relevant record. If

that record itself has fields containing references to yet further records

outside the initial subset, then fields of these other records may be accessed

indirectly by further associating their names with the construction which

identified the reference to the relevant record. By assignment of references,

records previously accessible only indirectly can be made directly accessible,

and records previously directly accessible can lose this status, or even

become totally inaccessible, in which case they are considered as deleted.

Thus, for example, if B is a variable of type reference declared in the head

of some enclosing block, and if age and father are field identifiers, and if B

contains a reference to a certain person, then

age(B)

(called a field designator) gives that person’s age;

fat her (B)

40 ESSAYS IN COMPUTING SCIENCE

is a reference to that person’s father, and

age(father(B))

gives his father’s age.

3.3.4.3 Record classes

Two records may be defined as similar if they have the same number of

fields, and if corresponding fields in the two records have the same names

and the same types. Similarity in this sense is an equivalence relation and

may be used to split all records into mutually exclusive and exhaustive

equivalence classes, called record classes. These classes tend to correspond

to the natural classification of objects under some generic term, for

example: person, town or quadrilateral. Each record class must be intro¬

duced in a program by means of a record class declaration, which associates

a name with the class and specifies the names and types of the fields which

characterize the members of the class.

One of the major pitfalls in the use of references is the mistaken

assumption that the value of a reference variable, -field or -parameter refers

to a record of some given class, whereas on execution of the program it

turns out that the reference value is associated with some record of quite a

different class. If the programmer attempts to access a field inappropriate

to the actual class referred to, he will get a meaningless result; but if he

attempts to make an assignment to such a field, the consequences could be

disastrous to the whole scheme of storage control. To avoid this pitfall, it is

specified that the programmer can associate with the definition of every

reference variable, -field or -parameter the name of the record class to

which any record referred to by it will belong. The translator is then able to

verify that the mistake described can never occur.

3.3.4.4 Efficiency of implementation

Many applications for which record handling will be found useful are

severely limited by the speed and capacity of the computers available. It has

therefore been a major aim in the design of the record-handling facilities

that in implementation the accessing of records and fields should be

accomplished with the utmost efficiency, and that the layout of storage be

subject only to a minimum administrative overhead.

3.4 Possibilities for language extension

In the design of the language a number of inviting possibilities for

extensions were considered. In many cases the investigation of these

A CONTRIBUTION TO THE DEVELOPMENT OF ALGOL 41

extensions seemed to reveal inconsistencies, indecisions and difficulties

which could not readily be solved. In other cases it seemed undesirable to

make the extension into a standard feature of the language, in view of the

extra complexity involved.

In this section, suggested extensions are outlined for the consideration of

implementors, users and other language designers.

3.4.1 Further string operations

For some applications it seems desirable to provide facilities for referring to

subsequences of bits and strings. The position of the subsequence could be

indicated by a notation similar to subscript bounds, viz.

S[i: j] the subsequence of S consisting of the ith to yth elements inclusive

This notation is more compact than the use of a standard procedure, and

it represents the fact that extraction is more likely to be performed by an

open subroutine than a closed one. However, the notational similarity

suggests that the construction might also appear in the left part of an

assignment, in which case it denotes insertion rather than extraction, i.e.

assignment to a part of the quantity. Apart from the undesirability of the

same contruction denoting two different operations, this would require that

strings be classified as structured values along with arrays.

3.4.2 Further data types

Suggestions have been made for facilities to specify the precision of

numbers in a more ‘flexible’ way, e.g. by indicating the number of required

decimal places. This solution has been rejected because it ignores the

fundamental distinction between the number itself and one of its possible

denotations, and as a consequence is utterly inappropriate for calculators

not using the decimal number representation. As an alternative, the notion

of a precision hierarchy could be introduced by prefixing declarations with a

sequence of symbols long, where the number of longs determines the

precision class. For reasons of simplicity, and in order that an implementa¬

tion may closely reflect the properties of a real machine (single vs. double

precision real arithmetic), allowing for only one long was considered as

appropriate. Whether an implementation actually distinguishes between

real and long real can be determined by an environment enquiry.

3.4.3 Initial values and local constants

It is a minor notational convenience to be able to assign an initial value to a

42 ESSAYS IN COMPUTING SCIENCE

variable as part of the declaration which introduces that variable. A more

important advantage is that the notation enables the programmer to express

a very important feature of his calculations, namely, that this is a unique

initial assignment made once only on the first entry to the block; further¬

more it completely rules out the possibility of the elementary but all too

common error of failing to make an assignment before the use of a variable.

However, such a facility rests on the notions of ‘compile time’ and ‘run

time’ action, which, if at all, should be introduced at a conceptually much

more fundamental level.

In some cases it is known that a variable only ever takes one value

throughout its lifetime, and a means may be provided to make these cases

notationally distinct from those of initial assignment. This means that the

intention of the programmer can be made explicit for the benefit of the

reader, and the translator is capable of checking that the assumption of

constancy is in fact justified. Furthermore, the translator can sometimes

take advantage of the declaration of constancy to optimize a program.

3.4.4 Array constructors

To provide the same technique for the initialization of arrays as for other

variables, some method should be provided for enumerating the values of

an array as a sequence of expressions. This would require the definition of a

reference denotation for array values, which, if available, would conse¬

quently suggest the introduction of operations on values of type array. The

reasons for not extending the language in this direction have already been

explained.

3.4.5 Record class discrimination

In general, the rule that the values of a particular reference variable or field

must be confined to a single record class will be found to present little

hardship; however, there are circumstances in which it is useful to relax this

rule, and to permit the value of a reference variable to range over more than

one record class. A facility is then desirable to determine the record class to

which a referred record actually belongs.

Two possibilities for record class discriminations are outlined as follows:

(1) A record union declaration is introduced with the form

union<record union identifier) ((record class identifier list))

The record class identifier accompanying a reference variable declaration

could then be replaced by a record union identifier, indicating that the

A CONTRIBUTION TO THE DEVELOPMENT OF ALGOL 43

values of that reference variable may range over all record classes included

in that union. An integer primary of the form

(record union identifier) ((reference expression))

would then yield the ordinal number of the record class in that union to

which the record referred to by the reference expression belongs.

(2) Record class specifications in reference variable declarations are

omitted, and a logical primary of the form

(reference primary) is (record class identifier)

could be introduced with the value true if and only if the reference primary

refers to a record of the specified record class.

While the introduction of a new kind of declaration (1) may seem

undesirable, solution (2) reintroduces the dangerous pitfalls described in

Section 3.3.4.3.

3.4.6 Procedure parameters

It has been realized that in most implementations an actual parameter being

an expression constitutes a function procedure declaration, and that one

being a statement constitutes a proper procedure declaration. These quasi¬

procedure declarations, however, are confined to being parameterless.

Samelson (1965) has suggested a notation for functionals which essentially

does nothing more than remove this restriction: an actual parameter may

include in its heading formal parameter specifications. In a paper by Wirth

and Weber (1966), the notational distinction between procedure declara¬

tions and actual parameters has been entirely removed. This was done along

with the introduction of a new kind of actual parameters similar in nature to

the references introduced here in connection with records.

However, neither ad hoc solutions nor a radical change from the

parameter mechanism and notation of ALGOL 60 seemed desirable.

'

FOUR

An axiomatic basis for
computer programming

This paper can be taken as the first in Hoare’s output on the formal
verification of programs. It provided the most important single stimulus to the
work on axiomatic semantics of programming languages. This is one of the
most widely cited papers in computing science and it has been reprinted many
times. It is worth considering the ideas current prior to its publication. Hoare
cites the work of Floyd (discussed further below), Naur and van Wijngaarden.
Naur (1966) is clearly less formal than the style chosen for the axiom system
presented. An early piece of work which could have influenced his thinking,
had Hoare been aware of it, was Turing (1949) — see Morris and Jones (1984).
However, the prevalent view of language definition at that time was based on
the operational semantics approach.

Hoare had attended the 1964 IFIP Working Conference on Formal
Language Description Languages at Baden-bei-Wien in 1964 (the proceedings
of which are published as Steel (1966). Although he did not give a talk, a
comment was made (see pp. 142-3) on ‘the need to leave languages
undefined’. At the meeting of W.G. 2.1, which followed the Baden con¬
ference, Hoare discussed the definition of functions like mod via their
properties (in this case, its result is non-negative and equal to either its
argument or the negation thereof). In 1965, he attended, with other members
of ECMA TC10, a course on the IBM Laboratory Vienna’s work on
operational semantics and he stayed at the Imperial Hotel on whose notepaper
a first sketch of the axiomatic work was written. A two-part draft dated
December 1967, one part of which axiomatized execution traces as a partial
order on states, clearly states the goals of what was to become axiomatic
semantics and discusses a wide range of language features. This draft was
written during a brief period of employment at the National Computing

Centre at Manchester.
Although the objectives are clear in the 1967 draft, there is no coherent

notion of how to axiomatize programming language constructs. Among

C. A. R. Hoare, ‘An axiomatic basis for computer programming’, Comm. ACM. 12(10),
576-80, 583 (October 1969). Copyright © 1969, Association for Computing Machinery, Inc.,

reprinted by permission.

45

46 ESSAYS IN COMPUTING SCIENCE

others, Hoare sent these notes to Peter Lucas of the IBM Vienna group. On

arrival in Belfast to take up his chair in October 1968, Hoare ‘stumbled upon

the mimeographed draft’ (this was dated 20 May 1966) of what was to be

published as Floyd (1967). This clearly had a major impact on the paper

reproduced here. A further two-part draft dated December 1968 strongly

resembles the final paper. The first part on data manipulation outlines the

ideas at the beginning of this chapter, while the part on program execution

uses the assertion form now known as Hoare triples (they are written here as

PjSji? but are now normally written as {PjSfT?) to emphasize the role of
assertions as comments).

Floyd’s paper uses a forward assignment rule which requires an existential

quantifier; this was also used in Hoare’s 1968 draft; the paper here uses a far

more useful backwards rule which was first published in Jim King’s thesis

although he attributes it to Floyd; Hoare was made aware of this form by

David Cooper who had been on sabbatical in Carnegie and had given a talk at
Belfast University.

This paper, which has been reprinted many times, has had a major influence

on formal methods of program development (extension of the method to cope

with other language features is discussed in Chapters 6 and 11). The impact

can be traced in Apt (1981) and in the enormous number of citations to the

paper. Very few actual languages have been designed using this method.

Euclid is perhaps the most notable attempt; Ada’s objectives in this area were

not met; the design of Occam™ is discussed in Chapter 16.

The axiomatic system is presented as a way of proving the correctness of

extant programs. Subsequent work (including Chapter 5) showed how the

same system could be used in program design. The emphasis on control

structures was also a limitation to the usefulness of the system presented;

Hoare’s approach to the problem of data abstraction is described in Chapter

8. The restriction to ‘partial correctness’ is explained in Section 5 of the paper.

Another, more subtle, restriction is the assumption that post-conditions are

predicates of the final state alone. Hoare adopted post-conditions which are

predicates of initial and final states in his talks at the Newcastle seminar in

1982 (see also Chapter 20). This paper was published as [15] in October 1969.

Abstract

In this paper an attempt is made to explore the logical foundations of computer

programming by use of techniques which were first applied in the study of geometry

and have later been extended to other branches of mathematics. This involves the

elucidation of sets of axioms and rules of inference which can be used in proofs of the

properties of computer programs. Examples are given of such axioms and rules, and a

formal proof of a simple theorem is displayed. Finally, it is argued that important

advantages, both theoretical and practical, may follow from a pursuance of these
topics.

AN AXIOMATIC BASIS FOR COMPUTER PROGRAMMING 47

4.1 Introduction

Computer programming is an exact science in that all the properties of

a program and all the consequences of executing it in any given

environment can, in principle, be found out from the text of the program

itself by means of purely deductive reasoning. Deductive reasoning involves

the application of valid rules of inference to sets of valid axioms. It is

therefore desirable and interesting to elucidate the axioms and rules of

inference which underlie our reasoning about computer programs. The

exact choice of axioms will to some extent depend on the choice of

programming language. For illustrative purposes, this paper is confined to a

very simple language, which is effectively a subset of all current procedure-

oriented languages.

4.2 Computer arithmetic

The first requirement in valid reasoning about a program is to know the

properties of the elementary operations which it invokes, for example,

addition and multiplication of integers. Unfortunately, in several respects

computer arithmetic is not the same as the arithmetic familiar to math¬

ematicians, and it is necessary to exercise some care in selecting an

appropriate set of axioms. For example, the axioms displayed in Table 4.1

are rather a small selection of axioms relevant to integers. From this

incomplete set of axioms it is possible to deduce such simple theorems as:

x = x+ yx0

q = (r-y) + yx(1 + q)

The proof of the second of these is:

A5 (r - y) + y x (1 + q) = (r - y) + (y x 1 + y x q)

A9 ={r- y) + (y + yxq)

A3 = ((r-y) +y) +yx q

A6 = r + y x q provided y ^ r

The axioms A1-A9 are, of course, true of the traditional infinite set of

integers in mathematics. However, they are also true of the finite sets of

‘integers’ which are manipulated by computers provided that they are

confined to nonnegative numbers. Their truth is independent of the size of

the set; furthermore, it is largely independent of the choice of technique

applied in the event of ‘overflow’; for example:

(1) Strict interpretation: the result of an overflowing operation does not

48 ESSAYS IN COMPUTING SCIENCE

Table 4.1

A1 x + y = y + x addition is commutative
A2 x x y = y x x multiplication is commutative
A3 (x + y) + z = x + (y + z) addition is associative
A4 (x x y) x z = x x (y x z) multiplication is associative
A5 xx(y+z) = xxy+xxz multiplication distributes through addition
A6 y ^ v => (x- y) + y = x addition cancels subtraction
A7 x + 0= x
A8 xx0 = 0
A9 X X 1 = X

exist; when overflow occurs, the offending program never completes its

operation. Note that in this case, the equalities of A1 to A9 are strict, in the

sense that both sides exist or fail to exist together.

(2) Firm boundary; the result of an overflowing operation is taken as the

maximum value represented.

(3) Modulo arithmetic: the result of an overflowing operation is com¬

puted modulo the size of the set of integers represented.

These three techniques are illustrated in Table 4.2 by addition and

multiplication tables for a trivially small model in which 0, 1,2, and 3 are

the only integers represented.

Table 4.2

1. Strict interpretation

+ 0 1 2 3 X 0 1 2 3

0 0 1 2 3 0 0 0 0 0
1 1 2 3 * 1 0 1 2 3
2 2 3 * * 2 0 2 * *

3 3 * * * 3 0 3 * *

* nonexistent

2 . Firm boundary

+ 0 1 2 3 X 0 1 2 3

0 0 1 2 3 0 0 0 0 0
1 1 2 3 3 1 0 1 2 3
2 2 3 3 3 2 0 2 3 3
3 3 3 3 3 3 0 3 3 3

3. Modulo arithmetic

+ 0 1 2 3 X 0 1 2 3

0 0 1 2 3 0 0 0 0 0
1 1 2 3 0 1 0 1 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 3 0 3 2 1

AN AXIOMATIC BASIS FOR COMPUTER PROGRAMMING 49

It is interesting to note that the different systems satisfying axioms

A1-A9 may be rigorously distinguished from each other by choosing a

particular one of a set of mutually exclusive supplementary axioms. For

example, infinite arithmetic satisfies the axiom:

AlOi —, 3xVy(y 5^ x),

whereas all finite arithmetics satisfy:

A10f Vj(x ^ max)

where ‘max’ denotes the largest integer represented.

Similarly, the three treatments of overflow may be distinguished by a

choice of one of the following axioms relating to the value of max + 1:

Alls —13x(x = max + 1) (strict interpretation)

Alls max + 1 = max (firm boundary)

A1 1m max +1=0 (modulo arithmetic)

Having selected one of these axioms, it is possible to use it in deducing the

properties of programs; however, these properties will not necessarily

obtain, unless the program is executed on an implementation which satisfies

the chosen axiom.

4.3 Program execution

As mentioned above, the purpose of this study is to provide a logical basis

for proofs of the properties of a program. One of the most important

properties of a program is whether or not it carries out its intended

function. The intended function of a program, or part of a program, can be

specified by making general assertions about the values which the relevant

variables will take after execution of the program. These assertions will

usually not ascribe particular values to each variable, but will rather specify

certain general properties of the values and the relationships holding

between them. We use the normal notations of mathematical logic to

express these assertions, and the familiar rules of operator precedence have

been used wherever possible to improve legibility.

In many cases, the validity of the results of a program (or part of a

program) depend on the values taken by the variables before that program

is initiated. These initial preconditions of successful use can be specified by

the same type of general assertion as is used to describe the results obtained

on termination. To state the required connection between a precondition

(P), sl program (Q) and a description of the result of its execution (R), we

50 ESSAYS IN COMPUTING SCIENCE

introduce a new notation:

P[Q) R.

This may be interpreted ‘If the assertion P is true before initiation of a

program Q, then the assertion R will be true on its completion.’ If there are

no preconditions imposed, we write true (Q]

The treatment given below is essentially due to Floyd (1967) but is applied

to texts rather than flowcharts.

4.3.1 Axiom of assignment

Assignment is undoubtedly the most characteristic feature of programming

a digital computer, and one that most clearly distinguishes it from other

branches of mathematics. It is surprising therefore that the axiom governing

our reasoning about assignment is quite as simple as any to be found in

elementary logic.

Consider the assignment statement:

x:=f

where

x is an identifier for a simple variable;

/ is an expression of a programming language without side effects, but

possibly containing x.

Now any assertion P(x) which is to be true of (the value of) x after the

assignment is made must also have been true of (the value of) the expression

/, taken before the assignment is made, i.e. with the old value of x. Thus if

P(x) is to be true after the assignment, then P(f) must be true before the

assignment. This fact may be expressed more formally:

DO Axiom of assignment

h-Po {x:= /} P
where

x is a variable identifier;

/ is an expression;

Po is obtained from P by substituting / for all occurrences of x.

It may be noticed that DO is not really an axiom at all, but rather an

axiom schema, describing an infinite set of axioms which share a common

pattern. This pattern is described in purely syntactic terms, and it is easy to

check whether any finite text conforms to the pattern, thereby qualifying as

an axiom, which may validly appear in any line of a proof.

tit this can be proved in our formal system, we use the familiar logical symbol for
theoremhood: P {Q\ R

AN AXIOMATIC BASIS FOR COMPUTER PROGRAMMING 51

4.3.2 Rules of consequence

In addition to axioms, a deductive science requires at least one rule of

inference, which permits the deduction of new theorems from one or more

axioms or theorems already proved. A rule of inference takes the form ‘If

H X and I- Y then h- Z’, i.e. if assertions of the form X and Y have been

proved as theorems, then Z also is thereby proved as a theorem. The

simplest example of an inference rule states that if the execution of a

program Q ensures the truth of the assertion R, then it also ensures the

truth of every assertion logically implied by R. Also, if P is known to be

a precondition for a program Q to produce result R, then so is any other

assertion which logically implies P. These rules may be expressed more

formally:

D1 Rules of consequence

If y-P l Q)R and R => S then h-P(Q)S

If h-P (£?)/? and h- 5 => P then i-S(Q)/?

4.3.3 Rule of composition

A program generally consists of a sequence of statements which are

executed one after another. The statements may be separated by a

semicolon or equivalent symbol denoting procedural composition:

(Qu Qi,Qn)- In order to avoid the awkwardness of dots, it is possible

to deal initially with only two statements (Qi; Q2), since longer sequences

can be reconstructed by nesting, thus (Qi; {Qi, &)•”)))• The
removal of the brackets of this nest may be regarded as convention based

on the associativity of the ‘;-operator\ in the same way as brackets are

removed from an arithmetic expression {t\ + (A + 1 + /«)•••)))•
The inference rule associated with composition states that if the proven

result of the first part of a program is identical with the precondition under

which the second part of the program produces its intended result, then the

whole program will produce the intended result, provided that the precondi¬

tion of the first part is satisfied.

In more formal terms:

D2 Rule of composition

If e- P (Q\)R\ and \-Ri [Qi] R then h-P[(Qx\Qi)]R

4.3.4 Rule of iteration

The essential feature of a stored program computer is the ability to execute

some portion of program (S) repeatedly until a condition (B) goes false. A

52 ESSAYS IN COMPUTING SCIENCE

simple way of expressing such an iteration is to adapt the ALGOL 60 while

notation:

while B do S

In executing this statement, a computer first tests the condition B. If this is

false, S is omitted, and execution of the loop is complete. Otherwise, S is

executed and B is tested again. This action is repeated until B is found to be

false. The reasoning which leads to a formulation of an inference rule for

iteration is as follows. Suppose P to be an assertion which is always true on

completion of S, provided that it is also true on initiation. Then obviously

P will still be true after any number of iterations of the statement S (even

no iterations). Furthermore, it is known that the controlling condition

B is false when the iteration finally terminates. A slightly more powerful

formulation is possible in light of the fact that B may be assumed to be true

on initiation of S:

D3 Rule of iteration

If hPA5(5}P then h- P {while B do 5}n5 A P

4.3.5 Example

The axioms quoted above are sufficient to construct the proof of properties

of simple programs, for example, a routine intended to find the quotient q

and remainder r obtained on dividing x by y. All variables are assumed to

range over a set of nonnegative integers conforming to the axioms listed in

Table 4.1. For simplicity we use the trivial but inefficient method of

successive subtraction. The proposed program is:

((r := x; q := 0); while y ^ r do (r := r—y\q:= 1 + q))

An important property of this program is that when it terminates, we can

recover the numerator x by adding to the remainder r the product of the

divisor y and the quotient q (i.e. x = r + y X q). Furthermore, the remain¬

der is less than the divisor. These properties may be expressed formally:

true [Q] —^r/\x=r + yxq

where Q stands for the program displayed above. This expresses a necessary

(but not sufficient) condition for the ‘correctness’ of the program.

A formal proof of this theorem is given in Table 4.3. Like all formal

proofs, it is excessively tedious, and it would be fairly easy to introduce

notational conventions which would significantly shorten it. An even more

powerful method of reducing the tedium of formal proofs is to derive

general rules for proof construction out of the simple rules accepted as

postulates. These general rules would be shown to be valid by demonstra-

AN AXIOMATIC BASIS FOR COMPUTER PROGRAMMING 53

Table 4.3

Line
number

Formal proof Justification

1 true => r = r+j^xO Lemma 1

2 r=x+}'x0|/-:= x) x = r+ yx 0 DO

3 x = r + y x 0 [q ■= 0} x = r + y x q DO

4 true [r := x] x = r + y x 0 D1 (1, 2)

5 true {r := x; q0} x = r + y x q D2 (4, 3)

6 x=r+yxq/\y^r=*
x = (r- y) + yx(\ + q) Lemma 2

7 x = (r- y) + yx(\ + q) [r:= r - y]

x=r+yx(\ + q) DO

8 x = r + y x (\ + q) {q := 1 + q)

x = r + y x q DO

9 x = {r - y) + y x (1 + q)[r:= r - y; q := 1 + q
x = r + y x q D2 (7,8)

10 x=r+yxqAy^r{r:= r - y; q := 1 + q]
x = r 4- y X q D1 (6,9)

11 x = r + y x q

while y ^ r do (r := r - y; q := 1 + <7)}
—1 y^rAx~r+yxq D3 (10)

12 true {((/*:= x; q:= 0);
while y ^ r do (r := r - y; q := 1 + <7)))

—1 y ^ r A x = r + y x q D2 (5, 11)

NOTES
(1) The left-hand column is used to number the lines, and the right-hand column to

justify each line, by appealing to an axiom, a lemma or a rule of inference applied to

one or two previous lines, indicated in brackets. Neither of these columns is part of
the formal proof. For example, line 2 is an instance of the axiom of assignment

(DO); line 12 is obtained from lines 5 and 11 by application of the rule of
composition (D2).

(2) Lemma 1 may be proved from axioms A7 and A8.
(3) Lemma 2 follows directly from the theorem proved in Section 4.2.

ting how every theorem proved with their assistance could equally well

(if more tediously) have been proved without. Once a powerful set of

supplementary rules has been developed, a ‘formal proof’ reduces to little

more than an informal indication of how a formal proof could be

constructed.

4.4 General reservations

The axioms and rules of inference quoted in this paper have implicitly

assumed the absence of side effects of the evaluation of expressions and

54 ESSAYS IN COMPUTING SCIENCE

conditions. In proving properties of programs expressed in a language

permitting side effects, it would be necessary to prove their absence in each

case before applying the appropriate proof technique. If the main purpose

of a high-level programming language is to assist in the construction and

verification of correct programs, it is doubtful whether the use of functional

notation to call procedures with side effects is a genuine advantage.

Another deficiency in the axioms and rules quoted above is that they give

no basis for a proof that a program successfully terminates. Failure to

terminate may be due to an infinite loop; or it may be due to violation of an

implementation-defined limit, for example, the range of numeric operands,

the size of storage, or an operating system time unit. Thus the notation

‘P [Q] R’ should be interpreted as ‘provided that the program successfully

terminates, the properties of its results are described by R.’ It is fairly easy

to adapt the axioms so that they cannot be used to predict the ‘results’ of

nonterminating programs; but the actual use of the axioms would now

depend on knowledge of many implementation-dependent features, for

example, the size and speed of the computer, the range of numbers, and the

choice of overflow technique. Apart from proofs of the avoidance of

infinite loops, it is probably better to prove the ‘conditional’ correctness of

a program and rely on an implementation to give a warning if it has had to

abandon execution of the program as a result of violation of an implemen¬

tation limit.

Finally it is necessary to list some of the areas which have not been

covered: for example, real arithmetic, bit and character manipulation,

complex arithmetic, fractional arithmetic, arrays, records, overlay defini¬

tion, files, input/output, declarations, subroutines, parameters, recursion,

and parallel execution. Even the characterization of integer arithmetic is far

from complete. There does not appear to be any great difficulty in dealing

with these points, provided that the programming language is kept simple.

Areas which do present real difficulty are labels and jumps, pointers, and

name parameters. Proofs of programs which made use of these features are

likely to be elaborate, and it is not surprising that this should be reflected in

the complexity of the underlying axioms.

4.5 Proofs of program correctness

The most important property of a program is whether it accomplishes the

intentions of its user. If these intentions can be described rigorously by

making assertions about the values of variables at the end (or at intermedi¬

ate points) of the execution of the program, then the techniques described in

this paper may be used to prove the correctness of the program, provided

that the implementation of the programming language conforms to the

AN AXIOMATIC BASIS FOR COMPUTER PROGRAMMING 55

axioms and rules which have been used in the proof. This fact itself might

also be established by deductive reasoning, using an axiom set which

describes the logical properties of the hardware circuits. When the cor¬

rectness of a program, its compiler, and the hardware of the computer have

all been established with mathematical certainty, it will be possible to place

great reliance on the results of the program, and predict their properties

with a confidence limited only by the reliability of the electronics.

The practice of supplying proofs for nontrivial programs will not become

widespread until considerably more powerful proof techniques become

available, and even then will not be easy. But the practical advantages of

program proving will eventually outweigh the difficulties, in view of the

increasing costs of programming error. At present, the method which a

programmer uses to convince himself of the correctness of his program is to

try it out in particular cases and to modify it if the results produced do not

correspond to his intentions. After he has found a reasonably wide variety

of example cases on which the program seems to work, he believes that it

will always work. The time spent in this program testing is often more than

half the time spent on the entire programming project; and with a realistic

costing of machine time, two thirds (or more) of the cost of the project is

involved in removing errors during this phase.

The cost of removing errors discovered after a program has gone into use

is often greater, particularly in the case of items of computer manufac¬

turers’ software for which a large part of the expense is borne by the user.

And finally, the cost of error in certain types of program may be almost

incalculable - a lost spacecraft, a collapsed building, a crashed aeroplane,

or a world war. Thus the practice of program proving is not only a

theoretical pursuit, followed in the interests of academic respectability, but

a serious recommendation for the reduction of the costs associated with

programming error.

The practice of proving programs is likely to alleviate some of the other

problems which afflict the computing world. For example, there is the

problem of program documentation, which is essential, firstly, to inform a

potential user of a subroutine how to use it and what it accomplishes, and

secondly, to assist in further development when it becomes necessary to

update a program to meet changing circumstances or to improve it in the

light of increased knowledge. The most rigorous method of formulating the

purpose of a subroutine, as well as the conditions of its proper use, is to

make assertions about the values of variables before and after its execution.

The proof of the correctness of these assertions can then be used as a lemma

in the proof of any program which calls the subroutine. Thus, in a large

program, the structure of the whole can be clearly mirrored in the structure

of its proof. Furthermore, when it becomes necessary to modify a program,

it will always be valid to replace any subroutine by another which satisfies

the same criterion of correctness. Finally, when examining the detail of the

56 ESSAYS IN COMPUTING SCIENCE

algorithm, it seems probable that the proof will be helpful in explaining not

only what is happening but why.

Another problem which can be solved, insofar as it is soluble, by the

practice of program proofs is that of transferring programs from one design

of computer to another. Even when written in a so-called machine-

independent programming language, many large programs inadvertently

take advantage of some machine-dependent property of a particular

implementation, and unpleasant and expensive surprises can result when

attempting to transfer it to another machine. However, presence of a

machine-dependent feature will always be revealed in advance by the failure

of an attempt to prove the program from machine-independent axioms.

The programmer will then have the choice of formulating his algorithm

in a machine-independent fashion, possibly with the help of environment

enquiries; or if this involves too much effort or inefficiency, he can

deliberately construct a machine-dependent program, and rely for his proof

on some machine-dependent axiom, for example, one of the versions of

A11 (Section 4.2). In the latter case, the axiom must be explicitly quoted as

one of the preconditions of successful use of the program. The program can

still, with complete confidence, be transferred to any other machine which

happens to satisfy the same machine-dependent axiom; but if it becomes

necessary to transfer it to an implementation which does not, then all the

places where changes are required will be clearly annotated by the fact that

the proof at that point appeals to the truth of the offending machine-

dependent axiom.

Thus the practice of proving programs would seem to lead to solution of

three of the most pressing problems in software and programming, namely,

reliability, documentation, and compatibility. However, program proving,

certainly at present, will be difficult even for programmers of high calibre;

and may be applicable only to quite simple program designs. As in other

areas, reliability can be purchased only at the price of simplicity.

4.6 Formal language definition

A high-level programming language, such as ALGOL, LORTRAN, or

COBOL, is usually intended to be implemented on a variety of computers

of differing size, configuration, and design. It has been found a serious

problem to define these languages with sufficient rigour to ensure com¬

patibility among all implementors. Since the purpose of compatibility is to

facilitate interchange of programs expressed in the language, one way to

achieve this would be to insist that all implementations of the language shall

‘satisfy’ the axioms and rules of inference which underlie proofs of the

properties of programs expressed in the language, so that all predictions

AN AXIOMATIC BASIS FOR COMPUTER PROGRAMMING 57

based on these proofs will be fulfilled, except in the event of hardware

failure. In effect, this is equivalent to accepting the axioms and rules of

inference as the ultimately definitive specification of the meaning of the
language.

Apart from giving an immediate and possibly even provable criterion for

the correctness of an implementation, the axiomatic technique for the

definition of programming language semantics appears to be like the formal

syntax of the ALGOL 60 report, in that it is sufficiently simple to be

understood both by the implementor and by the reasonably sophisticated

user of the language. It is only by bridging this widening communication

gap in a single document (perhaps even provably consistent) that the

maximum advantage can be obtained from a formal language definition.

Another of the great advantages of using an axiomatic approach is that

axioms offer a simple and flexible technique for leaving certain aspects of a

language undefined, for example, range of integers, accuracy of floating

point, and choice of overflow technique. This is absolutely essential for

standardization purposes, since otherwise the language will be impossible to

implement efficiently on differing hardware designs. Thus a programming

language standard should consist of a set of axioms of universal applic¬

ability, together with a choice from a set of supplementary axioms

describing the range of choices facing an implementor. An example of the

use of axioms for this purpose was given in Section 4.2.

Another of the objectives of formal language definition is to assist in the

design of better programming languages. The regularity, clarity, and ease of

implementation of the ALGOL 60 syntax may at least in part be due to the

use of an elegant formal technique for its definition. The use of axioms may

lead to similar advantages in the area of ‘semantics’, since it seems likely

that a language which can be described by a few ‘self-evident’ axioms from

which proofs will be relatively easy to construct will be preferable to a

language with many obscure axioms which are difficult to apply in proofs.

Furthermore, axioms enable the language designer to express his general

intentions quite simply and directly, without the mass of detail which

usually accompanies algorithmic descriptions. Finally, axioms can be

formulated in a manner largely independent of each other, so that the

designer can work freely on one axiom or group of axioms without fear of

unexpected interaction effects with other parts of the language.

4.7 Acknowledgements

Many axiomatic treatments of computer programming (Yanov 1958;

Igarishi 1968; de Bakker 1968) tackle the problem of proving the equiv¬

alence, rather than the correctness, of algorithms. Other approaches

58 ESSAYS IN COMPUTING SCIENCE

(McCarthy 1963b; Burstall 1968) take recursive functions rather than

programs as a starting point for the theory. The suggestion to use axioms

for defining the primitive operations of a computer appears in van

Wingaarden (1966); Laski (1968). The importance of program proofs is

clearly emphasized in (Naur 1966), and an informal technique for providing

them is described. The suggestion that the specification of proof techniques

provides an adequate formal definition of a programming language first

appears in Floyd (1967). The formal treatment of program execution

presented in this paper is clearly derived from Floyd. The main contri¬

butions of the author appear to be: (1) a suggestion that axioms may

provide a simple solution to the problem of leaving certain aspects of a

language undefined; (2) a comprehensive evaluation of the possible benefits

to be gained by adopting this approach both for program proving and for

formal language definition.

However, the formal material presented here has only an expository

status and represents only a minute proportion of what remains to be done.

It is hoped that many of the fascinating problems involved will be taken up

by others.

FIVE

Proof of a program: Find

This chapter develops the formal approach to program correctness proposed
in Chapter 4. As the (retiring) ACM editor and some referees know to their
cost, the original draft of this paper presented a post facto proof of the
complete program. The change to using the axiomatic approach in the design
process was Hoare’s own decision and resulted in a far more readable
account. The influence of Edsger Dijkstra’s work is acknowledged. It is clear
that this paper, in turn, affected Dijkstra (1976) and Wirth (1973). A draft
of April 1969 covered Partition and Find; the September 1969 proof of
Partition was extremely hard to understand and was submitted to ACM; this
was revised in May 1970; and the final version published in January 1971 as
[16].

The formality of the published proof uncovered subtle considerations like
that mentioned in connection with Lemma 8 which was a potential error in the
first program sketch. The use of an axiomatic system which covers only partial
correctness again manifests itself by a - quite difficult - separate termination
proof. The difficulty with the argument about the result being a permutation
of the initial value is exacerbated by the use of post conditions which refer
only to the final state.

Abstract

A proof is given of the correctness of the algorithm Find. First, an informal description
is given of the purpose of the program and the method used. A systematic technique is

described for constructing the program proof during the process of coding it, in such

a way as to prevent the intrusion of logical errors. The proof of termination is treated

as a separate exercise. Finally, some conclusions relating to general programming

methodology are drawn.

C. A. R. Hoare, ‘Proof of a Program: FIND’, Comm. ACM 14(1), 39-45 (January 1971).
Copyright © 1971, Association for Computing Machinery, Inc., reprinted by permission.

59

60 ESSAYS IN COMPUTING SCIENCE

5.1 Introduction

In a number of papers (Naur 1966; Dijkstra 1968a; Chapter 4 of this

book) the desirability of proving the correctness of programs has been

suggested and this has been illustrated by proofs of simple example

programs. In this paper the construction of the proof of a useful, efficient,

and nontrivial program, using a method based on invariants, is shown. It is

suggested that if a proof is constructed as part of the coding process for

an algorithm, it is hardly more laborious than the traditional practice of

program testing.

5.2 The program Find

The purpose of the program Find [3] is to find that element of an array

A[\ :7V] whose value is /th in order of magnitude; and to rearrange the

array in such a way that this element is placed in A [/]; and furthermore, all

elements with subscripts lower than / have lesser values, and all elements

with subscripts greater than / have greater values. Thus on completion of

the program, the following relationship will hold:

A[l], A[2], 1] < A[f\ ^ A[f+ 1 A[N]

This relation is abbreviated as Found.
One method of achieving the desired effect would be to sort the whole

array. If the array is small, this would be a good method; but if the array is

large, the time taken to sort it will also be large. The Find program is

designed to take advantage of the weaker requirements to save much of the

time which would be involved in a full sort.

The usefulness of the Find program arises from its application to the

problem of finding the median or other quantiles of a set of observations

stored in a computer array. For example, if N is odd and / is set to

(N + l)/2, the effect of the Find program will be to place an observation

with value equal to the median in A[f]. Similarly the first quartile may be

found by setting /to (TV-h l)/4, and so on.

The method used is based on the principle that the desired effect of Find
is to move lower-valued elements of the array to one end - the ‘left-hand’

end - and higher-valued elements of the array to the other end - the

‘right-hand’ end. (See Table 5.1(a)). This suggests that the array be

scanned, starting at the left-hand end and moving rightward. Any element

encountered which is small will remain where it is, but any element which is

large should be moved up to the right-hand end of the array, in exchange

for a small one. In order to find such a small element, a separate scan is

made, starting at the right-hand end and moving leftward. In this scan, any

PROOF OF A PROGRAM: FIND 61

Table 5.1

(a)
move small values left
<-

move large values right
-4,

(b)

rightward scan has
covered these elements,
and they are all small.

leftward scan has
covered these
elements, and they
are all large.

Consequently, the
array is split here

(c)

(d)

3 17 1 9 6 1 7 11 7 6 9 12 2 17 20 30 25 19 17 30

the n smallest values of
the array are in this

all elements here
are greater than

part; including the /th

largest value.

any to the left

1 / N

v >

left part:
all elements

^ those of
middle
part

middle part:
further scans are

confined to this

part.

right part:
all elements ^ those
of middle part

<-

large element encountered remains where it is; the first small element

encountered is moved down to the left-hand end in exchange for the large

element already encountered in the rightward scan. Then both scans can be

resumed until the next exchange is necessary. The process is repeated until

the scans meet somewhere in the middle of the array. It is then known that

62 ESSAYS IN COMPUTING SCIENCE

all elements to the left of this meeting point will be small, and all elements to

the right will be large. When this condition holds, we will say that the array

is split at the given point into two parts (see Table 5.1(b)).

The reasoning of the previous paragraph assumes that there is some

means of distinguishing small elements from large ones. Since we are

interested only in their comparative values, it is sufficient to select the value

of some arbitrary element before either of the scans starts; any element with

lower value than the selected element is counted as small, and any element

with higher value is counted as large. The fact that the discriminating value

is arbitrary means that the place where the two scans will meet is also

arbitrary; but it does not affect the fact that the array will be split at the

meeting point, wherever that may be.

Now consider the question on which side of the split the /th element in

order of value is to be found. If the split is to the right of A[f], then the

desired element must of necessity be to the left of the split, and all elements

to the right of the split will be greater than it. In this case, all elements to the

right of the split can be ignored in any future processing, since they are

already in their proper place, namely to the right of A [/] (see Table 5.1(c)).

Similarly, if the split is to the left of A[f], the element to be found must be

to the right of the split, and all elements to the left of the split must be equal

or less than it; furthermore, these elements can be ignored in future

processing.

In either case, the program proceeds by repeating the rightward and

leftward scans, but this time one of the scans will start at the split rather

than at the beginning of the array. When the two scans meet again, it will be

known that there is a second split in the array, this time perhaps on the

other side of A[f]. Thus again, we may proceed with the rightward and

leftward scans, but we start the rightward scan at the split on the left of

A [/] and the leftward scan at the split on the right, thus confining attention

only to that part of the array that lies between the two splits; this will be

known as the middle part of the array (see Table 5.1(d)).

When the third scan is complete, the middle part of the array will be split

again into two parts. We take the new middle part as that part which

contains A[f] and repeat the double scan on this new middle part. The

process is repeated until the middle part consists of only one element,

namely A [/]. This element will now be equal to or greater than all elements

to the left and equal to or less than all elements to the right; and thus the

desired result of Find will be accomplished.

This has been an informal description of the method used by the program

Find. Diagrams have been used to convey an understanding of how and

why the method works, and they serve as an intuitive proof of its correct¬

ness. However, the method is described only in general terms, leaving many

details undecided; and accordingly, the intuitive proof is far from water¬

tight. In the next section, the details of the method will be filled in during

PROOF OF A PROGRAM: FIND 63

the process of coding it in a formal programming language; and simultane¬

ously, the details of the proof will be formalized in traditional logical

notation. The end product of this activity will be a program suitable for

computer execution, together with a proof of its correctness. The reader

who checks the validity of the proof will thereby convince himself that the
program requires no testing.

5.3 Coding and proof construction

The coding and proof construction may be split into several stages, each

stage dealing with greater detail than the previous one. Furthermore, each

stage may be systematically analyzed as a series of steps.

5.3.1 Stage 1: Problem definition

The first stage in coding and proof construction is to obtain a rigorous

formulation of what is to be accomplished, and what may be assumed to

begin with. In this case we may assume

(a) The subscript bounds of A are 1 and N.
(b)

The required result is:

V p, q(1 ^ p ^ f ^ q ^ N ^ A[p] ^ A[f] ^ A[q\) [Found]

5.3.2 Stage 2: The general method

(1) The first step in each stage is to decide what variables will be required to

hold intermediate results of the program. In the case of Find, it will be

necessary to know at all times the extent of the middle part, which is

currently being scanned. This indicates the introduction of variables m
and n to point to the first element A[m\ and the last element A[n] of

the middle part.

(2) The second step is to attempt to describe more formally the purpose of

each variable, which was informally described in the previous step. This

purpose may be expressed as a formula of logic which is intended to

remain true throughout the execution of the program, even when the

value of the variable concerned is changed by assignment.! Such a

formula is known as an invariant. As mentioned above, m is intended

fExcept possibly in certain ‘critical regions’.

64 ESSAYS IN COMPUTING SCIENCE

to point to the leftmost element of the middle part of the array; and the

middle part at all times contains A[f]; consequently m is never greater

than /. Furthermore, there is always a split just to the left of the middle

part, that is between m - 1 and m. Thus the following formula should

be true for m throughout execution of the program:

m ^ f A V p, q(1 ^ p < m ^ q ^ N => A[p] ^ A [<y]) (/77-invariant)

Similarly, n is intended to point to the rightmost element of the middle part;

it must never be less than /, and there will always be a split just to the right

of it:

/? A V p, q{\ ^ p ^ n < q ^ N => A[p] ^ A [q]) (/7-invariant)

(3) The next step is to determine the initial values for these variables. Since

the middle part of the array is intended to be the part that still requires

processing, and since to begin with the whole array requires processing,

the obvious choice of initial values of m and n are 1 and N, respect¬

ively, indicating the first and last elements of the whole array. The code

required is:

m := 1; n := N

(4) It is necessary next to check that these values satisfy the relevant

invariants. This may be done by substituting the initial value for the

corresponding variable in each invariant, and ensuring that the result

follows from facts already known:

1 1 /A V p, q(\ ^ p < 1 ^ q ^ N => A[p] ^ A [<y])

(Lemma 1)

1 ^ /< N=> f ^ TV A V/7, ?(1 ^ p ^ N < q ^ A[p] < A[q})

(Lemma 2)

The quantified clause of each lemma is trivially true since the ante¬

cedents of the implications are always false.

(5) After setting the initial values, the method of the program is repeatedly

to reduce the size of the middle part, until it contains only one element.

This may be accomplished by an iteration of the form:

while m < n do ‘reduce middle part ’

(6) It remains to prove that this loop accomplishes the objectives of the

program as a whole. If we write the body of the iteration properly (i.e.

in such a way as to preserve the truth of all invariants) then all

invariants will still be true on termination. Furthermore, termination

will occur only when m < n goes false. Thus it is necessary only to show

that the combination of the truth of the invariants and the falsity of the

while clause expression m < n implies the truth of Found.

PROOF OF A PROGRAM: FIND 65

m ^ f A V p, q{\ ^ p < m ^ q ^ N => A[p] ^ A [g])

A f ^ n A V p, q(\ ^ p ^ n < q ^ N => A[p] ^ A[q]) A —}m < n

=> Vp,q(l^p^f^q^N^ A[p] ^ A[f] ^ A[q])

(Lemma 3)

The antecedents imply that m = n = f. If l^p^f^q^N, then

either p = /, in which case A[/?] ^ A[f] is obvious, or p < /, in which

case substituting / for both m and q in the first quantified antecedent

gives A[p\ ^ A[f]. A similar argument shows that A[f] ^ A [q].

At this point, the general structure of the program is as follows:

m := 1; n := N;

while m < n do ‘reduce middle part ’

Furthermore, this code has been proved to be correct, provided that the

body of the contained iteration is correct.

5.3.3 Stage 3: Reduce the middle part

(1) The process for reducing the middle part involves a scan from the left

and from the right. This requires two pointers, / and j, pointing to

elements A[i] and A[j] respectively. In addition, a variable r is

required to hold the arbitrary value which has been selected to act as a

discriminator between ‘small’ and ‘large’ values.

(2) The i pointer is intended to pass over only those array elements with

values smaller than r. Thus all array elements strictly to the left of the

currently scanned element A[i] will be known always to be equal to or

less than r:

p(1 ^ p < i => A[p] ^ r) (/-invariant)

Similarly the j pointer passes over only large values, and all elements

strictly to the right of the currently scanned element A[j] are known

always to be equal to or greater than r:

j ^ n A V q(j < q ^ N => r ^ A [q]) (y'-invariant)

Since the value of r does not change, there is no need for an

r-invariant.
(3) The / pointer starts at the left of the middle part, i.e. at m; and the j

pointer starts at the right of the middle part, i.e. at n. The initial value

of r is taken from an arbitrary element of the middle part of the array.

Since A[f] is always in the middle part, its value is as good as any.

(4) The fact that the initial values satisfy the /- and y-invariants follows

directly from the truth of the corresponding m- and ^-invariants; this

66 ESSAYS IN COMPUTING SCIENCE

is stated formally in the following lemmas:

f ^ N A m ^ f A V p, q(\ ^ p < m ^ q ^ N =* A[p] ^ A[q])

=> m ^ m A V p(1 ^ p < m => H[/?] ^ H[/])

(Lemma 4)

1 ^ /A /^«AV/?,^(1 ^/7^/7<<7^vV=^y4[/?] ^v4[^])

=» n ^ n A V q(n < q ^ N ^ A [/] < A [#])

(Lemma 5)

The first of these is proved by setting qtof and the second by setting p

to /.

(5) After setting the initial values, the method is to repeatedly add one to /

and subtract one from j, until they cross over. This may be achieved

by an iteration of the form:

while / ^ j do ‘increase i and decrease j’

On exit from this loop, j < i and all invariants are intended to be

preserved.

If j and i cross over above /, the proposed method assigns j as the

new value of n\ if they cross over below /, i is assigned as the new

value of m.

if f ^ j then n := j

else if / ^ / then m := /

else goto L

The destination of the jump will be determined later.

(6) The validity of these assignments is proved by showing that the new

value of n or m satisfies the corresponding invariant whenever the

assignment takes place. In these proofs it can be assumed that the

/- and y-invariants hold; and furthermore, since the assignment

immediately follows the iteration of (5), it is known that j < i. Thus

the appropriate lemma is:

j < i A V p{\ ^ p < i => A[p] ^ r) A V q{j < q ^ N => r ^ A[q])

=* if j then f^j A V p, q(l ^ p ^ j < q ^ TV) => A[p] ^ A[q])

else if / ^ / then / < f A V /?, q(1 ^ p < i ^ q ^ N => A[p] ^ A[q])

(Lemma 6)

The proof of this is based on the fact that if 1 ^ p ^ j < q ^ TV, then

p< i (since j < /), and both A[p] ^ r and A[q]. Hence

A[p] ^ A[q]. Similarly, if 1 ^ p < i < q ^ N, then j < q, and the

same result follows.

It remains to determine the destination of the jump goto L. This

jump is obeyed only if j < f < i, and it happens that in this case it can

PROOF OF A PROGRAM: FIND 67

be proved that the condition Found has already been achieved. It is

therefore legitimate to jump straight to the end of the program. The

lemma which justifies this is:

\^f^N/\j< f < i A V p(1 ^ /?</=> A [p] ^ r)

A V q(j < q ^ N => r ^ A[q])

- Vp,q(\ ^P^f^q^N=>A[p] ^A[f] ^ A[q])

(Lemma 7)

This may be readily proved: if / is put for q in the antecedent, we

obtain r ^ A [f]. Similarly, putting for p in the antecedent we obtain

A[f] f r. Hence A[f] = r. If 1 f P f f f q f N, then l f p < i

(since /< /) and j < q ^ N (since j < /) and hence the /-invariant

states that A[p\ A5 r and the y-invariant states that r ^ A[q]. But r

has already been proved equal to A[f].

This concludes the outline of the program required to reduce the

middle part:

r:= A[f]\ i := m; j := n;

while / ^ j do ‘increase i and decrease j’’,

il' ff J then n := j

else if / ^ / then m := /

else goto L

This program has been proved to be correct, in that it preserves the

truth of the m- and /7-invariants, provided that the body of the

contained loop preserves these invariants as well as the /- and

y-invariants.

5.3.4 Stage 4: Increase / and decrease j

At this stage there is no need to introduce further variables and no further

invariants are required. The construction of the code is not therefore split

into the steps as before.
The first action of this part of the program is to use the /-point to scan

rightward, passing over all elements with value less than r. This is

accomplished by the loopt

while A[i] < r do /:= /+ 1

The fact that this loop preserves the truth of the invariant is expressed in the

tThe reason for the strict inequality is connected with termination. See Section 5.4.

68 ESSAYS IN COMPUTING SCIENCE

obvious lemma:

A[i] ^ r f\ m ^ i f\\/ p{\ ^ p < i => A[p] ^ r)

=> m ^ /' + 1 A V /?(1 ^ p < i + 1 => A[p] ^ r) (Lemma 8)f

The next action is to use the y-pointer to scan leftward, passing over all

elements greater than r. This is accomplished by the loop:

while r < A [j] do j := j- 1

which is validated by the truth of:

r ^ A[j_| A yn A V q(j < q ^ N => r ^ A [g])

=> y - 1 ^ n A V <7 (y - 1 < q ^ TV =» r ^ A [q]) (Lemma 9)

On termination of the first loop, it is known that r ^ A[i], and on

termination of the second loop A [y] ^ r. If i and j have not crossed over,

an exchange of the elements they point to takes place. After the exchange, it

is obvious that
A[i] ^ r ^ A[j],

and hence Lemmas 8 and 9 justify a further increase in / and decrease in j:

if i ^ j then

begin ‘exchange A [/] and A[j]’\

/:=/+!; j := j - 1

end

Thus the process of increasing / and decreasing j preserves the truth of all

the invariants, provided that the exchange of A[i\ and A [j] does so, and

the program takes the form:

while A [/] < r do / := /+ 1;

while r< A[j] do y:= y- 1;

if / ^ j then

begin ‘exchange A [/] and A [j] ’;

/:= /+ 1; j:= j - 1

end

5.3.5 Stage 5: Exchange ^4 [/] and^fjy]

The code for performing the exchange is:

w:= A[i]\ A[i] := A[j]; A[j] := w

tThis lemma is not strictly true for some implementations of computer arithmetic. Suppose
that N is the largest number representable in the integer range, that m = i - N, and that

modulo arithmetic is used. Then / + 1 will be the smallest number representable, and will
certainly be less than m. The easiest way to evade this problem is to impose on the user of the
algorithm the insignificant restriction that N < maxint, where maxint is the largest represent¬
able integer.

PROOF OF A PROGRAM: FIND 69

Although this code uses a new variable w, there is no need to establish an

invariant for it, since its value plays a purely temporary role.

The proof that the exchange preserves the invariants is not trivial, and

depends critically on the fact that / ^ j. Let A' stand for the value of the

array as a whole after the exchange has taken place. Then obviously:

A'[/] = A[y] (i)

A ' [j] = A [/] (2)

V s(s i /\ s A j =* A'[s] = A[s]) (3)

The preservation of the /-invariant is stated in the lemma:

m ^ ^ j A V /?(1 ^ /?</=> A [p] ^ r)

=> m ^ / A V p{\ ^ p < i => A' [p] ^ r)

(Lemma 10)

This is proved by observing that if p < i ^ j then p A i and p ^ j and by

(3) , A' [p] = A[p].

Similarly the preservation of the y-invariant is guaranteed by the lemma:

/ ^ j ^ n A V q(j < q ^ N => r ^ A [q])

=> j ^ n A V q(j ^ q ^ N => r ^ A' [q]) (Lemma 11)

The proof likewise proceeds by observing that / ^ j < q implies that q A i

and q A j, and therefore by (3), A'[q] = A[q\.

The preservation of the m-invariant is guaranteed by the truth of the

following lemma:

m ^ ^ j A V p, q{ 1 ^ p < m ^ q ^ N => A[p] ^ A[q])

=> V p, q(1 ^ p < m ^ q ^ N => A ' [p\ ^ A ' [q]) (Lemma 12)

Outline proof Assume 1 ^ p < m ^ q ^ N; hence p A i and p ^ j (since

p < m ^ i ^ y). Therefore by (3),

a ' [/?] = A [/?]. (4)

Substituting / and then j for q in the antecedent, we obtain A[p] A A[i]

and A[p] ^ A [y]. Consequently A'[p] ^ A ' [y] and A ' [/?] ^ A ' [/] (from

(4) , (1), and (2)). Furthermore, for all q^i and qA y, A' [p] = A [p]

^A[q] = A'[q] (by (4) and (3)). Hence A'[p}^A'[q] for all

q{m A q A N).

The preservation of the ^-invariant is guaranteed by a similar lemma:

z < j^ n A V p, q{\ ^ p ^ n < q ^ N => A [p] ^ A[q])

=> V p, q(1 ^ p ^ n < q ^ N ^ A' [p] ^ A ' [<y])(Lemma 13)

The proof is very similar to that of Lemma 12, and is left as an exercise.

70 ESSAYS IN COMPUTING SCIENCE

5.3.6 The whole program

The gradual evolution of the program code and proof through several

stages has been carried out in the previous sections. In presenting the code

of the program as a whole, the essential invariants and other assertions have

been preserved as comments. Thus a well-annotated version of the program

appears in Table 5.2.

Table 5.2

begin
comment This program operates on an array ^4 [1 : TV], and a value of
/(l G /G TV). Its effect is to rearrange the elements of 4 in such a way that:

Vp, q{\ G p G /G q G N=> A [p] G A[f] G A[q]);

integer m, n; comment

m G /A V /?, g(l G /? < m G q G N => A[p] G 4 [<?]),
/ G «AV p, <7(1 G p G n < q G 27=- A[p] G A[q})\
m := 1; n:= N;

while m < n do
begin integer r, i, j, w;

comment

m G / A V jp(l G P < i => A[p\ G r),
j G n A V g(y < G TV => r G 4 [#]);

r:= A[f]; /:= m\ j := n;

while / G y do
begin while 4 [/] < r do i := z + 1;

while r< A[j] do j := j - 1;
comment 4 [y] G r G 4 [/];
if / G j then
begin w:= A[i\; A[i] := 4[y]; 4[y] := w;

comment 4 [/] G r G 4 [y];
/:=/'+ 1; y := j - 1;

end
end ‘increase i and decrease j’\
if /Gy then n := j
else if / G / then m /
else goto L

end ‘reduce middle part’;
L:
end Find

5.4 Termination

The proof given so far has concentrated on proving the correctness of the

program supposing that it terminates; and no attention has been given to

PROOF OF A PROGRAM: FIND 71

the problem of proving termination. It is easier in this case to prove
termination of the inner loops first.

The proof of the termination of:

while A[i) < r do /:= / + 1

depends on the recognition that at all times there will be an element in the

middle part to the right of A[i] whose value is equal to or greater than r.

This element will act as a ‘stopper’ to prevent the value of i from increasing

beyond the value n. More formally, it is necessary to establish an additional

invariant for /, which is true before and during the loop; i.e. throughout

execution of ‘reduce middle part’. This invariant is:

3 p(i ^ P ^ n A r ^ A [p]) (5)

Obviously if this is true, the value of / is necessarily bounded by n; it cannot

increase indefinitely, and the loop must therefore terminate.

The fact that (5) is an invariant for the duration of the particular loop is
established by the following lemmas:

m ^ f ^ n => 3 p(m ^ p ^ n A A [/] ^ A [p]) (Lemma 14)

Proof Take / for p.

A[i] < r A 3 p{i ^ p ^ n A r ^ A[p]) => 3 p(i + 1 ^ p ^ n /\ r ^ A[p])

(Lemma 15)

Proof Consider the p whose existence is asserted by the antecedent. Since

r ^ A [p] A A [/] < r, p A i. Hence / + 1 ^ p.

r ^ A[i] A i + 1 ^ j — 1 A j ^ n => 3 p(i + 1 ^ p ^ n /\ r ^ A' [p])

(Lemma 16)

Proof Take j for p. Then A' [p\ = A' [j] = A[i] A r.

Lemma 14 shows that the invariant is true after the initialization of

‘reduce middle part’. Lemma 15 shows that the invariant is preserved by

while A[i] < r do /:=/+!, and Lemma 16 shows that the invariant is

preserved by the final compound statement of ‘reduce middle part \ pro¬

viding that / C j after the execution of this statement. Since the body of the

loop is not re-entered unless this condition is satisfied, the invariant is

unconditionally true at the beginning of the second and subsequent

repetitions of ‘reduce middle part. ’

The termination of the loop

while r < A [j] do jj - 1

is established in a very similar manner. The additional invariant is

72 ESSAYS IN COMPUTING SCIENCE

and the lemmas required are Lemma 14 and

r < A[j] A 3 q(m ^ q ^ j/\ A[q] ^ r)

=* 3 q(m ^ q ^ j - \ /\A[q] ^ r) (Lemma 17)

-4 [y] ^ r A / + 1 ^ y — 1 A wi ^ /

=» 3 q(m ^q^j-\/\A'[q] ^ r) (Lemma 18)

The proofs of these lemmas are very similar to those for Lemmas 15 and 16.

This proof of termination is more than usually complex; if the program

were rewritten to include an extra test (/ ^ n or m ^ j) in each loop,

termination would have been obvious. However, the innermost loops would

have been rather less efficient.

The proof of termination of the middle loop is rather simpler. The loop

for increasing / and decreasing j must terminate; since if the conditional

statement it contains is not obeyed then j is already less than /, and

termination is immediate; whereas if j ^ /, then / is necessarily incremented

and j decremented, and they must cross over after a finite number of such

operations.
Proof of the termination of the outermost loop depends on the fact that

on termination of the middle loop both m < i and j < n. Therefore

whichever one of the assignments m := i or n := j is executed, the distance

between n and m is strictly decreased. If neither assignment is made, goto L

is executed, and terminates the loop immediately.

The proof that at the end of the middle loop both m < i and j < n

depends on the fact that on the first execution of the loop body the

conditional if / ^ j then ... is actually executed. This is because at this stage

A[f] is still equal to r, and therefore the rightward scan of i cannot pass

over A [/]. Similarly the leftward scan of j cannot pass over A [/]. Thus on

termination of both innermost loops / < / < j. Thus the condition / ^ j is

satisfied, and / is necessarily incremented, and j is necessarily decremented.

Recall that this reasoning applies only to the first time round this loop - but

once is enough to ensure m < i and j < n, since / is a nondecreasing

quantity and j is a nonincreasing quantity.

5.5 Reservation

In the proof of Find, one very important aspect of correctness has not been

treated, namely that the program merely rearranges the elements of the

array A, without changing any of their values. If this requirement were not

stated, there would be no reason why the program Find should not be

PROOF OF A PROGRAM: FIND 73

written trivially:

for / := 1 step 1 until N do

A [/] := /

since this fully satisfies all the other criteria for correctness.

The easiest way of stating this additional requirement is to forbid the

programmer to change the array A in any other way than by exchanging

two of its elements. This requirement is clearly met by the Find program

and not by its trivial alternative.

If it is desired to formulate the requirement in terms of conditions and

invariants, it is necessary to introduce the concept of a permutation; and to

prove that for arbitrary A0,

A is a permutation of A0 (Perm)

is an invariant of the program. Informally this may be proved in three steps:

(a) ‘exchange A[i\ and A[j]’ is the only part of the program which

changes A,

(b) exchanging is a permutation,

(c) the composition of two permutations is also a permutation.

The main disadvantages of the formal approach are illustrated by this

example. It is far from obvious that the invariance of Perm expresses

exactly what we want to prove about the program; when the definition of

Perm is fully and formally expressed, this is even less obvious; and finally,

if the proof is formulated in the manner of the proofs of the other lemmas

of this paper, it is very tedious.

Another problem which remains untreated is that of proving that all

subscripts of A are within the bounds 1 to N.

5.6 Conclusion

This paper has illustrated a methodology for systematic construction of

program proofs together with the programs they prove. It uses a ‘top-down’

method of analysis to split the process into a number of stages, each stage

embodying more detail than the previous one; the proof of the correctness

of the program at each stage leads to and depends upon an accurate

formulation of the characteristics of the program to be developed at the

next stage.

Within each stage, there are a number of steps: the decision on the nature

of the data required; the formulation of the invariants for the data; the

construction of the code; the formulation and proof of the lemmas. In this

paper, the stages and steps have been shown as a continuous progress, and

74 ESSAYS IN COMPUTING SCIENCE

it has not been necessary to go back and change decisions made earlier. In

practice, reconsideration of earlier decisions is frequently necessary, and

this imposes on the programmer the need to re-establish the consistency of

invariants, program, lemmas, and proofs. The motivation for taking this

extra trouble during the design and coding of a program is that it is hoped to

reduce or eliminate trouble at phases which traditionally come later -

program testing, documentation, and maintenance.

Similar systematic methods of program construction are described in

Naur (1969) and Dijkstra (1972c); this present paper, however, places

greater emphasis on the formalization of the characteristics of the program

as an aid to the avoidance of logical and coding errors. In future, it may be

possible to enlist the aid of a computer in formulating the lemmas, and

perhaps even in checking the proofs (Floyd 1967; King 1969).

5.7 Acknowledgements

The author is grateful to the referee and to the retiring editor for his

meticulous comments and general encouragement in the preparation of this

paper.

SIX

Procedures and parameters:

an axiomatic approach

This paper applies the axiomatic approach of Chapter 4 to further features of

programming languages. Much of this work had been sketched in the 1968

drafts of the axiomatic basis paper but did not appear in the published

version. The problems of providing axiomatic definitions of procedures and

parameter passing are intricate and interested readers should consult Apt

(1981) for a full discussion. The problems of providing axiomatic definitions

of procedures were the motivation for the wish to forbid ‘aliasing’ of

parameters in Euclid and later in Ada. The formulation of a set of rules which

were easy to check statistically but did not preclude certain efficient coding

techniques proved difficult. Further progress has been made by Reynolds

(1981).

This paper was published in 1971 as [17].

Procedures provide an elegant way of governing the control flow of

programs. It comes as a surprise to find that jumps can also be handled by the

familiar logical technique of subsidiary deductions from hypotheses. (This

technique is possible only for partial correctness because, in a theory of total

correctness, {Pjgotoffalsej is a contradiction.) A formal treatment of jumps is

given in [26]. An inconsistency in this paper was discovered by Ed Ashcroft

while lecturing on the article and led to [59]. The topic of jumps had been

touched on in the 1968 draft of the axiomatic basis paper. There, after some
discussion, the section concludes with ‘...If there is more than one label, yet

further complexities arise. The unravelling of them is left to a reader with a

sufficient enthusiasm for jumping.’ In [26], the general aversion to jumps is

tempered by an analysis of cases where they can actually improve program

structure. (An interesting additional reference on this topic would be Knuth,

1974. It is amusing to note that, in 1987, the debate about goto statements is

still occupying space in the Communications of the ACM.) Although one of

the identified uses of jumps is for abnormal exits, Hoare expresses in the

C. A. R. Hoare, Procedures and parameters: an axiomatic approach. In E. Engeler (ed.),
Symposium on Semantics of Algorithmic Languages, Lecture Notes in Mathematics Vol. 188,
pp. 102-16 (1971). This paper is republished by kind permission of Springer-Verlag Berlin

Heidelberg.

75

76 ESSAYS IN COMPUTING SCIENCE

conclusion a dislike of PL/I’s ON-conditions; this dislike he subsequently

transferred to Ada’s exception handling.

6.1 Introduction

It has been suggested (Chapter 4) that an axiomatic approach to formal

language definition might simultaneously contribute to the clarity and

reliability of programs expressed in the language, and to the efficiency of

their translation and execution on an electronic digital computer. This

paper gives an example of the application of the axiomatic method to the

definition of procedure- and parameter-passing features of a high-level

programming language. It reveals that ease of demonstrating program

correctness and high efficiency of implementation may be achieved simul¬

taneously, provided that the programmer is willing to observe a certain

familiar and natural discipline in his use of parameters.

6.2 Concepts and notations

The notations used in this paper are mainly those of symbolic logic and

particularly natural deduction. They are supplemented by conventions

introduced in Chapter 4. The more important of them are summarized

below.

(1) P [Q] R - where P and R are propositional formulae of logic and Q is

a part of a program. Explanation: If P is true of the program variables

before executing the first statement of the program Q, and if the

program Q terminates, then R will be true of the program variables

after execution of Q is complete.

(2) Se — where S is an expression or formula, a is a variable, and e is an

expression. Explanation: The result of replacing all free occurrences of

a in S by e. If e is not free for x in S, a preliminary systematic change of

bound variables of 5 is assumed to be made.

(3)

(4)

A, B

C
where A,B, and C are propositional formulae. Explanation:

A rule of inference which states that if A and B have been proved, then

C may be deduced.

A B \— C
—-- - where A,B, C, and D are propositional formulae.

Explanation: A rule of inference which permits deduction of D if A and

C are proved; however, it also permits B to be assumed as a hypothesis

in the proof C. The deduction of C from B is known as a subsidiary

deduction.

PROCEDURES AND PARAMETERS: AN AXIOMATIC APPROACH 77

it is assumed that, with the exception of program material (usually

enclosed in braces), all letters stand for formulae of some suitably chosen

logical system. The formulae of this system are presumed to include:

(a) all expressions of the programming language;

(b) the familiar notations of predicate calculus (truth functions, quan¬

tifiers, etc.).

The properties of the basic operands, operators and built-in functions

of the language are assumed to be specified by some suitably chosen axiom

set; and the proof procedures are assumed to be those of the first-order

predicate calculus.

As a simple example of the use of these notations, let Q stand for the

single assignment statement k:= (m + n)/2. We wish to prove that after

execution of this statement, k will take a value between m and n, whenever

m ^ n; or more formally that the desired result R of execution of Q is

m ^ k ^ n. In Chapter 4 there was introduced the axiom schema

Rxe [x:= e) R (Axiom of Assignment)

This indicates that for an assignment x:= e, if R is the desired result of the

assignment, a sufficient precondition for this result to obtain is that Re is

true before execution. Re is derived by replacing all occurrences of the

target variable a in R by the assigned expression e. In the present case, the

target variable is k, and the assigned expression is (m + n)l2. Thus we

obtain, as an instance of the axiom schema,

m ^ (m + n)l2 C n {k:= (m + n)l2} m ^ k ^ n

It is an obvious theorem of mathematics that m ^ (m + n)/2 ^ n can be

inferred from the truth of m ^ n. This may be written using the notation

explained above:

m ^ nv- m ^ (m + «)/2 C n

Another obvious rule mentioned in Chapter 4 states that if S (Q) R has

been proved, and also that the truth of S may be inferred from the truth of

P, then P {<21 R is a valid inference, or more formally

SjQ] R, P\- S

P{Q) R
(Rule of Consequence)

In applying this rule to our example, we take m ^ n for P and

m ^ (m + n)/2 ^ n for S, and obtain

m ^ n {k:= (m + n)l2} m ^ k < n

which is what was required to be proved.

A full list of rules of inference, together with associated conventions, is

given in the Appendix. They are not supposed to give a ‘complete’ proof

78 ESSAYS IN COMPUTING SCIENCE

procedure for correctness of programs, but they will probably be found

adequate for the proof of most practical algorithms.

6.3 Procedures

Before embarking on a treatment of parameters; it is convenient first to

consider the simple case of a procedure without parameters. Suppose p has

been declared as a parameterless procedure, with body Q. We introduce the

notation
p proc Q

to represent this declaration. A call of this procedure will take the form

call p

It is generally accepted that the effect of each call of a procedure is to

execute the body Q of the procedure in the place of the call. Thus if we wish

to prove that a certain consequence R will follow from a call of p (under

some precondition P), all we have to do is to prove that this consequence

will result from execution of Q (under the same precondition). This

reasoning leads to an inference rule of the form

p proc Q, P [Q] R

P {call p} R
(Rule of Invocation)

6.4 Parameters

In dealing with parameterization, we shall treat in detail the case where all

variables of the procedure body Q (other than locally declared variables) are

formal parameters of the procedure. Furthermore, we shall make a clear

notational distinction between those formal parameters which are subject to

assignment in the body Q, and those which do not appear to the left of an

assignment in Q nor in any procedure called by it.

These decisions merely simplify the discussion; they do not involve any

loss of generality, since any program can fairly readily be transformed to

one which observes the conventions.

Let x be a list of all non-local variables of Q which are subject to change

by Q. Let v be a list of all other non-local variables of Q. We extend the

notation for procedure declarations, thus

p(\):(\) proc Q

This asserts that p is the name of a procedure with body Q and with formal
parameters x, v.

PROCEDURES AND PARAMETERS: AN AXIOMATIC APPROACH 79

The notation for a procedure call is similarly extended:

call /?(a): (e)

This is a call of procedure p with actual parameters a,e corresponding to

the formals x,v, where a is a list of variable names, and e is a list of

expressions; and a is the same length as x, and e is the same length as v.

As before, we assume that P [Q] R has been proved of the body Q.

Consider the call

cal! p(x): (v)

in which the names of the formal parameters have been ‘fed back’ as actual

parameters, thus effectively turning the procedure back into a parameterless

one. It is fairly obvious that this call has the same effect as the execution of

the procedure body itself; thus we obtain the rule

P(x): (v) proc Q, P {Q} R

P {call p(x): (v)} R
(Rule of Invocation)

Of course, this particular choice of actual parameters is most unlikely to

occur in practice; nevertheless, it will appear later that the rule of invoca¬

tion is a useful basis for further advance.

Consider next the more general call

call p{a): (e)

This call is intended to perform upon the actual parameters a and e exactly

the same operations as the body Q would perform upon the formal

parameters x and v. Thus it would be expected that Rl]l would be true

after execution of the call, provided that the corresponding precondition

Pl]l is true before the call. This reasoning leads to the rule

P {call p(x): (v)] R

Pill (call /7(a): (e)j R x,v
a,e

(Proposed Rule of Substitution)

Unfortunately, this rule is not universally valid. If the actual parameter

list a, e contains the same variable more than once, the proof of the body of

the subroutine is no longer valid as a proof of the correctness of the call.

This may be shown by a trivial counterexample, contained in Table 6.1. In

order to prevent such contradictions, it is necessary to formulate the

conditions that all variables in a are distinct, and none of them is contained

in e. We shall henceforth insist that every procedure call satisfy these readily

tested conditions, and thus re-establish the validity of the rule of substitu¬

tion. We shall see later that, in a programming language standard, there are

other reasons for leaving undefined the effect of a procedure call which fails

to satisfy the conditions.

As an example of the successful use of the rule of substitution, assume

that a declaration has been made,

random(k): (m, n) proc Q

80 ESSAYS IN COMPUTING SCIENCE

Table 6.1 Counterexample

Assume: p(x): (v) proc x:= v + 1 (1)
v + \ = v + \ (x:=u+ljx=u+l (Assignment) (2)
true \-v+\ = v+ \ (Logical theorem) (3)

From 2, 3: true fx:= v+\)x=v+\ (Consequence) (4)
From 1,4: true (call p(x):(?;)) x = v + 1 (Invocation) (5)
From 5: true {call p(a):(a)} a = a+ 1 (Substitution) (6)

Since the conclusion is an obvious contradiction, we must prohibit calls of the form
call p(a): (a).

where Q is a procedure body of which it has been proved that

m ^ n IQ\ m ^ k ^ n.

The rule of invocation permits deduction of

m ^ n {call random(k): (m, n)) m ^ k ^ n

and applying the rule of substitution to a particular call, it is possible to
obtain

1 ^ q + 1 {call random(r): (1, q + 1)] 1 ^ r ^ q + 1

In some cases it is necessary to use a slightly more powerful rule of

substitution. Suppose P and/or R contain some variables k which do not

occur in x or v, but which happen to occur in a or e. In such a case it is

necessary first to substitute some entirely fresh variables, k' for k in P and

R, before applying the rule given above. This is justified by a more powerful
version of the rule

^{call p(\): (v)}/?

Ck 'V'e Icall p(a): (e)| Rt'.'d.'e
(Rule of Substitution)

6.5 Declaration

In most procedures it is highly desirable to declare that certain of the

variables are local to the procedure, or to some part of it, and that they are

to be regarded as distinct from any other variables of the same name which

may exist in the program. Since local variables do not have to be included in

parameter lists, a considerable simplification in the structure of the program

and its proof may be achieved. We will introduce the notation for
declarations,

begin new x; Q end

where x stands for the declared variable identifier, and Q is the program

PROCEDURES AND PARAMETERS: AN AXIOMATIC APPROACH 81

statement (scope) within which the variable a is used; or, in ALGOL terms,

the block to which it is local.

The effect of a declaration is merely to introduce a new working variable,

and its introduction is not intended to have any effect on any of the other

variables of the program; it cannot therefore affect the truth of any

provable assertion about these variables.

Thus in order to prove

P (begin new x; Q end) R

all that is in principle necessary is to prove the same property of the body of

the block, namely,

P{Q] R

However, this rule is not strictly valid if the variable x happens to occur in

either of the assertions P or R. In this case, the validity of the rule can be

re-established by first replacing every occurrence of x in Q by some entirely

fresh variable y, which occurs neither in P, Q, nor R. It is a general

property of declarations that such a systematic substitution can have no

effect on the meaning of the program. Thus the rule of declaration takes the

form

PjQy) R
P (new x; Q) R

(Rule of Declaration)

where y is not free in P or R, nor does it occur in Q (unless y is the same

variable as x).

In practice it is convenient to declare more than one variable at a time, so

that the rule of declaration needs to be strengthened to apply to lists x and y

rather than single variables.

6.6 Recursion

The rules of inference given above are not sufficient for the proof of the

properties of recursive procedures. The reason is that the body Q of a

recursive procedure contains a call of itself, and there is no way of

establishing what are the properties of this recursive call. Consequently, it is

impossible to prove any properties of the body Q. This means that it is

impossible to use even the simple rule of invocation,

p proc Q, P{Q) R

P (call p) R

since the proof of the second premise P [Q] R remains forever beyond our

grasp.

82 ESSAYS IN COMPUTING SCIENCE

The solution to the infinite regress is simple and dramatic: to permit the

use of the desired conclusion as a hypothesis in the proof of the body itself.

Thus we are permitted to prove that the procedure body possesses a

property, on the assumption that every recursive call possesses that

property, and then to assert categorically that every call, recursive or

otherwise, has that property. This assumption of what we want to prove

before embarking on the proof explains well the aura of magic which

attends a programmer’s first introduction to recursive programming.

In formal terms, the rule of invocation for a recursive procedure is

p(\): (v) proc Q, P {call p(x): (v)] R I- P [Q] R

P {call p(x): (v)] R

(Rule of Recursive

Invocation)

Unfortunately, this relatively simple rule is not adequate for the proof of

the properties of recursive procedures. The reason is that it gives no grounds

for supposing that the local variables of the procedure (other than those

occurring in the left-hand parameter list) will remain unchanged during a

recursive call. What is required is a rather more powerful rule which permits

the assumed properties of a recursive call to be adapted to the particular

circumstances of that call. The formulation of a. rule of adaptation is

designed in such a way as to permit a mechanically derived answer to

the question, ‘If S is the desired result of executing a procedure call, call

/?(a) :(e), and P {call /7(a):(e)j R is already given, what is the weakest

precondition W such that IT {call /7(a) :(e)) S is universally valid?’

It turns out that this precondition is

3k(PA Va(R => S)),

where k is a list of all variables free in P, R but not in a, e, or 5. This fact

may be formalized

P {call /7(a) :(e)j R

3k(P A Va(R => S)) {call /7(a): (e)} 5
(Rule of Adaptation)

In the case where k is empty, it is understood that the 3 will be omitted.

The rule of adaptation is also extremely valuable when applied to

nonrecursive procedures, since it permits a single proof of the properties of

the body of a procedure to be used again and again for every call of the

procedure. In the absence of recursion, the rule of adaptation may be

justified as a derived inference rule, since it can be shown that every

theorem proved with its aid could also have been proved without it.

However, successful use of the rule of adaptation to simplify proofs still

depends on observance of the conditions of the disjointness of actual
parameters.

PROCEDURES AND PARAMETERS: AN AXIOMATIC APPROACH 83

Example

As an example of the application of the rules given above, we will take the

trivial, but familiar, problem of the computation of the factorial r of a

non-negative integer a. The procedure is declared:

fact(r): (a) proc

if a = 0 then r:= 1

else begin new w;

call fact(w): (a - 1);

r:= axw

end.

It is required to prove that

a ^ 0 {call fact(r):(a)} r = a! (I)

This is achieved by proving

a ^ 0 IQ} r— a\

where Q stands for the body of the procedure, on the hypothesis that (I)

already holds for the internal recursive call. The proof is given in Table 6.2;

it contains a number of lemmas which can be readily proved as theorems in

the arithmetic of integers. A list of inference rules used is contained in the

Appendix.

Table 6.2 Proof of factorial program

Line
num¬
ber Formal proof Justification

1 ax w = a! {r:= a x w) r = a\ DO
2 a - 1 ^ 0 A Viv(w = {a - 1)! => a x w = a!) {call fact(w): (a - 1)| axw = a\ D6, D7,

Hypothesis

3 a > 0 a - 1 ^ 0 A Vw(w = {a - 1)! => a x w = a!) Lemma 1
4 a > 0 {begin new w; call fact (w): (a - 1); r:= a x w end} r = a! D1,D2, D8

(1,2,3)
5 1 = a! {r:= 1} r= a\ DO
6 if a = 0 then 1 = a\ else a > 0 {Q] r = al D4(5,4)
7 <7^0f-ifa = 0 then 1 = a\ else a > 0 Lemma 2
8 afiO{Q}r=a\ Dl(7,6)
9 a ^ 0 {call fact (r): (a)} r = a! D5 (8)

6.7 Implementation

It has been suggested by Floyd (1967) that a specification of proof

techniques for a language might serve well as a formal definition of the

84 ESSAYS IN COMPUTING SCIENCE

semantics of that language, for it lays down, as an essential condition on
any computer implementation, that every provable property of any pro¬
gram expressed in the language shall, in practice, obtain when the program
is executed by the implementation. It is, therefore, interesting to inquire
what implementation methods for parameter passing will be valid in a
language whose definition includes the inference rules described in the
previous sections. It appears that there is a wide choice of valid implementa¬
tion methods, covering all the standard methods which have been used in
implementations of widely familiar languages.

This means that each implementor of the language defined by these rules
can make his selection of method in order to maximize the efficiency of his
implementation, taking into account not only the characteristics of his
particular machine, but also varying his choice in accordance with the
properties of each particular procedure and each particular type of param¬
eter; and he is free to choose the degree of automatic optimization which he
will bring to bear, without introducing any risk that an optimized program
will have different properties from an unoptimized one.

The remainder of this section surveys the various familiar parameter
mechanisms, and assesses the circumstances under which each of them gives
the highest efficiency. The reader may verify that they all satisfy the
requirements imposed by the proof rules stated above, bearing in mind that
every procedure call,

call p{a): (e)

conforms to the condition that all the parameters a are distinct from each
other, and none of them appears in any of the expressions e. The obser¬
vance of this restriction is the necessary condition of the validity of most of
the commonly used parameter-passing methods.

6.7.1 Compile-time macro-substitution

Macro-substitution is an operation which replaces all calls of a procedure by
a copy of the body of the procedure, after this copy has itself been modified
by replacing each occurrence of a formal parameter within it by a copy of
the corresponding actual parameter. The normal process of translation to
machine code takes place only after these replacements are complete. This
technique has been commonly used for assembly languages and for
business-oriented languages.

Macro-substitution will be found to be a satisfactory technique in any of
the following circumstances:

(1) The procedure body is so short that the code resulting from macro¬
substitution is not appreciably longer than the parameter planting and
calling sequence would have been.

PROCEDURES AND PARAMETERS: AN AXIOMATIC APPROACH 85

(2) The procedure is called only once from within the program which

incorporates it.

(3) The procedure is called several times, but on each occasion some or all

of the parameters are identical. Substitution can be applied only to

those parameters which are identical, leaving the remaining parameters

to be treated by some run-time mechanism.

(4) In a highly optimizing compiler, macro-substitution will ensure not only

that no time is wasted on parameter passing, but also that each call can

be fully optimized in the knowledge of the identity and properties of its

actual parameters.

The technique is not applicable to recursive procedures.

6.7.2 Run-time code construction

An alternative to substitution in the source code at compile time is the

execution of a logically identical operation on the object code at run time.

This involves planting the addresses of the actual parameters within the

machine code of the procedure body on each occasion that the procedure is

called. The technique may be favoured whenever all the following condi¬

tions are satisfied:

(1) The computer has an instruction format capable of direct addressing of

the whole store.

(2) The actual parameter is an array (or other large structure) which would

be expensive to copy.

(3) The called procedure is not recursive.

(4) The called procedure contains at least one iteration.

This technique was used in FORTRAN implementations on the IBM

704/709 series of computers.

6.7.3 Indirect addressing

Before jumping to the procedure body, the calling program places the

addresses of the actual parameters in machine registers or in the local

workspace of the called procedure. Whenever the procedure refers to one of

its parameters, it uses the corresponding address as an indirect pointer

(modifier).

This technique is suitable in the following circumstances:

(1) The computer has an instruction format with good address-

modification facilities.

(2) The actual parameter is an array (or other large structure) which would

be expensive to copy.

86 ESSAYS IN COMPUTING SCIENCE

If a single parameter mechanism is to be used in all circumstances, this is

undoubtedly the correct one. However, on fast computers with slave stores,

operand pre-fetch queues, or paging methods of storage control, it could

cause some unexpected inefficiencies.

This technique is used in PL/I and in many implementations of

FORTRAN on the IBM 360 series of computers.

6.7.4 Value and result

Before jumping to the subroutine, the calling program copies the current

values of the actual parameters into machine registers or local workspace of

the called subroutine. After exist from the subroutine, the calling program

copies back all values that might have been changed (i.e., those to the left of

the colon in the actual-parameter list).

This technique is to be preferred when either of the following conditions

hold:

(1) The size of the parameter is sufficiently small that copying is cheap,

accomplished in one or two instructions.

(2) The actual parameter is ‘packed’ in such a way that it cannot readily be

accessed by indirect addressing.

This technique is available in ALGOL W, and is used in several current

implementations of FORTRAN.

6.7.5 Call by name (as in ALGOL 60)

The calling program passes to the procedure the addresses of portions of

code corresponding to each parameter. When the procedure wishes to

access or change the value of a parameter, it jumps to the corresponding

portion of code.

Since the restrictions on the actual parameters prohibit the use of Jensen’s

device, there is no reason why this technique should ever be used. It is

difficult to envisage circumstances in which it could be more efficient than

the other techniques listed.

6.8 Conclusion

It has been shown that it is possible by axiomatic methods to define an

important programming language feature in such a way as to facilitate the

demonstration of the correctness of programs and at the same time to

PROCEDURES AND PARAMETERS: AN AXIOMATIC APPROACH 87

permit flexibility and high efficiency of implementation. The combination

of these two advantages can be achieved only if the programmer is willing to

observe certain disciplines in his use of the feature, namely that all actual

parameters which may be changed by a procedure must be distinct from

each other, and must not be contained in any of the other parameters. It is

believed that this discipline will not be felt onerous by programmers who are

interested in the efficient and reliable solution of practical problems in a
machine-independent fashion.

It is interesting to note that the discipline imposed is a combination of the

disciplines required by the ISO standard FORTRAN and by the IFIP

recommended subset of ALGOL 60. The former insists on the distinctness

of all parameters changed by a procedure, and the latter insists that each of

them be an unsubscripted identifier.

6.9 Acknowledgement

The basic approach adopted in this paper was stimulated by an investigation

reported in Foley (1969).

6.10 Appendix

P, Pi, Pi, R, S stand for propositional formulae.

Q, Qi, Qi stand for program statements.

x, y stand for variable names (y not free in P or R).
e stands for an expression.

B stands for a Boolean expression.

p stands for a procedure name.

x stands for a list of nonlocal variables of Q which are subject to change in

Q-
v stands for a list of other nonlocal variables of Q.
a stands for a list of distinct variables.

e stands for a list of expressions, not containing any of the variables in a.

k stands for a list of variables not free in x,v.

k' stands for a list of variables not free in a,e,S.

DO

D1

Re (x:= ej R

P[Q] S,S\-R P^S,S{Q] R

P\Q)R P{Q)R

(Assignment)

(Consequence)

88 ESSAYS IN COMPUTING SCIENCE

D2

D3

D4

D5

P{Qi] S,S{Q2}R

P[QuQi) R
(Composition)

P {Q) S, Si- if B then P else R

P {while B do Q} R

Pi IQi) R, PiiQi] R
if B then P\ else Pi {if B then Q\ else Qz\ R

(Iteration)

(Alternation)

p(x): (v) proc Q, P {call p(x): (v)} R H P [Q] R

P {call p{\): (v)] R
(Recursion)

D6
P {call p(x): (v)j R

Pkk,,a,e {call p(a): (e)l R\'X*
(Substitution)

D7

D8

P {call p{a): (e)] R

3/:/(PAVa(7? =* 5)) {call p(a):(e)) S
(Adaptation)

P {Qy \ R
P {new x; Q} R

(where y is not in Q unless y and x are the same)
(Declaration)

SEVEN

Computer science

This is the text of Hoare’s inaugural lecture at The Queen’s University of
Belfast. It explains the challenge of computer science by describing, to a lay
audience, the task of designing an algorithm. The chosen task is the partition
problem used as an example for proof in Chapter 5. The example used was
enacted with a carefully prearranged pack of playing cards.

The talk (published as [18]) was given on 10 February 1971. The content of
the talk defined the objectives and structure of a modular degree course (joint
with mathematics) which was developed and introduced over the subsequent
years.

In University circles it is a pleasant and informative custom when intro¬

ducing members of staff to mention the academic department to which

they belong. The same custom is extended to our wives, who, like the wives

of peers, assume their husbands’ titles. But one drawback in this mode of

introduction is that it frequently leads to further conversation on academic

topics. In my case, this is often introduced by an open admission that my

new acquaintance has never been able to understand computers. I wonder

whether others have found an acceptable response to this conversational

gambit. There is the temptation to joke:

‘And I don’t suppose computers could ever understand you’, which is

very feeble and quite rude. How about:

‘Never mind, I expect there are things that you understand and I don’t’?

But this is excruciatingly condescending.

A more comforting remark would be:

‘Well, there is no reason why you should understand computers’. But this

is not quite honest. Certainly, a lot of the details of how to use computers

can safely be left to the experts. But I believe it also to be most important

that there should be a general understanding among the educated public of

C. A. R. Hoare, Computer Science, New Lecture Series No. 62 (1971). An Inaugural Lecture
delivered at The Queen’s University of Belfast on 10 February. This paper is republished by
kind permission of The Queen’s University Belfast.

89

90 ESSAYS IN COMPUTING SCIENCE

the potentialities and limitations of computers; of their benefits and also of

their dangers.

So the only remaining possibility is perhaps to give way to temptation,

and attempt a short description of what computers are, and what they can

and cannot do. Sometimes, I must confess, I step beyond any reasonable

limit for talking shop at a social gathering. But what better gathering could

present itself than the audience at this public lecture? That is why I have

chosen to speak not on some fascinating side-line of my subject, but on the

central core of the subject itself. I will address myself to the fundamental

questions:

‘What is computer science?’

‘Is it even a science?’

and ‘Why should it be taught in a university?’

In answering these questions, it is helpful to relate the subject to other,

perhaps more familiar, academic disciplines with which it overlaps. The

first such discipline is electrical (or more precisely electronic) engineering,

which studies the physical properties of the electronic circuits from which

all modern computers are constructed. Computer science is concerned not

with the physical but rather with the logical properties of the circuits, and

with effective methods of connecting them together into large networks

which provide the logical and arithmetic functions required in a computer.

The study of logic design and computer architecture could be important to

an electronic engineer who wishes to design and develop circuits that will be

useful in a modern computer; it is also important to a computer scientist

who wishes to understand the engineering foundation on which his subject

rests, and who wishes to influence the future design of computers to make

them more suitable for their purposes.

Since their earliest days, computers have been most heavily used in the

study of applied mathematics and theoretical physics, and have found

numerical solutions to many problems which have hitherto been considered

insoluble - for example, the multi-body problem of classical mechanics. A

study of the effective methods of solving mathematical problems on a

computer is known as numerical analysis. Some familiarity with this subject

is indispensable to theoretical physicists and other scientists engaging in

heavy use of the computer; it is also part of the province of a computer

scientist who wishes to practise his art in this field.

The majority of computers in operation to-day are not used by scientists

but by industrialists, administrators and accountants; they carry out the

clerical routine required for the running of a business, a bank, or a

government department. Any student of modern business methods must

know something of the application of computers in this area of data

processing; but the task of introducing a computer in a data-processing

environment often forms the major part of the professional activities of a
computer scientist.

COMPUTER SCIENCE 91

Turning now to the theoretical aspects of the subject, we find similar

connections between the theory of computation and other traditional

academic disciplines - pure mathematics, linguistic studies, and logic.

There are already a number of branches in the theory of computation -

finite automata, Turing machines, Markov algorithms, recursive functions,

formal grammars, formal language definition, and the proof of programs.

Many of these topics could be studied by a pure mathematician, a

theoretical linguist, or by a logician; they also form the conceptual founda¬

tion of the study of computer science, and can give a valuable practical

insight into the solution of certain classes of problem on a computer.

Thus we see that computer science has strong links with many familiar

disciplines, ranging from pure mathematics to electronic engineering, from

linguistics to business studies, from logic to theoretical physics. This

illustrates the fascinating range of the subject, from the most abstract of

theoretical studies, to the most practical aspects of the construction and use

of computers. It is a great challenge in education to convey an understand¬

ing of the closeness of the theory to its practice; for this is one of the

fortunate academic subjects for which, in the span of an undergraduate

curriculum, it is possible to convey something of an understanding of the

underlying mathematical and logical principles, as well as an adequate

knowledge of the engineering aspects of its practice.

Having surveyed the relationships of computer science with other discip¬

lines, it remains to answer the basic questions: What is the central core of

the subject? What is it that distinguishes it from the separate subjects with

which it is related? What is the linking thread which gathers these disparate

branches into a single discipline? My answer to these questions is simple - it

is the art of programming a computer. It is the art of designing efficient and

elegant methods of getting a computer to solve problems, theoretical or

practical, small or large, simple or complex. It is the art of translating this

design into an effective and accurate computer program. This is the art that

must be mastered by a practising computer scientist; the skill that is sought

by numerous advertisements in the general and technical press; the ability

that must be fostered and developed by computer science courses in

universities.

So in order to explain my understanding of computer science, it is

essential to describe the nature of the activity of computer programming.

To do this I have chosen an example of one of the first programs which I

designed and wrote some ten years ago for the solution of a simple but

nontrivial practical problem. It is a problem that can arise in the collection

and tabulation of statistics, for example, the discovery of the median and

other quantiles of a set of statistical observations. Suppose we have a large

number of observations, say a hundred thousand - perhaps the heights of

school entrants, or the distances of stars, or marks in some examination. It

is required to single out those 20 thousand observations with smallest value;

92 ESSAYS IN COMPUTING SCIENCE

perhaps the 20 thousand nearest stars, or the 20 thousand shortest school-

children, or the 20 thousand students with lowest marks.

The first guide in discovery of a method for computer solution of a

problem is to see how the problem could be solved by hand by a human

being. In order not to be overwhelmed by the sheer numbers involved, we

will scale down the problem to only one hundred observations, of which the

twenty with lowest values are to be selected. Imagine for convenience that

the values of the observations are recorded on a hundred cards; these cards

must be separated into two heaps, the left hand heap containing the twenty

lowest cards, and the right hand heap containing the rest. We can now

regard the problem as one of designing, as it were, the rules for a game of

patience, whose outcome is the one we desire, and which has the delightful

property that it always comes out.

Perhaps the first idea which occurs to us is to sort the cards into ascending

order; for then the selection of the required twenty cards is trivial. All that is

needed is to deal the first twenty cards off the top of the pack. So all we have

to do is to find some efficient method of sorting the pack. But further

consideration shows that it would be a waste of time to sort the whole pack,

when all we require is to single out twenty of them, the twenty cards with

smallest value. So we turn attention again to this problem.

Our second proposed method is to look through the whole pack for the

smallest card, and remove it; then look for the smallest again in the reduced

pack; and to repeat the process until twenty cards have been singled out.

Before accepting this solution, we ask ourselves how efficient the method is.

In order to find the lowest card in a pack it is in principle necessary to look

at every card in the pack, i.e., a hundred cards; to find the second lowest

card requires ninety-nine inspections, and so on. Thus assuming optimis¬

tically that each inspection takes a second, the total time taken will be about

half an hour - a rather daunting prospect. Going back to the original

computer problem of 100 thousand observations, and assuming that our

computer can examine about a hundred thousand observations in one

second, it would take about five hours to select the least 20000 observa¬

tions. So it is worth while to seek an alternative more efficient solution.

As our third idea, it may occur to us that if we happened to know the

value of the observation which was the twenty-first smallest one, we could

use this as a sort of borderline value in the process of splitting the pack into

two heaps. For example, supposing we think that 376 is the twentieth

smallest value. All we need to do is to go through the pack, putting all cards

lower than the borderline value on a left-hand heap, and all cards higher

than it on a right hand heap, and so on. At the end, we expect that the

left-hand heap will contain exactly the required twenty values. This process

requires only one scan of the entire pack, and will take just over one and

a half minutes in our small manual example. Returning to the computer

problem, it could carry out the whole process on a hundred thousand

COMPUTER SCIENCE 93

observations in one second - very much better than the five hours required

if the previous method had been used. But it seems that this gain in speed

can be achieved only if we have prior knowledge of the correct borderline

value, and this knowledge we do not have.

But now suppose we make a guess of the correct borderline value, and

carry out the partitioning process as before. I suggest that we choose the

borderline as the value of an actual card in the pack, since this will ensure

that we never choose a ridiculously high or low value. Now if our guess, say

376, was too high, the left-hand heap ends up too large, containing more

than twenty cards; and the right-hand heap is too small, containing less than

eighty cards. Similarly, if our guess was too low, the left-hand heap is too

small and the right-hand heap too large. Thus we always know afterwards

whether the first guess was too high or too low, and perhaps we can use this

knowledge to make a better guess next time.

As before, it is a good idea to select as next guess an actual card of the

pack, which is known to be better than the previously guessed wrong

borderline. This can be done very easily by selecting a card from the

appropriate heap, for example, the left-hand heap if the original guess was

too high; for it is known that all cards in this heap are smaller than the

previous (too high) borderline. So we can repeat the process with the new

borderline.

But now consider the right-hand heap which was too small. This heap

contains only cards which should be there, in the sense that they are already

in the same heap as they will be in when the correct borderline is found.

There is no point in scanning the cards of this heap again. This suggests that

in any subsequent scan we can put these cards aside, say at the top of the

card table. The importance of this suggestion arises from the fact that

subsequent scans will be shorter than earlier ones, so eventually we will get

down to a single card, which must then be the right borderline.

So having put to the top the right-hand heap which was too small, we

move the other heap to the middle, select a new borderline, say 196, and

proceed with the split. At the end of the second split, we will have a

borderline value and three heaps:

(1) A top right heap, with cards higher than the first borderline 367.

(2) A bottom right heap, with cards lying between the two borderlines 196

and 367.

(3) A bottom left heap, with cards lower than the second smaller borderline

196.

It may happen now that it is the left of the two bottom heaps which is too

small; it will therefore contain only cards which properly belong to the left

heap; and as before, we can put it to the top of the card table, and omit it

from future examination. Then we place the borderline value on that heap.

Next we move the remaining bottom heap up to the middle and repeat the

94 ESSAYS IN COMPUTING SCIENCE

Top Top
left right
heap heap
(^ 196) (^ 367)

Borderline
value

(229)

Middle
heap
(192 to
367)

Bottom

left
heap
K229)

Bottom

right
heap
(^229)

Figure 7.1 Layout of the game

process, selecting again an arbitrary trial borderline (say 229), and splitting

the middle heap into a bottom left heap and a bottom right heap. Then we
have a picture as shown in Fig. 7.1.

Obviously we don’t want to continue to proliferate more and more heaps,

and we must seek every opportunity to amalgamate them, for example by

putting the bottom right heap on top of the top right heap. This operation is

permissible whenever the resulting combined heap is not too large. Similarly

the left-hand heaps can be amalgamated if this would not make the top left

heap too large. It is evident that one at least of these amalgamations is

always possible; and if they are both possible, the whole problem is solved.

But if one of them cannot be amalgamated, we must continue the process of

splitting on this remaining heap, and so continue until the problem is
solved.

It seems now that we have a grasp of a solution to our original problem;

and to verify this, it is worthwhile to write out the rules of the game rather

more precisely, as is done in Fig. 7.2.

Notice how we have dealt with the borderline card. This is the most

troublesome card of all. We must make sure that this borderline card is

always put on to one of the two top heaps, because this is the only way we

can guarantee that the middle heap will always be reduced in size; for if it is

not reduced, there is a danger that our game of patience will not come out at

all — and what is worse, it will go on forever. Consider, for example, the

case when there is only one card left on the middle heap. This is necessarily

COMPUTER SCIENCE 95

(1) Put all 100 cards on the middle heap.

(2) Repeat the following until the middle heap is empty:

(2.1) Take a card from the middle heap as borderline.

(2.2) Repeat the following until the middle heap is empty:

If the top card of the middle heap is less than the borderline, put it

on the bottom left heap; otherwise on the bottom right heap.

(2.3) If the combined size of top left and bottom left heaps is less than

21, amalgamate them; and if it is still less than 20 put the
borderline card on as well.

(2.4) If the combined size of top right and bottom right heaps is less

than 81, amalgamate them; and if it is still less than 80, put the

borderline card on as well.

(2.5) Move the remaining bottom heap (if any) to the middle heap.

(3) The required 20 observations will now be found on the top left heap.

Figure 7.2 Rules of the game

selected as the borderline value. After the split, both bottom heaps will, of

course, be empty. Thus the borderline card must now be added directly to

that top pile which needs it. On a careful interpretation of steps 2.3 and 2.4

it is possible to see that an amalgamation of an empty bottom heap with a

top heap will still leave that heap too small, and thereby justify the addition

of the borderline card. This is the kind of subtle reasoning that is often

required to ensure the correct working of a computer program.

Let us see whether this approach is in fact faster than the previous one.

Let us use the letter TV to stand for the number of observations, a hundred in

the manual case, a hundred thousand in the computer example. Consider

first a so-called ‘worst-case’ analysis, which will give an upper bound for the

time taken. The worst thing that can happen in each scan of the middle heap

is for the value chosen as borderline to be the largest or smallest of the

values in the middle heap. In this case, all the remaining cards will go into

only one of the bottom heaps, the other bottom heap remaining empty.

Then the borderline will be moved to a top heap, and the new middle heap

will contain only one less card than before. Thus TV operations will be

required on the first scan, TV - 1 on the second, TV - 2 on the third, and so

on; until the last scan involves only one observation. This adds up to about

\N2 operations in all; which take about an hour and a half on our manual

example, and about fourteen hours for the computer. This is far worse than

our previous approach, and suggests that we should take steps to minimize

the chances that our borderline card will be the lowest or highest card in the

middle heap.

At the other extreme, the best possible case is when the first selection of

borderline happens to be the right one; for in this case the task is completed

by a single scan of TV operations, taking about a minute and a half by hand,

96 ESSAYS IN COMPUTING SCIENCE

or one second in the computer. Obviously, the average time taken will lie

between these two extremes, and we hope very much closer to the best case

than the worst.

So let us consider what we may call a ‘typical’ case, in which the value

selected as borderline is roughly the middle value of the middle heap. In this

case, the bottom left and bottom right heaps will each contain about half

the cards. One of these will be moved to the top, and the other will form the

new middle heap. Thus on each scan the size of the middle heap will be

roughly halved. The first scan involves all N cards and so the second scan

will take \ N, the next one \ N, and so on, until the size of the middle heap is

reduced to one. The resulting sum is approximately equal to 2N, which

takes about three minutes on our manual example, and about two seconds

on the computer. This seems fully satisfactory, and I doubt whether it is

worthwhile to search for a basically more efficient approach, though there

are one or two special techniques that can be used to speed up the suggested
approach even further.

We have now worked out quite an efficient way of accomplishing our

original objective. All that remains is to tell the computer by means of a

program how to carry out the process. But now it is necessary to take into

account the actual characteristics of computing machines. For example,

computers are not capable physically of picking up and dealing sets of

cards; they use quite different methods of manipulating numbers. Imagine,

therefore, a long array of pigeonholes, numbered from one to a hundred

thousand, each containing a single card with a single value written upon it

(Fig. 7.3). We will call this array A, and the individual pigeonholes will be

denoted by using square brackets: A[i\ stands for the /th pigeonhole of the

internal store of a computer. Assume also that the operation which the

computer can perform most efficiently on this array is to exchange the

contents of two of the pigeonholes, say the /th pigeonhole and the yth. The

process which we have discovered to be efficient for heaps of cards must

now be adapted to work efficiently in this new environment.

Obviously, all five of our previous heaps are going to have to be

accommodated somehow within this single long array of pigeonholes. So let

top bottom middle bottom top
left left heap right right
heap heap heap heap

Figure 7.3 The computer’s store

COMPUTER SCIENCE 97

us use the left-hand end to hold the left heaps, and the right-hand end to

hold the right heaps. More precisely, the top left-hand heap will be the

contents of the pigeonholes numbered 1, 2, to m - 1:

A[1],A[2], - 1];

and the top right-hand heap will be the contents of pigeonholes numbered
n + 1, n + 2, to 100000, that is:

A[n + \], A[n + 2], ...,^4[100000],

where m and n are numbers marking the limits of these heaps. The middle

heap will, of course, consist of the remaining pigeonholes:

A[m], A[m + 1],..., A[n].

If m - 1, this signifies that the left heap is empty.

If n - 100000, this signifies that the right heap is empty.

If n is less than m, this means that the middle heap is empty, and that our

task is complete.

During the process of splitting the middle heap, two further heaps are

required, the bottom left heap and the bottom right heap. As before, we

introduce letters / and j, and decree that the bottom left heap shall comprise

the contents of:

A [m], A [m + 1],..., A [/ — 1],

and the bottom right heap will be:

A[j + 1], A [j + 2],..., A [n].

If i = m this means that the bottom left heap is empty; and if j - n, this

means the bottom right heap is empty. Since at the beginning of each scan

of the middle heap both bottom heaps are empty, the value of / must

initially be set to m and the value of j must be the same as n (see Fig. 7.3).

Next, the borderline value must be selected from the middle heap. Instead

of removing the card from its pigeonhole, which is not allowed, we make a

copy of the number on it. Then we look at one of the cards of the middle

heap, say A[i]. If this is less than the borderline value we must put it in the

bottom left heap. This can be done simply by adding one to the previous

value of /, which is the value that marked the top of the bottom left heap.

This will automatically achieve the desired effect of increasing the size of the

heap by one and simultaneously including A[i] in the bottom left heap.

Now what happens if the contents of A[i] is larger than the borderline

value, and needs to go into the bottom right heap? To do this it must

obviously be moved to the top of the bottom right heap, namely to A[j].
This must be accomplished by an exchange, which puts the original content

of A[j] into A[i]. Then the size of the right-hand heap must be enlarged to

contain its new card, by subtracting one from the previous value of j.

98 ESSAYS IN COMPUTING SCIENCE

So we see that we can always move the contents of the pigeonhole A[i], to

the appropriate one of the two bottom heaps. All that now needs to be done

is to repeat the process until the size of the middle heap has been reduced to

nothing, that is, until j is less than /.

At this stage we must join one or both of the bottom heaps to the

corresponding top heap. This may be done by a trick similar to that which

we have used in adding single cards to the bottom heaps. In fact, to join the

bottom left heap to the top left heap, all that is necessary is to change the

value of m (marking the limit of the top left heap) so that it is equal to the

current value of / (marking the limit of the bottom left heap); and similarly,

to add the bottom right heap to the top right heap, we set the value of n

(marking the limit of the top right heap) so that it is equal to the current

value of j. But of course, before performing either of these two operations,

it is necessary to check that the result of the operation would not make the
top heap too large.

Thus we have worked towards the program shown in Fig. 7.4. In fact this

program contains some of the special techniques to secure the highest

degree of efficiency; and these are based on some rather subtle reasoning,

which need not concern us here. Furthermore, this program is expressed in

something close to ordinary English, and not in the kind of mathematical

notation (programming language) which a computer can understand and

interpret. But it is sufficient to illustrate the most important aspects of the

art of programming, which is the keystone of the discipline of computer

science. So allow me to conclude with a summary of the nature of the

(1) Set m to 1 and n to 100 OuO.

(2) Repeat the following until n ^ m:

(2.1) If A[m] > A[n] exchange them.

(2.2) If A[m] > A[m + 1] exchange them, otherwise if

A[m + 1] > A[n] exchange them instead.

(2.3) Set / to m + 2 and j to n - 1 and b to A[m + 1].

(2.4) Repeat the following until j < i:

(2.4.1) Add one to / repeatedly until A[i] ^ b.

(2.4.2) Subtract one from j repeatedly until b>A[j].

(2.4.3) If / ^ j then exchange A[i] and A [y] and add one to / and
subtract one from j.

(2.5) Exchange A[m + 1] and A[j] and subtract one from j.
(2.6) If j ^ 20000 set m to /'.

(2.7) . If 80000 ^ i then set n to j.

(3) The required observations will be found in

A[\], A[2], ...,A [20 000].

Figure 7.4 The computer program

COMPUTER SCIENCE 99

reasoning involved, and of some of the qualities that must be possessed by

successful programmers.

The first requirement for the successful construction of programs is a

rather careful analysis of the problem itself. Most problems in real life are

poorly understood, in that the real problem is often something different

from what it is orginally thought to be. Even in our relatively simple

example, the original problem was formulated rather vaguely, and needed
to be interpreted carefully to ensure that it was solvable at all. For example,

suppose there is no twentieth value, but rather five values which are equal

seventeenth. Do we know what we want in this case? Will our program even

work at all? A good computer programmer must be able to recognize, pose,

and answer questions far more subtle and difficult than these.

The second requirement is a thorough search for a suitable efficient (and

preferably simple and elegant) technique for solving the problem. It is at

this stage that imagination must be given the fullest rein; here is the scope

for profound insight or spectacular invention. But the imagination must

always be disciplined by a sound judgement of the value of each approach.

This judgement must be exercised rapidly on incomplete evidence to reject

unprofitable lines of inquiry even before their detailed implications have

been worked out.

The next requirement is for careful elaboration of the chosen approach.

At this stage, many further decisions about the details of the solution must

be taken; and each of them must be taken in a manner that contributes

to the overall quality of the end product. Large programs require many

hundreds or even thousands of such decisions; and although inevitably

some of them will be taken wrongly, the effect of making even slightly

inappropriate choices on a large number of occasions will be cumulatively

disastrous.

The programmer next needs the patience and understanding to go back

and reconsider the entire approach to the problem in the light of the deeper

understanding that has been gained in the design process. This is partic¬

ularly important when the elaboration of detail has shown that the chosen

approach does not have the properties of elegance and efficiency which were

expected of it.

A further requirement is for meticulous accuracy in avoiding or detecting

the numerous small oversights and errors which afflict all computer

programs. This involves frequent exercise of the kind of subtle reasoning

which was needed to find an appropriate treatment of the borderline value

in our example problem.

An obvious further requirement is a clear understanding of the structure

and capabilities of a digital computer; the sizes, speeds, access characteris¬

tics, and costs of the various forms of storage and other devices, and the

range of known techniques for using them efficiently. For many important

and interesting problems, it is a major challenge to find effective methods

100 ESSAYS IN COMPUTING SCIENCE

for solving them, when even the largest and fastest modern computers

would seem initially to be too small and slow for the purpose.

Another important requirement, which is all too often forgotten by

practising programmers, is to describe to others the working of his pro¬

gram, and to explain and justify the decisions which he has made. It is not

enough in the present world for a programmer to act as a solitary genius,

who produces the goods but can never explain how. Modern large programs

are written by teams of people, and each decision taken by a programmer

potentially impinges on the work of the whole team. Even after the program

is launched into practical use there will be frequent requirements to alter it,

either as a result of subsequently discovered improvements, or as a result of

a change in the circumstances in which the program is used. Unless the

entire program is fully and comprehensibly explained in writing, it will be

literally impossible to make any change in any part of it. The inflexibility

which frequently results from this is one of the most serious drawbacks

involved in the introduction of computers, and apart from programming

error, could lead to the most dangerous social or commercial consequences.

To add to this long list of desirable attributes, we must also require from

the computer programmer a high degree of professional integrity, and a

recognition of his responsibility to society for the purposes to which

computers are put. I do not wish to exaggerate the social dangers of

potential misuse of computers; but at the present time when there is little

general understanding of the potentialities and limitations of computers,

and even less of the arcane jargon of computer men, the programmer has

especial responsibility for complete frankness and honesty in the pursuit of
his profession.

The final requirement is of course that the computer scientist should

enjoy the practice of his art. This attitude was well expressed by an old

friend and colleague, Mr Cedric Dennis, who declared: computer program¬

ming is like doing crossword puzzles, and being paid for it.

This concludes my brief investigation into the nature of computer

science. I have shown that it has strong links with other branches of learning

- electronic engineering, numerical analysis, business studies, pure math¬

ematics, formal linguistics and logic. But the essential core of the subject is

computer programming, the design and implementation of efficient and

effective programs for the solution of problems on a digital computer.

I have also implicitly given the answer to the question why computer

science is a worthy subject to take its place in the curriculum of a university.

Its study involves development of the ability to abstract the essential

features of a problem and its solution, to reason effectively in the abstract

plane, without confusion by a mass of highly relevant detail. The abstrac¬

tion must then be related to the detailed characteristics of computers as the

design of the solution progresses; and it must culminate in a program in

which all the detail has been made explicit; and at this stage, the utmost care

COMPUTER SCIENCE 101

must be exercised to ensure a very high degree of accuracy. At all stages the

programmer must be articulate about his activity. The need for abstract

thought together with meticulous accuracy, the need for imaginative

speculation in the search for a solution, together with a sound knowledge of

the practical limitations of the tools available for its implementation, the

combination of formal rigour with a clear style for its explanation to others

— these are the combinations of attributes which should be inculcated and

developed in a student by any university academic discipline; and which

must be developed in high degree in students of computer science. I should

like to conclude with a quotation from one of the earliest and most

distinguished computer scientists, Edsger Dijkstra:

Computers are extremely flexible and powerful tools, and many feel that their
application is changing the face of the earth. 1 would venture the opinion that
as long as we regard them primarily as tools, we might grossly underestimate
their significance. Their influence as tools might turn out to be but a ripple on
the surface of our culture, whereas I expect them to have a much more
profound influence in their capacity of intellectual challenge.

It is this intellectual challenge that we have set out to meet in introducing

computer science as a subject of university education.

EIGHT

Proof of correctness of data

representations

This paper makes a key point about the formal development of programs.

Data abstraction is essential for succinct specifications; the development of

representations becomes a necessary design tool. (A beautiful example of this

method is given in Chapter 9.) It is an accident of history that the work on

operation decomposition preceded that on data representation. How unfor¬

tunate that this history has influenced so many subsequent authors to focus on

operation decomposition even to the exclusion of the area of which Hoare still

says ‘data abstraction makes practical the use of proof during design.’

The style of presenting the data abstraction is via a model. Again, Hoare

expresses ‘amazement at the attention (the property-oriented approach) is still

receiving.’ He had, of course, used the axiomatic (or property-oriented)

method for his ‘axiomatic basis’ work; whilst acknowledging its utility for

basic data types he comments that ‘the complexities of application seem to

require the model-based approach, which takes for granted the basic prop¬
erties of data and structures.’

The idea for this style of development came when Hoare was working on

[31]. Unusually, there was only one draft and this document - dated 11

December 1971 - is very close to the published form of the paper which was

submitted on 16 February 1972. The debt, among others, to Milner’s work is

acknowleged but the paper here presents the proof method much more in the

spirit of program proofs than Milner’s more algebraic view.

An important step in proving the correctness of representations with respect

to given abstractions is to record a function from the representation to the

abstraction: the direction is dictated by the fact that there can be many

representations for any particular element of the abstract space. This realiza¬

tion came to Hoare when working on [36]. Although the choice of the

function letter G/) suggests a name like ‘abstraction function’, it is actually

called a ‘representation function’ in the text.

This paper, which is published as [32], was widely influential and roughly

this form of proof about data representation stood as a standard until

C. A. R. Hoare, Proof of correctness of data representations, Acta Informatica, 1(4), 271-81
(1972). This paper is republished by kind permission of Springer-Verlag GmbH.

103

104 ESSAYS IN COMPUTING SCIENCE

recently. A broadly equivalent rule is used in VDM (a recent reference to

which is Jones 1986). But the rule is incomplete! A more complete rule has

been discovered, two forms of which can be found in [97] and Nipkow (1986).

Abstract
A powerful method of simplifying the proofs of program correctness is suggested; and

some new light is shed on the problem of functions with side-effects.

8.1 Introduction

In the development of programs by stepwise refinement (Wirth 1971b;

Dijkstra 1972c; Dahl 1972; Hoare [30]), the programmer is encouraged

to postpone the decision on the representation of his data until after he has

designed his algorithm, and has expressed it as an ‘abstract’ program

operating on ‘abstract’ data. He then chooses for the abstract data some

convenient and efficient concrete representation in the store of a computer;

and finally programs the primitive operations required by his abstract

program in terms of this concrete representation. This paper suggests an

automatic method of accomplishing the transition between an abstract and

a concrete program, and also a method of proving its correctness; that is, of

proving that the concrete representation exhibits all the properties expected

of it by the ‘abstract’ program. A similar suggestion was made more

formally in algebraic terms in Milner (1971) which gives a general definition

of simulation. However, a more restricted definition may prove to be more

useful in practical program proofs.

If the data representation is proved correct, the correctness of the final

concrete program depends only on the correctness of the original abstract

program. Since abstract programs are usually very much shorter and easier

to prove correct, the total task of proof has been considerably lightened

by factorizing it in this way. Furthermore, the two parts of the proof

correspond to the successive stages in program development, thereby

contributing to a constructive approach to the correctness of programs

(Dijkstra, 1968a). Finally, it must be recalled that in the case of larger and

more complex programs the description given above in terms of two stages

readily generalizes to multiple stages.

8.2 Concepts and notations

Suppose in an abstract program there is some abstract variable t which is

regarded as being of type T (say a small set of integers). A concrete

representation of t usually consists of several variables Ci, C2, ...,cn whose

PROOF OF CORRECTNESS OF DATA REPRESENTATIONS 105

types are directly (or more directly) represented in the computer store. The

primitive operations on the variable t are represented by procedures

P\, Pi, ---iPm, whose bodies carry out on the variables cu c2,c„ a series

of operations directly (or more directly) performed by computer hardware,

and which correspond to meaningful operations on the abstract variable t.

The entire concrete representation of the type T can be expressed by

declarations of these variables and procedures. For this we adopt the

notation of the Simula 67 (Dahl et al. 1970) class declaration, which

specifies the association between an abstract type T and its concrete
representation:

class T\
begin ... declarations of C\, c2,..., cn...;

procedure p\{ formal parameter part)] Q\,

procedure p2{ formal parameter part)] Q2]

(8.1)
procedure pm(formal parameter part)] Qm]

Q
end;

where Q is a piece of program which assigns initial values (if desired) to the

variables ci, c2, As in ALGOL 60, any of the ps may be functions;

this is signified by preceding the procedure declaration by the type of the

procedure.

Having declared a representation for a type T, it will be required to use

this in the abstract program to declare all variables which are to be

represented in that way. For this purpose we use the notation:

var(T)/1;

or for multiple declarations:

var(T)L, t2,...;

The same notation may be used for specifying the types of arrays,

functions, and parameters. Within the block in which these declarations are

made, it will be required to operate upon the variables t,tin the

manner defined by the bodies of the procedures p\, p2, ...,pm. This is

accomplished by introducing a compound notation for a procedure call:

ti • pj(actual parameter part)]

where 6 names the variable to be operated upon and pj names the operation

to be performed.

If pj is a function, the notation displayed above is a function designator;

otherwise it is a procedure statement. The form 6 • pj is known as a

compound identifier.

These concepts and notations have been closely modelled on those of

Simula 67. The only difference is the use of var(T) instead of ref(7"). This

106 ESSAYS IN COMPUTING SCIENCE

reflects the fact that in the current treatment, objects of declared classes are

not expected to be addressed by reference; usually they will occupy storage

space contiguously in the local workspace of the block in which they are

declared, and will be addressed by offset in the same way as normal integer

and real variables of the block.

8.3 Example

As an example of the use of these concepts, consider an abstract program

which operates on several small sets of integers. It is known that none of

these sets ever has more than a hundred members. Furthermore, the only

operations actually used in the abstract program are the initial clearing of

the set, and the insertion and removal of individual members of the set.

These are denoted by procedure statements

and

5 • insert(i)

s ' remove(/).

There is also a function 5 • has(i), which tests whether / is a member of 5.

It is decided to represent each set as an array A of 100 integer elements,

together with pointer m to the last member of the set; m is zero when the set

is empty. This representation can be declared:

class smallintset;
begin integer m; integer array A[l : 100];

procedure insert(i); integer /;

begin integer j;

for j:= 1 step 1 until m do

if A [j] = i then goto end insert;

m:= m + 1;

A[m] := /;

end insert: end insert;

procedure removed); integer /;

begin integer j, k\

for j\- 1 step 1 until m do

if A[j] = i then
begin for k:= j + 1 step 1 until m do A[k — 1] := A[k]\

comment close the gap over the removed member;

m\- m — 1;

goto end remove

end;

end remove: end remove;

PROOF OF CORRECTNESS OF DATA REPRESENTATIONS 107

Boolean procedure has(i); integer /;

begin integer j;

has:= false;

for j:= 1 step 1 until m do

if A [j] = / then

begin

has:= true

goto end has

end has: end has;

end;

m:= 0; comment intialize set to empty;

end smallintset;

Note: As in Simula 67, simple variable parameters are presumed to be
called by value.

8.4 Semantics and implementation

The meaning of class declarations and calls on their constituent procedures

may be readily explained by textual substitution; this also gives a useful clue

to a practical and efficient method of implementation. A declaration:

var(r)/;

is regarded as equivalent to the unbracketed body of the class declaration

with begin ...end brackets removed, after every occurrence of an identifier

Ci or pi declared in it has been prefixed by t-. If there are any initializing

statements in the class declaration these are removed and inserted just in

front of the compound tail of the block in which the declaration is made.

Thus if Thas the form displayed in (1), var(T)/1 is equivalent to:

... declarations for t - cu t • c2, ...,/• cn ...;

procedure t- pif..); Q{;

procedure t • p2(...); Qi\

procedure t - pm(...); Q^;

where Q{, Q2, Q' are obtained from Qu Q2y...,Qm, Q by prefixing

every occurrence of cr, c2,..., c„, pup2,...,pm by t • . Furthermore, the

initializing statement Q' will have been inserted just ahead of the state¬

ments of the block body.

If there are several variables of class T declared in the same block, the

method described above can be applied to each of them. But in a practical

implementation, only one copy of the procedure bodies will be translated.

108 ESSAYS IN COMPUTING SCIENCE

This would contain as an extra parameter an address to the block of

ci, C2,..., cn on which a particular call is to operate.

8.5 Criterion of correctness

In an abstract program, an operation of the form

ti • pj(au a2, ...,anj) (8.2)

will be expected to carry out some transformation on the variable 0, in such

a way that its resulting value is fj(ti, a\, ci2,...»cinj), where fj is some

primitive operation required by the abstract program. In other words the

procedure statement is expected to be equivalent to the assignment

tr.= au #2, 6n7);

When this equivalence holds, we say that pj models fj. A similar concept of

modelling applies to functions. It is desired that the proof of the abstract

program may be based on the equivalence, using the rule of assignment

(Hoare, [15]), so that for any propositional formula 5, the abstract

programmer may assume:

iS/j (/;, Q l, #2? ti ' Pj(@ 1 j ^2 ? • • • > tlnj)} 1"

In addition, the abstract programmer will wish to assume that all declared

variables are initialized to some designated value do of the abstract space.

The criterion of correctness of a data representation is that every pj

models the intended fj and that the initialization statement ‘models’ the

desired inital value; and consequently, a program operating on abstract

variables may validly be replaced by one carrying out equivalent operations

on the concrete representation.

Thus in the case of smallintset, we require to prove that:

var(/)/ initializes t to [] (the empty set)

t • insert(i) = t:= t U {/)

t • remove(i) = t:= tCI —| {/}

t • has(i) = / € t. (8.3)

8.6 Proof method

The first requirement for the proof is to define the relationship between the

abstract space in which the abstract program is written, and the space of the

tSy stands for the result of replacing all free occurrences of x in S by y: if any free variables of
y would become bound in S by this substitution, this is avoided by preliminary systematic

alteration of bound variables in S.

PROOF OF CORRECTNESS OF DATA REPRESENTATIONS 109

concrete representation. This can be accomplished by giving a function
<d(cu C2, which maps the concrete variables into the abstract object
which they represent. For example, in the case of smallintset, the represent¬
ation function can be defined as

m, A) = (/: integer | 3k(1 ^ k ^ m A A[k] = /)} (8.4)

or in words, \m, A) represents the set of values of the first m elements of
A.’ Note that in this and in many other cases will be a many—one
function. Thus there is no unique concrete value representing any abstract
one.

Let t stand for the value of a4(c\, c2, ..., cm) before execution of the body
Qj of procedure pj. Then what we must prove is that after execution of Qj
the following relation holds:

i, C2, = fj(t, Vu V2, Vnj)

where V\, v2,..., vnj are the formal parameters of pj.
Using the notations of [15], the requirement for proof may be expressed:

t = (Ci, C2, {Qj} d4(Cu Cl, Cn) = fj(t, VU V2, ..., Vnj)

where Ms a variable which does not occur in Qj. On the basis of this we may
say: t • Pj(a\, a2,..., an) = t:= fj(t, a\, a2,..., an) with respect to This
deduction depends on the fact that no Qj alters or accesses any variables
other than ci, c2,..., c„; we shall in future assume that this constraint has
been observed.

In fact for practical proofs we need a slightly stronger rule, which enables
the programmer to give an invariant condition 7(ci, c2,..., c„), defining
some relationship between the constituent concrete variables, and thus
placing a constraint on the possible combinations of values which they may
take. Each operation (except initialization) may assume that / is true when it
is first entered; and each operation must in return ensure that it is true on
completion.

In the case of smallintset, the correctness of all operations depends on
the fact that m remains within the bounds of A, and the correctness of
the remove operation is dependent on the fact that the values of
A[1], A[2], ...,A[m\ are all different; a simple expression of this invariant
is:

size(j4(m, A))= m ^ 100. (I)

One additional complexity will often be required; in general, a procedure
body is not prepared to accept arbitrary combinations of values for its
parameters, and its correctness therefore depends on satisfaction of some
precondition P(t, a\, a2, ...,an) before the procedure is entered. For
example, the correctness of the inset procedure depends on the fact that the
size of the resulting set is not greater than 100, that is

size(t U {/}) ^ 100

110 ESSAYS IN COMPUTING SCIENCE

This precondition (with t replaced by atf) may be assumed in the proof of

the body of the procedure; but it must accordingly be proved to hold before

every call of the procedure.

It is interesting to note that any of the ps that are functions may be

permitted to change the values of the cs, on condition that it preserves the

truth of the invariant, and also that it preserves unchanged the value of

the abstract object For example, the function has could re-order the

elements of A; this might be an advantage if it is expected that membership

of some of the members of the set will be tested much more frequently than

others. The existence of such a concrete side-effect is wholly invisible to the

abstract program. This seems to be a convincing explanation of the

phenomenon of ‘benevolent side-effects’, whose existence I was not pre¬

pared to admit in [15].

8.7 Proof of smallintset

The proof may be split into four parts, corresponding to the four parts of

the class declaration:

8.7.1 Initialization

What we must prove is that after initialization the abstract set is empty and

that the invariant I is true:

true {m:= 0}

{/1 3k(\ ^ k ^ m A A [&] = /)} = {) A size{^{m, a)) = m ^ 100

Using the rule of assignment, this depends on the obvious truth of the

lemma
{/1 3£(1 ^ k ^ 0 A A[k] = i] = {) A sized)) = 0 ^ 100

8.7.2 Has

What we must prove is

^(m, A) - k A I [Qhas] A) - k A / A has = i € A)

where Qhas is the body of has. Since Qhas does not change the value of m or

A, the truth of the first two assertions on the right-hand side follows

directly from their truth beforehand. The invariant of the loop inside Qhas

is:

j ^ m A has = / € (y, A)

PROOF OF CORRECTNESS OF DATA REPRESENTATIONS 111

as may be verified by a proof of the lemma:

j<mAj^m/\ has = i € A)
=> if A[j + 1] = / then (true = i€^(m, A))

else has = i€^(j + 1, A).

Since the final value of j is m, the truth of the desired result follows directly
from the invariant; and since the ‘initial’ value of j is zero, we only need the
obvious lemma

false = / 6 ^(0, A)

8.7.3 Insert

What we must prove is:

PAat(m,A) = k AI [Qinsert] (m, A) = (k U {/)) A /,

where P= df size(^I(m, A) U (/)) ^ 100.
The invariant of the loop is:

P A) = k A IA / (A) A 0 ^ j ^ m

as may be verified by the proof of the lemma

A) = k A i i A) A 0 ^ j ^ m A j < m
=> if A[j + 1] = / then A) = (k U {/})

else 0 ^ j + 1

(The invariance of PA) = k/\Ifollows from the fact that the loop
does not change the values of m or A). That (8.6) is true before the loop
follows from / i A).

We must now prove that the truth of (8.6), together with j = m at the end
of the loop, is adequate to ensure the required final condition. This depends
on proof of the lemma

j—m A (8.6) U a4(m + \ y A') = (kKJ (/)) A size(^(m + 1, A '))
= m + 1 ^ 100

where A' = (A, m + 1 : /) is the new value of A after assignment of / to
A[m + 1].

8.7.4 Remove

What we must prove is

(A77, A) = k A / { Q re move} ^ (m, y4) — (A: O —| { /}) A I.

112 ESSAYS IN COMPUTING SCIENCE

The details of the proof are complex. Since they add nothing more to the
purpose of this paper, they will be omitted.

8.8 Formalities

Let T be a class declared as shown in Section 8.2, and let a49 /, Pj, fj be
formulae as explained in Section 8.6 (free variable lists are omitted where
convenient). Suppose also that the following m + 1 theorems have been
proved:

true {Q} /A^ = do (8.7)

= t A /A Pj(t) [Qj] I= fj(t) for procedure bodies Qj (8.8)

= t A/A Pj(t) {Qj} IAdtf = t A pj = fj(t) for function bodies Qj. (8.9)

In this section we show that the proof of these theorems is a sufficient
condition for the correctness of the data representation, in the sense
explained in Section 8.5.

Let X be a program beginning with a declaration of a variable t of an
abstract type, and initializing it to do. The subsequent operations on this

variable are of the form

(1) t:= fj t, au 02,...» anj) if Qj is a procedure
(2) fj(t, a\, ai, ij) if Qj is a function.

Suppose also that Pj(t9 au a2,...»anj) has been proved true before each such
operation.

Let X' be a program formed from X by replacements described in
Section 8.4, as well as the following (see Section 8.5):

(1) initialization t:= do replaced by Q'

(2) t:= fj(t, au 02, ...,0n7) replaced by t • pj{au ai,...9anj)
(4) fj(t9 au 02, ...,0*y) by t • Pj(au ai, ...,0*,).

Theorem
Under conditions described above, if X and X' both terminate, the value of
t on termination of X will be ^(ci, C2, ...,Oi), where c\9 C2, ...9cn are the
values of these variables on termination of X'.

Corollary
If R(t) has been proved true on termination of X, will be true on
termination of X'.

Proof Consider the sequence S of operations on t executed during the

PROOF OF CORRECTNESS OF DATA REPRESENTATIONS 113

computation of X, and let S' be the sequence of subcomputations of X'

arising from execution of the procedure calls which have replaced the
corresponding operations on t in X. We will prove that there is a close
elementwise correspondence between the two sequences, and that

(a) Each item of 5' is the very procedure statement which replaced the
corresponding operation in S.

(b) The values of all variables (and hence also the actual parameters) which
are common to both ‘programs’ are the same after each operation.

(c) The invariant / is true between successive items of S'.

(d) If the operations are function calls, their results in both sequences are
the same.

(e) And if they are procedure calls (or the initialization) the value of t

immediately after the operation in S is given by as applied to the
values of ci, cz, after the corresponding operation in S'.

It is this last fact, applied to the last item of the two sequences, that
establishes the truth of the theorem.

The proof is by induction on the position of an item in S.

(1) Basis. Consider its first item of S, t:= do. Since X and X' are
identical up to this point, the first item of S' must be the subcomputation of
the procedure Q which replaced it, proving (a). By (8.7), I is true after Q in
S', and also = do, proving (c) and (e). (d) is not relevant. Q is not allowed
to change any nonlocal variable, proving (b).

(2) Induction step. We may assume that conditions (a)-(e) hold imme¬
diately after the (n - l)th item of S and S', and we establish that they are
true after the nth. Since the values of all other variables (and the result, if a
function) were the same after the previous operation in both sequences, the
subsequent course of the computation must also be the same until the very
next point at which X' differs from X. This establishes (a) and (b). Since
the only permitted changes to the values of / • C\, t • ci,..., t • cn occur in the
subcomputations of S', and / contains no other variables, the truth of /
after the previous subcomputation proves that it is true before the next.
Since S contains all operations on t, the value of / is the same before the nth

as it was after the (n - l)th operation, and it is still equal to . It is given as
proved that the appropriate Pj(t) is true before each call of fj in S. Thus we
have established that -t A/ A Pj(t) is true before the operation in S'.

From (8.8) or (8.9) the truth of (c), (d), (e) follows immediately, (b) follows
from the fact that the assignment in S changes the values of no other
variable besides t\ and similarly, Qj is not permitted to change the value of
any variable other than t • c\, t • ci, ...,t • cn.

This proof has been an informal demonstration of a fairly obvious
theorem. Its main interest has been to show the necessity for certain
restrictive conditions placed on class declarations. Fortunately these restric-

114 ESSAYS IN COMPUTING SCIENCE

tions are formulated as scope rules, which can be rigorously checked at

compile time.

8.9 Extensions

The exposition of the previous sections deals only with the simplest cases of
the Simula 67 class concept; nevertheless, it would seem adequate to cover a
wide range of practical data representations. In this section we consider the
possibility of further extensions, roughly in order of sophistication.

8.9.1 Class parameters

It is often useful to permit a class to have formal parameters which can be
replaced by different actual parameters whenever the class is used in a
declaration. These parameters may influence the method of representation,
or the identity of the initial value, or both. In the case of smallintset, the
usefulness of the definition can be enhanced if the maximum size of the set
is a parameter, rather than being fixed at 100.

8.9.2 Dynamic object generation

In Simula 67, the value of a variable c of class C may be reinitialized by an

assignment:

c:= new C (actual parameter part);

This presents no extra difficulty for proofs.

8.9.3 Remote identification

In many cases, a local concrete variable of a class has a meaningful
interpretation in the abstract space. For example, the variable m of
smallintset always stands for the size of the set. If the main program needs
to test the size of the set, it would be possible to make this accessible by
writing a function

integer procedure size; size := m;

But it would be simpler and more convenient to make the variable more
directly accessible by a compound identifier, perhaps by declaring it

public integer m;

PROOF OF CORRECTNESS OF DATA REPRESENTATIONS 115

The proof technique would specify that

m = A))

is part of the invariant of the class.

8.9.4 Class concatenation

The basic mechanism for representing sets by arrays can be applied to sets
with members of type or class other than just integers. It would therefore be
useful to have a method of defining a class smallset, which can then be used
to construct other classes such as smallrealset or smallcarset, where car is
another class. In Simula 67, this effect can be achieved by the class/subclass
and virtual mechanisms.

8.9.5 Recursive class declaration

In Simula 67, the parameters of a class, or of a local procedure of the class,
and even the local variables of a class, may be declared as belonging to that
very same class. This permits the construction of lists and trees, and their
processing by recursive procedure activation. In proving the correctness of
such a class, it will be necessary to assume the correctness of all ‘recursive’
operations in the proofs of the bodies of the procedures. In the implementa¬
tion of recursive classes, it will be necessary to represent variables by a null
pointer (none) or by the address of their value, rather than by direct
inclusion of space for their values in block workspace of the block to which
they are local. The reason for this is that the amount of space occupied by a
value of recursively defined type cannot be determined at compile time.

It is worthy of note that the proof technique recommended above is valid
only if the data structure is ‘well grounded’ in the sense that it is a pure tree,
without cycles and without convergence of branches. The restrictions
suggested in this paper make it impossible for local variables of a class to be
updated except by the body of a procedure local to that very same activation
of the class; and I believe that this will effectively prevent the construction
of structures which are not well grounded, provided that assignment is
implemented by copying the complete value, not just the address.

8.10 Acknowledgements

I am deeply indebted to Doug Ross and to all authors of referenced works.
Indeed, the material of this paper represents little more than my belated
understanding and formalization of their original work.

NINE

Proof of a structured
program: The Sieve of

Eratosthenes

This paper provides a beautiful example of the development of a computer
program from a version which works on abstract data types. Not only is there
the obvious task of representing sets but also two different representations of
integers are considered in order to develop an efficient program.

It is sometimes argued that such developments are published only for
algorithms which are already known. An adequate rebuttal of this claim
comes in Misra and Gries (1978), which was extended to an algorithm
requiring sub-linear time in Pritchard (1981), both of which were stimulated
by this paper. A survey of these algorithms is contained in Pritchard (1987).

This paper was submitted in March 1972 and published as [34]. Anyone
who equates the term ‘structured programming’ with a narrow set of rules
concerning the choice of control constructs might be surprised by the
Appendix to this paper.

Abstract

This paper illustrates a method of constructing a program together with its proof. By
structuring the program at two levels of abstraction, the proof of the more abstract
algorithm may be completely separated from the proof of the concrete representation.
In this way, the overall complexity of the proof is kept within more reasonable bounds.

9.1 Introduction

In a previous paper (Hoare, [16]) it was shown how a fairly rigorous
proof technique could be applied to the development of a simple

C. A. R. Hoare, Proof of a structured program: The Sieve of Eratosthenes, BCS Computer
Journal 15(4), 321-5 (November 1972). This paper is republished by kind permission of the
British Computer Society.

117

118 ESSAYS IN COMPUTING SCIENCE

program, in order to inhibit the intrusion of programming and coding
errors. The method involved making a careful formulation of what each
part of the program is intended to do, and the invariants which it has got to
preserve, before the program is coded. In general, it will then be intuitively
obvious that the code is being written to meet its specification; but if
confirmation is required, it is possible to extract formally (even mechan¬
ically, see Foley and Hoare [19]) the lemmas on which the correctness of the
program depends, and give them a rigorous proof. Very often, these
lemmas and proofs are both trivial and tedious, and it is to be hoped that
the computer may in future be programmed to help in their extraction and
verification (King 1969). But even in the absence of such aid, the most
important lesson of this method of program construction is the clear
statement of the purpose of each part of the program, and the assumptions
which it needs to make in order to achieve this purpose. The formal
derivation and proof of lemmas can be omitted if we have sufficient trust in
our intuition.

The problem now arises, how can these techniques be applied to large
programs, where they are so much more necessary? Their application even
to small programs is already quite laborious, so their direct application to
large programs is out of the question. The solution to this problem lies in
the recognition (Dijkstra 1972c; Dahl 1972; Wirth 1971b) that a large
program can and should be expressed as a small program written in a more
powerful, higher-level programming language. This short program can then
be constructed correctly using the same techniques as described in Hoare
[16].

However, there remains the problem of ‘implementing’ the higher-level
language in terms which the machine can understand, and of simulta¬
neously proving that this implementation is correct. The programmer must
select some efficient method of representation of the data used by the
abstract program, and should formulate the function which maps the
representation onto the abstract data which it represents. Then the various
primitive operations on the abstract data must be implemented by pro¬
cedures coded in a language closer to one that is comprehensible to the
computer. Finally, it must be proved that each procedure operating on the
representation has its intended effect on the abstract data which it
represents.

The proof methods used in this paper are similar to those described and
formalized in Milner (1971) and Hoare [32]. However, they are explained
and justified rather informally, relying on intuition to verify that the lemmas
quoted are indeed the ones that need to be proved in order to establish the
correctness of the programs.

PROOF OF A STRUCTURED PROGRAM 119

9.2 The abstract algorithm

The Sieve of Eratosthenes is an efficient method of finding all primes equal

or less than a given integer TV. The ‘sieve’ contains initially 2 and all odd

numbers up to TV; but numbers which are multiples of other numbers are

gradually ‘sifted out’, until all numbers remaining in the sieve are prime.
The desired result of the algorithm is

sieve = primes (TV)

where sieve is a set of integers and primes(k) is the set of all primes up to
and possibly including k.

Some important properties of the algorithm are that it never removes a

prime from the sieve, and that it never adds to the sieve a number outside

the range 2 to TV. These properties may be formally defined by stating

invariants of the algorithm - that is, facts which are true of the variables

of the program thoughout its execution, except possibly in certain critical

regions, or action clusters (Naur 1969), in which the individual variables of

a structure are updated piecemeal. These invariants are:

primes (TV) sieve c range {N) (/)

where range(k) is the set of numbers between 2 and k inclusive.

The sieve is said to be ‘sifted’ with respect to a number q if all multiples
of q have been removed from it:

sifted(q) = df V n € sieve{q divides n => q = n)

The sieve is said to be ‘sifted up to p’ if all multiples of any prime less than
p have been removed from it:

sifted up to(p) = df V q £ primes{p - 1)(sifted(q))

We now prove the elementary lemmas on which the algorithm is based.

Lemma 1

sieve — (2) U[n 6 range(N) \ n is odd} => sifted up to (3)

Proof No odd number is divisible by 2, so the only number in the sieve

divisible by 2 is 2 itself. Therefore sifted (2), which implies the conclusion.

Lemma 2

p2 > TV A sifted up to (p) A primes(N) c: sieve <= range(N) => sieve -
primes (TV)

120 ESSAYS IN COMPUTING SCIENCE

Proof Let 5 6 sieve - primes(N) and let q be its smallest prime factor.

q2 ^ 5 ^ N < p2 since 5 is a non-prime in range(N)

q ^ p - 1
sifted(q) since sifted up to{p) A q is prime
5 i sieve since q divides s (by hypothesis) and q ^ s

This contradiction shows that sieve - primes(N) is empty. The conclusion

follows from primes(N) 9 sieve.

The algorithm can be based on these two theorems:

begin p : integer;

sieve := (2} U [n € range(N) \ n is odd)\

p:= 3;
while p2 ^ N do

begin sift{p)\

p := next prime after (p)

end

end

where sift(p) is assumed to have the result

sifted (p)

and to preserve the invariance of

/ A sifted up to(p).

The correctness of the loop in preserving the invariance of sifted up to(p)

now depends on the lemma.

Lemma 3

p2 ^ N A sifted up to(p) A sifted(p) =* sifted up to {next prime after{p))

Proof Let

q € primes {next prime after{p) - 1)

(1) if q ^ p - 1, sifted{q) follows from sifted up to{p)

(2) if q = p, sifted{q) follows from sifted{p)

(3) since q is prime it is impossible that

p < q ^ next prime after{p) - 1,

sifted{q) follows in both possible cases, and consequently sifted up to

{next prime after{p)).

Of course, this algorithm would be rather pointless unless there were some

especially fast way of computing the next prime after p in the context in

which it is required. Summarizing all facts known at this stage we get:

/A p2 ^ TV A sifted up to {next prime after {p)) {P)

Now we can rely on the theorem

PROOF OF A STRUCTURED PROGRAM 121

Lemma 4

P => next prime after(p) = next after (p, sieve)

where next after (n, s) is the smallest element of 5 which is greater than n.

Proof Let

Since

p' = next after (p, sieve)

primes(N) c 5/eve, and p' e 5/eve

it follows that

p < p' ^ next prime after(p)

To establish equality, it is sufficient to prove that p' is prime. Let r be the
smallest prime factor of /?', so r ^ p'.
Assume r < p'

then sifted(r) follows from r < p' ^ next prime after(p)

and sifted up to (next prime after {p)).

r = pf since p' € sieve A r divides p'

Therefore p' is equal to its smallest prime factor.

It remains to prove that next after (p, sieve) actually exists; this follows

from p ^ N and the fact that there is always a prime between p and p1.

This is a deep result in number theory, and will not be proved here.

A second obvious improvement in efficiency is to replace the test

p ^ rootN

where rootN has been precomputed as the highest integer not greater than
sqrt{N).

9.3 Sifting

It remains to program the procedure sift(p). This procedure may assume

the precondition that p > 2 is odd, and must produce the result that

sifted(p). It must also preserve the invariants:

primes (N) c sieve

sieve c range(N)

sifted up to{p)

The only change made to global variables by the operation of sifting is the

122 ESSAYS IN COMPUTING SCIENCE

repeated removal of an integer 5 from the sieve:

sieve := sieve - {vj;

where 5 is not prime. Removal of non-prime elements from the sieve can

never alter any of these invariants from true to false, as may be verified by

the trivial lemmas:

Lemma 5
stf. primes (TV) A primes(N) <= sieve => primes(N) 9 sieve - {5]

Lemma 6
sieve <= range(N) => sieve — {5} range(AT)

Lemma 7
V q € primes(p - 1) V n € sieve(q divides n ^ q - n)

=> V (7 € primes(p - 1) V n € (sieve - {s))(g divides n => q = n)

Proof After replacing n € (5/cvc - {5}) by an equivalent form «€

sieve/\ n£{s), this is a tautology.

Now all that is necessary is to generate a sequence of multiples of p, and

remove them from the sieve. However, it is known that p > 2, so that sifted

up to (p) implies that sifted(2). Consequently, it is not necessary to remove

even multiples of p, since they are already gone. Also all nonprimes less

than p2 will be gone as a result of sifted up to (p). We design the sifting

process to preserve the invariance of

sifted up to(p) A 5 mod 2 p — /?As^2A/?is odd A p > 2 A

V 5' 6 sieve 0 range(s - 1)(p divides s' =* p - s')

Note that 5 mod 2p = p implies that 5 is non-prime, which we required to

justify removal of s from sieve.

The program is:

sift: begin 5, step: integer,

step p + p\
s\= px p;

while 5 ^ TV do

begin sieve := sieve - {5];

s := 5 + step

end

end sift.

The correctness of the program depends on the following lemmas:

PROOF OF A STRUCTURED PROGRAM

Lemma 8

p is odd => (p x p) mod 2p - p

123

Lemma 9

sifted up to (p) A p > 2 => V 5' € sieve Pi range(p x p - 1)
(p divides s' => p = s')

Proof Let s' 6 sieve Pi range(p1 2 3 - 1) and assume p divides s'. We shall

prove that s' is prime, for then it follows immediately from p divides s'
that s' - p.

Let r be the smallest prime factor of 5'.

There are two cases:

(1) if r — s' then 5'

(2) if r2 ^ 5' then

r2 s' < p2

r ^ p - 1

sifted (r)

.'. r=s'

hence s' is prime.

is prime anyway

since 5' € range fp2 - 1)

since sifted up to(p)

since r divides s' 6 sieve

Lemma 10

5 mod 2p = p => (5+ 2p) mod 2p = p

Lemma 11

s ^ 2 A p 2 ^ s ■+ 2 p ^ 2

Lemma 12

sifted (2) A 5 mod 2p = p/\s^2A

V s' € 57’eve P rangers - 1)(/? divides s' => p - s')

=* V s' € (s/eve - {5}) P range (s +2p- \)(p divides s' => p = s')

Proof Consider 5' satisfying the conditions

5' 6 (s/pve ~(5))A5' ^ 5 + 2/?- 1 A/? divides s'
There are three cases:

(1) if s' < s, then p - s' follows from the antecedent

(2) s' = s is impossible, since 5' € sieve - {5]

(3) if s' > s then s' = s + p since s' < 5 + 2p — 1

and p divides both 5 and s'
s' mod 2p = 0 since 5 mod 2p - p
2 divides s'

s' - 2 follows from sifted{2)

but this contradicts 5' > s ^ 2. Thus case (3) is also impossible.

124 ESSAYS IN COMPUTING SCIENCE

Lemma 13

s > N A sieve <= range (TV) A

V 5' € 57'pve n rangers - 1)(/? divides s' => p = 5') => sifted(p)

Proof svevp c range(N) <= rangers - 1)

sieve Pi range {s — 1) = s/pve.

9.4 Concrete representation

The program developed and proved in the previous section is abstract,
in the sense that it assumes the possibility of operating on integers and
sets of integers of arbitrary size (up to TV). Now, if TV is smaller than
2T wordlength - 1 (where wordlength is the number of bits in the word
of the computer), the possibility of operating on integers of this size will
have been provided by the hardware of the computer. Furthermore, if
TV ^ 2 x wordlength, the sieve itself may be represented as a single word of
the computer store which has the nth bit set to one if (2n + 1) is in the sieve.
The operations on the set are probably built into the instruction code of the
computer in the form of logical and shifting instructions.

However, the case which interests us is when TV is rather large compared
with the computer wordlength, but still rather smaller than the total number
of bits in the main store of the computer. A figure of the order of 10000
may be typical. It is, therefore, necessary to represent the sieve by means of
an array of words, and it is now the responsibility of the programmer to
find an efficient way of implementing the required set operations on this
array. A word may be regarded as representing a subset of the positive
integers less than the wordlength.

Unfortunately, the access and manipulation of an arbitrary bit held in an
array of words is rather an inefficient operation, involving a division to find
the right wordnumber, with the remainder indicating the bitnumber within
the word. On machines with wordlength equal to a power of two this will be
less inefficient than on other machines. But the solution which we adopt
here is to represent the integers p, s, and step as mixed radix numbers. Each
of them contains two components, a wordnumber and a bitnumber within
the word. Furthermore, only odd numbers need be represented in the case
of p and 5, whereas only even numbers need be represented for the step.

Since we have to test p and 5 against TV and rootN, it is as well to
represent these in the same way as odd numbers. If they are even, this means
subtracting one from them. The validity of this is due to the fact that

a is odd A b is even => (a ^ b = a ^ b - 1).

PROOF OF A STRUCTURED PROGRAM 125

We therefore need to implement the arithmetic operations required on
this curious representation of odd integers, as well as the required set
operations on the sieve; and for this purpose we will use the concepts and
notations described in Chapter 8, and declare the representations as Simula
classes. A class is a declaration of a data structure (its local variables),
together with declarations of all the procedures which operate on data of
that structure. The body of each procedure is a critical region inside which
invariants may be temporarily falsified. We can outline the requirements by
showing the class declarations, but replacing all the procedure bodies by a
comment stating what they are intended to do:

class eveninteger(a: oddinteger);
begin wd, bit;

initialize: comment initialize to 2 x a;
end;

class oddinteger(n : integer);
begin wd, bit: integer;

procedure add(b: eveninteger);

comment ‘: + b’;

boolean procedure eqless(c: oddinteger);
comment ‘ ^ c’;

procedure nextafter(sve: sieveclass);
comment ‘: = nextafter(itself, svef;

procedure square(c\ oddinteger);
comment ‘: = cxc’;
comment initialize to ((n - 1) -f 2) x 2 + 1;

end oddinteger;

class sieveclass(N: integer);
begin constant W= (N + 2) -4- wordlength

bitmap : array 0 .. W of word;

procedure remove(s: oddinteger);
comment ‘: - {5}’;
comment initialize to {2} U [n : 3 .. N\ n is odd);

end sieveclass.

In these declarations the type (or class) of a variable or a formal para¬
meter is written after the declaratory occurrence of its name, and separated
from it by a colon.

We can now recode the algorithm using class on these procedures instead
of the statements which they are intended to simulate.

126 ESSAYS IN COMPUTING SCIENCE

sieve: sieveclass{N);
begin constant rootN: oddinteger{sqrt{N));

comment rootN := (sqrt(N) - l)^2x2 + 1;

constant oddN: oddinteger{N);
comment oddN:= (TV- l)^-2x2 + 1;

p : oddinteger{3); 5: oddinteger{3);

comment p := 5 := 3;

while . eqless(rootN) do

comment p ^ rootN;
begin step: eveninteger{p);

comment sZp/? := 2 x p;
s. square (/?);

comment 5 := px p;
while 5. eqless(oddN) do

comment 5 ^ oddN;
begin sieve. remove(s);

comment sieve'.- sieve - {5];
5. add {step)

comment 5 := 5 + step;

end sloop;

p. next after {sieve)

comment p := nextafter{p, sieve);

end ploop

end sieve;

The variable changed by each procedure call is written to the left of it,
separated by a dot. The comment gives the intended effect.

First it is necessary to define the abstract objects in terms of their concrete
representations. We introduce abbreviations:

number{w, b) = df 2 x w x wordlength + 2 x b T 1

w(n) = df{{n - 1) -e 2) -p wordlength

b{n) = df{{n - 1) 4- 2) mod wordlength

We now have

w{number{w, Z?)) = w provided 0 ^ Z? < wordlength

b{number{w, Z?)) = Z? provided 0 ^ b < wordlength

number{w{n), Z?(/?)) = ((« - 1) -5- 2) X 2 + 1

fn if n is odd

- 1 if « is even

PROOF OF A STRUCTURED PROGRAM 127

Now we can define the abstract objects implemented by each class, in terms
of the local variable of that class.

oddinteger = number (wd, bit)

eveninteger - number (wd, bit) + 1

sieveclass = {2} U [n 6 range(N) | n is odd A b{n) 6 bitmap[w{n)] J.

We also need the following invariant for both the oddinteger and the
eveninteger classes.

0 ^ bit < word length {bit range)

We now proceed to code the bodies of the procedures, and formulate the
lemmas on which their correctness depends. The proofs (like the procedure
bodies) are rather trivial, though also tedious. They do not depend on any
results of number theory, and they are of a sort that might in the future
be readily checked by a computer. They will therefore be omitted in the
remainder of the paper. The important point to note is that all the proofs
are independent of each other.

As a preliminary we code an operation to perform any necessary carry
between the bit and the wordnumber:

carry: if bit ^ wordlength then

begin bit := bit ~ wordlength;
wd wd + 1

end

The label indicates that this piece of code is known as carry. We prove that
carry leaves unchanged the value of number {wd, bit).

This depends on the truth of

Lemma 1A
number {wd, bit) =

2 x (if bit ^ wordlength then wd T 1 else wd) x wordlength

+ 2 x (if bit ^ wordlength then bit - wordlength else bit) + 1

Next we prove 0 ^ bit < 2 x wordlength {carry) 0 ^ bit < wordlength,

that is, if the assertion before the left brace is true before performing carry,

the assertion after the right brace is true afterwards.
This depends on the truth of

Lemma IB

0 ^ bit < 2 x wordlength

=> 0 ^ (if bit ^ wordlength then bit - wordlength else bit) < wordlength

This means that we can ensure the truth of bitrange by invoking carry

after each change to the value of bit, provided this change does not take the

128 ESSAYS IN COMPUTING SCIENCE

bit outside the range

0 ^ bit < 2 x wordlength.

(1) initialize eveninteger (a: oddinteger):

begin wda. wd + a. wd;

bit := a. bit + a. bit;

carry

end

Lemma 2
0 ^ a. bit < wordlength => 0 ^ # . bit + a. bit < 2 x wordlength

Lemma 3
number {a. wd + a. wd, a. bit + a. bit) + 1 = 2 x number (a. wd, a. bit)

(2) initialize oddinteger{n : integer):
begin wd :=((«— 1) -h 2) -h wordlength',

bit :=((/?- 1) -r- 2) mod wordlength

end

Lemma 4
0 ^ ((/7 - 1) -r- 2) mod wordlength < wordlength

Lemma 5

number{w{n), b{n)) = ((/?- 1) -e 2) x 2 + 1

(3) procedure add(d : eveninteger)’,

begin wd: = wd + d. wd;

bit := bit + b. bit + 1;
carry

end

Lemma 6

0 ^ dd, b. bit < wordlength

=» 0 ^ dd + d. dd + 1 < 2 x wordlength

Lemma 7

number {wd + d. wd, bit + d. dd + 1)
= number {wd, bit) + {number {b. wd, b. bit) + 1)

Note: The proof method reminds us to add one to dd here.

(4) Boolean procedure eqless{c: oddinteger);
eqless := if wd = c. wd then (dd ^ c. dd)

else (wd < c. wd).

PROOF OF A STRUCTURED PROGRAM 129

Lemma 8
0 ^ bit, c. bit ^ wordlength

=> (if wd = c. wd then (bit ^ c. bit) else (wd < c. wd)

= numbered, bit) ^ number (c. wd, c.bit))

(5) procedure remove(s: oddinteger);

bitmap[s. wd] := bitmap[s. wd] - [s. bit}

Let bitmap' be the result of executing this statement; i.e.
bitmap' = \ w : 0.. fF(if w - s. wd then bitmap[w] - {5. bit]

else bitmap[w])

Lemma 9

0 ^ s. bit < wordlength

=> {2} U [n 6 range(N) | b(n) € bitmap' [w(«)] j
= {2] U ({n 6 range(N) \ b(n)€ bitmap[w(n)]]
- [number (s. wd, s. bit)})

(6) procedure square(c : oddinteger)',

begin t: integer,

t := 2 x c. bit x (c. bit + 1);
Z?/7:= t mod wordlength',

wd := 2 x c. x (c. uy/ x wordlength

+ 2 x c.bit + 1)
+ t -f wordlength

end

Lemma 10

number(c. wd, c. bit)1

= number (2 x c. wd x (c. wd x wordlength + 2 x c. bit + 1)
4- t -f wordlength, t mod wordlength)

where
t = 2 x c. £>/Y x (c. Y>/7 + 1)

Lemma 11
0 ^ t mod wordlength < wordlength

Note: Here we need all the confidence that we can get in the correctness of
the algebra.

(7) initialize sieveclass:
for w : 0.. W do bitmap[w] := {/71 0 ^ n < wordlength}

(i.e. for all w in the range 0 to W do ...).
The result of this for statement is to set bitmap to the constant function

(each word of it is ‘all ones’):

bitmapo - \ w : 0.. W([n | 0 ^ n < wordlength})

130 ESSAYS IN COMPUTING SCIENCE

Lemma 12

{2| U [n: 3 . . N\ n is odd} =
{2} U [n : 3 .. N\ n is odd A b(n) € bitmap0 [w(n)]}

(8) procedure next after (sve: sieveclass);
with sve do

begin this: word’,

this:= bitmap[wd]D{n \ bit < n < wordlength];

while this - empty do

begin wdwd + 1;
this:= bitmap[wd]

end;

bit\- min(this); comment smallest member of this;

end

The criterion of correctness is

(number{wd, bit) = n)[next after]R

where R = df n < number(wd, bit) € sieve

A V s(n < s < number(wd, bit) =* s&sieve)

The proof of this is left to the reader.

9.5 Conclusion

The concrete representation has now been proved to be a valid implementa¬
tion of the operations required by the abstract program. The final concrete
program may be obtained from the text of the program given in Sections 9.2
and 9.3, together with the text of the class declarations, using the simple
substitution method implemented in Simula 67 and described in Dahl (1972)
and Chapter 8.

In presenting the lemmas on which the correctness of each procedure is
based, we have relied on intuition to relate the procedures to the lemmas. In
fact, it is possible to formalize the relationship between program and lemma
in such a way that the required lemma could be mechanically generated
from the definitions of the invariants of the class, the definition of the
representation function, and the definition of the operation which each
procedure is intended to carry out.

It is interesting to compare the structured program developed here with
the corresponding unstructured program displayed in the Appendix. It can
be readily seen that a direct proof of the correctness of the unstructured
version would be much more laborious.

The structuring of programs is of great assistance, not only in their proof,

PROOF OF A STRUCTURED PROGRAM 131

but also in their design, coding and documentation. I would expect that
programming languages of the future may be designed to encourage and
assist the structuring of programs, and perhaps even to enforce the
observance of those disciplines necessary to avoid breakdown of structure.

For another example of stepwise development and proof of a program,
see Jones (1971).

9.6 Appendix: The unstructured program

bitmap : array 0 . . W. . of word;

for w : 0 .. W do bitmap[w] := {n | 0 ^ n < wordlength};
begin rootNwd, rootNbit, Nwd, Nbit, t, pwd, pbit: integer;

t := (sqrt(N) - 1) -f- 2;
rootNwd := t - wordlength;

rootNbit := t mod wordlength;

t:= (TV- 1) -r- 2;
Nwd := t -r- wordlength;

Nbit := t mod wordlength;

pwd:= 1 -p wordlength;

pbit:- 1 mod wordlength;

while if pwd = rootNwd then pbit ^ rootNbit

else pwd < rootNwd do

begin stepwd, stepbit, swd, sbit: integer;

stepwd:= pwd +
stepbit := pbit + pbit;

if stepbit ^ wordlength then

begin stepbit := stepbit - wordlength;

stepwd := stepwd + 1
end;

t := 2 x pbit x (/?&// + 1);
sbit := t mod wordlength;

swd := 2 x pwd x (/?mt/ x wordlength + 2x pbit + 1)
+ t + wordlength;

while if swr/ = Ahw/ then ^ M?/7

else do

begin bitmap[swd\ = bitmap[swd\ - [sbit);

swd := 5w<7 + stepwd;

sbit := vZ?/7 + stepbit;

if sZ?/7 ^ wordlength then

begin sbit := sbit - wordlength;

swd := sw<7 + 1
end;

132 ESSAYS IN COMPUTING SCIENCE

end sloop;

begin this: word;

//z/s:= bitmap[pwd] fl(/?1 pbit < n < wordlength\\

while this = { } do

begin pwd \= pwd + 1

this:= bitmap[pwd\

end;

pbit := min {this)

end nextafter

end ploop

end s/pvp

TEN

A structured paging system

This paper contains a beautiful exposition of the design of a significant

component of the design of an operating system. Hoare’s work on such

problems, which dated from his employment in the Elliott company, provided

him with a fund of material against which he could evaluate and develop ideas
for specifying and designing parallel algorithms.

The necessary mutual exclusion is achieved here by a version of ‘monitors’.

A fuller discussion of the place these have in the development of Hoare’s ideas

on parallelism is given in the link material to Chapter 12. The paper here was

submitted in October 1972 and published as [36] in 1973. Hoare adds ‘This

paper went through six or seven completely rewritten versions, some of which

were actually worse than their predecessors. The penultimate one was
fortunately rejected outright by the referees.’

Abstract

The principles and practices of structured programming have been expounded and

illustrated by relatively small examples (Dahl 1972; Dijkstra 1972c; Chapter 8 of this

book). Systematic methods for the construction of parallel algorithms have also been

suggested (Dijkstra 1968a, b). This paper attempts to extend structured programming

methods to a program intended to operate in a parallel environment, namely a paging

system for the implementation of virtual store. The design decisions are motivated by

considerations of cost and effectiveness.

The purpose of a paging system is taken to be the sharing of main and backing store

of a computer among a number of users making unpredictable demands upon them;

and doing so in such a way that each user will not be concerned whether his information

is stored at any given time on main or backing store. For the sake of definiteness, the

backing store is taken here to be a sectored drum; but the system could readily be

adapted for other devices. Our design does not rely on any particular paging hardware,

and it should be implementable in any reasonable combination of hardware and

software. Furthermore, it does not presuppose any particular structure of virtual store

(linear, two-dimensional, ‘cactus’, etc.) provided to the user program.

C. A. R. Hoare, A structured paging system, BCS Computer Journal 16(3), 209-15 (August
1973). This paper is republished by kind permission of the British Computer Society.

133

134 ESSAYS IN COMPUTING SCIENCE

10.1 Introduction

The notations used in the paper are based on those of Pascal (Wirth
1971c) and Simula 67 (Dahl 1972). However, the reader is warned not

to expect that any automatic compiler will be written to translate these
notations into machine code - that must almost certainly be done by hand.

10.2 The hardware

A paging system is essentially concerned with the physical storage devices of
a particular computer installation, and if it is to be designed for many
installations, some degree of abstraction must be used in referring to the
hardware. For example, symbolic constants must be used to refer to
installation parameters such as
M the number of pages that will fit in main store
D the number of pages that will fit on the drum
L the number of words on a page.
We can now define certain ranges for variables, using the Pascal range
definitions, for example:

type mainpageframe = 0.. M - 1;
type drumpageframe - 0.. D — 1;
type line = 0. . L — 1;

A page may now be regarded as an array of words, where a word has to be
defined in a machine-dependent fashion;

type word -
type page = array line of word;

Furthermore, the physical main and backing store may be regarded
abstractly as arrays of pages:

mainstore: array mainpageframe of page;
drumstore: array drumpageframe of page;

Individual pages of these stores will be denoted by single subscript:

mainstore[m\, drumstore[d\

and individual words of mainstore by double subscript

mainstore[m, i].

Of course, the individual word drumstore[d, i] can never actually be
referred to in our program, since a drum provides access only to complete
pages.

A STRUCTURED PAGING SYSTEM 135

10.3 Dynamic storage allocation

It is evident that a paging system is concerned with the dynamic allocation

and deallocation of page frames to processes. We shall therefore require a

dynamic storage allocation system for page frames. In this section we

describe an allocator for main page frames; an allocator for drum page

frames is sufficiently similar that it need not be separately described. The

most important data item in any resource allocator is the pool of currently

free items of resource. This can be declared:

pool: powerset mainpageframe;

In a sequential program we then use operations

m:= anyone of (pool); pool:= pool - [m];

to acquire a free page frame m; and an operation:

pool:= pool U {raj;

to return m to the free pool.

However, in a parallel programming environment there are two

additional problems, namely exclusion and synchronization.

10.3.1 Mutual exclusion

Suppose that one program calls the function anyone of (pool) just after

another one has completed the same function. It will then obtain the same

value. This will frustrate the whole purpose of the allocator, which is to

prevent duplicate use of the same pageframe by two different user pro¬

grams. A group of operations which must not be executed re-entrantly by

several programs is known as a critical region.

The solution we adopt is to introduce a program structure known as a

monitor. A monitor consists of one or more items of data, together with

one or more procedures operating on that data. Thus a monitor is like an

object in Simula 67 (Dahl 1972), with the additional understanding that the

bodies of the procedures local to the object will not be executed in parallel

or interleaved with each other.
In implementation, the necessary exclusion can be assured by associating

a Boolean mutual exclusion semaphore (Dijkstra 1968b) with each monitor

and by surrounding each call on a procedure of the monitor by a P and V

on this semaphore. Alternatively, in suitable cases, the required effect can

be achieved by inhibiting interrupts during execution of the procedure

bodies. Since details of implementation are hardware-dependent, we shall

136 ESSAYS IN COMPUTING SCIENCE

introduce a high-level notation for declaration of monitors:

monitor mfree',

begin pool: powerset mainpageframe;

function acquire: mainpageframe',

begin.. body of acquire.. end;

procedure release(m : mainpageframe);

begin.. body of release.. end;

pool:= all mainpageframes\

end mfree;

Calls on the two procedures will be written using the Pascal and Simula 67

notation for components of a structure:

m\- mfree.acquire',

mfree. release (m).

The monitor concept described here corresponds to the secretary mentioned

at the end of (Dijkstra 1973).

10.3.2 Synchronization

Any resource allocator has to face the problem of exhaustion of its

resource. In a single-programming environment, any further request for

that resource will be refused, and often lead to immediate termination of

the program; but if there are many processes, it is more reasonable merely

to postpone the request until some other process kindly releases an item of

the resource. Of course, if this never happens, we have deadlock; but this

will be averted by a pre-emptive technique to be described later. What is

required is some method whereby one process, on detecting that it cannot

proceed, can wait until some other process brings about the condition that

will enable it to proceed.

Methods of obtaining such synchronization are rather machine-

dependent, so again we shall introduce a high-level notation which can

probably be implemented on many machines with reasonable efficiency. For

each condition on which a program may have to wait, we introduce a

variable of type condition, for example:

nonempty: condition.

There are only two operations defined on a condition variable, namely

waiting and signalling. When a process needs to wait until some condition

becomes true, it ‘waits on’ the corresponding condition variable, for

example:

A STRUCTURED PAGING SYSTEM 137

nonempty, wait.

When some other process has made the condition true, it should issue a
signal instruction on that variable:

nonempty .signal.

If there are no processes waiting on the condition, the instruction has no

effect; otherwise it terminates the wait of the longest waiting process, and

only that process. The convention that at most one process shall proceed

after a signal differs from the familiar ‘event’ type signalling (Brinch

Hansen 1972b); but it appears, at least in the cases considered here, to be

both more convenient and more efficient.

It is important to clarify the relationship between synchronization and

mutual exclusion. When a wait instruction is given from within a monitor,

the mutual exclusion for that monitor is assumed to be released, since

otherwise it would be impossible for any other process to enter a procedure

of that monitor to make the condition true. Furthermore, when a wait ends

as a result of a signal, the waiting program resumes immediately in place of

the signalling program, and the signalling program resumes only when the

previously waiting program releases exclusion again. Thus exclusion is not

released between the signal and the resumption of the waiting process; since

if it were there would be a risk that some other process might enter the

monitor during the interval and make the condition false again.

Using the monitor concept for mutual exclusion and the condition

variable for synchronization, the programming of a simple allocator for

main page frames can be given:

monitor mfree\

begin pool: powerset mainpageframe;

nonempty: condition;

function acquire: mainpageframe;

begin m : mainpageframe;

if pool = empty then nonempty, wait;

m\- anyone of (pool);

pool:= pool - [m];

acquire:- m

end acquire;

procedure release (m : mainpageframe);

begin pool:= pooled [m}\

nonempty .signal

end;
pool:= all mainpageframes\ note initial value of pool;

end mfree.

138 ESSAYS IN COMPUTING SCIENCE

10.4 Drum transfers

It is evident that a paging system will also be concerned with input and

output of pages between main and backing store. This will usually be

effected by special hardware (a channel) which operates in parallel with all

user programs, except possibly for the one which is waiting for completion

of transfer. We shall therefore require a scheduler to prevent interference

between transfer instructions given by separate programs, and to secure the

necessary synchronization between the programs and the asynchronous

channel. As before we shall use monitors and conditions; and to begin

with we shall assume that the drum is capable of only one transfer per

revolution.
The monitor for drum transfers will obviously have to store details of an

outstanding transfer command; that is, its direction, and the relevant main

and drum page frames. If there is no outstanding command, we use the

convention that the direction is ‘null’:

direction : {in, out, null);

m: mainpageframe;

d: drumpageframe.

The operations provided by the monitor to the user are

input{dest: mainpageframe; source: drumpageframe);

and

output {source: mainpageframe; dest: drumpageframe).

These operations merely record the outstanding command; its execution is

accomplished by an operation

execute,

which will be written here as part of the monitor, but will in practice be

implemented by the hardware of the drum channel, and perhaps by its

intimate interrupt routines.

There are two possible reasons for waiting by a user program; firstly,

when there is already an outstanding command and therefore a new one

cannot be recorded, and secondly when its command has been recorded but

has not yet been finished. Thus we introduce two condition variables

free, finished: condition

The drum itself never waits; if there is nothing for it to do, it idles for one

revolution.

The programming of the monitor is now simple.

A STRUCTURED PAGING SYSTEM 139

monitor drummer,

begin direction : {in, out, null)',

m : mainpageframe;

d: drumpageframe\

free, finished: condition',

procedure input{dest: mainpageframe',

source: drump age frame)',

begin if direction ^ null then free, wait;

direction:- in;

m:= dest;

d\- source;

finished, wait; free, signal

end input;

procedure output... very similar...;

procedure execute;

begin

case direction of

in \ mainstore[m] := drumstore[d\,

out: drumstore[d] := mainstore[m\,

null \ do nothing for one revolution;

direction := null; finished, signal

end execute;

direction:= null

end drummer.

The activity of the hardware of the drum channel may be described as a

process:

process drum hardware;

while true do drummer, execute;

Suppose now that several drums are available, and capable of simulta¬

neous transfers. It is important to have a separate monitor for each drum

channel, so that simultaneity of transfers is not inhibited by the exclusion of

the monitor. Since the monitors are identical it would be unfortunate to

have to write out the whole text several times; instead we borrow the idea of

a Simula 67 class (Dahl 1972) and declare each separate monitor as a

different object of the class, each with its own workspace

class drummer;

monitor begin ...as before...

end;

We then declare several ‘instances’ of this class:

druml, drum2: drummer.

140 ESSAYS IN COMPUTING SCIENCE

Operations on these drums are written

drum 1 .input(m, d)\ drum2.output(m, d), etc.

Thus a class declaration is very similar to a Pascal record type declaration

with the addition of procedures as well as data components.

On most modern drums the number S of pages (sectors) that can in

principle be transferred in a single revolution is considerably greater than

one. Dijkstra has pointed out that such a sectored drum may be treated in

the same way as S separate drums, each capable of one transfer per

revolution. We therefore introduce a whole array of monitors, one for each

sector:
sector drum: array 0.. S - 1 of drummer.

The action of the drum channel hardware may be described as an

autonomous process:

process sector drum hardware;

while true do

for 5 = 0 to S' — 1 do sectordrum[s] .execute.

Let sectorof be a function giving the sector of a drum page frame. Since the

user is not interested in the sector structure of the drum, we provide the

simple procedures:

procedure input{dest: mainpageframe', source \ drumpageframe)',
sectordrum[sectorof(source)]. input {dest, source);

procedure output... very similar...

For convenience, we use the same identifiers input and output for

procedures local to the monitors, and for global procedures, which are not

inside a monitor, and which can therefore be shared in re-entrant fashion by

all user programs.

Using these procedures, the programmer may maintain the illusion that

all drum transfer instructions relating to different page frames are carried

out in parallel with each other, since any necessary exclusion and synchro¬

nization is carried out behind the scenes. Successive instructions relating to

the same drumpageframe are carried out in the right sequence.

10.5 Virtual store

A virtual store, like the actual stores, can be regarded as an array which

maps virtual page frames onto virtual pages.

virtualstore: array virtualpageframe of virtual page;

A STRUCTURED PAGING SYSTEM 141

where virtual page is a class to be defined in the next section. The concept of

virtual page frame may be simply defined as a range

type virtualpageframe = 0..V— 1;

where V is a constant several times larger than D. This will give a

single-dimensional structure of virtual store. In some operating systems, a

two-dimensional structure is preferred, in which case the virtual page frame

can be described as a record:

type virtualpageframe = record s : segmento; p : pageno end.

In this case the virtual store array may well be implemented as a tree

structure, so that no space is wasted on storing unused pages at the end of

segments. But the paging system designed in this paper will be equally valid

for both these cases, and perhaps many others.

As far as the user program is concerned, the most important operations

are:

(1) A function fetch{i: virtual address)', word, which delivers the content

of the ith ‘location’ of virtual store.

(2) A procedure assign (/: virtual address; w: word) which stores the value

w in the ith ‘location’ of virtual store.

A virtual address is defined as a pair:

type virtual address = record p : virtualpageframe;

/: line

end.

These two procedures can be implemented using the same structure as input

and output on a sectored drum, by calling on procedures of the same name

local to the relevant virtual page.

function fetch (/: virtual address): word;

fetch:= virtualstore[i.p\ .fetch(i.l);

procedure assign(i: virtual address', w: word)',

virtualstore[i.p]. assign(i. I, w).

Note that these procedures are not protected by mutual exclusion, so that

when one program is held up waiting for a page transfer, the other

programs can continue to operate on other pages.

142 ESSAYS IN COMPUTING SCIENCE

10.6 Virtual pages

In this section we implement the virtual page class which was introduced in

the previous section. This class must obviously provide the user program

with the procedures fetch and assign; in addition it contains:

(1) procedure bring in;

This has no effect on the apparent content of the page, but merely ensures

that it is located in main store, where its individual words can be accessed.

(2) procedure throw out;

This also has no effect on the apparent content of the page; but it ensures

that the page no longer occupies a main page frame.

The data local to each virtual page must include an indication of whether

the content of the page is currently held in main or drum store; and we also

admit a third possibility, that the content of the page is equal to an ‘all clear’

value, in which case no actual storage is allocated to it. This is the value to

which each page is initialized. The required indication is given in a variable

local to each virtual page:

where: {in, out, clear).

The physical location of the content of each page will be recorded in one

of the two local variables:

m: mainpageframe;
d: drumpageframe;

In programming a paging system, it is essential to ensure that no two

virtual pages ever point to the same actual page frame, and in particular,

that they never point to a free page frame; in other words, every operation

of the virtual page must preserve the truth of:

(1) where = in => m £ mfree. pool
(2) where = out => d dfree. pool,

and further, the only operations on m and d are acquiring and releasing

them to their respective pools. We may also define the content of the virtual

page by the formula

content = case where of

in: mainstore[m\,

out: drumstore[d],

clear: all clear.

The implementation of a simple virtual page is shown below.

A STRUCTURED PAGING SYSTEM 143

class virtual page;

monitor begin where: {in, out, clear)',

m: mainpageframe;

d: drumpageframe;

note content = case where of in : mainstore[m\,

out: drumstore[d],

clear: allclear,

note where = in => m (mfree. pool A

where = out => d (dfree.pool;

procedure in; note ensures where - in;

if where ^ in then

begin m\- mfree. acquire;

if where = clear then mainstore[m\ := allclear

else [input(m, d); dfree. release(d));

where:- in;

end;

procedure throwout; note ensures where ^ in;

if where = in then

begin <i:= dfree. acquire;

output{m, d);

mfree. release(m);

where := out

end throwout;

function fetch{l: line): word; note = content[l\;

begin bring in;

fetch:= mainstore[m, l]

end;

procedure assign {l‘.line; w: word); note content[l]:= w;

begin bring in;

mainstore[m, l\:- w

end;

where:- clear; note initial value of each virtual page is allclear;

end virtual page.

10.7 Automatic discard

The most characteristic feature of a paging system is that pages can throw

themselves out automatically to drum, and release the main page frame they

occupy, independently of the programs which may or may not be using

them. Of course the rate at which pages throw themselves out must be

regulated in such a way that the output and subsequent input do not

overload the drum channel. Since the rate of input cannot persistently

144 ESSAYS IN COMPUTING SCIENCE

exceed the rate of output, it is sufficient to control the latter. To ensure that

the average output rate does not exceed one page per drum revolution, it is

sufficient to ensure that each page remains in main store for an average of

Mdrum revolutions after it has been input, where Mis the number of pages

in main store.

Since each page is capable of independent activity, it is necessary to

associate a process with each page, which is responsible for throwing the

page out after it has been in store for long enough. This process will be

called

process automatic discard;

It is invoked when the page is first brought into main store, and is then

supposed to proceed ‘in parallel’ with the user program. However, the first

thing the process does is to wait for M drum revolutions; and it is assumed

that exclusion is released during this wait, so that other user programs may

invoke the other operations on the page during the interval. Of course, at

the end of the wait, the exclusion is seized again while the page is actually

being thrown out.

The process is easily coded:

process automatic discard;

begin wait about M drum revolutions',
throwout

end

It remains to design an efficient implementation of the wait; and we

should try to ensure that it is impossible for pages to get into synchroniza¬

tion, and attempt to throw themselves out simultaneously. Our solution

assumes the existence of a mechanism which will wait about one drum
revolution.

With each main page frame we associate a condition on which the

automatic discarder waits whenever it needs to delay for M revolutions:

delay: array mainpageframe of condition.

We also introduce a process known as the cyclic discarder which is

responsible for signalling each condition at an interval of approximately M
drum revolutions. This can be accomplished by a simple loop:

process cyclic discarder,
while true do

for m = 0 . to M - 1 do

begin delay[m] . signal',
wait one drum revolution

end;

A STRUCTURED PAGING SYSTEM 145

An important point to note is that the cyclic discarder has been carefully

designed so that it is never held up. If, for example, it attempted to make a

direct entry to throw out, it might be held up by normal exclusion during a

bring in operation on the same page. If that bring in were itself held up

waiting for a free main page frame, a deadly embrace would result.

10.8 Load control

The major defect of the system described above is that it reacts badly to an

overload of the main store, which occurs when the rate at which programs

wish to acquire page frames is consistently greater than the rate at which

they are being released. In these circumstances, some or all of the programs

running may spend nearly all their time waiting to acquire a main page

frame; and by the time they get it, they may well find that one of their own

pages has been automatically discarded, and a new main page frame must

be acquired again immediately.

The only effective solution in these circumstances is to reduce the

requirement for free page frames or to increase the supply. Both may be

accomplished by suspending one of the programs currently under execu¬

tion, since this program will no longer be able to acquire pages, and the

pages which it currently possesses will be thrown out in due course by the

automatic discarder. If there is only one program under execution, and it is

spending most of its time waiting for main page frames, it too should be

discontinued, since here the only solution is to redesign the program or to

buy more main store.
After a program has been suspended, it would obviously be foolish to

suspend another program until all its pages have been discarded. This

suggests that the suspension should be carried out (when necessary) at the

end of each scan of the store by the cyclic discarder. We will assume that the

choice of a program to be suspended is not the responsibility of the paging

system.
However, to ensure that no single program is subject to undue delay, we

will at regular intervals resume the longest suspended program. If this

causes overload again, some other program should be suspended. By

controlling the rate of program resumption at once per twenty cycles of the

cyclic discarder, we can control the frequency of suspension to an accept¬

able level, since suspension cannot in the long run occur more frequently

than resumption.

The cyclic discarder takes the form:

146 ESSAYS IN COMPUTING SCIENCE

process cyclic discarder;

while true do
begin for / = 0 to 19 do

begin for m = 0 to M - 1 do
begin delay[m\ .signal;

wait one drum revolution

end;
if size (mfree) < 3 then suspend a program

end;
resume longest suspended program

end cyclic discarder.

An alternative to load shedding is to allow the rate of automatic discard

to increase when there are no free main page frames. This unfortunately

leads to a phenomenon known as thrashing, in which pages are discarded as

fast as the programs using them can bring them back. This all too common

elementary mistake in control engineering is avoided by ensuring that the

maximum rate of discard remains less than the minimum rate of recall.

10.9 Refinements

This section discusses a number of detailed refinements, which either

improve efficiency or adapt the algorithm for more direct implementation
on hardware.

10.9.1 Clearing

On some occasions, the programmer is no longer interested in the current

content of a page, for example if it contains an array local to a block which

he is about to exit. In this case it is possible immediately to release both the

main and drum page frames, and return the apparent content of the page to

its initial clear state. This is accomplished by a call on a procedure local to
each virtual page:

procedure clear, note content:= all clear,

begin case where of
in : begin delay[m] := null; mfree. release(m) end,
out: dfree. release{d),

clear: do nothing;

where := clear

end.

A STRUCTURED PAGING SYSTEM 147

Note that the instruction delay[m] null is intended to cancel the wait of
the automatic discarder.

10.9.2 Unchanged

When a page is used to store code, it is likely that the content of the page

remains unchanged for long periods. The same will be true of certain data

pages as well. This means that when the time comes to throw out the page,

the copy which already exists on the drum is still valid, and the output

instruction can be avoided, provided that the relevant drumpageframe has
not been released.

We therefore introduce for each virtual page a variable

unchanged: Boolean

which is set true after input of each page and set false by the first assignment

to that page. Each operation of the paging system must preserve the truth of

where = in A unchanged =* mainstore[m\ = drumstore[d] A d£ dfree

10.9.3 Locking

When a page is engaged in an autonomous peripheral transfer it is usually

necessary to ensure that the page is not thrown out until the transfer is

complete. Similarly, considerations of efficiency sometimes dictate that a

copy of the absolute main store address be made, for example in an

associative slave store; and the page must not be thrown out while this

address is in use. We therefore provide a function

function lock(v: virtualpageframe) : mainpageframe',

which ‘locks’ the virtual page into main store, and delivers its address as

result. The effect may be reversed by calling

procedure unlock(v: virtualpageframe).

If a virtual page is being shared among several programs, and more than

one of them lock it, it is essential that the page remains locked until they

have all unlocked it. It is therefore necessary to introduce for each main

page frame a count of the number of times it has been locked:

lockcount: array mainpageframe of integer,

which is incremented by locking and decremented by unlocking.

148 ESSAYS IN COMPUTING SCIENCE

10.9.4 Usebit

When a page automatically discards itself, it will frequently happen that this

page will be accessed again almost immediately; and in this case an

unnecessary delay of up to two revolutions has been inflicted upon at least

one user program. An obvious symptom that a page is going to be used

again in the near future is that is has been used in the recent past. We

therefore associate with each virtual page a

usebit: Boolean

which is set to true by bringin in every fetch or assign instruction, and is set

false by the automatic discard process at regular intervals. Thus the page

will be thrown out only if it remains unaccessed throughout the interval.

process automatic discard;

begin delay[m]. wait;

while usebit V lockcount[m] > 0 do
begin usebit := false;

del ay [m]. wait

end;
throw out.

end;

Since at least two delays are involved before a page automatically

discards itself, the rate at which the cyclic discarder scans the store should

be increased by a factor of two.

10.9.5 Explicit discard

On occasions a programmer knows that he will not require to access a page

again for a long period. For example it could be a completed page of an

input or output file, or a piece of program that has been finished with. In

this case it is kind to inform the paging system of this fact, so that the page

may be sooner thrown out. This may be done by calling:

procedure discardnow.

But if there is any risk at all that the page is being shared by some other

program, or that it may after all be required back in main store sooner than

expected, it would be better to use a milder suggestion:

procedure discardsoon.

The implementation of these is trivial:

A STRUCTURED PAGING SYSTEM 149

discardnow:

begin usebitfalse’,

if where = in then
delay[m] .signal

end;
discardsoon:

if where- in then usebitfalse.

The explicit discard can also be used by the loadshedding mechanism, and

before each interaction of a multiple access program, provided that the

pages in private use by each program are known.

10.10 The complete program

This section describes the complete paging system, with all its refinements.

The reader may study it to check compatibility of the refinements, or to

confirm his understanding. Alternatively, he may consult it for reference or

even omit it altogether.

class virtual page',

monitor begin where: {in, out, clear)’,

m \ mainpageframe’,

d \ drumpageframe;

unchanged, usebit: Boolean’,

note where = in => m i mfree A content = mainstore[m],

where = out V where = in A unchanged => d i dfree A

content - drumstore[d],

otherwise content = all clear;

procedure bringim, note ensures where - in, content unchanged’,

begin usebit true’,

if where ^ in then
begin m:= mfree. acquire’,

if where = clear

then begin mainstore[m]:= all clear,

unchanged := false

end
else begin input{m, d);

unchanged:=

end;
where := m;

automatic discard

end
end bringin;

150 ESSAYS IN COMPUTING SCIENCE

procedure throwout;

note ensures where in, content unchanged;

if where = /« then
begin if—| unchanged then begin d:= dfree. acquire', output(m, d)

end;
mfree. release (m);

where := out

end throwout;

process automatic discard; note no change;

begin
while usebitM lockcount[m] > 0 do
begin usebit:= false;

delay [m]. wait

end;
throwout

end automatic discard;

procedure clear; note content := all clear,

begin case where of
in : begin delay[m] := null',

if unchanged then dfree. release(d);

mfree. release (m)

end;
ow/: af/rpe. release(d);

where'.- clear

end clear,

function fetch (l: line): word; note = content[l];

begin bringin; fetch:= mainstore[m, l] end;

procedure assign(l: line; w.word); note w;
begin bringin; mainstore[m, l\:= w;

if unchanged then begin dfree. release(d);

unchanged:= false
end

end;

function lock: mainpageframe;

begin bringin; lockcount[m]:= lockcount[m\ + 1;

lock:- m end;

procedure unlock;

lockcount[m\:~ lockcount[m] - 1;

procedure discard now;

if where = in then
begin usebit:= false;

delay[m]. signal

end;

A STRUCTURED PAGING SYSTEM 151

procedure discard soon:, usebit:= false;
where := clear

end virtual page;

10.11 Conclusion

If the reasoning of this paper is correct, there is nothing seriously wrong

with the algorithm described; it is reasonably independent of machine

characteristics and work load; and although it will not generally make the

best decisions in individual cases, it will not persistently make disastrous

ones. Having established the adequacy of the overall algorithm, the next

step is to decide suitable representations of the data, including page size,

and code the basic operations required compactly and efficiently in a
suitable mixture of hardware and software.

The quality of the final product will depend critically on the skill and

ingenuity of the implementors. For example, an entry in the virtual store

table should occupy only a single word; and access to a page in main store

must be highly optimized, even if this means extra book-keeping in the

other case. The page size should be large enough to make demand paging an

acceptable method of loading and reloading a program; and the implemen¬

tors of commonly used programming languages must inhibit vagrancy of

object code. Writers of large programs should also be willing to co-operate
in this.

I hope that this structured paging system has been designed and described

in such a way as to encourage future implementors to take it as a model; so

that the validity of the reasoning and the quality of the documentation may
be put to the test.

Since nothing is new about this algorithm (except possibly its structure),

acknowledgement is due to M. Melliar Smith for the elegance of the cyclic

discarder and loadshed mechanism; to E. W. Dijkstra for central concepts

of structure, exclusion, and synchronization; and to these, together with

R. M. McKeag, J. Bezivin, and P. Brinch Hansen, for ideas, discussion,

inspiration, and criticism on points too numerous to recall.

ELEVEN

An axiomatic definition of
the programming language

Pascal

Hoare started writing this paper on a short family holiday in County Kerry
Eire, just at the major peak of violence in Northern Ireland. The news on
television was so bad that he could not concentrate on the business of enjoying
himself and had to take to the comfort of scribbling formulae. The published
version ([37]) was jointly authored with Niklaus Wirth and was submitted on
11 December 1972. (It had gone through a number of drafts, one of which
appeared as an ETH Zurich report in November 1972; a version presented in
August 1972 at a Symposium on Theoretical Programming in Novosibirsk
appears in the proceedings only in 1974.) Here, the ‘syntax diagrams’ have
been omitted - they can be found in [37].

This definition represents the culmination of the effort to tackle various
features of imperative programming languages by the axiomatic approach (as
well as those in preceding chapters, see [26,33]). Although it by no means
provides a proof system for the whole of Pascal as known today, it is an
extremely interesting undertaking. The task of writing post hoc definitions of
programming languages is both difficult and unrewarding. By now it is clear
that the desire for a language about which formal proofs can be constructed
must influence the choice and design of its features. Even a language such as
Euclid, which was designed with proofs in mind, was by no means easy to
axiomatize.

For a brief period, it appeared that this work might have an influence on the
design of the language which has been christened ‘Ada’. The so-called
Ironman requirements did state that a formal definition should be provided in
either the VDL style or in the axiomatic style of this paper. In the event, the
formal definition of the ‘Green’ language was tackled by Bjorner and Oest
(1980a,b); both papers were broadly denotational. There is now - after the
fact - a relatively complete description of Ada created by CRAI and the DDC

C. A. R. Hoare and N. Wirth, An axiomatic definition of the programming language Pascal,
Acta Informatica, 2(4), 335-55 (1973). This paper is republished by kind permission of

Springer-Verlag GmbH.

153

154 ESSAYS IN COMPUTING SCIENCE

for the EEC, but this is a huge document which again shows the folly of

designing languages without using formal models.

Abstract

The axiomatic definition method proposed in Chapter 4 is extended and applied to

define the meaning of the programming language Pascal (Wirth 1971c). The whole

language is covered with the exception of real arithmetic and goto statements.

11.1 Introduction

The programming language Pascal was designed as a general-purpose

language efficiently implementable on many computers and sufficiently

flexible to be able to serve in many areas of application. Its defining report

(Wirth 1971c) was given in the style of the Algol 60 report (Naur 1963). A

formalism was used to define the syntax of the language rigorously. But the

meaning of programs was verbally described in terms of the meaning of

individual syntactic constructs. This approach has the advantage that the

report is easily comprehensible, since the formalism is restricted to syntactic

matters and is basically straightforward. Its disadvantage is that many

semantic aspects of the language remain sufficiently imprecisely defined to

given rise to misunderstanding. In particular, the following motivations

must be cited for issuing a more complete and rigorous definition of the

language:

(1) Pascal is being implemented at various places on different computers

(Wirth 1971a; Welsh and Quinn 1972). Since one of the principal aims

in designing Pascal was to construct a basis for truly portable software,

it is mandatory to ensure full compatibility among implementations.

To this end, implementors must be able to rely on a rigorous definition

of the language. The definition must clearly state the rules that are

considered as binding, and on the other hand give the implementor

enough freedom, to achieve efficiency by leaving certain less important

aspects undefined.

(2) Pascal is being used by many programmers to formulate algorithms as

programs. In order to be safe from possible misunderstandings and

misconceptions they need a comprehensive reference manual acting as

an ultimate arbiter among possible interpretations of certain language

features.

(3) In order to prove properties of programs written in a language, the

programmer must be able to rely on an appropriate logical foundation

provided by the definition of that language.

PROGRAMMING LANGUAGE PASCAL 155

(4) The attempt to construct a set of abstract rules rigorously defining the

meaning of a language may reveal irregularities of structure or machine-

dependent features. Thus the development of a formal definition may
assist in better language design.

Among the available methods of language definition the axiomatic

approach proposed and elaborated by Hoare (Chapters 4 and 11, [30] and

[33]) seems to be best suited to satisfy the different aims mentioned. It is

based on the specification of certain axioms and rules of inference. The use

of notations and concepts from conventional mathematics and logic should

help in making this definition more easily accessible and comprehensible.

The authors therefore hope that the axiomatic definition may simulta¬
neously serve as

(1) a ‘contract’ between the language designer and implementors (including
hardware designers),

(2) a reference manual for programmers,

(3) an axiomatic basis for formal proofs of properties of programs, and

(4) an incentive for systematic and machine-independent language design
and use.

This axiomatic definition covers exclusively the semantic aspects of the

language, and it assumes that the reader is familiar with the syntactic

structure of Pascal as defined in Wirth (1971c). We also consider such topics

as rules about the scope of validity of names and priorities of operators as
belonging to the realm of syntax.

The axiomatic method in language definition as introduced in Chapter 4

operates on four levels of discourse:

(1) Pascal statements, usually denoted by S.
(2) Logical formulae describing properties of data, usually denoted by

P, Q,R
(3) Assertions, usually denoted by H, of which there are two kinds:

(a) Assertions obtained by quantifying on the free variables in a

logical formula. They are used to axiomatize the mathematical

structures which correspond to the various data types.

(b) Assertions of the form P [5] Q which express that, if P is true

before the execution of S, then Q is true after the execution of S. This

kind of assertion is used to define the meaning of assignment and
procedure statements. It is vacuously true if the execution of S does

not terminate.

(4) Rules of inference of the form

Li \, ..., Lih

lT

which state that whenever Hi, ...,//„ are true assertions, then H is

156 ESSAYS IN COMPUTING SCIENCE

also a true assertion, or of the form

H\,...,Hn\ Hn+\

~H

which states that if Hn +1 can be proved from Hi,...,Hn, then H is a

true assertion. Such rules of inference are used to axiomatize the

meaning of declarations and of structured statements, where

Hi,... ,Hn are assertions about the components of the structured

statements.

In addition, the notation
Px ry

is used for the formula which is obtained by systematically substituting y

for all free occurrences of x in P. If this introduces conflict between free

variables of y and bound variables of P, the conflict is resolved by

systematic change of the latter variables.

L)X\ ...Xn
r7, ...yn

denotes simultaneous substitution for all occurrences of any Xi by the

corresponding y,. Thus occurrences of Xi within any yi are not replaced.

The variables x\...xn must be distinct; otherwise the simultaneous substitu¬

tion is not defined.

In proofs of Pascal programs, it will be necessary to make use of the

following two inference rules:

P {S} Q, Q => R

P {S} R

P^Q,Q{S)R

P {S} R

The axioms and rules of inference given in this article explicitly forbid the

presence of certain ‘side-effects’ in the evaluation of functions and execu¬

tion of statements. Thus programs which invoke such side-effects are, from

a formal point of view, undefined. The absence of such side-effects can in

principle be checked by a textual (compile-time) scan of the program.

However, it is not obligatory for a Pascal implementation to make such

checks.

The whole language Pascal is treated in this article with the exception of

real arithmetic and goto statements (jumps). Also the type alfa is not

treated. It may be defined as

type alfa = array [1 .. w] of char

where w is an implementation-defined integer.

The task of rigorously defining the language in terms of machine-

independent axioms, as well as experience gained in use and implementation

PROGRAMMING LANGUAGE PASCAL 157

of Pascal have suggested a number of changes with respect to the original

description. These changes are informally described in the subsequent

section of this article, and must be taken into account whenever referring to

Wirth (1971c). For easy reference, the revised syntax is summarized in the

form of diagrams. (These appeared in the original paper [37], but are
omitted here.)

Many of the axioms have been explained in previous papers, e.g.

Chapters 4 and 11, [30] and [33]. However, the axioms for procedures are

novel; an informal explanation and example are given in Appendix 2.

The authors are not wholly satisfied with the axioms presented for

classes, and for procedures and functions, particularly with those referring

to global variables. This may be due either to inadequacy of the axiomatiza-

tion or to genuine logical complexity of these features of the language. The

paper is offered as a first attempt at an almost complete axiomatization of a

realistic programming language, rather than as a definitive specification of a

language especially constructed to demonstrate the definition method.

11.2 Changes and extensions of Pascal

The changes which were made to the language Pascal since it was defined in

1969 and implemented and reported in 1970 can be divided into semantic

and syntactic amendments. To the first group belong the changes which

affect the meaning of certain language constructs and can thus be con¬

sidered as essential changes. The second group was primarily motivated by

the desire to simplify syntactic analysis or to coordinate notational conven¬

tions which thereby become easier to learn and apply.

11.2.1 File types

The notion of the mode of a file is eliminated. The applicability of the

procedures put and get is instead reformulated by antecedent conditions in

the respective rules of inference. The procedure reset repositions a file to its

beginning for the purpose of reading only. A new standard procedure

rewrite is introduced to effectively discard the current value of a file variable

and to allow the subsequent generation of a new hie.

11.2.2 Parameters of procedures

Constant parameters are replaced by so-called value parameters in the sense

of ALGOL 60. A formal value parameter represents a variable local to the

158 ESSAYS IN COMPUTING SCIENCE

procedure to which the value of the corresponding actual parameter is

initially assigned upon activation of the procedure. Assignments to value

parameters from within the procedure are permitted, but do not affect the

corresponding actual parameter. The symbol const will not be used in a

formal parameter list.

11.2.3 Class and pointer types

The class is eliminated as a data structure, and pointer types are bound to a

data type instead of a class variable. For example, the type definition and

variable declaration

type P = t c;

var c: class n of T

are replaced and expressed more concisely by the single pointer-type

definition

type P = t T.

This change allows the allocation of all dynamically generated variables in a

single pool.

11.2.4 The for statement

In the original report, the meaning of the for statement is defined in terms

of an equivalent conditional and repetitive statement. It is felt that this

algorithmic definition resulted in some undesirable overspecification which

unnecessarily constrains the implementor. In contrast, the axiomatic defini¬

tion presented in this paper leaves the value of the control variable

undefined after termination of the for statement. It also involves the

restriction that the repeated statement must not change the initial value

(Hoare [33]).

11.2.5 Changes of a syntactic nature

Commas are used instead of colons to separate (multiple) labels in case
statements and variant record definitions.

Semicolons are used instead of commas to separate constant definitions.

The symbol powerset is replaced by the symbols set of, and the scale

symbol io is replaced by the capital letter E.

The standard procedure alloc is renamed new, and the standard function
int is renamed ord.

Declarations of labels are compulsory.

PROGRAMMING LANGUAGE PASCAL 159

11.3 Data types

The axioms presented in this and the following sections display the
relationship between a type declaration and the axioms which specify the
properties of values of the type and operations defined over them. The
treatment is not wholly formal, and the reader must be aware that:

(1) Free variables in axioms are assumed to be universally quantified.
(2) The expression of the ‘induction’ axiom is always left informal.
(3) The types of variables used have to be deduced either from the chapter

heading or from the more immediate context.
(4) The name of a type is used as a transfer function constructing a value of

the type. Such a use of the type identifier is not available in Pascal.
(5) Axioms for a defined type must be modelled after the definition and be

applied only in the scope (block) to which the definition is local.
(6) A type name (other than that of a pointer type) may not be used directly

or indirectly within its own definition.

11.3.1 Scalar types

1.1 Ci, C2, ...,c„ are distinct elements of T.
1.2 These are the only elements of T.
1.3 C/ + 1 = SUCC(Ci) for / = 1,..., n - 1
1.4 Ci = pred (c,-+i) for i - 1,..., n - 1
1.5 —i(x < x)
1.6 (x < y) A (y < z) =* (x < z)
1.7 (x ^ c„) => (x < succ(x))
1.8 x > y = y < x
1.9 = —i(x> y)
1.10 x ^ y = —|(x < y)
1.11 x ^ y = —|(at = y)

We define minr = C\ and maxT= cn (not available to the Pascal pro¬
grammer).

The standard scalar type Boolean is defined as

type Boolean — {false, true).

The standard type integer stands for a finite, coherent set of the whole
numbers. The logical operators V, A, —,, and the arithmetic operators +,
-, *, and div, are those of the conventional logical calculus and of
whole-number arithmetic. The modulus operator mod is defined by the
equation

m mod n-m-{m div n) * n

whereas div denotes division with truncated fraction.

160 ESSAYS IN COMPUTING SCIENCE

Implementations are permitted to refuse the execution of programs which

refer to integers outside the range specified by their definition of the type

integer.

11.3.2 The type char

2.1 The elements of the type char are the 26 (capital) letters, the 10

(decimal) digits, and possibly other characters defined by particular

implementations. In programs, a constant of type char is denoted by

enclosing the character in quote marks.

2.2 'A' < 'B' '1' - succ('O')

'B' < 'C' '2' - succ('\')

'Y' < 'Z' '9' = succ('S').

The sets of letters and digits are ordered, and the digits are coherent.

Axioms 1.5-1.11 apply to the char type. The functions ord and chr are

defined by the following additional axioms:

2.3 if u is an element of char, then ord(u) is a non-negative integer (called

the ordinal number of u), and

chr (ord (u)) = u

2.4 u < v = ord(u) < ord(v).

These axioms have been designed to make possible an interchange of

programs between implementations using different character sets. It should

be noted that the function ord does not necessarily map the characters onto

consecutive integers.

11.3.3 Subrange types

type T — m..n

Let a, m> n be elements of To such that

m ^ a ^ n

and let x, y be elements of T. Then we define

minr= m and maxr = n.

3.1 T(a) is an element of T.

3.2 These are the only elements of 7V

3.3 T~l(T(a))=a.

3.4 If 0 is a monadic operator defined on To, then

©x means ©T_1(x).

PROGRAMMING LANGUAGE PASCAL 161

3.5 If © is a dyadic operator defined on To x To, then

x © y means T_1(x) © T~l(y)

x © a means T_1(x) © a

a © x means a © T~\x).

11.3.4 Array types

type T = array [I] of 7o

Let m = min/ and n = max/.

4.1 If Xi is an element of To for all / such that m ^ ^ n, then

T(xm, ...,x„) is an element of T.

4.2 These are the only elements of T.

4.3 m ^ ^ n => T(xm, ...,x«)[/] = X/.
4.4 array [Ti, T2, ...,4] of T0 means array [Ti] of array [T2, ...,4] of To.

4.5 x[/i, /2,..., 4] means x[i\] [/2,..., 4].

We introduce the following abbreviation for later use (see rule 11.1):

(x, /: y) stands for

T(x[m], ...,x[pred(i)], y, x[succ(i)], ...,x[«]).

11.3.5 Record types

type T = record Si: T\;...; sm : Tm end

Let Xi be an element of Ti for i= 1,

5.1 T(xi,x2, ...,xm) is an element of T.

5.2 These are the only elements of T.

5.3 T(xi,...,xw). 5/ = Xi for / = 1,..., m.

11.3.6 Variant records

type T = record si: Tx\ U Tm_i;

case : Tm of
ki :(s{ : T{);

k2 : (si : Ti);

Kn :
end

Let kj be an element of Tm and let xj be an element of TJ for j = 1,..., n.

Then axiom 5.1 is rewritten as

5.1(a) T(xu ...,xm-i, kj, xj) is an element of T.

162 ESSAYS IN COMPUTING SCIENCE

Axioms 5.2 and 5.3 apply to this record type unchanged, and in addition the

following axiom is given:

5.4 T(xi,. • •, Xm — iy Xj ^. Sj — Xj for j 1, • • •, yi•

We introduce the following abbreviation for later use (see rule 11.1):

(x,sr-y) stands for T(x. si, ...,x.S7-i, y, x. Sz+i, ...,x.sm)

and

(x,sj:y) stands for T(x. su ...,x.sm, y)

The case with a held list containing several helds

kj • (A/1 * • • • ’ Sjh • Tjh)

is to be interpreted as

kj : (sj: T/)

where s/ is a fresh identiher, and T/ is a type dehned as

type Tj — record sj\: Tj\\...; Sjh : Tjh end

In this case x. is interpreted as x. s/ . 57y.

11.3.7 Set types

type T = set of To

Let xo, To be elements of To.
6.1 [] is an element of T.
6.2 If x is an element of T, then xv [xo] is a T.
6.3 These are the only elements of T.
6.4 [xi, x2, ...,x„] means (([] V [xi]) v [x2]) V ••• V [x„].

[] denotes the empty set, and [xo] denotes the singleton set containing xo.

The operators v, A, and -, applied to elements of set type, denote the

conventional operations of set union, intersection, and difference.

Note that Pascal allows implementations to restrict set types to be built

only on base types To with a specified maximum number of elements.

11.3.8 File types

type T = file of To

Let xo be an element of To.
7.1 < > is an element T.

PROGRAMMING LANGUAGE PASCAL 163

7.2 If x is an element of T, then xA<jt0> is an element of T.
7.3 These are the only elements of T.
7.4 (x A y) A z = x A (y A z).

7.5 xA < A"0> ^ < >.

<> denotes the empty file (sequence), and <x0> the singleton sequence

containing xo. The operator A denotes concatenation such that

x A y (X\,...,Xmj Lh •••jfn)) if x (xi,...,X/n) and y — (yi,...,yn)•
Neither the explicit denotation of sequences nor the concatenation operator

are available in Pascal.

7.6 first {{xo> Ax) = Xo, rest((xo> A x) = x.

The functions first and rest are not explicitly available in Pascal. They will

later be used to define the effect of file-handling procedures.

11.3.9 Pointer types

type T = T T0

A pointer type consists of an arbitrary, unbounded set of values

nil, <pi, <p2, <P3, •••

over which no operation except test of equality is defined. Associated with a

pointer type T are a variable ij of type integer (and initial value 0) and a

variable r with components 7>,, 7>2,... which are all of type To. These

components are the variables to which elements of T (other than nil) are

‘pointing’. £ is used in connection with the ‘generation’ of new elements of

T (see rule 11.7). £ and r are not available to the Pascal programmer.

8.1 x ^ nil => xt = tx.

11.4 Declarations

The purpose of a declaration is to introduce a named object (constant, type,

variable, function, or procedure) and to prescribe its properties. These

properties may then be assumed in any proof relating to the scope of the

declaration.

11.4.1 Constant-, type-, and variable declarations

If D is a sequence of declarations and S is a compound statement, then

D;S

164 ESSAYS IN COMPUTING SCIENCE

is called a block, and the following is its rule of inference (expressed in the

usual notation for subsidiary deductions):

□ 1 ' H\-P[S) Q
P{D;S}Q

H is the set of assertions describing the properties established by the

declarations in D. The assertions P and Q may not contain any identifiers

declared in D\ if they do, the rule can be applied only after a systematic

substitution of fresh identifiers local to the block. In the case of constant

declarations the assertions in H are nothing but the list of equations

themselves. In the case of type definitions they are the axioms derived from

the declaration in the manner described above. In the case of a variable

declaration x: T it is the fact that x is an element of T.

11.4.2 File variable declarations

The declaration

var x: T

where

type T = file of To,

introduces the two variables x of type T and xt of type To. The variable xt

is called the buffer variable of x and is used implicitly by the standard file

procedures. A so-called file position is associated with x; it splits x into a

left part Xl and a right part Xr such that

9.2 xl and xr are of type T, and x = xlAxr.

Xl and Xr are not explicitly available to the programmer. Assignments to

the buffer variable xt are permitted only if xr = (). This condition is

denoted in Pascal by the Boolean function eof (end of file):

9.3 eof(x) = df xR = <>.

In addition, the following axiom holds:

9.4 X/? ^ < > => x ^ xT = first(xR).

9.5 The standard type text, and the standard variables input and output
are defined as follows:

type text = file of char
var input, output: text.

PROGRAMMING LANGUAGE PASCAL 165

11.4.3 Function and procedure declarations

function f(L): T\ S

Let x be the list of parameters declared in L, and let y be the set of global
variables occurring within S (implicit parameters). Given the assertion
P {S} Q, where f does not occur free in P, and none of the variables of x
occurs free in Q, we may deduce the following implication:

10.1 P=>Q$(\, y) for all values of the variables involved in this
assertion.

Note that the explicit parameter list x has been extended by the implicit
parameters y, that x may not contain any variable parameters (specified by
var), and that no assignments to nonlocal variables may occur within S. It is
this property (10.1) that may be assumed in proving assertions about
expressions containing calls of the function /, including those occurring
within S itself and in other declarations in the same block. In addition,
assertions generated by the parameter specifications in L may be used in
proving assertions about S.

procedure p(L): S.

Let x be the list of explicit parameters declared in L; let y be the set of global
variables occurring in S (implicit parameters), let be the param¬
eters declared in L as variable parameters, and let yi, ...yn be those global
variables which are changed within S. Given the assertion P {5} Q where
none of the value parameters of x occurs free in Q, we may deduce the
existence of functions ft and gj satisfying the following implication:

10.2 P=> ©xi, y i, • • •) y n

/i(x,y), ...fn(\, y), g i(x,y), ...,g„(x,y)

for all values of the variables involved in this assertion.
It is this property that may be assumed in proving assertions about calls

of this procedure, including those occurring within S itself and in other
declarations in the same block.

The functions fi and gj may be regarded as those which map the initial
values of x and y on entry to the procedure onto the final values of xif ...9xm
and yit ...>yn on completion of the execution of S.

11.5 Statements

Statements are classified into simple statements and structured statements.
The meaning of simple statements is defined by axioms, and the meaning of
structured statements is defined in terms of rules of inference permitting

166 ESSAYS IN COMPUTING SCIENCE

deduction of the properties of the structured statement from properties of
its constituents. However, the rules of inference are formulated in such a
way that the reverse process of deriving necessary properties of the consti¬
tuents from postulated properties of the composite statement is facilitated.
The reason for this orientation is that in deducing proofs of properties of
programs it is most convenient to proceed in a ‘top-down’ direction.

11.5.1 Simple statements

Assignment statements

11.1 Pf{x:=y}P.
We introduce the following conventions:
(1) If the type T of x is a subrange of the type of y,

Py means Pro).

(2) If the type T of y is a subrange of the type of x,

Py means Pfv>-

(3) If x is an indexed variable

Py means Pa(a,i.y>•

(4) If jt is a field designator

Py,s means P{r,s:y>•

Procedure statements

11.2 PfW, y)
•••.Vn
•••><?« (x,y) (P(X)| P.

x is the list of actual parameters; X\, ...,xm are those elements of x which
correspond to formal parameters specified as variable parameters, y is the
set of all variables accessed nonlocally by the procedure p, and yi,...,yn are
those elements of y which are subject to assignments by the procedure.

/i, ...,/m and gi,...,gn are the functions introduced and explained in
implication 10.2. Note that X\, ...,xm, yi,...,yn must be all distinct (in the
sense that none can contain or be a variable which is contained in another);
otherwise the effect of the procedure statement is undefined. Rule 11.2
states that the procedure statement p(x) is equivalent with the sequence of
assignments (executed ‘simultaneously’)

*i:= /i(x,y); ...xm:= fm(x, y);

yi:= gi(x,y); ...yn:= gn(x, y).

PROGRAMMING LANGUAGE PASCAL 167

11.5.2 Standard procedures

The following inference rules specify the properties of the standard
procedures put, get, reset, and rewrite. The assertion Pin rules 11.3-11.6
must not contain x, xl, xr, xt, except in those cases where they occur
explicitly in the list of substituends.

11.3 eof (x) A Pxl a <xt> [put(x)) P eof(x).

This axiom specifies that the procedure put(x) is applicable only if eof(x) is
true i.e. xr=(). It thus leaves eof(x) and Xl- x invariant, makes xT
undefined, and corresponds to the assignment

x:= x A <xt >.

| &Of(x) A Pxl\{ first(xr)) , $rst(rest(xR)), rest(xR) [get{x)\ P

The operation get(x) is applicable only if —,eo/(x), i.e. xR ^ <> and then
corresponds to the three simultaneous assignments

xL:= xL A {first {xr))\ xT := first (rest (xR))\ xR:= rest(xR).

11.5 P%S$rst(x)txR [reset(x)} P.

The operation reset(x) corresponds to the three assignments

xl:= <>; xT := first(x); xr:= x.

11.6 P\){rewrite(x)}P.

The procedure statement rewrite(x) corresponds to the assignment

x:= <>.

The following rule specifies the effect of the standard procedure new.

11.7 If t is a pointer variable of type T, then

new(t) means £:= succ(£); t:=<p$

where £ is the hidden variable associated with the pointer type T.

11.5.3 Structured statements

Compound statements

Pi-1 {5/} Pi for / = 1,..., n
12.1

P0 {begin Si; Si; ...;Sn end] Pn

168 ESSAYS IN COMPUTING SCIENCE

If statements

122 PaB{Si] Q,PA-1B{S2} Q

P (if B then Si else S2) Q

173 ^A£(S} Q, PA —\B =» Q
P {if P then, 5} Q

Case statements

12 4 _P/\(x= kj) {5/} Q for /= 1,...,m_

(x€ [A:i,kn])AP [case x of ^1: Si;kn: S« end) Q

Note: ka, kb,km: S stands for ka: S; kb'- S; ...;km' S.

While statements

I25 ^AP{S)P

P {while P do S] P A —P

Repeat statements

12.6 Q’Q*-nB=>p
P {repeat S until B] Q A B

For statements

j2 7 Q ^ x ^ ^)AP([g .. x)) {S} P([fl..x])

P([]) {for x:= a to b do S) P{[a.. &])

[u..v] denotes the closed interval u...v, i.e. the set {/| u ^ ^ v) and
[u..v) denotes the half-open interval u...v, i.e. the set {/| u ^ i< v}.
Similarly, (u..v] denotes the set {/1 u < i ^ v}. Note that [u..u) = (u..u] is
the empty set.

(a ^ b) A P((x .. b]) {S} P([x.. b))

P([]) {for x:= b downto a do S} P([a . . &])

Note that S must not change x, a, or b.

With statements

pr ,S\, ...,r .s,„ (c) r^r. si,

j 2 ^ ^ ^ 1 >_> Sin (s 1,_) Snt

P {with r do S) Q

Si,sm are the field identifiers of the record variable r. Note that r must
not contain any variables subject to change by S, and that

with r\,..., rn do S
stands for

with r\ do ... with rn do S.

PROGRAMMING LANGUAGE PASCAL 169

11.6 Appendix: Procedures

Consider the trivial procedure, with only one variable parameter, one value
parameter, and no nonlocal references.

procedure /?(var a'.integer, b: integer);
begin b:= 2 * b; if a > b then a:= b end.

Letting 5 stand for the body of this procedure, it is easy to prove that

(b = bo) A (b > 0) (S) a ^ 2 * bo.

The invocation of this procedure will (in general) change the value of a in
some manner dependent on the initial values of a and b (and initial values
of nonlocal variables, if referenced from within S). Let us introduce a new
function symbol /to denote this dependency, so that the final value of a can
be denoted as

f(a, b).

Now the effect of any call of P(x, y) is (by definition of /) equivalent to the
simple assignment

x:= f(x, y),

and using the axiom of assignment 11.1, we may validly conclude for any R
that

RxXx,y){p(x,y)}R.

But by itself, application of this rule would be useless, since / has been
introduced as an arbitrary function symbol. We need therefore to know at
least something of the properties of /, and these can only be derived from
the properties of the body of the procedure p. Suppose that we have proved

P{S} Q.

Occurrences of a in Q refer to the value of a after the execution of S,
namely f(a, b). Suppose that Q does not refer to any other program
variable (in particular, does not refer to b). Then the values of all free
variables of Qfa,b) will be the same as they were in P, since the (a, b) in
f{a, b) also refer to the initial values of the parameters. Thus we may
validly form the implication

P ^ Qfia.b),

and this implication will be true for all values of the variables involved in it.
Thus, in the case shown above, we have

Vtf, b, b0{{b = bo) A (b > 0) =* f(a, b) ^ 2 * b0)

or more simply
Va,b(b>0=> f(a, b) ^ 2 * b).

TWELVE

Monitors: an operating system
structuring concept

There is considerable evidence that designing languages whose programs can

be safely reasoned about involves looking for increasingly structured expres¬

sions. The story of the goto statement, and the evolution of structured coding,

is well known. Pascal shows the advantages of a strict type structure and

further constraints are considered in Chapter 14.

The need for structured expressions is perhaps strongest in the area of

parallelism. This chapter discusses the ‘monitor’ concept, which is also

exhibited in Chapter 10. Dijkstra’s p and v operators had provided a primitive

tool for programming mutual exclusion: used with care and taste, programs

could be made believable; used in an unstructured way, texts of programs

become incomprehensible. Hoare had proposed ‘conditional critical sections’

in [22]. These were somewhat higher-level constructs, which ‘attempted to

incorporate structure’, but they could be spread throughout the program text.

Monitors provided the next step (but not the final one - see Chapter 16).

Simula was a key influence in the way monitors were described. (The original

intention of producing [29] was to publish Dijkstra (1972c). During this

exercise, Hoare had become involved in the rewriting of a paper by Ole-Johan

Dahl: this finally appeared as [31].) Like the classes of Simula, monitors

collected all of the operations together with the data they manipulate.

The paper includes proposed implementations for monitors as well as many

examples which have become standard challenges for parallel languages and

proof methods. The fact that Hoare felt the need to show - in the first

example - that monitors were as expressive as p and v provides an interesting

reminder of the date of this work. He also showed that monitors could be

implemented in terms of p and v.

The first draft of this paper was distributed to the participants of the 1971

Belfast symposium reported in [20]. Significant contributions were made by

Per Brinch Hansen, who implemented his language Concurrent Pascal.

Monitors were later implemented in Pascal-Plus (see Welsh and McKeag

1980). It was also taken as the basis of the redesign of the concurrency

C. A. R. Hoare, Monitors: an operating system structuring concept, Comm. ACM 17(10),
549-57 (October 1974). Copyright © 1974, Association for Computing Machinery, Inc.,
reprinted by permission.

171

172 ESSAYS IN COMPUTING SCIENCE

features of Mesa. But the implementation with the aid of pre-existing

synchronization and scheduling facilities resulted in unacceptable inefficiency

and many programmers developed their skill at bypassing the monitor

discipline; this left them struggling with more complex multithreading tech¬

niques. The paper was first submitted in February 1973; the material was

presented at an IRIA conference in France on 11 May 1973. The paper was

revised in April 1974 and published ([42]) in October 1974.

Monitors were undoubtedly a move towards more tractable expression of

parallelism and this paper, together with Chapter 10, helped their adoption in

languages like Pascal Plus and Simone [55]. Even within the paper, reserva¬

tions on monitors are expressed. The difficulty of constructing appropriate

proof methods was to lead to further developments.

Abstract

This paper develops Brinch Hansen’s concept of a monitor as a method of structuring

an operating system. It introduces a form of synchronization, describes a possible

method of implementation in terms of semaphores and gives a suitable proof rule.

Illustrative examples include a single resource scheduler, a bounded buffer, an alarm

clock, a buffer pool, a disk head optimizer, and a version of the problem of readers and

writers.

12.1 Introduction

A primary aim of an operating system is to share a computer installation
among many programs making unpredictable demands upon its

resources. A primary task of its designer is therefore to construct resource
allocation (or scheduling) algorithms for resources of various kinds (main
store, drum store, magnetic tape handlers, consoles, etc.). In order to
simplify his task, he should try to construct separate schedulers for each
class of resource. Each scheduler will consist of a certain amount of local
administrative data, together with some procedures and functions which are
called by programs wishing to acquire and release resources. Such a
collection of associated data and procedures is known as a monitor, and a
suitable notation can be based on the class notation of Simula 67 (Dahl

1972).

monitorname: monitor
begin...declarations of data local to the monitor,

procedure procname (...formal parameters...)',
begin...procedure body...end;
...declarations of other procedures local to the monitor;
...initialization of local data of the monitor...

end;

Note that the procedure bodies may have local data in the normal way.

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 173

In order to call a procedure of a monitor, it is necessary to give the name
of the monitor as well as the name of the desired procedure, separating
them by a dot:

monitorname. procname(...actual parameters...);

In an operating system it is sometimes desirable to declare several
monitors with identical structure and behaviour, for example to schedule
two similar resources. In such cases, the declaration shown above will be
preceded by the word class, and the separate monitors will be declared to
belong to this class:

monitor 1, monitor 2: classname;

Thus the structure of a class of monitors is identical to that described for a
data representation in Chapter 8, except for addition of the basic word
monitor. Brinch Hansen (1973) used the word shared for the same purpose.

The procedures of a monitor are common to all running programs, in the
sense that any program may at any time attempt to call such a procedure.
However, it is essential that only one program at a time actually succeed in
entering a monitor procedure, and any subsequent call must be held up until
the previous call has been completed. Otherwise, if two procedure bodies
were in simultaneous execution, the effects on the local variables of the
monitor could be chaotic. The procedures local to a monitor should not
access any nonlocal variables other than those local to the same monitor,
and these variables of the monitor should be inaccessible from outside the
monitor. If these restrictions are imposed, it is possible to guarantee against
certain of the more obscure forms of time-dependent coding error; and this
guarantee could be underwritten by a visual scan of the text of the program,
which could readily be automated in a compiler.

Any dynamic resource allocator will sometimes need to delay a program
wishing to acquire a resource which is not currently available, and to resume
that program after some other program has released the resource required.
We therefore need: a ‘wait’ operation, issued from inside a procedure of the
monitor, which causes the calling program to be delayed; and a ‘signal’
operation, also issued from inside a procedure of the same monitor, which
causes exactly one of the waiting programs to be resumed immediately. If
there are no waiting programs, the signal has no effect. In order to enable
other programs to release resources during a wait, a wait operation must
relinquish the exclusion which would otherwise prevent entry to the
releasing procedure. However, we decree that a signal operation be
followed immediately by resumption of a waiting program, without possi¬
bility of an intervening procedure call from yet a third program. It is only in
this way that a waiting program has an absolute guarantee that it can
acquire the resource just released by the signalling program without any
danger that a third program will interpose a monitor entry and seize the
resource instead.

174 ESSAYS IN COMPUTING SCIENCE

In many cases, there may be more than one reason for waiting, and these
need to be distinguished by both the waiting and the signalling operation.
We therefore introduce a new type of ‘variable’ known as a condition; and
the writer of a monitor should declare a variable of type condition for each
reason why a program might have to wait. Then the wait and signal
operations should be preceded by the name of the relevant condition
variable, separated from it by a dot:

condvariable. wait;
condvariable. signal;

Note that a condition ‘variable’ is neither true nor false; indeed, it does
not have any stored value accessible to the program. In practice, a condition
variable will be represented by an (initially empty) queue of processes which
are currently waiting on the condition; but this queue is invisible both
to waiters and signallers. This design of the condition variable has been
deliberately kept as primitive and rudimentary as possible, so that it may be
implemented efficiently and used flexibly to achieve a wide variety of effects.
There is a great temptation to introduce a more complex synchronization
primitive, which may be easier to use for many purposes. We shall resist this
temptation for a while.

As the simplest example of a monitor, we will design a scheduling
algorithm for a single resource, which is dynamically acquired and released
by an unknown number of customer processes by calls on procedures:

procedure acquire;
procedure release;

A variable!

busy: Boolean

determines whether or not the resource is in use. If an attempt is made to
acquire the resource when it is busy, the attempting program must be
delayed by waiting on a variable,

nonbusy: condition

which is signalled by the next subsequent release. The initial value of busy is
false. These design decisions lead to the following code for the monitor:

single resource: monitor
begin busy: Boolean;

nonbusy: condition;
procedure acquire;

begin if busy then nonbusy. wait;
busy := true

end;

tAs in Pascal (1971c), a variable declaration is of the form: < variable identifier> : (type);

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 175

procedure release;

begin busy := false;

nonbusy. signal
end;

:= false\ comment initial value;
end single resource

NOTES

(1) In designing a monitor, it seems natural to design the procedure headings, the
data, the conditions, and the procedure bodies, in that order. All subsequent
examples will be designed in this way.

(2) The acquire procedure does not have to retest that busy has gone false when it
resumes after its wait, since the release procedure has guaranteed that this is so;
and as mentioned before, no other program can intervene between the signal
and the continuation of exactly one waiting program.

(3) If more than one program is waiting on a condition, we postulate that the signal
operation will reactivate the longest waiting program. This gives a simple
neutral queuing discipline which ensures that every waiting program will
eventually get its turn.

(4) The single resource monitor simulates a Boolean semaphore (Dijkstra 1968b)
with acquire and release used for P and V respectively. This is a simple proof
that the monitor/condition concepts are not in principle less powerful than
semaphores, and that they can be used for all the same purposes.

12.2 Interpretation

Having proved that semaphores can be implemented by a monitor, the next

task is to prove that monitors can be implemented by semaphores.

Obviously, we shall require for each monitor a Boolean semaphore mutex

to ensure that the bodies of the local procedures exclude each other. The

semaphore is initialized to 1; a P(mutex) must be executed on entry to each

local procedure, and a V(mutex) must usually be executed on exit from it.

When a process signals a condition on which another process is waiting,

the signalling process must wait until the resumed process permits it to

proceed. We therefore introduce for each monitor a second semaphore

urgent (initialized to 0), on which signalling processes suspend themselves

by the operation P(urgent). Before releasing exclusion, each process must

test whether any other process is waiting on urgent, and if so, must release it

instead by a V(urgent) instruction. We therefore need to count the number

of processes waiting on urgent, in an integer urgentcount (initially zero).

Thus each exit from a procedure of a monitor should be coded:

if urgentcount > 0 then V(urgent) else V(mutex)

Finally, for each condition local to the monitor, we introduce a sema¬

phore condsem (initialized to 0), on which a process desiring to wait

suspends itself by a P(condsem) operation. Since a process signalling this

176 ESSAYS IN COMPUTING SCIENCE

condition needs to know whether anybody is waiting, we also need a count

of the number of waiting processes held in an integer variable condcount
(initially 0). The operation cond. wait may now be implemented as follows

(recall that a waiting program must release exclusion before suspending

itself):

condcount \= condcount + 1;

if urgentcount > 0 then V(urgent) else V(mutex)\
P(condsem)\
comment This will always wait;
condcount := condcount - 1

The signal operation may be coded:

urgentcount := urgentcount + 1;

if condcount > 0 then { V(condsem)\ P(urgent)}\
urgentcount := urgentcount - 1

In this implementation, possession of the monitor is regarded as a

privilege which is explicitly passed from one process to another. Only when

no one further wants the privilege is mutex finally released.

This solution is not intended to correspond to recommended ‘style’ in the

use of semaphores. The concept of a condition variable is intended as a

substitute for semaphores, and has its own style of usage, in the same way

that while loops or coroutines are intended as a substitute for jumps.

In many cases, the generality of this solution is unnecessary, and a

significant improvement in efficiency is possible.

(1) When a procedure body in a monitor contains no wait or signal, exit

from the body can be coded by a simple V(mutex), since urgentcount
cannot have changed during the execution of the body.

(2) If a cond. signal is the last operation of a procedure body, it can be

combined with monitor exit as follows:

if condcount > 0 then V(condsem)
else if urgentcount > 0 then V(urgent)

else V(mutex)

(3) If there is no other wait or signal in the procedure body, the second line

shown above can also be omitted.

(4) If every signal occurs as the last operation of its procedure body, the

variables urgentcount and urgent can be omitted, together with all

operations upon them. This is such a simplification that O-J. Dahl

suggests that signals should always be the last operation of a monitor

procedure; in fact, this restriction is a very natural one, which has been

unwittingly observed in all examples of this paper.

Significant improvements in efficiency may also be obtained by avoiding

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 177

the use of semaphores, and by implementing conditions directly in hard¬

ware, or at the lowest and most uninterruptible level of software (e.g.

supervisor mode). In this case, the following optimizations are possible.

(1) urgentcount and condcount can be abolished, since the fact that

someone is waiting can be established by examining the representation

of the semaphore, which cannot change surreptitiously within non-

interruptible mode.

(2) Many monitors are very short and contain no calls to other monitors.

Such monitors can be executed wholly in non-interruptible mode, using,

as it were, the common exclusion mechanism provided by hardware.

This will often involve less time in non-interruptible mode than the

establishment of separate exclusion for each monitor.

I am grateful to J. Bezivin, J. Horning, and R. M. McKeag for assisting

in the discovery of this algorithm.

12.3 Proof rules

The analogy between a monitor and a data representation has been noted in

the introduction. The mutual exclusion on the code of a monitor ensures

that procedure calls follow each other in time, just as they do in sequential

programming; and the same restrictions are placed on access to nonlocal

data. These are the reasons why the same proof rules can be applied to

monitors as to data representations.

As with a data representation, the programmer may associate an

invariant & with the local data of a monitor, to describe some condition

which will be true of this data before and after every procedure call. & must

also be made true after initialization of the data, and before every wait

instruction; otherwise the next following procedure call will not find the

local data in a state which it expects.

With each condition variable b the programmer may associate an

assertion B which describes the condition under which a program waiting on

b wishes to be resumed. Since other programs may invoke a monitor

procedure during a wait, a waiting program must ensure that the invariant

for the monitor is true beforehand. This gives the proof rule for waits:

[b . wait) A B

Since a signal can cause immediate resumption of a waiting program, the

conditions 3 A B which are expected by that program must be made true

before the signal; and since B may be made false again by the resumed

program, only & may be assumed true afterwards. Thus the proof rule for a

178 ESSAYS IN COMPUTING SCIENCE

signal is:

,<? A B (b. signal) 3

This exhibits a pleasing symmetry with the rule for waiting.

The introduction of condition variables makes it possible to write

monitors subject to the risk of deadly embrace (Dijkstra 1968b). It is the

responsibility of the programmer to avoid this risk, together with other

scheduling disasters (thrashing, indefinitely repeated overtaking, etc.

(Dijkstra 1972a). Assertion-oriented proof methods cannot prove absence

of such risk; perhaps it is better to use less formal methods for such proofs.

Finally, in many cases an operating system monitor constructs some

‘virtual’ resource which is used in place of actual resources by its ‘customer’

programs. This virtual resource is an abstraction from the set of local

variables of the monitor. The program prover should therefore define this

abstraction in terms of its concrete representation, and then express the

intended effect of each of the procedure bodies in terms of the abstraction.

This proof method is described in detail in Chapter 8.

12.4 Example: bounded buffer

A bounded buffer is a concrete representation of the abstract idea of a

sequence of portions. The sequence is accessible to two programs running in

parallel: the first of these (the producer) updates the sequence by appending

a new portion x at the end; and the second (the consumer) updates it by

removing the first portion. The initial value of the sequence is empty. We

thus require two operations:

(1) appendix: portion)',

which should be equivalent to the abstract operation

sequencesequence Pi < x);

where <x> is the sequence whose only item is x and D denotes concatena¬
tion of two sequences.

(2) removeirtsnM x: portion);

which should be equivalent to the abstract operations

*:= first {sequence)', sequence := rest {sequence)',

where first selects the first item of a sequence and rest denotes the sequence

with its first item removed. Obviously, if the sequence is empty, first is

undefined; and in this case we want to ensure that the consumer waits until

the producer has made the sequence non-empty.

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 179

We shall assume that the amount of time taken to produce a portion or

consume it is large in comparison with the time taken to append or remove

it from the sequence. We may therefore be justified in making a design in

which producer and consumer can both update the sequence, but not

simultaneously.

The sequence is represented by an array:

buffer: array 0..N- 1 of portion;

and two variables:

(1) lastpointer: 0.. N - 1;

which points to the buffer position into which the next append operation

will put a new item, and

(2) count: 0.. TV;

which always holds the length of the sequence (initially 0).

We define the function

seq(b, /, c) = df if c = 0 then empty
else seq(b, l © 1, c - 1)0 (b[l © 1] >

where the circled operations are taken modulo N. Note that if c ^ 0,

first (seq(b, /, c)) = b[l © c]

and

rest(seq(b, /, c)) = seq{b, /, c - 1)

The definition of the abstract sequence in terms of its concrete representa¬
tion may now be given:

sequence — df seq(buffer, lastpointer, count)

Less formally, this may be written

sequence - df< buffer[lastpointer © count],

buffer[lastpointer © count © 1],

• • • 5

buffer[lastpointer © 1] >

Another way of conveying this information would be by an example and a

picture, which would be even less formal.

The invariant for the monitor is:

0 ^ count ^ N A 0 ^ lastpointer ^ N — 1

There are two reasons for waiting, which must be represented by

condition variables:

nonempty: condition;

180 ESSAYS IN COMPUTING SCIENCE

means that the count is greater than 0, and

nonfull: condition;

means that the count is less than TV.

With this constructive approach to the design (Dijkstra 1968a), it is

relatively easy to code the monitor without error.

bounded buffer: monitor

begin buffer: array 0.. N - 1 of portion;

last pointer: 0.. TV - 1;

count: 0.. AT;

nonempty,nonfull: condition;

procedure appendix: portion)',
begin if count = TV then nonfull, wait',

note 0 ^ count < TV;

buffer[lastpointer\ := a;

lastpointer := lastpointer ® 1;

count := count + 1;

nonempty. signal
end append;

procedure remove (result a: portion);

begin if count = 0 then nonempty. wmY;

note 0 < count ^ TV;

a:= buffer[lastpointer 0 count]', count := count - 1;

nonfull, signal
end remove;

count := 0; lastpointer := 0;

end bounded buffer,

A formal proof of the correctness of this monitor with respect to the

stated abstraction and invariant can be given if desired by techniques

described in Chapter 8. However, these techniques seem not capable of

dealing with subsequent examples of this paper.

Single-buffered input and output may be regarded as a special case of the

bounded buffer with TV= 1. In this case, the array can be replaced by a

single variable, the lastpointer is redundant, and we get:

iostream: monitor

begin buffer: portion',
count:0.. 1;

nonempty,nonfull: condition',
procedure appendix: portion)',

begin if count = 1 then nonfull, wait',
buffer := a;

count := 1;

nonempty. signal
end append',

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 181

procedure remove{result a: portion);
begin if count = 0 then nonempty. wait',

x:= buffer,
count := 0;
nonfull. signal

end remove;
count := 0;

end iostream’,

If physical output is carried out by a separate special-purpose chan¬

nel, then the interrupt from the channel should simulate a call of

iostream. remove(x); and similarly for physical input, simulating a call
of iostream. appendix).

12.5 Scheduled waits

Up to this point, we have assumed that when more than one program is

waiting for the same condition, a signal will cause the longest waiting

program to be resumed. This is a good simple scheduling strategy, which

precludes indefinite overtaking of a waiting process.

However, in the design of an operating system, there are many cases

when such simple scheduling on the basis of first-come-first-served is not

adequate. In order to give a closer control over scheduling strategy, we

introduce a further feature of a conditional wait, which makes it possible to

specify as a parameter of the wait some indication of the priority of the

waiting program, e.g.:

busy. wait(p)\

When the condition is signalled, it is the program that specified the lowest

value of p that is resumed. In using this facility, the designer of a monitor

must take care to avoid the risk of indefinite overtaking; and often it is

advisable to make priority a nondecreasing function of the time at which the

wait commences.

This introduction of a ‘scheduled wait’ concedes to the temptation to

make the condition concept more elaborate. The main justifications are:

(1) It has no effect whatsover on the logic of a program, or on the formal

proof rules. Any program which works without a scheduled wait will

work with it, but possibly with better timing characteristics.

(2) The automatic ordering of the queue of waiting processes is a simple

fast-scheduling technique, except when the queue is exceptionally long

- and when it is, central processor time is not the major bottleneck.

(3) The maximum amount of storage required is one word per process.

Without such a built-in scheduling method, each monitor may have to

182 ESSAYS IN COMPUTING SCIENCE

allocate storage proportional to the number of its customers; the

alternative of dynamic storage allocation in small chunks is unattractive

at the low level of an operating system where monitors are found.

I shall yield to one further temptation, to introduce a Boolean function Of

conditions:

condname. queue

which yields the value true if anyone is waiting on condname and false
otherwise. This can obviously be easily implemented by a couple of

instructions, and affords valuable information which could otherwise be

obtained only at the expense of extra storage, time, and trouble.

A trivially simple example is an alarmclock monitor, which enables a

calling program to delay itself for a stated number n of time units, or ticks.
There are two entries:

procedure wakeme(n : integer)

procedure tick;

The second of these is invoked by hardware (e.g. an interrupt) at regular

intervals, say ten times per second. Local variables are

now: integer;

which records the current time (initially zero) and

wakeup: condition;

on which sleeping programs wait. But the alarmsetting at which these

programs will be aroused is known at the time when they start the wait; and

this can be used to determine the correct sequence of waking up.

alarmclock: monitor

begin now: integer,
wakeup: condition',
procedure wakeme(n: integer)',

begin alarmsetting: integer,
alarmsetting := now + n;

while now < alarmsetting do wakeup . wait (alarmsetting)',
wakeup. signal;

comment In case the next process is due to wake up at the
same time',

end;

procedure tick;
begin now := now + 1;

wakeup. signal
end;

now := 0

end alarmclock

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 183

In the program given above, the next candidate for wakening is actually

woken at every tick of the clock. This will not matter if the frequency of

ticking is low enough, and the overhead of an accepted signal is not too
high.

I am grateful to A. Ballard and J. Horning for posing this problem.

12.6 Further examples

In proposing a new feature for a high-level language it is very difficult to

make a convincing case that the feature will be both easy to use efficiently

and easy to implement efficiently. Quality of implementation can be proved

by a single good example, but ease and efficiency of use require a great

number of realistic examples; otherwise it can appear that the new feature

has been specially designed to suit the examples, or vice versa. This section

contains a number of additional examples of solutions of familiar prob¬
lems. Further examples may be found in Chapter 10.

12.6.1 Buffer allocation

The bounded buffer described in Section 12.4 was designed to be suitable

only for sequences, with small portions, for example, message queues. If

the buffers contain high-volume information (for example, files for pseudo

off-line input and output), the bounded buffer may still be used to store the

addresses of the buffers which are being used to hold the information. In

this way, the producer can be filling one buffer while the consumer is

emptying another buffer of the same sequence. But this requires an

allocator for dynamic acquisition and relinquishment of buffer addresses.
These may be declared as a type

type bufferaddress = 1 .. B;

where B is the number of buffers available for allocation.

The buffer allocator has two entries:

procedure acquire (result b : bufferaddress)’,

which delivers a free bufferaddress b; and

procedure release{b : bufferaddress);

which returns a buffer address when it is no longer required. In order to

keep a record of free buffer addresses the monitor will need:

freepool: powerset bufferaddress;

184 ESSAYS IN COMPUTING SCIENCE

which uses the Pascal powerset facility to define a variable whose values
range over all sets of buffer addresses, from the empty set to the set
containing all buffer addresses. It should be implemented as a bitmap of B
consecutive bits, where the /th bit is 1 if and only if / is in the set. There is

only one condition variable needed:

nonempty: condition

which means that freepool ^ empty. The code for the allocator is:

bufferallocator: monitor
begin freepool: powerset bufferaddress',

nonempty: condition;
procedure acquire (result b : bufferaddress)',

begin if freepool = empty then nonempty. wait;
b:= first (freepool)',
comment Any one would do;
freepool := freepool - (b\;
comment Set subtraction;

end acquire',
procedure release (b : buffer address)',

begin freepool := freepool - {b};
nonempty . signal

end release;
freepool := all buffer addresses

end buffer allocator

The action of a producer and consumer may be summarized:

producer: begin b: bufferaddress; ...
while not finished do

begin bufferallocator. acquire(b);
...fill buffer b...;
bounded buffer, append(b)

end;...
end producer,

consumer: begin b : bufferaddress',...
while not finished do

begin bounded buffer. remove(b)',
...empty buffer b...;
buffer allocator. release(b)

end;...
end consumer,

This buffer allocator would appear to be usable to share the buffers
among several streams, each with its own producer and its own consumer,

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 185

and its own instance of a bounded buffer monitor. Unfortunately, when the

streams operate at widely varying speeds, and when the freepool is empty,

the scheduling algorithm can exhibit persistent undesirable behaviour. If

two producers are competing for each buffer as it becomes free, a

first-come—first-served discipline of allocation will ensure (apparently

fairly) that each gets alternate buffers; and they will consequently begin to

produce at equal speeds. But if one consumer is a 1000 lines/min printer and

the other is a 10 lines/min teletype, the faster consumer will be eventually

reduced to the speed of the slower, since it cannot forever go faster than its

producer. At this stage nearly all buffers will belong to the slower stream, so
the situation could take a long time to clear.

A solution to this is to use a scheduled wait, to ensure that in heavy load

conditions the available buffers will be shared reasonably fairly between the

streams that are competing for them. Of course, inactive streams need not

be considered, and streams for which the consumer is currently faster than

the producer will never ask for more than two buffers anyway. In order to

achieve fairness in allocation, it is sufficient to allocate a newly freed buffer

to that one among the competing producers whose stream currently owns

fewest buffers. Thus the system will seek a point as far away from the
undesirable extreme as possible.

For this reason, the entries to the allocator should indicate for what

stream the buffer is to be (or has been) used, and the allocator must keep a

count of the current allocation to each stream in an array:

count: array stream of integer,

The new version of the allocator is:

bufferallocator: monitor

begin freepool: powerset bufferaddress;

nonempty: condition

count: array stream of integer,

procedure acquire (result b: bufferaddress; s\ stream)',

begin if freepool = empty then nonempty. wait(count[s]);

count[s] := count[s] + 1;

b := first (freepool)',

freepool := freepool — {b)

end acquire',

procedure release(b : bufferaddress-, s: stream)

begin count[s] := count[s] - 1;

freepool := freepool - [b];

nonempty. signal

end

freepool := all bufferaddresses',

for 5: stream do count[s] := 0

end bufferallocator

186 ESSAYS IN COMPUTING SCIENCE

Of course, if a consumer stops altogether, perhaps owing to mechanical

failure, the producer must also be halted before it has acquired too many

buffers, even if no one else currently wants them. This can perhaps be most

easily accomplished by appropriate fixing of the size of the bounded buffer

for that stream and/or by ensuring that at least two buffers are reserved for

each stream, even when inactive. It is an interesting comment on dynamic

resource allocation that, as soon as resources are heavily loaded, the system

must be designed to fall back toward a more static regime.

I am grateful to E. W. Dijkstra (1972a) for pointing out this problem and

its solution.

12.6.2 Disk head scheduler

On a moving-head disk, the time taken to move the heads increases

monotonically with the distance travelled. If several programs wish to move

the heads, the average waiting time can be reduced by selecting, first, the

program which wishes to move them the shortest distance. But unfor¬

tunately this policy is subject to an instability, since a program wishing to

access a cylinder at one edge of the disk can be indefinitely overtaken by

programs operating at the other edge or the middle.

A solution to this is to minimize the frequency of change of direction of

movement of the heads. At any time, the heads are kept moving in a given

direction, and they service the program requesting the nearest cylinder in

that direction. If there is no such request, the direction changes, and the

heads make another sweep across the surface of the disk. This may be called

the ‘elevator’ algorithm, since it simulates the behaviour of a lift in a

multi-storey building.

There are two entries to a disk head scheduler:

(1) request (dest: cylinder);

where

type cylinder - 0.. cylmax;

which is entered by a program just before issuing the instruction to move

the heads to cylinder dest.

(2) release;

which is entered by a program when it has made all the transfers it needs on

the current cylinder.

The local data of the monitor must include a record of the current head

position, headpos, the current direction of sweep, and whether the disk is

busy:

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 187

headpos: cylinder,

direction : (up, down);

busy: Boolean

We need two conditions, one for requests waiting for an upsweep and the
other for requests waiting for a downsweep:

upsweep, downsweep: condition

diskhead: monitor

begin headpos: cylinder;

direction : (up, down);

busy: Boolean;

upsweep, downsweep: condition;

procedure request(dest: cylinder);
begin if busy then

{if headpos < dest V headpos = dest A direction = wp

then upsweep . wait (dest)

else downsweep. wait(cylmax-dest)};
busy := frr/p; headpos:= dest

end request;

procedure release;

begin busy := false;

if direction = up then

[if upsweep. queue then upsweep. signal

else {direction down;

downsweep. signalj)
else if downsweep. queue then downsweep. signal

else {direction := up;

upsweep. signal)
end release;

headpos := 0; direction := up; busy := false
end diskhead;

12.6.3 Readers and writers

As a more significant example, we take a problem which arises in on-line

real-time applications such as airspace control. Suppose that each aircraft is

represented by a record, and that this record is kept up to date by a number

of ‘writer’ processes and accessed by a number of ‘reader’ processes. Any

number of ‘reader’ processes may simultaneously access the same record,

but obviously any process which is updating (writing) the individual

components of the record must have exclusive access to it, or chaos will

ensue. Thus we need a class of monitors; an instance of this class local to

188 ESSAYS IN COMPUTING SCIENCE

each individual aircraft record will enforce the required discipline for that

record. If there are many aircraft, there is a strong motivation for

minimizing local data of the monitor; and if each read or write operation is

brief, we should also minimize the time taken by each monitor entry.

When many readers are interested in a single aircraft record, there is a

danger that a writer will be indefinitely prevented from keeping that record

up to date. We therefore decide that a new reader should not be permitted

to start if there is a writer waiting. Similarly, to avoid the danger of

indefinite exclusion of readers, all readers waiting at the end of a write

should have priority over the next writer. Note that this is a very different

scheduling rule from that propounded in Courtois et al. (1971), and does

not seem to require such subtlety in implementation. Nevertheless, it may be

more suited to this kind of application, where it is better to read stale

information than to wait indefinitely!

The monitor obviously requires four local procedures:

start read entered by reader who wishes to read.

endread entered by reader who has finished reading.

startwrite entered by writer who wishes to write.

end write entered by writer who has finished writing.

We need to keep a count of the number of users who are reading, so that the

last reader to finish will known this fact:

readercount: integer

We also need a Boolean to indicate that someone is actually writing:

busy: Boolean;

We introduce separate conditions for readers and writers to wait on:

OKtoread, OKtowrite: condition;

The following annotation is relevant:

OKtoread = df—| busy
OKtowrite - —jbusy A readercount - 0

invariant: busy => readercount - 0

class readers and writers: monitor

begin readercount: integer,

busy: Boolean',

OKtoread, OKtowrite: condition',

procedure start read',

begin if busyM OKtowrite. queue then OKtoread. wait;

readercount := readercount + 1;

OKtoread. signal',

comment Once one reader can start, they all can;
end st art read;

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 189

procedure endread',

begin readercount := readercount - 1;

if readercount = 0 then OKtowrite. signal

end endread',

procedure startwrite;

begin

if readercount ^ Ov busy then OKtowrite. war/Y

:= /Twp

end startwrite;

procedure endwrite;

begin := false;

if OKtoread. queue then OKtoread. signal

else OKtowrite. signal

end endwrite;

readercount := 0;

:= /tf/se;
end readers and writers',

I am grateful to Dave Gorman for assisting in the discovery of this

solution.

12.7 Conclusion

This paper suggests that an appropriate structure for a module of an

operating system, which schedules resources for parallel user processes, is

very similar to that of a data representation used by a sequential program.

However, in the case of monitors, the bodies of the procedure must be

protected against re-entrance by being implemented as critical regions. The

textual grouping of critical regions together with the data which they update

seems much superior to critical regions scattered through the user program,

as described in Dijkstra (1968b) and Hoare ([22]). It also corresponds to the

traditional practice of the writers of operating-system supervisors. It can be

recommended without reservation.

However, it is much more difficult to be confident about the condition

concept as a synchronizing primitive. The synchronizing facility which is

easiest to use is probably the conditional wait (Brinch Hansen 1972a; Hoare

[22]).

wait (B)\

where B is a general Boolean expression (it causes the given process to wait

until B becomes true); but this may be too inefficient for general use in

operating systems, because its implementation requires re-evaluation of

the expression B after every exit from a procedure of the monitor. The

190 ESSAYS IN COMPUTING SCIENCE

condition variable gives the programmer better control over efficiency and

over scheduling; it was designed to be very primitive, and to have a simple

proof rule. But perhaps some other compromise between convenience and

efficiency might be better. The question whether the signal should always be

the last operation of a monitor procedure is still open. These problems will

be studied in the design and implementation of a pilot project operating

system, currently enjoying the support of the Science Research Council of

Great Britain.

Another question which will be studied will be that of the disjointness of

monitors: Is it possible to design a separate isolated monitor for each kind

of resource, so that it will make sensible scheduling decisions for that

resource, using only the minimal information about the utilization of that

resource, and using no information about the utilization of any resource

administered by other monitors? In principle, it would seem that, when

more knowledge of the status of the entire system is available, it should be

easier to take decisions nearer to optimality. Furthermore, in principle,

independent scheduling of different kinds of resource can lead to deadly

embrace. These considerations would lead to the design of a traditional

‘monolithic’ monitor, maintaining large system tables, all of which can be

accessed and updated by any of the procedures of the monitor.

There is no a priori reason why the attempt to split the functions of an

operating system into a number of isolated disjoint monitors should

succeed. It can be made to succeed only by discovering and implementing

good scheduling algorithms in each monitor. In order to avoid undesirable

interactions between the separate scheduling algorithms, it appears neces¬

sary to observe the following principles:

(1) Never seek to make an optimal decision; merely seek to avoid persist¬

ently pessimal decisions.

(2) Do not seek to present the user with a virtual machine which is better

than the actual hardware; merely seek to pass on the speed, size, and flat

unopiniated structure of a simple hardware design.

(3) Use pre-emptive techniques in preference to nonpre-emptive ones where
possible.

(4) Use ‘grain of time’ (Dijkstra, 1972b) methods to secure independence of

scheduling strategies.

(5) Keep a low variance (as well as a low mean) on waiting times.

(6) Avoid fixed priorities; instead, try to ensure that every program in the

system makes reasonably steady progress. In particular, avoid indefinite
overtaking.

(7) Ensure that when demand for resources outstrips the supply (i.e. in

overload conditions), the behaviour of the scheduler is satisfactory (i.e.
thrashing is avoided).

(8) Make rules for the correct and sensible use of monitor calls, and assume

MONITORS: AN OPERATING SYSTEM STRUCTURING CONCEPT 191

that user programs will obey them. Any checking which is necessary

should be done not by a central shared monitor, but rather by an

algorithm (called the user envelope) which is local to each process

executing a user program. This algorithm should be implemented at

least partially in the hardware (e.g. base and range registers, address

translation mechanisms, capabilities, etc.).

It is the possibility of constructing separate monitors for different

purposes, and of separating the scheduling decisions embodied in monitors

from the checking embodied in user envelopes, that may justify a hope that

monitors are an appropriate concept for the structuring of an operating

system.

12.8 Acknowledgements

The development of the monitor concept is due to frequent discussions and

communications with E. W. Dijkstra and P. Brinch-Hansen. A monitor

corresponds to the ‘secretary’ described in Dijkstra (1972b), and is also

described in Brinch Hansen (1972b; 1973).

Acknowledgement is also due to the support of IFIP WG.2.3, which

provides a meeting place at which these and many other ideas have been

germinated, fostered, and tested.

THIRTEEN

Hints on programming-
language design

This paper originated from Hoare’s keynote address at the ACM SIGPLAN
conference in Boston, October 1973 (although it did not appear in the
proceedings, it was distributed at the conference). It was subsequently printed
as a Stanford Artificial Intelligence Memo (AIM-224, STAN-CS-73-403) in
December of that year. The version printed here was published as [43].

Hoare was active in committees working on the design and control of
programming languages over many years: he made many contributions to the
ALGOL Bulletin (e.g. [13]), was a member of IFIP’s WG 2.1 (1962-74) and
even chaired the ECMA TC10 group working on the standardization of PL/I.
This paper is perhaps the most rounded of his published comments on
language-design philosophy. The earlier [25] makes more pointed references
(including a very positive one to APL); [40] and [57] make further points.

This paper must clearly be read in the context of its date of composition
(1973). The relative weight of comment on debugging and reasoning about
programs clearly changed as a result of his own later research. Also, a richer
notion of types would be appropriate today. But the sound advice in this paper
transcends any minor aspects in which it might be considered to be out of
date. (Many versions exist of the story about the Mariner I Venus probe. All
of them blame software; they differ as to the precise details.)

Subsequent to this publication, Hoare and Wirth consulted for SRI on their
‘Yellow’ language response to the ‘Tinman’ requirements. Their consistent
advice to simplify even this language was unheeded - but the final Ada
language (the ‘Green’ proposal) was even more baroque.

Abstract

This paper presents the view that a programming language is a tool that should assist the

programmer in the most difficult aspects of his art, namely program design, documenta¬

tion, and debugging. It discusses the objective criteria for evaluating a language design,

C. A. R. Hoare, Hints on programming language design. In C. Bunyan (ed.) Computer
Systems Reliability, State of the Art Report Vol. 20, pp. 505-34. Reprinted with permission.
Copyright ©1974, Pergamon/Infotech.

193

194 ESSAYS IN COMPUTING SCIENCE

and illustrates them by application to language features of both high-level languages

and machine-code programming. It concludes with an annotated reading list, recom¬

mended for all intending language designers.

13.1 Introduction

1 would like in this paper to present a philosophy of the design and

evaluation of programming languages that I have adopted and

developed over a number of years, namely that the primary purpose of a

programming language is to help the programmer in the practice of his art. I

do not wish to deny that there are many other desirable properties of a

programming language: for example, machine independence, stability of

specification, use of familiar notations, a large and useful library, existing

popularity, or sponsorship by a rich and powerful organization. These

aspects are often dominant in the choice of a programming language by its

users, but I wish to argue that they ought not to be. I shall therefore express

myself strongly. I fear that each reader will find some of my points wildly

controversial; I expect he will find other points that are obvious and even

boring; I hope that he will find a few points that are new and worth

pursuing.

My approach is first to isolate the most difficult aspects of the program¬

mer’s task, and state in general terms how a programming-language design

can assist in meeting these difficulties. I discuss a number of goals, which

have been followed in the past by language designers, and which I regard as

comparatively irrelevant or even illusory. I then turn to particular aspects of

familiar high-level programming languages, and explain why they are in

some respects much better than machine-code programming, and in certain

cases worse. Finally, I draw a distinction between language-feature design

and the design of complete languages.

13.2 Principles

If a programming language is regarded as a tool to aid the programmer, it

should give him the greatest assistance in the most difficult aspects of his

art, namely program design, documentation, and debugging.

(1) Program design. The first, and very difficult, aspect of design is

deciding what the program is to do, and formulating this as a clear, precise,

and acceptable specification. Often just as difficult is deciding how to do it:

how to divide a complex task into simpler subtasks, and to specify the

HINTS ON PROGRAMMING-LANGUAGE DESIGN 195

purpose of each part, and define clear, precise, and efficient interfaces

between them. A good programming language should give assistance in

expressing not only how the program is to run, but what it is intended to

accomplish; and it should enable this to be expressed at various levels, from

the overall strategy to the details of coding and data representation. It

should assist in establishing and enforcing conventions and disciplines that

will ensure harmonious co-operation of the parts of a large program when

they are developed separately and finally assembled together.

(2) Programming documentation. The purpose of program documenta¬

tion is to explain to a human reader the way in which a program works so

that it can be successfully adapted after it goes into service, to meet the

changing requirements of its users, or to improve it in the light of increased

knowledge, or just to remove latent errors and oversights. The view that

documentation is something that is added to a program after it has been

commissioned seems to be wrong in principle and counter-productive in

practice. Instead, documentation must be regarded as an integral part of the

process of design and coding. A good programming language will encour¬

age and assist the programmer to write clear self-documenting code,

and even perhaps to develop and display a pleasant style of writing.

The readability of programs is immeasurably more important than their

writeability.

(3) Program debugging. Program debugging can often be the most

tiresome, expensive, and unpredictable phase of program development,

particularly at the stage of assembling subprograms written by many

programmers over a long period. The best way to reduce these problems is

by successful initial design of the program, and by careful documentation

during the construction of code. But even the best-designed and best-

documented programs will contain errors and inadequacies, which the

computer itself can help to eliminate. A good programming language will

give maximum assistance in this. Firstly, the notations should be designed to

reduce as far as possible the scope for coding error; or at least to guarantee

that such errors can be detected by a compiler, before the program even

begins to run. Certain programming errors cannot always be detected in this

way, and must be cheaply detectable at run time; in no case can they be
allowed to give rise to machine- or implementation-dependent effects, which

are inexplicable in terms of the language itself. This is a criterion to which I

give the name security. Of course, the compiler itself must be utterly

reliable, so that its user has complete confidence that any unexpected effect

was occasioned by his own program. And the compiler must be compact

and fast, so that there is no appreciable delay or cost involved in correcting

a program in source code and resubmitting for another run; and the object

code too should be fast and efficient, so that extra instructions can be

inserted even in large and time-consuming programs in order to help detect

their errors or inefficiencies.

196 ESSAYS IN COMPUTING SCIENCE

A necessary condition for the achievement of any of these objectives is

the utmost simplicity in the design of the language. Without simplicity, even

the language designer himself cannot evaluate the consequences of his

design decisions. Without simplicity, the compiler writer cannot achieve

even reliability, and certainly cannot construct compact, fast, and efficient

compilers. But the main beneficiary of simplicity is the user of the language.

In all spheres of human intellectual and practical activity, from carpentry to

golf, from sculpture to space travel, the true craftsman is the one who

thoroughly understands his tools. And this applies to programmers too. A

programmer who fully understands his language can tackle more complex

tasks, and complete them more quickly and more satisfactorily, than if he

did not. In fact, a programmer’s need for an understanding of his language

is so great that it is almost impossible to persuade him to change to a new

one. No matter what the deficiencies of his current language, he has learned

to live with them; he has learned how to mitigate their effects by discipline

and documentation, and even to take advantage of them in ways that would

be impossible in a new and cleaner language which avoids the deficiency.

It therefore seems especially necessary in the design of a new program¬

ming language, intended to attract programmers away from their current

high-level language, to pursue the goal of simplicity to an extreme, so that a

programmer can readily learn and remember all its features, can select the

best facility for each of his purposes, can fully understand the effects and

consequences of each decision, and can then concentrate the major part of

his intellectual effort on understanding his problem and his programs rather
than his tool.

A high standard of simplicity is set by machine or assembly code

programming for a small computer. Such a machine has an extremely

uniform structure, for example a main store consisting of 2m words

numbered consecutively from zero up, a few registers, and a simple syn¬

chronous standard interface for communication with and control of

peripheral equipment. There is a small range of instructions, each of which

has a uniform format; and the effect of each instruction is simple, affecting

at most one register and one location of store or one peripheral. Even more

important, this effect can be described and understood quite independently

of every other instruction in the repertoire. And finally, the programmer has

an immediate feedback on the compactness and efficiency of his code.

Enthusiasts for high-level languages are often surprised at the complexity of

the problems that have been tackled with such simple tools.

On larger modern computers, with complex instruction repertoires and

even more complex operating systems, it is especially desirable that a

high-level language design should aim at the simplicity and clear modular

description of the best hardware designs. But the only widely used

languages that approach this ideal are FORTRAN, LISP, and ALGOL 60,

HINTS ON PROGRAMMING-LANGUAGE DESIGN 197

and a few languages developed from them. I fear that most more modern

programming languages are getting even more complicated; and it is

particularly irritating when their proponents claim that future hardware

designs should be oriented towards the implementation of this complexity.

13.3 Discussion

The previous two sections have argued that the objective criteria for good

language design may be summarized in five catch phrases: simplicity,

security, fast translation, efficient object code, and readability. However

desirable these may seem, many language designers have adopted alter¬

native principles that belittle the importance of some or all of these criteria,
perhaps those that their own languages have failed to achieve.

13.3.1 Simplicity

Some language designers have replaced the objective of simplicity by that of

modularity, by which they mean that a programmer who cannot understand

the whole of his language can get by with a limited understanding of only

part of it. For programs that work as the programmer intended this may be

feasible; but if his program does not work, and accidentally invokes some

feature of the language that he does not know, he will get into serious

trouble. If he is lucky the implementation will detect his mistake, but he will

not be able to understand the diagnostic message. Otherwise, he is even

more helpless. If to the complexity of his language is added the complexity

of its implementation, the complexity of its operating environment, and

even the complexity of institutional standards for the use of the language, it

is not surprising that when faced with a complex programming task so many

programmers are overwhelmed.

Another replacement of simplicity as an objective has been orthogonality

of design. An example of orthogonality is the provision of complex

integers, on the argument that we need reals and integers and complex reals,

so why not complex integers? In the early days of hardware design, some

very ingenious but arbitrary features turned up in order codes as a result of

orthogonal combinations of the function bits of an instruction, on the

grounds that some clever programmer would find a use for them; and some

clever programmer always did. Hardware designers have now learned more

sense; but language designers are clever programmers and have not.

The principles of modularity, or orthogonality, insofar as they contribute

to overall simplicity, are an excellent means to an end; but as a substitute for

198 ESSAYS IN COMPUTING SCIENCE

simplicity they are very questionable. Since in practice they have proved to

be a technically more difficult achievement than simplicity, it is foolish to

adopt them as primary objectives.

13.3.2 Security

The objective of security has also been widely ignored; it is believed instead

that coding errors should be removed by the programmer with the

assistance of a so-called checkout compiler. But this approach has several

practical disadvantages. For example, the checkout compiler and the

standard compiler are often not equally reliable. Even if they are, it is

impossible to guarantee that they will give the same results, especially on a

subtly incorrect program; and, when they do not, there is nothing to help

the programmer find the mistake. For a large and complex program the

extra inefficiency of the debugging runs may be serious; and even on small

programs the cost of loading a large debugging system can be high. You

should always pity the fate of the programmer whose task is so difficult that

his program will not fit into the computer together with your sophisticated

debugging package. Finally, it is absurd to make elaborate security checks

on debugging runs, when no trust is put in the results, and then remove

them in production runs, when an erroneous result could be expensive or

disastrous. What would we think of a sailing enthusiast who wears his

life-jacket when training on dry land but takes it off as soon as he goes to

sea? Fortunately, with a secure language, the security is equally tight for

production and for debugging.

13.3.3 Fast translation

In the early days of high-level languages it was openly stated that speed of

compilation was of minor importance, because programs would be com¬

piled only once and then executed many times. After a while it was realized

that the reverse was often true, that a program would be compiled

frequently while it was being debugged; but instead of constructing a fast

translator, language designers turned to independent compilation, which

permits a programmer to avoid recompiling those parts of his program that

he has not changed since the last time. But this is a poor substitute for fast

compilation, and has many practical disadvantages. Often it encourages or

even forces a programmer to split a large program into modules that are too

small to express properly the structure of his problem. It entails the use of

wide interfaces and cumbersome and expensive parameter lists at inappro¬

priate places. And even worse, it prevents the compiler from adequately

HINTS ON PROGRAMMING-LANGUAGE DESIGN 199

checking the validity of these interfaces. It requires additional file space to

store bulky intermediate code, in addition to source code, which must, of

course, never be thrown away. It discourages the programmer from making

changes to his data structure or representation, since this would involve a

heavy burden of recompilation. And finally the linkage editor is often

cumbersome to invoke and expensive to execute. And it is all so unneces¬

sary, if the compiler for a good language can work faster than the linkage
editor anyway.

If you want to make a fast compiler even faster, I can suggest three

techniques, which have all the benefits of independent compilation and
none of the disadvantages.

(1) Prescan. The slowest part of a modern fast compiler is the lexical

scan, which inputs individual characters, assembles them into words or

numbers, identifies basic symbols, removes spaces, and separates the

comments. If the source text of the program can be stored in a compact

form in which this character handling does not have to be repeated,

compilation time may be halved, with the added advantage that the original

source program may still be listed (with suitably elegant indentation); and

so the amount of file storage is reduced by a factor considerably greater

than two. A similar technique was used by the PACT I assembler for the
IBM 701.

(2) Precompile. This is a directive that can be given to the compiler

after submitting any initial segment of a large program. It causes the

compiler to make a complete dump of its workspace, including dictionary

and object code, in a specified user file. When the user wishes to add to his

program and run it, he directs the compiler to recover the dump and

proceed. When his additions are adequately tested, a further precompile

instruction can be given. If the programmer needs to modify a precompiled

procedure, he can just redeclare it in the block containing his main

program, and normal ALGOL-like scope rules will do the rest. An

occasional complete recompilation will consolidate the changes after they

have been fully tested. The technique of precompilation is effective only on

single-pass compilers; it was successfully incorporated in the Elliott
ALGOL programming system.

(3) Dump. This is an instruction that can be called by the user program

during execution, and causes a complete binary dump of its code and

workspace into a named user file. The dump can be restored and restarted at

the instruction following the dump by an instruction to the operating

system. If all necessary data input and initialization is carried out before the

dump, the time spent on this as well as recompilation time can be saved.

This provides a simple and effective way of achieving the FORTRAN effect

of block data, and was successfully incorporated in the implementation of
Elliott ALGOL.

200 ESSAYS IN COMPUTING SCIENCE

The one remaining use of independent compilation is to link a high-level

language with machine code. But even here independent compilation is the

wrong technique, involving all the inefficiency of procedure call and all the

complexity of parameter access at just the point where it hurts most. A far

better solution is to allow machine code instructions to be inserted in-line

within a high-level language program, as was done in Elliott ALGOL; or,

better, provide a macro facility for machine code, as in PL/360.

Independent compilation is a solution to yesterday’s problems; today it

has grown into a problem in its own right. The wise designer will prefer to

avoid rather than solve such problems.

13.3.4 Efficient object code

There is another argument, which is all too prevalent among enthusiastic

language designers, that efficiency of object code is no longer important;

that the speed and capacity of computers is increasing and their price is

coming down; and that the programming-language designer might as well

take advantage of this. This is an argument that would be quite acceptable if

used to justify an efficiency loss of ten or twenty percent, or even thirty and

forty percent. But all too frequently it is used to justify an efficiency loss of

a factor of two, or ten, or even more; and worse, the overhead is not only in

time taken but in space occupied by the running program. In no other

engineering discipline would such avoidable overhead be tolerated, and it

should not be in programming-language design, for the following reasons:

(1) The magnitude of the tasks we wish computers to perform is growing

faster than the cost-effectiveness of the hardware.

(2) However cheap and fast a computer is, it will be cheaper and faster to

use it more efficiently.
(3) In the future we must hope that hardware designers will pay increasing

attention to reliability rather than to speed and cost.

(4) The speed, cost, and reliability of peripheral equipment are not

improving at the same rate as those of processors.

(5) If anyone is to be allowed to introduce inefficiency it should be the user

programmer, not the language designer. The user programmer can take

advantage of this freedom to write better-structured and clearer pro¬

grams, and should not have to expend extra effort to obscure the

structure and write less clear programs just to regain the efficiency that

has been so arrogantly pre-empted by the language designer.

There is a widespread myth that a language designer can afford to ignore

machine efficiency, because it can be regained when required by the use of a

HINTS ON PROGRAMMING-LANGUAGE DESIGN 201

sophisticated optimizing compiler. This is false: there is nothing that the

good engineer can afford to ignore. The only language that has been

optimized with general success is FORTRAN, which was very specifically

designed for that very purpose. But even in FORTRAN, optimization has
grave disadvantages:

(1) An optimizing compiler is usually large, slow, unreliable, and late.

(2) Even with a reliable compiler, there is no guarantee than an optimized

program will have the same results as a normally compiled one.

(3) A small change to an optimized program may switch off optimization

with an upredictable and unacceptable loss of efficiency.

(4) The most subtle danger is that optimization tends to remove from the

programmer his fundamental control over and responsibility for the
quality of his programs.

The solution to these problems is to produce a language for which a simple

straightforward ‘non-pessimizing’ compiler will produce straightforward

object programs of acceptable compactness and efficiency: similar to those

produced by a resolutely non-clever (but also non-stupid) machine-code

programmer. Make sure that the language is sufficiently expressive to enable

most other optimizations to be made in the language itself; and finally,

make the language so simple, clear, regular, and free from side-effects that

a general machine-independent optimizer can simply translate an inefficient

program into a more efficient one with guaranteed identical effects, and

expressed in the same source language. The fact that the user can inspect the

results of optimization in his own language mitigates many of the defects
listed above.

13.3.5 Readability

The objective of readability by human beings has sometimes been denied in

favour of readability by a machine; and sometimes even been denied

in favour of abbreviation of writing, achieved by a wealth of default

conventions and implicit assumptions. It is of course possible for a compiler

or service program to expand the abbreviations, fill in the defaults, and

make explicit the assumptions. But, in practice, experience shows that it is

very unlikely that the output of a computer will ever be more readable than

its input, except in such trivial but important aspects as improved indenta¬

tion. Since in principle programs should be read by others, or re-read by

their authors, before being submitted to the computer, it would be wise for

the programming language designer to concentrate on the easier task of

designing a readable language to begin with.

202 ESSAYS IN COMPUTING SCIENCE

13.4 Comment conventions

If the purpose of a programming language is to assist in the documentation

of programs, the design of a superb comment convention is obviously our

most important concern. In low-level programming, the greater part of the

space on each line is devoted to comment. A comment is always terminated

by an end-of-line, and starts either in a fixed column or with a special

symbol allocated for this purpose:

LDA X [THIS IS A COMMENT

The introduction of free format into high-level languages prevents the use

of the former method; but it is surprising that few languages have adopted

the latter. ALGOL 60 has two comment conventions. One is to enclose the

text of a comment between the basic word comment and a semicolon:

comment this is a comment;

This has several disadvantages over the low-level convention:

(1) The basic word comment is too long. It occupies space that would be

better occupied by the text of the comment, and is particularly

discouraging to short comments.

(2) The comment can appear only after a begin or a semicolon, although it

would sometimes be more relevant elsewhere.

(3) If the semicolon at the end is accidentally omitted, the compiler will

without warning ignore the next following statement.

(4) One cannot put program text within a comment, since a comment must

not contain a semicolon.

The second comment convention of ALGOL 60 permits a comment

between an end and the next following semicolon, end, or else. This has

proved most unfortunate, since omission of a semicolon has frequently led

to the compiler ignoring the next following statement:

... end this is a mistake A [/] := x;

The LORTRAN comment convention defines as comment the whole of a

line containing a C in the first column.

C THIS IS A COMMENT

Its main disadvantages are that is does not permit comments on the same

line as the code to which they refer, and that it discourages the use of short

comments. An unfortunate consequence is that a well-annotated

LORTRAN program occupies many pages, even though the greater part of

each page is blank. This in itself makes the program unnecessarily difficult

to read and understand.

The comment convention of COBOL suffers from the same disadvan-

HINTS ON PROGRAMMING-LANGUAGE DESIGN 203

tages as that of FORTRAN, since it insists that commentary should be in a
separate paragraph.

More recently designed languages have introduced special bracketing

symbols (e.g./* and */) to enclose comments, which can therefore be placed

anywhere in the program text where they are relevant:

/* THIS IS A COMMENT */

But there still remains the awkward problem of omitting or mispunching

one of the comment brackets. In some languages, this will cause omission of

statements between two comments; in others it may cause the whole of the

rest of the program to be ignored. Neither of these disasters are likely to

occur in low-level programs, where the end-of-line terminates a comment.

13.5 Syntax

Another aspect of programming-language design that is often considered

trivial or arbritrary is its syntax. But this is also a mistake: the designer

should select and observe the best possible syntactic framework for his

language, for two important practical reasons:

(1) In a modern fast compiler a significant time can be taken in the

assembly of characters into meaningful symbols (identifiers, numbers,

and basic words) and in checking the context-free structure of the

program.

(2) When a program contains a syntactic error it is important that the

compiler should be able to pinpoint the error accurately, to diagnose its

cause, recover from it, and continue checking the rest of the program.

Recall the first American space probe to Venus, reportedly lost because

FORTRAN cannot recognize a missing comma in a DO statement. In

FORTRAN the statement:

DO 17 /= 1 10

looks to the compiler like an assignment to a (probably undeclared)

variable DO 171:

DO 171 = 110.

In low-level programming, the use of fixed field format neatly solves both

problems. The position and length of each meaningful symbol is known,

and it can be copied and compared as a whole without even examining the

individual characters; and if one field contains an error it can be imme¬

diately pinpointed, and checking can be resumed at the very next field.

Fortunately, free-format techniques have been discovered that solve the

problems nearly as neatly as fixed format. The use of a finite-state machine

204 ESSAYS IN COMPUTING SCIENCE

to define the assembly of characters into symbols, and one of the more

restrictive forms of context-free grammars (e.g. precedence or topdown or

both) to define the structure of a program: these must be recommended to

every language designer. It is certainly possible for a machine to analyse

more complex grammars, but there is every indication that the human

programmer will find greater difficulty, particularly if an error is present

or even only suspected. If a compiler cannot diagnose the syntax of an

individual statement until it reaches the end of the program, what hope has

a poor human?
As an example of what happens when a language departs from the

best-known technology, that of context-free syntax, consider the case of the

labelled END. This is a convention whereby any identifier between an END

and its semicolon automatically signals the end of the procedure with that

name, and of any enclosed program structure even if it has no END of its

own. At first sight this is a harmless notational convenience, which Peter

Landin might call ‘syntactic sugar’; but in practice the consequences are

disastrous. If the programmer accidentally omits an END anywhere in his

program, it will automatically and without warning be inserted just before

the next following labelled END, which is very unlikely to be where it was

wanted. Landin’s phrase for this would be ‘syntactic rat poison’. Wise

programmers have therefore learned to avoid the labelled END, which is a

great pity, since if the labelled END had been used merely to check the

correctness of the nesting of statements it would have been very useful, and

permitted earlier and cleaner error recovery, as well as remaining within the

disciplines of context-free languages. Here is a classic example of a language

feature that combines danger to the programmer with difficulty for the

implementor. It is all too easy to reconcile criteria of demerit.

13.6 Arithmetic expressions

A major feature of FORTRAN, which gives it the name FORmula

TRANslator, is the introduction of the arithmetic expression. ALGOL 60

extends this idea by the introduction of a conditional expression. Why is

this such an advance over assembly code? The traditional answer is that it

appeals to the programmer’s familiarity with mathematical notation. But

this only leads to the more fundamental question, why is the notation of

arithmetic expressions of such benefit to the mathematician? The reason

seems to be quite subtle and fundamental. It embodies the principles of

structuring, which underlie all our attempts to master a complex problem or

control a complex situation by analysing it into simpler subproblems, with

clean and narrow interfaces between them.

HINTS ON PROGRAMMING-LANGUAGE DESIGN 205

Consider an arithmetic expression of the form

E + F

where E and E may themselves be simple or complex arithmetic expres¬

sions.

(1) The meaning of this whole expression can be understood wholly in

terms of an understanding of the meanings of E and E;

(2) the purpose of each part consists solely in its contribution to the

purpose of the whole;

(3) the meaning of the two parts can be understood wholly indepen-

dendently of each other;

(4) if E or F is itself an arithmetic expression, the same structuring

principle can be applied to the analysis of the parts as is applied to the

understanding of the whole;

(5) the interface between the parts is clear, narrow, and well controlled: in

this case just a single number; and, finally,

(6) the separation of the parts and their relation to the whole is clearly

apparent from their written form.

These seem to be six fundamental principles of structuring: transparency

of meaning and purpose; independence of parts; recursive application;

narrow interfaces; and manifestness of structure. In the case of arithmetic

expressions these six principles are reconciled and achieved together with

very high efficiency of implementation. But the applicability of the arith¬

metic expression is seriously limited by the extreme narrowness of the

interface. Often the programmer wishes to deal with much larger data

structures, for example vectors or matrices or lists; and languages such as

APL and LISP have permitted the use of expressions with these structures

as operands and results. This seems to be an excellent direction of advance

in programming-language design, particularly for special-purpose lan¬

guages. But the advance is not purchased without some penalty in efficiency

and programmer control. The very reason why arithmetic expressions can

be evaluated with such efficiency is that the operands and results of each

subexpression are sufficiently small to be held in a high-speed register, or

stored and recovered from a main-store location by a single instruction.

When the operands are too large, and especially when they might be

partially or wholly stored on backing store, it becomes much more efficient

to use updating operations, since then the space occupied by one of the

operands can be used to hold the result. It would therefore seem advisable

to introduce special notations into a language to denote such operations as

adding one matrix to another, appending one list to another, or making a

new entry in a file; for example:

206 ESSAYS IN COMPUTING SCIENCE

A. + B instead of A := A + B if and A and B are matrices

Ll.append{L2) if LI and L2 are lists.

F output(x) if F is a file.

Another efficiency problem that arises from the attempt of a language to

provide large data structures and built-in operations on them is that the

implementation must select a particular machine representation for the

data, and use it uniformly, even in cases where other representations might

be considerably more efficient. For example, the APL representation is fine

for small matrices, but is very inappropriate or even impossible for large

and sparse ones. The LISP representation of lists is very efficient for data

held wholly in main store, but becomes inefficient when the lists are so long

that they must be held on backing store, particularly disks and tapes. Often

the efficiency of a representation depends on the relative frequency of

various forms of operation, and therefore the representation should be

different in different programs, or even be changed from one phase of a

program to another.
A solution to this problem is to design a general-purpose language that

provides the programmer with the tools to design and implement his own

representation for data and code the operations upon it. This is the main

justification for the design of ‘extensible’ languages, which so many

designers have aimed at, with rather great lack of success. In order to

succeed, it will be necessary to recognize the following:

(1) The need for an exceptionally efficient base language in order to define

the extensions.
(2) The avoidance of any form of syntactic extension to the language. All

that is needed is to extend the meaning of the existing operators of the

language, an idea that was called overloading by McCarthy.

(3) The complete avoidance of any form of automatic type transfer,

coercion, or default convention, other than those implemented as an

extension by the programmer himself.

I fear that most designers of extensible languages have spurned the technical

simplifications that make them feasible.

13.7 Program structures

However far the use of expressions and functional notations may be

extended, a programmer will eventually require the capability of updating

his environment. Sometimes this will be because he wants to perform input

and output, sometimes because it is more efficient to store the results of a

computation so that the stored value can be used rather than recomputed at

HINTS ON PROGRAMMING-LANGUAGE DESIGN 207

a later time, and sometimes because it is a natural way of representing his

problem (for example, in the case of discrete-event simulation or the

monitoring and control of some real-world process).

Thus it is necessary to depart from the welcome simplicity of the

mathematical expression, but to attempt to preserve as far as possible the

structuring principles that it embodies. Fortunately, ALGOL 60 (in its

compound, conditional, for, and procedure statements) has shown the way

in which this can be done. The advantages of the use of these program

structures is becoming apparent even to programmers using languages that

do not provide the notations to express them.

The introduction of program structures into a language not only helps the

programmer but also does not injure the efficiency of an implementation.

Indeed, the avoidance of wild jumping will be of positive benefit on

machines with slave stores or paging hardware; and if a compiler makes any

attempt at optimization, the clear indication of the control structure of a

program can only simplify this task.

There is one case where ALGOL 60 does not provide an appropriate

structure, and that is when a selection must be made from more than two

alternatives in accordance with some integer value. In this case, the

programmer must declare a switch, specifying a list of labels, and then jump

to the /th label in this list.

switch SS:= LI, L2, L3;

go to SS[i];

LI: Qu go to L;

L2: Q2; go to L;

L3: Qy,

L:

Unfortunately the introduction of the switch as a nameable entity is not

only an extra complexity in the language and implementation but also gives

plenty of scope for tricky programming and even trickier errors, partic¬

ularly when jumping to some common continuation point on completion of

the alternative action.

The first language designers to deal with the problem of the switch

proposed to generalize it by providing the concept of the label array, into

which the programmer could store label values. This has some peculiarly

unpleasant consequences in addition to the disadvantages of the switch.

Firstly, it obscures the program, so that its control structure is not apparent

from the form of the program but can only be determined by a run-time

trace. And, secondly, the programmer is given the power to jump back into

the middle of a block he has already exited from, with unpredictable

consequences unless a run-time check is inserted. In ALGOL 60 the scope

rules make this error detectable at compile time.

208 ESSAYS IN COMPUTING SCIENCE

The way to avoid all these problems is a very simple extension to the

ALGOL 60 conditional notation, a construction that I have called the case

construction. In this notation, the example of the switch shown above

would take the form:

case i of

IQu
Qi,
Qs);

This was my first programming-language invention, of which I am still most

proud, since it appears to bear no trace of compensating disadvantage.

13.8 Variables

One of the most powerful and most dangerous aspects of machine-code

programming is that each individual instruction of the code can change the

content of any register or store location and alter the condition of any

peripheral: it can even change its neighbouring instructions or itself. Worse

still, the identity of the location changed is not always apparent from the

written form of the instruction; it cannot be determined until run time,

when the values of base registers, index registers, and indirect addresses are

known. This does not matter if the program is correct, but if there is the

slightest error, even only in a single bit, there is no limit to the damage that

may be done, and no limit to the difficulty of tracing the cause of the

damage. In summary, the interface between every two consecutive instruc¬

tions in a machine-code program consists of the state of the entire machine:

registers, main store, backing stores, and all peripheral equipment.

In a high-level language, the programmer is deprived of the dangerous

power to update his own program while it is running. Even more valuable,

he has the power to split his machine into a number of separate variables,

arrays, files, etc.; when he wishes to update any of these he must quote its

name explicitly on the left of the assignment, so that the identity of the part

of the machine subject to change is immediately apparent; and, finally, a

high-level language can guarantee that all variables are disjoint, and that

updating any one of them cannot possibly have any effect on any other.

Unfortunately, many of these advantages are not maintained in the

design of procedures and parameters in ALGOL 60 and other languages.

But instead of mending these minor faults, many language designers have

preferred to extend them throughout the whole language by introducing the

concept of reference, pointer, or indirect address into the language as

an assignable item of data. This immediately gives rise in a high-level

language to one of the most notorious confusions of machine code, namely

HINTS ON PROGRAMMING-LANGUAGE DESIGN 209

that between an address and its contents. Some languages attempt to solve
this by even more confusing automatic coercion rules. Worst still, an
indirect assignment through a pointer, just as in machine code, can update
any store location whatsoever, and the damage is no longer confined to the
variable explicitly named as the target of assignment. For example, in
ALGOL 68, the assignment:

a:= y

always changes a, but the assignment:

x:= y + 1;

may, if a is a reference variable, change any other variable (of appropriate
type) in the whole machine. One variable it can never change is a! Unlike all
other values (integers, strings, arrays, files, etc.) references have no meaning
independent of a particular run of a program. They cannot be input as data,
and they cannot be output as results. If either data or references to data
have to be stored on files or backing stores, the problems are immense. And
on many machines they have a surprising overhead on performance, for
example they will clog up instruction pipelines, data lookahead, slave
stores, and even paging systems. References are like jumps, leading wildly
from one part of a data structure to another. Their introduction into
high-level languages has been a step backward from which we may never
recover.

13.9 Block structure

In addition to the advantages of disjoint named variables, high-level
languages provide the programmer with a powerful tool for achieving even
greater security, namely the scope and locality associated with block
structure. In FORTRAN or ALGOL 60, if the programmer needs a variable
for the purposes of a particular part of his program, he can declare it locally
to that part of the program. This enables the programmer to make manifest
in the structure of his program the close association between the variable
and the code that uses it; and he can be absolutely confident that no other
part of the program, whether written by himself or another, can ever
interfere with, or even look at, the variable without his written permission,
i.e. unless he passes it as a parameter to a particular named procedure. The
use of locality also greatly reduces the width of the interfaces between parts
of the program; the fact that programmers no longer need to tell each other
the names of their working variables is only one of the beneficial conse¬

quences.
Like all the best programming-language features, the locality and scope

210 ESSAYS IN COMPUTING SCIENCE

rules of ALGOL 60 are not only of great assistance to the programmer in

the decomposition of his task and the implementation of its subtasks; they

also permit economy in the use of machine resources, for example main

store. The fact that a group of variables is required for purposes local only

to part of a program means that their values will usually be relevant only

while that part of the program is being executed. It is therefore possible to

re-allocate to other purposes the storage assigned to these variables as soon

as they are no longer required. Since the blocks of a program in ALGOL 60

are always completed in the exact reverse of the order in which they were

entered, the dynamic re-allocation of storage can be accomplished by stack

techniques, with small overhead of time and space, or none at all in the case

of blocks that are not procedure bodies, for which the administration can be

done at compile time. Finally, the programmer is encouraged to declare at

the same time those variables that will be used together, and these will be

allocated in contiguous locations, which will increase the efficiency of slave

storage and paging techniques.

It is worthy of note that the economy of dynamic reallocation is achieved

without any risk that the programmer will accidentally refer to a variable

that has been re-allocated, and this is guaranteed by a compile-time and not

a run-time check. All these advantages are achieved in ALGOL 60 by the

close correspondence between the statically visible scope of a variable in a

source program and the dynamic lifetime of its storage when the program is

run. A language designer should therefore be extremely reluctant to break

this correspondence, which can easily be done, for example, by the

introduction of references, which may point to variables of an exited block.

The rules of ALGOL 68, designed to detect such so-called ‘dangling

references’ at compile time, are both complicated and ineffective; and PL/I

does not bother at all.

13.10 Procedures and parameters

According to current theories of structured programming, every large-scale

programming project involves the design, use, and implementation of a

special-purpose programming language, with its own data concepts and

primitive operations, specifically oriented to that particular project. The

procedure and parameter are the major tools provided for this purpose by

high-level languages since FORTRAN. In itself, this affords all the major

advantages claimed for extensible languages. Furthermore, in its implemen¬

tation as a closed subroutine, the procedure can achieve very great

economies of storage at run time. For these reasons, the language designer

should give the greatest attention to this feature of this language. Procedure

calls and parameter passing should produce very compact code. Lengthy

HINTS ON PROGRAMMING-LANGUAGE DESIGN 211

preludes and postludes must be avoided. The effect of the procedure on its

parameters should be clearly manifest from its syntactic form, and should

be simple to understand and resistant to error. And, finally, since the

procedure interface is so often the interface between major parts of a

program, the correctness of its use should be subjected to the most rigorous
compile-time check.

The chief defects of the FORTRAN parameter mechanism are:

(1) It fails to give a notational distinction at the call side between

parameters that convey values into a procedure, those that convey

values out of a procedure, and those that do both. This negates many of

the advantages that the assignment statement has over machine-code
programming.

(2) The shibboleth of the independent compilation prohibits compile-time

checks on parameter passing, just where interface errors are most likely,

most disastrous, and most difficult to debug.

(3) The ability to define side-effects of function calls negates many of the

advantages of arithmetic expressions.

At least FORTRAN permits efficient implementation, unless a misguided

but all too frequent attempt is made to permit a mixture of languages across

the procedure interface. A subroutine that does not know whether it is being

called from ALGOL or from FORTRAN has a hard life.

ALGOL 60 perpetuates all these disadvantages, but not the advantage.

The difficulty of compile-time parameter checking is due to the absence of

parameter specifications. Even if an implementation insists on full specifi¬

cation (and most do) the programmer has no way of specifying the

parameters of a formal procedure parameter. This is one of the excuses for

the inefficiency of many ALGOL implementations. The one great advance

of ALGOL 60 is the value parameter, which is immeasurably superior to the

dummy parameter of FORTRAN and PL/I. What a shame that the name

parameter is the default!

But perhaps the most subtle defect of the ALGOL 60 parameter is that

the user is permitted to pass the same variable twice as an actual parameter

corresponding to two distinct formal parameters. This immediately violates

the principles of disjointness, and can lead to many curious, unexpected

effects. For example, if a procedure:

matrix multiply (A, B, C)

is intended to have the effect:

A:= BxC

it would seem reasonable to square A by:

matrix multiply (A, A, A)

212 ESSAYS IN COMPUTING SCIENCE

This error is prohibited in standard FORTRAN, but few programmers

realize it, and it is rarely enforced by a compile-time or run-time check. No

wonder the procedure interface is the one on which run-time debugging aids

have to concentrate.

13.11 Types

Among the most trivial but tiresome errors of low-level programming are

type errors, for example using a fixed-point operation to add floating-point

numbers, using an address as an integer or vice versa, or forgetting the

position of a field in a data structure. The effects of such errors, although

fully explicable in terms of bit patterns and machine operations, are so

totally unrelated to the concept in terms of which the programmer is

thinking that the detection and correction of such errors can be excep¬

tionally tedious. The trouble is that the hardware of the computer is far too

tolerant and forgiving. It is willing to accept almost any sequence of

instructions and make sense of them at its own level. That is the secret of the

power, flexibility, and simplicity, and even reliability, of computer hard¬

ware, and should therefore be cherished.

But it is also one of the main reasons why we turn to high-level languages,

which can eliminate the risk of such error by a compile-time check. The

programmer declares the type of each variable, and the compiler can work

out the type of each result; it therefore always knows what type of

machine-code instruction to generate. In cases where there is no meaningful

operation (for example, the addition of an integer and a Boolean) the

compiler can inform the programmer of his mistake, which is far better

than having to chase its curious consequences after the program has run.

However, not all language designers would agree. Some languages, by

complex rules of automatic type transfers and coercions, prefer the

dangerous tolerance of machine code, but with the following added

disadvantages:

(1) The result will often be ‘nearly’ right, so that the programmer has less

warning of his error.

(2) The inefficiency of the conversion is often a shock.

(3) The language is much complicated by the rules.

(4) The introduction of genuine language extensibility is made much more

difficult.

Apart from the elimination of the risk of error, the concept of type is of

vital assistance in the design and documentation phases of program

development. The design of abstract and concrete data structure is one of

the first tools for refining our understanding of problems, and for defining

HINTS ON PROGRAMMING-LANGUAGE DESIGN 213

the common interfaces between the parts of a large program. The declara¬

tion of the name and structure or range of values of each variable is a most

important aspect of clear programming, and the formal description of the

relationship of each variable to other program variables is a most important

part of its annotation; and finally an informal description of the purpose of

each variable and its manner of use is a most important part of program

documentation. In fact, I believe a language should enable the programmer

to declare the units in which his numbers are expressed, so that a compiler

can check that he is not confusing radians and degrees, adding height to
weights, or comparing metres with yards.

Again not all language designers would agree. Many languages do not

require the programmer to declare his variables at all. Instead they define

complex default rules, which the compiler must apply to undeclared

variables. But this can only encourage sloppy program design and docu¬

mentation, and nullify many of the advantages of block structure and type

checking; the default rules soon get so complex that they are very likely to

give results not expected by the programmer, and as ludicrously or subtly

inappropriate to his intentions as a machine-code program that contains a
type error.

Of course, wise programmers have learned that it is worthwhile to expend

the effort to avoid these dangers. They eagerly scan the compiler listings to

ensure that every variable has been declared, and that all the characteristics

assigned to it by default are acceptable. What a pity that the designers of

these languages take such trouble to give such trouble to their users and
themselves.

13.12 Language-feature design

This paper has given many practical hints on how not to design a

programming language. It has even suggested that many recent languages

have followed these hints. But there are very few positive hints on what to

put into your next language design. Nearly everything I have ever published

is full of positive and practical suggestions for programming language

features, notations, and implementation methods; furthermore, for the last

ten years, I have tried to pursue the same objectives in language design that

I have expounded here; and I have tried to make my proposals as

convincing as I could. And yet I have never designed a programming

language, only programming language features. It is my belief that these

two design activities should be more clearly separated in the future.

(1) The designer of a new feature should concentrate on one feature at a

time. If necessary, he should design it in the context of some well-known

programming language that he likes. He should make sure that his feature

214 ESSAYS IN COMPUTING SCIENCE

mitigates some disadvantage or remedies some incompleteness of the

language without compromising any of its existing merits. He should show

how the feature can be simply and efficiently implemented. He should write

a section of a user manual, explaining clearly with examples how the feature

is intended to be used. He should check carefully that there are no traps

lurking for the unwary user, which cannot be checked at compile time. He

should write a number of example programs, evaluating all the conse¬

quences of using the feature, in comparison with its many alternatives. And

finally, if a simple proof rule can be given for the feature, this would be the

final accolade.
(2) The language designer should be familiar with many alternative

features designed by others, and should have excellent judgement in

choosing the best and rejecting any that are mutually inconsistent. He must

be capable of reconciling, by good engineering design, any remaining minor

inconsistencies or overlaps between separately designed features. He must

have a clear idea of the scope and purpose and range of application of his

new language, and how far it should go in size and complexity. He should

have the resources to implement the language on one or more machines, to

write user manuals, introductory texts, advanced texts; he should construct

auxiliary programming aids and library programs and procedures; and,

finally, he should have the political will and resources to sell and distribute

the language to its intended range of customers. One thing he should not

do is to include untried ideas of his own. His task is consolidation, not

innovation.

13.13 Conclusion

A final hint: listen carefully to what language users say they want, until you

have an understanding of what they really want. Then find some way of

achieving the latter at a small fraction of the cost of the former. This is

the test of success in language design, and of progress in programming

methodology. Perhaps these two are the same subject anyway.

13.14 Appendix: annotated reading list

Naur, P. (1960)

The more 1 ponder the principles of language design, and the techniques

that put them into practice, the more is my amazement at and admiration of

ALGOL 60. Here is a language so far ahead of its time that it was not only

an improvement on its predecessors but also on nearly all its successors.

HINTS ON PROGRAMMING-LANGUAGE DESIGN 215

Of particular interest are its introduction of all the main program¬

structuring concepts and the simplicity and clarity of its description, rarely

equalled and never surpassed. Consider especially the avoidance of abbre¬

viation in the syntax names and equations and the inclusion of examples in
every section.

Knuth, D. E. (1967)

Most of these troublespots have been eliminated in the widely used subsets

ot the language. When you can design a language with so few troublespots,

you can be proud. The real remaining troublespot is the declining quality of
implementations.

Wirth, N. and Hoare C. A. R. [9]

This language is widely known as ALGOL W. It remedies many of the

defects of ALGOL 60 and includes many of the good features of

LORTRAN IV and LISP. Its introduction of references avoids most of the

defects described above under ‘Variables’. It has been extremely well

implemented on the IBM 360, and has a small and scattered band of
devoted followers.

Wirth, N. (1968)

This introduces the benefits of program structures to low-level program¬

ming for the IBM/360. It was hastily designed and implemented as a tool

for implementing ALGOL W; it excited more interest than ALGOL W, and

has been widely imitated on other machines.

Wirth, N. (1971c)

Pascal was designed to combine the machine-independence of ALGOL W

with the efficiency and control of PL/360. New features are the simple but

powerful and efficient type definition capabilities, including sets, and a very

clean treatment of files. When used to write its own translator, it achieves a

remarkable combination of clarity of structure and detail together with high

efficiency in producing good object code.

Dahl, O.-J., et al. (1972)

This expounds a systematic approach to the design, development, and

documentation of computer programs. The last section is an excellent

introduction to Simula 67 and the ideas that underlie it.

McCarthy, J. (1960)

This paper describes a beautifully simple and powerful fully functional

language for symbol manipulation. It introduces the scan-mark garbage-

collection technique, which makes such languages feasible. LISP has some

good interactive implementations, widely used in artificial intelligence

projects. It has also been extended in many ways, some good and some bad,

some local and some short-lived.

216 ESSAYS IN COMPUTING SCIENCE

ASA Standard FORTRAN (1964)

This language had the right objectives. It introduces the array, the

arithmetic expression, and the procedure. The parameter mechanism is very

efficient, and potentially secure. It has some very efficient implementations

for numerical applications. When used outside this field it is little more

helpful or machine-independent than assembly code, and can be remark¬

ably inefficient. Its input-output is cumbersome, prone to error, and

surprisingly inefficient. The standardizers have maintained the horrors of

early implementations (the equivalence algorithm, second-level definition)

but, in resolutely setting their face against the ‘advance’ of language-design

technology, have saved it from many later horrors.

ASA Standard COBOL (1968)

Describes a language suitable for simple applications in business data

processing. It contains good data structuring capability but poor facilities

for abstraction. It aimed at readability but unfortunately achieved only

prolixity; it aimed to provide a complete programming tool, in a way few

languages have since. It is poor for variable format processing. The primacy

of the character data item makes it rather inefficient on modern machines;

and the methods provided to regain efficiency (e.g. SYNCHRONIZED)

often introduce machine-dependency and insecurity.

FOURTEEN

Recursive data structures

This chapter is most readily seen as belonging to Hoare’s work on language
design. By this stage his thoughts were strongly influenced by the ability to
reason about programs. The paper in [8] can be seen as a precursor to that
published here: it was a warning about the evolving design of ALGOL 68. The
difficulties of proving facts about programs which make use of general
pointers are under-stated in point 9 of the case against ‘general pointers’. Just
like jump statements, they should be the concern of machine code generated
by a (trusted) compiler rather than expressions about which proofs can be
safely constructed.

The paper recognizes the need for recursive data structures to represent
objects such as symbolic expressions. The traditional approach to the
definition of such arbitrarily sized objects is to make pointers explicit. Hoare
proposes that the recursive types are described as such and offers elegant
notation for analysing the cases involved.

The paper thus offers a safer language: it ‘extend(s) as far as possible the
range of errors that can no longer be made.’ But it also goes further by
explaining how Burstall’s ‘structural induction’ idea can be used in proofs.
There is also a clear link to the proof methods of Chapter 8 both in the use of
invariants and in the concept of representations. (Here the term ‘abstraction
function’ is used for the relation between representation and abstraction.) The
ideas of Rod Burstall, described in this paper, have been incorporated (in
untyped form) in experimental pattern-matching versions of LISP, and more
recently in ML and Miranda.

This paper also includes extensive discussion of implementation techniques
for the proposed language features and discusses the use of programmer-
supplied ‘memo functions’. The paper was submitted in April 1974, revised in
July and published ([51]) in June 1975. The text was available in October 1973
as Stanford Technical Report STAN-CS-73-400.

Abstract

The power and convenience of a programming language may be enhanced for certain

applications by permitting tree-like data structures to be defined by recursion. This

C. A. R. Hoare, Recursive data structures, Int. J. Computer and Information Sciences, 4(2),
105-32 (June 1975). This paper is republished by kind permission of Plenum Publishing
Corporation.

217

218 ESSAYS IN COMPUTING SCIENCE

paper suggests a pleasing notation by which such structures can be declared and

processed; it gives the axioms which specify their properties, and suggests an efficient

implementation method. It shows how a recursive data structure may be used to

represent another data type, for example, a set. It then discusses two ways in which

significant gains in efficiency can be made by selective updating of structures, and gives

the relevant proof rules and hints for implementation. The examples show that a certain

range of applications in symbol manipulation can be efficiently programmed without

introducing the low-level concept of a reference into a high-level programming

language.

14.1 Introduction

In a language such as ALGOL 68 (van Wijngaarden 1969) PL/I (PL/I

Language Specifications) or Simula 67 (Birthwhistle et al. 1973) a central

role is played by the concept of a reference or pointer. In Simula 67 these

are used for data structuring and for dynamic storage allocation. In

ALGOL 68, they are also used in the treatment of ordinary variables, result

parameters, and in indirect addressing; and in PL/I they are also used for

value (‘dummy’) parameters, and even for buffered input/output. However,

there are many reasons to believe that the introduction of references into a

high-level language is a seriously retrograde step, for the following reasons.

(1) It reintroduces the same unpleasant confusion between addresses and

their contents which afflicts machine-code programmers.

(2) In ALGOL 68, confusion is doubly confounded by complex coercion

and balancing rules.

(3) In PL/I the explicit allocation and deallocation of storage afford

unbounded scope for complexity and error.

(4) The variables subject to change by a program statement are no longer

manifest from the form of the statement. For example, if a and y are

reference variables,

x:= y,

obviously changes the value of x, but a statement in ALGOL 68 like

x:= y + 1;

may change the value of a, or b, or any other variable of appropriate

type: One variable it cannot possibly change is x\

(5) It is possible to use a reference value pointing to an area of local

workspace which has been de-allocated. In PL/I this can cause disaster

without warning; in ALGOL 68 certain rather complex rules ensure that

the danger can sometimes (but not always) be averted by a compile-time

check. This is known as the problem of the ‘dangling reference’.

(6) In contrast to values of all normal types (integers, reals, arrays, strings,

RECURSIVE DATA STRUCTURES 219

files, etc.), the value of a reference can never be input to a program, nor

can it be output from it (except possibly in a total post mortem dump).

In fact, a reference has no independent meaning, and can be interpreted

only in terms of the entire machine state at a particular time in a
particular run of a particular program.

(7) The use of references reduces the efficiency of execution on machines

with instruction lookahead, data pre-fetch, pipelines, slave stores, or

paging systems, counteracting all these laudable attempts by hardware

to make a machine seem faster or larger than it really is.

(8) When data are to be held permanently or temporarily on backing store

(e.g., files on tape or disk), the use of references can create almost

insuperable difficulties to implementor, user, or both, especially when

the references point between one level of store and another.

(9) Proof methods for dealing with a language that permits general pointers

are significantly more complicated, in some cases, even when the
pointers are not used.

(10) The use of scan-mark garbage collection, especially with compaction,

introduces a large and uncontrollable overhead at unpredictable places

in the execution of the program, and reference counts can be even more
costly.

An early warning of some of the dangers of referencing may be found in
Hoare ([8]).

There appears to be a close analogy between references in data and jumps

in a program. A jump is a powerful multipurpose tool, present in the object

code produced by compilers for conventional machines. But it is also an

undisciplined feature, which can be used to create wide interfaces between

parts of a program which appear to be disjoint. That is why a high-level

programming language like ALGOL 60 has introduced a range of program

structures such as compound statements, conditional statements, while

statements, procedure statements, and recursion to replace many of the uses

of the machine-code jump. Indeed, perhaps the only remaining purpose of

the jump in a high-level language is to indicate irreparable breakdown in the

structure of a program. Similarly, if references have any role in data

structuring, it may be a purely destructive one.

It would therefore seem highly desirable to attempt to classify all those

special purposes to which references may be put, and to replace them in a

high-level language by several more structured principles and notations,

each of them avoiding at least some of the problems listed above. In this

task, it is encouraging that ALGOL 60 (Naur 1960) has already isolated

three such uses, namely parameters, variable-length arrays, and procedure

workspace. Furthermore, ALGOL (Chapter 3) and Pascal (Wirth 1971c)

have introduced references as representations of many-one relationships in

a relational network, and have done so in a manner which mitigates some of

220 ESSAYS IN COMPUTING SCIENCE

the disadvantages listed above. For certain kinds of graph manipulation

these are an excellent tool; the proposals expounded in this paper are not

intended to supplant them, but rather to suggest a simpler tool which is

more suitable when the graphs take the special form of trees.

One of the main reasons for using stored machine addresses is that the

amount of storage that will be required by an item of data is not known to

the compiler. In this paper we will consider a class of data structures for

which the amount of storage required can actually vary during the lifetime

of the data, and we will show that it can be satisfactorily accommodated in

a high-level language using solely high-level problem-oriented concepts, and

without the introduction of references.

14.2 Concepts and notations

The method of specifying the set of values of a data space by recursion has

long been familiar to modern logicians (Kleene 1952). For example, the

propositions treated in conventional propositional calculus may be defined

by the following four rules:

A1 All proposition letters are propositions.
A2 If p is a proposition, then so is —(p.
A3 If p and q are propositions, then so are (p A q) and (p v q).
A4 All propositions can be obtained from proposition letters by a finite

number of applications of the above rules.

When the set of propositions as defined above is treated as an object of

mathematical study, it is known as a generalized arithmetic, and an

additional axiom is postulated:

A5 Two propositions are equal only if they have been obtained by the

same rule from equal components.

Exactly the same idea is familiar to programmers in the use of the BNF

notation for the definition of programming language grammars. For

example, propositions could be defined:

< proposition>: := < proposition letter > |

—i < proposition > |

(< proposition > A < proposition >) |

(< proposition > A < proposition >) |

<proposition letter) ::= < letter>

Both these methods of defining data not only specify the abstract structure

of the data; they also state how any value can be represented as a linear

RECURSIVE DATA STRUCTURES 221

stream of characters, for example

(P A (—i-PV Q))

However, we wish to put aside issues of the external appearance of the

data, and concentrate on its abstract structural properties. This abstraction

is familiar to an algebraist (Cohn 1965), who calls the resulting data space a

word algebra on a given finite set of generators. A generator is a function

which maps its parameter(s) onto the larger structure of which they are

immediate components. A generator with no parameters is known as a

constant. In the case of propositions, four generators are required:

(1) prop: letter -> proposition', which converts any letter into a proposi¬
tion letter (logicians often use a different type font for this).

(2) neg: proposition -» proposition; which constructs the negation of its
argument.

(3) conj (Chapter 3) disj: proposition x proposition -► proposition; which

takes two arguments and whose result is their conjunction or disjunc¬
tion, repectively.

In symbol manipulation programs, it is common to deal with variables,

parameters, and functions whose values range over data spaces such as

logical propositions. In a language like Pascal, which permits and encour¬

ages the programmer to define and use his own data types, it seems

reasonable to permit him to use recursive definitions when necessary. A

possible notation for such a type definition was suggested by Knuth (1973);

it is a mixture of BNF (the | symbol) and the Pascal definition of a type by
enumeration, for example:

type proposition
= {prop{letter)\ neg{proposition)\

conj, disj {proposition, proposi¬
tion));

It is assumed that the type ‘letter’ is defined elsewhere, for example, as a

subrange of characters

type letter = ' A' .. ' Z'

The effect of this type definition is threefold: (1) it introduces the name of

the type; (2) it introduces the names of its generators; these must be unique

throughout the scope of the type; (3) it gives the number and type(s) of the

argument(s) of the generators (if any).

In more complicated examples, mutually recursive type definitions may

be required. Type definitions of this sort were suggested by McCarthy

(1963a).

A type is intended to be used to declare variables, parameters (and

222 ESSAYS IN COMPUTING SCIENCE

functions) ranging over the type, e.g.,

PI, P2:proposition',

and the generators can be used to define values of the type; e.g., the

sequence of instructions

PI := prop{' P');

P2:= neg{PJ);

P2:= disj(P2, prop('Q'));
P2\= conj(Pl, P2);

would leave as the value of P2 a proposition which would normally be

written

PA(—,PVQ))

In most languages with references and types, recursive type definitions

are permitted only if the recursive components of each structure are

declared as references. This seems to be a low-level machine-oriented

restriction; after all, we do not insist that recursive calls of a procedure

should be signalled by such special notations. It is true that a recursive data

structure which is held in a conventionally addressed main store will usually

be represented by means of machine addresses, but it seems a good idea that

the programmer should be encouraged to ignore the machine-oriented

details of the representation (just as he ignores details of the implementa¬

tion of integers and of recursive procedures), and should concentrate on the

more pleasant abstract properties of the structure. The implementor should

also have the freedom to use a different representation, for example, when

the data are held on a backing store. Thus the programmer may, if he

wishes, imagine a machine which allocates a fixed amount of space to hold

the current value of a variable of recursive type, and if it is called upon to fit

in a larger value, it adopts the same expedient that we do with pencil and

paper - it merely writes smaller!

In defining operations on a data structure, it is usually necessary to

enquire which of the various forms the structure takes, and what are its

components. For this, I propose an elegant notation which has been

suggested in Burstall 1969 and implemented as a ‘pattern-matching’ exten¬

sion of LISP (McBride et al. 1970). Consider, for example, a function

intended to count the number of A symbols contained in a proposition. Like

many functions operating on recursively defined data, it will be recursive:

(1) function andcount (p :proposition): integer,

(2) andcount := cases p of

(3) {prop{c) - + 0

(4) neg(q) andcount(q)

(5) conj{q, r) -> andcount(q) + andcount(r) + 1

(6) disj{q, r) - -* andcount(q) + andcount(r));

RECURSIVE DATA STRUCTURES 223

Line 1 declares andcount to be an integer-valued function of one proposi¬
tion, known as p in the body of the function.

Line 2 states that the result of andcount is assigned by computing the

following expression. This is a ‘case expression’ whose effect will
depend on the value of p.

Line 3 states that if the value of p is a proposition letter c, the result is
zero.

Line 4 states that it the value of p is a negation, let q be the negated

proposition and the result is found by computing the andcount of
q.

Line 5 states that if the value of p is a conjunction, let q and r be the

names of its components, and the result is one more than the sum
of the andcourits for q and r.

Note that the identifiers c, q, and r are like formal parameters: They are

declared by appearing in the parameter list to the left of the arrow, and their

scope is confined to the right-hand side of the arrow, only as far as the

vertical bar. Their types are determined by the types given in the declaration

of the corresponding generator, e.g., c is a letter, and q and r are

propositions. We shall insist, for the time being, that the programmer shall

not make assignments to these variables.

In this example the cases are listed in the same sequence as the generators

were declared; however, a programming language could permit the order to

be varied without danger of ambiguity.

The language features described above are capable of expressing all the

functional aspects of LISP, and many of the procedure aspects as well. For

example, the list structure of LISP S-expressions can be defined:

type list = (unit (identifier) \ cons (list, list))

where the type identifier is assumed to be defined elsewhere. The function

cons is defined as part of this declaration. The other LISP basic functions

can be programmed:

function car (/: list): list;

car:= cases / of (unit (id) -► error \

cons (left, right) -*■ left);

function cdr (/: list): list; ...similar...

function atom (/: list): Boolean;

atom:= cases / of (unit (any) -> true \ cons (x, y) -> false);

function equals (11,12): Boolean;

equals:- cases 11 of

(unit (idl) -► cases 12 of (unit (id2) -> idl - id2 \

cons (x, y) -> false)\

cons (xl, yl) cases 12 of (unit (id2) —► false \

cons (x2, y2) -> equals (xl,yl) A

equals (x2, y2)));

224 ESSAYS IN COMPUTING SCIENCE

Here, error is assumed to trigger the standard diagnostic mechanism. In

practice, the cases notation will often be found more convenient, clear, and

less prone to error than the functions car, cdr, and atom (although the

disadvantages of LISP can often be mitigated by good layout).

For example, the familiar append function may be written

function append (11,12: list): list;

append := cases 11 of

(unit (id) -> if id = NIL then 12 else error |

cons (first, rest) -► cons (first, append (rest, 12)));

Just as LISP can be embedded in any language which permits recursive

data structures, so can all recursive data structures be represented as LISP

lists, and processed by LISP functions. For example;

conj('P', disj(neg('P'), 'Q'))

can be represented (in S-expression form)

(CONJ P(DISJ(NEG P)Q))

An andcount function for propositions represented in this way would be

andcount := (atom(l) -+ 0,

car(l) = 'NEG -+ andcount(cadr(l)),

car(l)= 'CONJ-► andcount (cadr(l))

+ andcount (caddr(l)) + 1,
car(l)= 'DISJ -* andcount(cadr(l))

+ andcount (caddr(l)))\

Note that the arrows in this program are LISP conditionals.

This example illustrates some of the advantages of the type declaration
for recursive data structures:

(1) The check against the error of applying the function to a structure that

is not a proposition can be made more rigorous, and can occur at
compile time rather than run time.

(2) It is easier to check that all cases have been dealt with.

(3) The formal parameters seem to be more readable and perspicuous than
the abbreviations car, cadr, caddr, etc.

In the next section it will be shown how a compiler can sometimes take

advantage of the extra information supplied by a type declaration to secure

more compact representations and more efficient code than is usually
achieved in LISP.

To summarize the notation conventions introduced in this section, here

are the syntax specifications of recursive type declarations and case
expressions:

RECURSIVE DATA STRUCTURES 225

(type declaration) ::= type< type identifier) = (< generator list))

(generator list): := < generator) | < generator) < or symbol) < generator list)
< or symbol) \\= \ (i.e., vertical stroke)

(generator> ::= < generator identifier>] < generator identifier) (< type list))

(type list)::= (type) \ (type), (type list)

(case expression): := cases < expression) of (< case //$/>)

< awe //sf >: := < clause) | < ctfse clause) (or symbol) (case list)

(case clause): := <pattern) -> (expression)

(pattern) ::= < generator identifier) ((formal parameter list)) \

(generator identifier)

(formal parameter list) ::= (formal parameter)\

(formal parameter), (formal parameter list)
(formal parameter) (identifier)

14.3 Implementation

The normal method of representing a recursive data structure for processing

in the main store of a computer is as a tree, using machine addresses to link

the nodes, and a small integer, called a tag, in each node (or equivalently

with the address) to indicate which of the generators was used to define this

node. Each node contains as components the values of the arguments of the

generator, which may be themselves addresses of other nodes, or may be

just simple values.

For example, in the case of a proposition, the name of the generator is

represented by an integer between 0 and 3. If the node is a proposition letter

(tag 0), this will be followed immediately by a representation of the letter.

If it is a negation, the tag 1 is followed by the address of the negated

proposition. In the remaining two cases, the code 2 or 3 is followed by a pair

of locations, pointing to the components of the conjunction or disjunction.

Thus the value

(PAh^ffl)

as constructed above would be represented as in Fig. 14.1. Of course, this

example is untypically simple. A picture of a more realistic proposition

would explain why the programmer may prefer not to think in terms of

references.

On many machines it will be possible to pack the tag in with one of the

components of the node, or pack two addresses in a single word, thereby

saving a word of storage on that node. It can be seen that when nodes have

more than two components it is possible to use less space than the standard

LISP representation for the same information.

The call of a (nonconstant) generator involves the dynamic acquisition of

226 ESSAYS IN COMPUTING SCIENCE

Figure 14.1

a few words of contiguous main storage, and planting in them the values of

its simple parameters and the addresses of its recursive parameters. The

value returned by the generator is the address of the new node. There is no

need to make a fresh copy of the recursive components, since it is quite

permissible for two separate variables to ‘share’ the same components, as

was shown in Fig. 14.1, and more so in Fig. 14.2. It can be seen that PI has

value Ql\ (—|PV Q) and P2 and PS have the same value, P A (—|PV Q).

However, this shared use of storage is entirely invisible to the programmer,

who has no means of finding out whether it has occurred or not. The test of

equality on recursive data structures is like the EQUAL function of LISP

rather than the EQ primitive, in that it tests equality of content rather than

equality of address (although the obvious short cut should be taken when

the addresses are found to be equal). Furthermore, the prohibition on the

selective updating of components of a structure prevents the programmer

PI:

P2:

P3:

Figure 14.2

RECURSIVE DATA STRUCTURES 227

Figure 14.3

from changing a node on one tree and testing to see whether the change has

affected the other. The same restriction also prevents the establishment of
cyclic structures, such as that of Fig. 14.3.

Such a structure would appear to have the ‘infinite’ value

(PA(PA(PA-VQ))VQ)

and this would fail to satisfy the axiom of finite generation. Thus the

prohibition on selective updating seems to be a vital means of preserving the

integrity of recursive data structures, as well as permitting a more econom¬

ical ‘shared’ representation. The mathematical properties of structures with

cycles are explored in Scott (1971).

This shared subtree representation using addresses is not the only possible

representation of recursive data structures. If the structure is to be held on

backing store, it can be converted to a linear stream, replacing every address

by the stream representing the tree to which it points. In this representation,

the example P A (—(Pv Q) would appear

2 0 P 3 1 0 P 0 Q

This, of course, will require copies to be taken of all shared branches,

thereby usually occupying more space; but the elimination of addresses will

tend to compensate for this. Of course, on re-input of the structure, it

would be advisable to re-establish as much sharing as possible; before

acquiring a new node to accommodate given values, if a node containing

these values is already present in store, it can be used instead. Indeed, the

re-use of existing storage in this way may be adopted as a general policy,

which can be effective in certain kinds of application (for example, it makes

test of equality very cheap); in any case, it is entirely invisible as far as the

logic of the program is concerned. In a conventional non-associative store a

hashing technique is recommended for finding a node with given contents;

228 ESSAYS IN COMPUTING SCIENCE

hence in LISP it is known as ‘the hashing cons.' (Anderson 1973). It is also

used in SNOBOL (Chapter 3).

If sharing is.used, it is no longer possible to reclaim all the storage

allocated to a variable on exit from the block in which the variable was

declared, since its components may also be components of the value of

some variable global to that block. In order to reclaim storage when it runs

out (and it soon will), it is necessary to use a scan-mark garbage collector,

invented by McCarthy (1960) for this purpose. This will be more com¬

plicated than the standard LISP garbage collector, since it will have to deal

in blocks of different size, and it will have to know the type of each node

and the relative position of each address within it. In many applications, the

sizes of the nodes do not vary too wildly, so the problem of fragmentation

should not be significant, except in the case of arrays, which may be treated

separately. The cost per node of garbage collection should be no greater

than in LISP, and if nodes are larger than two components, some saving in

time may be possible.

The case expression can be compiled into highly efficient code. The value

being considered may be loaded into an index register. The tag is then used

to do an indexed jump leading to the portion of object code dealing with

that particular case. There is no need to check the range of the index; it

is logically impossible for it to be wrong! If there are more than two

alternatives, this could be more compact and efficient than a sequence of

tests. The left-hand side of the arrow generates no code at all. In compiling

the right-hand side, the formal parameters of this case can be accessed by

means of a single ‘reverse’ indexed instruction (Ross 1961) requiring a single

store access. In accessing the third or subsequent component of a node, this

will be more compact and efficient than the LISP use of cadr, caddr, etc.

With reasonable co-operation from the programmer, this implementation

would seem to offer a significant improvement on the efficiency of compiled

LISP, perhaps even a factor of two in space-time cost for suitable

applications. But even more significant may be the fact that normal

operations on numbers, characters, bits, etc., can be carried out with direct

machine code instructions, without a preliminary run-time type check, and

without any risk of obtaining absurdly wrong results. Of course, in an

interpretive implementation, this comparison does not hold, and LISP

retains certain advantages of simplicity and flexibility.

14.4 Axioms

The axioms for a recursive data type are closely modelled on the corres¬

ponding informal definition of the type as given in the axioms A1-A5 at the

beginning of Section 14.2. Note that the fourth axiom is expressed quite

RECURSIVE DATA STRUCTURES 229

informally; in its normal formalization it appears as a principle of

‘structural induction’ (Burstall 1969). Consider any predicate &(q), which

we wish to prove true of all propositions q, i.e., we wish to prove

Vg: proposition. &(q)

The principle of structural induction states that this can be established by

proving the theorem for all the ways in which a proposition q can be

generated, and furthermore in these proofs 8P may be assumed true of all

propositional components of q. This may be expressed in the proof rule:

A4' V: letter (prop (c))

Vp: proposition. rP(p) => &>(neg(p))

V/7, q: proposition. &>(p)A&>(q) =* &>(conj(p, q)) A & (disj(p, 4))

Vq: proposition. &(q)

The first three lines of this rule are the antecedents, and the last line is the
conclusion of the deduction.

The fifth axiom, dealing with equality, is most easily formalized by giving
axioms defining the meaning of the cases expression.

For propositions the axiom takes the form:

A5 cases prop(d) of (... |prop(c) -+ e | ...) = ecd

A cases neg(p) of (••• | neg(q) -+ e | •••) = eqp

A cases conj(p, q) of (••■ | conj(r, 5) -► e | •••) = e'p\sq

A cases disj(p, q) of (••• | disj(r, s) -> e | •••) = erp,sq

where exy means the expression formed from e by replacing all free

occurrences of the variable x by the expression y (with appropriate

modifications of bound variables when necessary).

The question now arises, are these axioms sufficiently powerful to prove

everything we need to know about recursive data structures? Of course, this

question is not precise enough to permit a definitive answer, but our

confidence in the power of the axioms can be established by showing their

close analogy with the Peano axioms for natural numbers, which have been

found adequate for all practical purposes of arithmetic. They, too, can be

defined as recursive data structures:

type NN = (zero, succ(NN));

and the cases notation permits the traditional method of defining recursive
functions; for example

function plus (m, n: NN): NN;

plus:= cases n of (zero -*■ m \ succ(p) -*■ succ(plus(m, /?)));

The axioms for natural numbers defined as a recursive data structure are

230 ESSAYS IN COMPUTING SCIENCE

as follows:

N1 Zero is an NN.

N2 If n is an 'NN, so is succ(n).

&(zero)

Vn: NN. &>(n) =» ^(succ(n))

Vn: NN. &(n)

N4 cases zero of (zero -> e | succ{n) -► /) = e

A cases succ(m) of (zero -> e | succ(n) -> /) = fnm

Axioms N1 and N2 are the same as Peano’s. Axiom N3 is the principle of

mathematical induction. From Axiom N4 we can readily prove the remain¬

ing two Peano axioms:

(1) succ(n) 5* zero.
Proof by contradiction: Assume succ(n) - zero. Hence

cases succ(n) of (zero -> true \ succ(n) -»• false)

- cases zero of (zero ->■ true | succ(n) —► false)

false = true (by Axiom N4)

(2) succ(m) - succ(n) => m = n.

Proof: Assume the antecedent, hence

cases succ(m) of (zero -*■ zero \ succ(m) m)

= cases succ(n) of (zero -*■ zero | succ(m) -> m)

mi” = rn”\ i.e. m = n (by Axiom N4)

It is worthy of note that when none of the generators have parameters,

the recursive data structure reduces to a PASCAL type definition by

enumeration, and the axioms still remain valid. For example, the Boolean

type may be defined by

type Boolean = (true | false);

and the axioms are as follows:

B1 True and false are Booleans.

B2 SP(true)

'T (false)

yb: Boolean. &>(b)

B3 cases true of (true -► e \ false f) = e

cases false of (true -*■ e \ false -► /) = /

If desired, the notation ‘if B then e else /’ may be regarded as an

abbreviation for ‘cases B of (true -*■ e | false “*•/).’

RECURSIVE DATA STRUCTURES 231

14.5 Classes

Many interesting and useful algebras are not word algebras - for example,

finite sets and finite mappings (e.g., sparse arrays). However, they can be

represented as subsets of a word algebra, consisting of elements satisfying

some additional property known as an invariant for that type. A type which

is a subset of word algebra will be called a class. In order to ensure that each

newly generated value of the type will actually satisfy the invariant, the

programmer must have the ability to specify (1) the initial value of any

declared variable of the class, and (2) the function(s) which are to be used to

generate all other values of the class. A programming language can dictate

(and its compiler can check) that the actual generators for the recursive class

are never used outside the bodies of these function(s). In this way, by

proving that the results of these functions satisfy the invariant (whenever

their parameters satisfy it), it is possible to guarantee that all values ever

generated will be within the desired subset. This idea was expounded in
Chapter 8.

As an example, consider the representation of a set of integers. For this

purpose we shall use a single-chained list of integers, which possesses the

additional invariant property of being sorted. Of course, a binary search

tree would be a more efficient representation in most cases. However, for

purposes of exposition, the chained list is a simpler representation; a binary

tree can be implemented by the same methods as an exercise by the

interested reader. The operations required for a set are (say) insertion of a

possibly new element, deletion of a possibly present element, and a test of

membership of a possible element. A suggested form for the class declara¬
tion is

(1) class intset C (empty \ list(intset, integer));

(2) begin function insertion (s: intset, i: integer): intset;

insertions cases 5 of

(empty -► list (empty, /)|

list (rest, j) -»if i= j then 5

else if i > j then list (insertion (rest, /), j)
else list(s, /'));

function deletion(s: intset, i: integer): intset;

deletions cases 5 of

(empty -► empty |

list (rest, j) -* if / = j then rest

else if 1 j then list(deletion

(rest, /), j)
else s);

232 ESSAYS IN COMPUTING SCIENCE

function has{s: intset, i: integer): intset;

has:= cases s of

.{empty -*■ false \

list {rest, j) -►if i = j then true

else if / > j then has{rest, i)

else false)',

(3) intset := empty

end intset;

Notes

(1) Introduces the class name intset, and delares that it will be a subset of

the recursive type with generators empty and list. The scope of these

generator names is confined to this class declaration.

(2) The body of the class declaration, as in Chapter 8, has the form of a

block, in which are declared those procedures and functions which are

to be used by the programmer on values of the class, namely the

functions insertion, deletion and has.

(3) The body of the block specifies the initial value of all declared

variables of the class. The name of the class itself is used for this

purpose.

It is the intention that a class can be used in the same way as a type, for

example:

declaration

(including initialization to empty): R, S: intset',

assignment: R:= insertion{S, 37)

S:= R; R:= deletion{R, 56);

test: if has{R, 37) then ...

As suggested in Chapter 8, the criterion of correctness of a class can be

expressed in terms of an invariant and an abstraction function.

The abstraction function 4 which maps each list onto the set which it

represents can be defined by recursion:

*4(/: intset) — df cases / of

{empty -> null set \

list{11, i) -► {/') U4{11));

and the invariant can be expressed

sorted{l: intset) = df cases / of

{empty —► true |

list{11, i) -► i= min{4(/)) A i£4{ll))

The criterion of correctness of the insertion function can now be formally

expressed in the notation of Chapter 8.

RECURSIVE DATA STRUCTURES 233

sorted(s)[body of insertion}sorted (insertion) A{insertion) — {/]U^(s)

Since insertion is a recursive function, the proof of this will require assump¬

tion of the correctness of the recursive call, namely ‘ insertion (rest, /)’. This
hypothesis may be expressed as

[sorted(rest) =>]sorted(insertion(rest, /))

A(insertion(rest, /)) = {i)U^(rest)

in which the antecedent is true for all intsets, and may be omitted. Using the

rule of assignment and distributing function application through the cases,
we obtain the following lemma:

sorted(s) => cases 5 of

(empty sorted (list (empty, /)) A ^ (list (empty, /))

= (/JlW(s) (1)

list (rest, j) if / = j then sorted(s) /\o&(s) = (/) LLe/(s) (2)

else if / > j then

sorted (list (insertion (rest, /), y)) (3)

A ^(list(insertion(rest, /), y))

= [/}U«V(j) (4)

else sorted (list (s, /)) /\ out (list (s, /))

= {/}Uj/(5)) (5)

Each case can be readily proved from the definition of and sorted; no

further inductions are required.

The proofs for deletion and has are rather similar.

14.6 Memo functions

In this section, we shall explore a particular case of selective updating of

components of a recursive data structure, which enables the programmer to

secure the advantages of the memo function advocated by Michie (1967)

Consider the old example of differentiation of symbolic expressions. The

simplest implementation is to define expressions as a type:

type expression = (constant(real)\ variable(identifier)\

minus (expression) \

sum, product, quotient (expression, expression))-,

234 ESSAYS IN COMPUTING SCIENCE

and define the derivative with respect to t as follows:

function dbydt{e\ expression): expression;
dbydt s cases e of

{constant{any) constant{0)|
variable{x) -»if x= 't' then constant (1)

else constant (0)
minus{u) -> minus{dbydt{u))\
sum{u, e) -» sum{dbydt{u), dbydt{v)) |
product{u, v) -► sum {product {u, dbydt{v)),

product{v, dbydt{u)))
quotient{u, v) -►

quotient {sum {dbydt {u)\
product {minus {e), dbydt{v))), p));

Using these declarations we may write:

position, speed, acceleration: expression;
positions quotient {constant^), variable{ 7'));
speed := dbydt {position)',
accelerations dbydt {speed).

But this implementation can involve heavy penalties in both space and
time:

(1) A large amount of space will be wasted in storing expressions of the
form

e + 0, ex l, exO, etc.

This may be mitigated by declaring expressions as a class, in which the
generation of such redundant expressions is inhibited, by the use of
programmed functions.

(2) If an expression is to be differentiated repeatedly with respect to
t, much time and space can be spent on recomputing the derivatives of
the subexpressions; this time could be saved if the previously computed
derivative were stored as a third component of each node representing a
sum, a product, or a quotient. The value of this component (known as a
memo component) starts off as ‘unknown’, but when the derivative of this
subexpression is computed, it is stored here; and if the derivative is required
again, the stored value is used instead of being recomputed.

For the sake of simplicity, in the following program the functions
perform only the most trival of simplifications. In a serious symbol
manipulation program, all these functions would be more complicated. The
algorithm is based on a program using references which was described in
Hoare ([11]).

RECURSIVE DATA STRUCTURES 235

class exptession C (variable (identifier)\ constant (real)\ mi (expression)\

su, pr, qu{expression, expression,

(unknown \ known (expression))));

(1) begin constant zero = constant (0), one = constant (1);

function sum (left, right: expression): expression;

sum'- if left = zero then right else if right = zero then left

else su(left, right, unknown);

function minus(e: expression): expression;

minus'.— cases e of (constant (x)constant (- x) \

(2) mi(f) f | else mi(e));

function product (left, right: expression): expression;

product:= if /e/if zero V right one then left

else if rz'g/z/ = zero V left = one then rz'g/z/1

else pr(left, right, unknown);

function quotient (left, right: expression): expression;

quotient:- if left = zero V r/'g/zz1 = o/ze then left

else qu(left, right, unknown);

function dbydt(e: expression): expression;
cases e of

(variable(x) -> dbydt:= if * = 7' then o/ze else zero |
constant (any) -> dbydt:= zero \

mi(u) -> dbydt:= minus(dbydt(u))\

su(u, v, deriv) -> cases deriv of

(known(f) -+ f\

unknown -> [dbydt:= sum(dbydt(u), dbydt(v));
(3,4) deriv := known (dbydt)})\

pr(u, v, deriv) -> cases deriv of

(known(f) -► /|
unknown ->

{dbydt:= sum (product(u, dbydt(v)),

product(v, dbydt(u)));
deriv := known(dbydt)))\

qu(u, v, deriv) -► cases deriv of

(known(f) -+ /|

unknown ->

{dbydt:= quotient (sum (dbydt(u),

product minus(e)dbydt(v)))v);

deriv := known(dbydt)}));
expression := ze/*o

end expression;

Notes

(1) The Pascal constant declaration can be used here to save space and time
and trouble.

236 ESSAYS IN COMPUTING SCIENCE

(2) It seems a convenience to write else to stand for all the cases not

explicitly mentioned.
(3) It is also convenient to use the name of a function as a variable inside its

body (except, of course, when it has actual parameters).

(4) The notation [} is used for begin end.

The correctness of this class obviously depends on the preservation of the

invariant that if e has the form su,pr, or qu, then its memo component

either contains the value unknown or known(dbydt(e)); or, more formally,

Vp, u, v, d\ expression, e = su(u, v, known(d)) V e = pr(u, v, known(d))

V e = qu(u, v, known(d)) => d= dbydt(e))

The proof of this invariant is wholly trivial.

More substantially, it will also be necessary to prove

dbydt(e) = de/dt

Note that the abstraction function for the class must not mention the memo

component. It is this that makes the existence of the third component

logically invisible to the user of the class, although one hopes that he notices

the gain in efficiency. Furthermore, the invariant which describes the value

of the memo component must not mention any variable subject to change

by the program.
It is noteworthy that the use of selective updating immediately permits

establishment of cyclic structures, but because of its logical invisibility, this

does not seem to matter. For example, after a series of assignments like

those shown earlier, a diagram of the stored structures will be as shown in

Fig. 14.4.
The use of memo components does not invalidate the sharing of subtrees,

again because of the invisibility of the updating. Indeed, its main benefits

are directly due to the preservation of sharing, and can be increased by

increasing the amount of sharing. If the memo function method is widely

used, it becomes very attractive to choose the ‘hashing’ technique of storage

allocation; for example, it would save two words of storage in Fig. 14.4.

However, in the use of this technique, it would be necessary to ignore the

contents of the memo component, so that if a newly generated expression

were identical to one in which the memo component was already known,

they would still be correctly identified, and the derivative of the newly

generated expression would be available ‘for free’. For this reason, it would

seem to be a good idea for a programming language to insist that a

programmer single out a memo component by a special form of declara¬

tion, say by prefixing it by the word memo. A similar method has been used

successfully in some large theorem-proving systems (Waldinger and Levitt,

1973).
The language feature defined here places on the programmer the respon-

RECURSIVE DATA STRUCTURES 237

Figure 14.4. Position = 3//. Speed = - position//= -3/t2.

Acceleration - <Uspeed) + (-speed) = 3Jr + 3/r = 6
t t t3

sibility for correct maintenance of a memo component, and it helps him in

this only by supplying an appropriate proof method. This has the advantage

that the programmer can readily control the nature and amount of

information to be memorized. For example, if partial derivatives are

required with respect to exactly three variables, three memo components

can be declared. If the identity of the controlled variable is not known in

advance, it can also be stored in a memo component, so that repeated

differentiation with respect to the same variable will always be efficient,

although when a different variable is used, the memory is overwritten. Or

the programmer can maintain a small list of such variable/value pairs,

choosing to ‘forget’ certain of them when the list gets too long. Finally, he

can choose which nodes will have memo components and which will not.

This gives the programmer much better control of efficiency in time and

238 ESSAYS IN COMPUTING SCIENCE

storage than the automatic technique suggested in Michie (1967), although

at a cost of requiring correct programming. Since run-time efficiency is the

sole objective ofithe memo technique, perhaps this is not too high a price.

The implementation of this memo technique perhaps constitutes one of

the better-disciplined uses of the controversial LISP functions RPLACA
and RPLACD (Anderson 1973).

14.7 Nonshared representations

In the previous sections we have given examples for which an implementa¬

tion using shared substructures would give significant savings in storage

space and time. However, the use of automatic storage sharing has some

significant penalties which will be particularly acute in cases where little

advantage can be taken of sharing:

(1) When the result of a function is the same as its argument except at a

single node, a new copy must be made of that node and all nodes

through which it was accessed.

(2) Storage which goes out of use, either because of updating or because of

block exit, cannot be immediately reclaimed for other uses.

(3) The programmer tends to lose control of the efficiency of use of one of

his most precious assets, main storage.

(4) The programmer has no control over addressing vagrancy, which is

necessary for successful use of paging systems or backing stores.

(5) The time spent in scan-mark garbage collection can be the heaviest

single cost in the execution of an efficiently compiled program.

Some of these disadvantages could be mitigated by a run-time reference

count, which can distinguish between shared and nonshared nodes. How¬

ever, the storage and continual testing and updating of reference counts can

involve even worse overheads. '

Consider, for example, a program operating on intsets (as defined in

Section 14.5) which only ever needs one such set; or if it needs several, it

only ever updates the sets by assignments of the form

5/:= insertion(Sl, 57);

or 52:= de/etion{S2, 93);

and never performs a ‘cross-assignment’ of the form

SI := 52;

or 52:= insertion {SI ,51).

In such a program, the two sets would never in practice come to share any

subcomponent. Even if the program did make an occasional cross-

RECURSIVE DATA STRUCTURES 239

assignment, the sharing patterns would be dissipated rapidly by subsequent
updating of either set.

If it is known that there is no sharing, the programmer can minimize

penalty (1) by selective updating of components of his structure through

procedures operating directly upon the structure, rather than functions

producing potentially large structured values. As suggested in Chapter 8, we
shall declare procedures local to the class:

procedure insert (i: integer);

procedure remove (/: integer);

These procedures are regarded as being ‘components’ of every variable of

the class, and can be invoked by naming the variable followed by the
procedure call (separated by a dot):

57 .insert (57);

S2. remove (93)\

which are intended to be equivalent to the updating assignments

57:= insertion(Sl, 57);

52:= de/etion(S2, 93).

As in Chapter 8, the bodies of these procedures are permitted to update the

components of the structure to which they are local, but any other access or
updating should be prohibited.

Penalty (2) can be avoided by reclaiming all space allocated to a variable

of recursive type on exit from the block to which it is local, or on

overwriting its previous value by assignment. This will involve searching

down all chains of pointers that are accessible from the variable, in a

manner similar to the scan phase of a conventional garbage collector.

On a paged machine, which offers a large virtual address space, there is

an even easier and more effective method for dealing with block exit. On

declaration of a variable of recursive type, a certain proportion of the

remaining virtual address space is allocated to that variable on the stack.

Any actual storage required by that variable as it grows will be allocated

from that virtual area. On exit from the block the normal contraction of the

stack will recover the virtual addresses, and the actual storage allocated will

disappear automatically.

Penalty (3) is overcome because the amount of storage used is exactly

equal at all times to the amount required to represent the structure which

the programmer has himself built up.

Penalty (4) is mitigated by the storage allocation strategy described

above, whereby all storage allocated to a given structure will be contiguous,

and so the following of chains of pointers within the same structure (the

usual case) will not require excessive numbers of pages in main store.

Penalty (5) is reduced, since marking and collecting are avoided, and time

240 ESSAYS IN COMPUTING SCIENCE

taken to recover storage is proportional to the amount of storage recovered.

This time can be further reduced by compiling the code for scanning each

type of structure directly from the type declaration. Furthermore, on a

paged machine, the overhead on block exit is zero.

In writing procedures to operate on a recursive data structure, it is

sometimes necessary to refer to the anonymous variable to which the

procedure is currently being applied. For this purpose, we borrow a

notation from Simula 67, which uses the form

this classname

where classname is the name of the class. The class declaration for a

procedural version of intset might be written as follows:

class intset C (empty \ list(intset, integer)); comment intset is represented

as a subset of this word

algebra

begin procedure insert(i: integer);

cases this intset of

(empty -> this intset := list (empty, /)|

list (rest, j) —> if / > j then rest, insert (i)

else if j < i then this intset := list (this intset, /)); (i)

procedure remove(i: integer);

cases this intset of

(empty -> do nothing |

list (rest, j) -> if / = j then this intset := rest

else if / > j then rest.delete(i)); (ii)

function has(i: integer): Boolean;

cases this interest of

(empty -> has:= false \

list (rest, j) -►if / = j then has:= true

else if / j then has.'— rest.has(i)

else has:= false);

this intset:= empty

end intset.

In principle, to prevent accidental introduction of sharing, it is necessary

to make a fresh copy of every actual parameter to a generator; for example

on the line marked (i) above,

list (this intset, i)

should cause a fresh copy of this intset to be made, and its address to be

planted as the first component of the new link. Then the address of the new

link is assigned back to this intset, thereby triggering a garbage collection

scan of the overwritten value. But this would be atrociously inefficient. We

must therefore postulate a compiler which can detect the fact that the

RECURSIVE DATA STRUCTURES 241

variable occurs exactly once on each side of the assignment, and therefore

that the copying and the garbage collection can both be inhibited.

A similar optimization is also needed on the line marked (ii), where a

component value is being assigned. In this case, a compiler could detect that

only a single link of the chain becomes free as the result of the assignment,

and can plant in the object code an explicit instruction to return this link

only to the free list. These two optimizations are effectively a compile-time

garbage collection by reference count (Darlington and Burstall 1973).

A final optimization is to note that the recursive calls of the three

procedures all occur at the end of the execution of the bodies, and that the

recursion can therefore be replaced by an iteration, which includes appro¬

priate updating of the parameters (including the parameter before the dot).

After these optimizations are made, the program for the body of the
procedure insert might be expressed as follows:

begin ptr: ref intset;

ptr\= address of (this intset);

repeat: cases ptr of

(empty -> {store[ptr] := list (empty, /); goto exit}\

list (rest J) -► if i > j then

[ptr:= address of (rest); goto repeat}

else if j < i then {store[ptr\ := list(store[ptr], /);

goto exit});
exit: end insert;

Here, ptr points to the address of the intset variable which is to be updated,

and store[ptr] is the contents of the address. (The reader will undoubtedly

be confused by the fact that these contents will usually also be an address.)

This type of pointer has quite a different purpose from the pointers that are

used to glue together the components of a recursive data structure.

However, the notations introduced above to express this new purpose are as

inelegant as the jumps which have crept into the program, and I would not

recommend them for a high-level language, in spite of the fact that the

optimized program may be orders of magnitude more efficient.

The importance of avoiding copying suggests the introduction of a

multiple assignment statement, of the form

(a, b, c):= (e,f, g);

which assigns to variables a,b,c the values of the expressions e,fg,

respectively, the assignments all taking place after evaluation of the

expressions. Now if the left-hand variables are pointers, each of which

occurs only once (in whole or in part) on the right-hand side, all copying

and run-time garbage collection can be inhibited. A special case of this is the

form
(a, b):= (b, a);

242 ESSAYS IN COMPUTING SCIENCE

which can be implemented as a simple exchange of pointers, and perhaps

deserves a special notation:

a:= b;

All the optimizations described above (and more) have been implemented

in a system which automatically improves programs (Darlington and

Burstall 1973). In fact, even the transition between the functional and the

procedure form has been automated. However, there are some disadvan¬

tages in placing such heavy reliance on optimization. For example, an

apparently small change to the program (e.g., moving a statement from

before to after a recursive procedure call) may have a totally dispropor¬

tionate effect on efficiency. Thus, either the programmer has to understand

the optimization algorithm, or he will lose control and responsibility for the

efficiency of his program. This is particularly serious when efficiency is the

main reason for introducing selective updating anyway. Finally, an optimiz¬

ing compiler is often large, slow, unreliable, and late.

An ideal solution would be to find an elegant and convenient notational

convention to express the three special cases which are susceptible to

optimization, and then encourage the programmer to use them. But I have

not been able to find an acceptable proposal.

A second solution is to design a low-level language capable of expressing

the optimized versions, and to use an optimizer to translate between the two

levels, and output the result in the lower-level language for the inspection

and/or approval of the original programmer. But this is rather too

reminiscent of the assembly code output by current FORTRAN translators.

Meanwhile, the only solution (certainly when none of the ideas has been

embodied in an implemented programming language) is to use the abstrac¬

tions as an aid to reliable program design and documentation (and even

proof). The programmer can then manually translate his abstract program

into some lower-level language with explicit pointers, using systematic

correctness-preserving techniques. This is, of course, the method recom¬

mended in structured programming (Dijkstra 1972c).

14.8 Conclusion

This paper has described a number of old programming techniques and new

notations to express them. The notations are intended to be suitable as the

basis of a special-purpose language for symbol manipulation, or as an

extension to a high-level, general-purpose language like ALGOL 60 or

Pascal. The objective has been to isolate a number of useful and efficient

simple cases of the use of references, which are susceptible to simple proof

techniques, and to formalize the syntactic conventions that guarantee their

RECURSIVE DATA STRUCTURES 243

validity. There still remains an unsolved problem connected with achieve¬
ment of the highest efficiency in elective updating.

A referee has kindly pointed out that the language features proposed here

avoid some of the additional problems which have introduced complexity
into the definition, implementation, and use of ALGOL 68:

(1) The alternative generators provide a facility analogous to the UNION

of modes in ALGOL 68; however, each alternative has an explicit

name, and the compiler does not have to rely on context to determine

which alternative is being created. Thus there is no need for the

ALGOL 68 restrictions on ‘related modes’.

(2) The case approach to discrimination permits an efficient implementa¬

tion with a small integer tag. The conformity clause of ALGOL 68,

which provides the analogous facility, allows any two values to be

compared for mode, thereby requiring a unique global integer to be

allocated to each mode, and stored with each instance of that mode.

(3) In the current proposal, the question whether two separate but similar

declarations declare the ‘same’ type is wholly irrelevant to the language

and to the programs expressed in it. After all, no one enquires whether

two separate but similar procedure declarations declare the ‘same’

procedure. However, in ALGOL 68 this is a serious and complicated
question.

14.9 Acknowledgements

I am grateful to D. B. Anderson, H. J. Enea, M. Sintzoff, and the referees

for helpful comments on previous drafts of this paper.

FIFTEEN

Parallel programming: an
axiomatic approach

The aspiration to extend the axiomatic approach to parallel programming was
already present in drafts of Chapter 4; some axioms are given in [22]. This
chapter presents a more extensive set than there. It also provides a key link
between Hoare’s attempts to find ways of constraining shared-variable
parallelism and his adoption of communication-based parallelism. Apart
from a number of interesting insights, this paper presents a shared-variable
parallel program for the prime number sieve (cf. Chapter 9). This problem has
also become a classic which has stimulated other researchers including Jones
(1983).

The paper was submitted in April 1974, revised in June of the same year and
published ([52]) in 1975.

Abstract

This paper develops some ideas expounded in (Hoare [22]. It distinguishes a
number of ways of using parallelism, including disjoint processes, competi¬
tion, co-operation, and communication. In each case an axiomatic proof rule
is given.

15.1 Introduction

A previous paper (Hoare [22]) summarizes the objectives and criteria

for the design of a parallel programming feature for a high-level

programming language. It gives an axiomatic proof rule which is suitable

for disjoint and competing processes, but seems to be inadequate for

co-operating processes. Its proposal of the ‘conditional critical region’ also

C. A. R. Hoare, Parallel programming: an axiomatic approach, Reprinted with permission
from: Computer Languages, 1 (2), 151-60 (1975). Copyright ©1975, Pergamon Journals Ltd.

245

246 ESSAYS IN COMPUTING SCIENCE

seems to be inferior to the more structured concept of the class (Chapter 8)

or monitor (Hoare ([42]); Brinch Hansen 1973). This paper introduces a

slightly stronger proof rule, suitable for co-operating and even communi¬

cating processes. It suggests that the declaration is a better way of dealing

with competition than the resource.

15.2 Concepts and notations

We shall use the notation ([22])

Qi || Qi

to denote a parallel program consisting of two processes Q\ and Qi which

are intended to be executed ‘in parallel’. The program Q\ || Q2 is defined to

terminate only if and when both Q\ and Qi have terminated.

The notation

P{Q) R

asserts that if a propositional formula P is true of the program variables

before starting execution of the program statement Q, then the proposi¬

tional formula R will be true on termination of 0, if it ever terminates. If

not, P {Q} R is vacuously true.

The notation

Q1 ^ 02

asserts that the program statements Q\ and Qi have identical effects under

all circumstances on all program variables, provided that Q\ terminates.

The notation Q\ = O2 means Q\ Q2 A Q2 <= Q\, i.e., if either of them

terminates, so does the other, and then they have identical effects. The

theory and logic of the c relation are taken from Scott (1970).

The notation

AB

C

denotes a proof rule which permits the deduction of C whenever theorems

of the form A and B have been deduced.

The notations for assignment (x:= e) and composition of statements

(Qu Qi) have the same meaning as in ALGOL 60, but side-effects of

function evaluation are excluded.

As examples of proof rules whose validity follows fairly directly from

PARALLEL PROGRAMMING: AN AXIOMATIC APPROACH 247

these definitions we give:

P\Qi}S S{Q2 }R

PiQuQi} R
(Rule of Composition)

Qi <= C?2 P{Qi] R

P I0i) R
(Rule of Containment)

We will use the word process to denote a part of a program intended to be

executed in parallel with some other part; and use the phrase parallel

program to denote a program which contains or consists of two or more

processes. In this paper we will talk in terms of only two processes;

however, all results generalize readily to more than two.

15.3 Disjoint processes

Our initial method of investigation will be to enquire under what circum¬

stances the execution of the parallel program Qx || Q2 can be guaranteed to

be equivalent to the sequential program Qx\ Q2. Preferably these circum¬

stances should be checkable by a purely syntactic method, so that the checks

can be carried out by a compiler for a high-level language.

The most obvious case where parallel and serial execution are equivalent

is when two processes operate on disjoint data spaces, in the same way as

jobs submitted by separate users to a multiprogramming system. Within a

single program, it is permissible to allow each process to access values of

common data, provided none of them update them. In order to ensure that

this can be checked at compile time, it is necessary to design a language with

the decent property that the set of variables subject to change in any part

of the program is determinable merely by scanning that part. Of course,

assignment to a component of a structured variable must be regarded as

changing the whole variable, and variables assigned in conditionals are

regarded as changed, whether that branch of the conditional is executed or

not.

Given a suitable syntactic definition of disjointness, we can formulate the

proof rule for parallel programs in the same way as that for sequential ones:

P{QX}S S{Q2] R

P{Q\ II Qi)R
(Asymmetric Parallel Rule)

provided that Q\ and Q2 are disjoint.

The proof of this (if proof it needs) may be based on the commutativity

of the basic units of action performed in the execution of Qx and Q2.

Consider an arbitrary assignment xx:= ex contained in Qx and an arbitrary

assignment x2:= e2 contained in Q2. Since Q\ and Q2 are disjoint, e2 does

248 ESSAYS IN COMPUTING SCIENCE

not contain x\ and ex does not contain x2. The values of expressions are

independent of the values of the variables they do not contain, and

consequently they are unaffected by assignment to those variables. It

follows that:

(*i := eu y2:= e2) = (x2:= e2; x\ := <?i),

i.e., these two assignment statements commute.

Consider now any interleaving of units of action of Q\ and Q2. If any

action of Q2 precedes any action of Qi, the commutativity principle

(together with substitution of equivalents) may be used to change their

order, without changing the total effect. Provided both Q\ and Q2

terminate, this interchange may be repeated until all actions of Q1 precede

all actions of Q2. But this extreme case is just the effect of executing the

whole of Q\ followed by the whole of Q2. If one or both of Q\ and Q2 fails

to terminate, then both Qx\ Q2 and Q\ || Q2 equally fail to terminate.

Thus we have proved that

Q\ II Qi — Qu Q2

and consequently their correctness may be proved by the same proof rule.

Of course, this justification is still very informal, since it is based on the

assumption that parallel execution is equivalent to an arbitrary interleaving

of ‘units of action’. It assumes, for example, that two ‘simultaneous’

accesses of the same variable will not interfere with each other, as they

might if one access got hold of half the variable and the other got hold of

the other half. Such ridiculous effects are in practice excluded by the

hardware of the computer or store. On a multiprocessor installation the

design of the store module ensures that two accesses to the same (in

practice, even neighbouring) variables will exclude each other in time, so

that even if requests arrive ‘simultaneously’, one of them will be completed

before the other starts. This concept of exclusion, together with commu¬

tativity, will assume greater importance in what follows.

In [22] the proof rule for disjoint processes was given in the more

symmetric form:

P\ [Ql] R1 P2 {Q2} R2 /c, . n 1 r» 1 \
——---—- (Symmetric Parallel Rule)

Pl^P2{Ql\\Q2] Ri^R2

provided that P1, Qi, R1 are disjoint from P2, Q2, R2. This proof rule may

be simpler to use for systematic or automatic program construction than the

asymmetric rule given above, in cases where the desired result of a program

is of the form RXAR2, and the program is not intended to change any

variable common to R1 and R2. The symmetric form of the rule can be

derived from the asymmetric form, by showing that every proof using the

former could also have the latter. Assume P\ [Q\] Rx and P2 {Q2} R2 have

been proved. The disjointness of R1 and Q2 and the disjointness of P2 and

PARALLEL PROGRAMMING: AN AXIOMATIC APPROACH 249

Q\ ensure the truth of P2 {Qx} P2 and R{ [Q2\ /?,; hence

PxAP2 {Qi} RxAPi

and

Ri a P2 [Q2} RiAR2.

One application of the asymmetric parallel rule gives

P\ A P2 [Q\ || Q2} Ri A R2

which is the same conclusion as the symmetric rule.

In [22] it was shown that disjoint parallelism permits the programmer

to specify an overlap between input/output operations and computation,

which is probably the main benefit which parallelism can offer the applica¬

tions programmer. In contrast to other language proposals, it does so in a

secure way, giving the user absolute compile-time protection against time-
dependent errors.

15.4 Competing processes

We shall now explore a number of reasons why the rule of disjointness may

be found unacceptably restrictive, and show in each case how the restriction
can be safely overcome.

One important reason may be that the two processes each require

occasional access to some limited resource such as a line printer or an

on-line device for communication with the programmer or user. In fact,

even main store for temporary working variables may be a limited resource,

since each word of main store can be allocated as local workspace to only

one process at a time, but may be re-allocated (when that process has

finished with it) to some other process that needs it.

The normal mechanism in a sequential programming language for

making a temporary claim on storage during execution of a block of

program is the declaration. One of the great advantages of the declaration is

that the scope of use of a variable is made manifest to the reader and writer;

and furthermore, the compiler can make a compile-time check that the

variable is never used at a time when it is not allocated. This suggests that

the declaration would be a very suitable notation by which a parallel process

may express the acquisition and relinquishment of other resources, such as

line printers. After all, a line printer may be regarded as a data structure

(largely implemented in hardware) on which certain operations (e.g. print a

line) are defined to be available to the programmer. More accurately, the

concept of a line printer may be regarded as a type or class of variable, new

instances of which can be ‘created’ (i.e. claimed) and named by means of

250 ESSAYS IN COMPUTING SCIENCE

declaration, e.g., using the notation of Pascal (Wirth 1971c):

begin managementreport: lineprinter;... .

The individual operations on this variable may be denoted by the notations

of Chapter 8:

managementreport. output (itemline);

which is called from within the block in which the managementreport is

declared, and which has the effect of outputting the value of itemline to the

line printer allocated to managementreport.

This proposal has a number of related advantages:

(1) The normal scope rules ensure that no programmer will use a resource

without claiming it,

(2) or forget to release it when he has finished with it.

(3) The same proof rule for declarations (given in Hoare [17]) may be used

for parallel processes.

(4) The programmer may abstract from the number of items of resource

actually available.

(5) If the implementer has available several disjoint items of a resource (e.g.

two line printers), they may be allocated simultaneously to several

processes within the same program.

These last three advantages are not achieved by the proposal in [22],

There are also two disadvantages:

(1) Resource constraints may cause deadlock, which an implementation

should try to avoid by compile-time and/or run-time techniques ([22],

Dijkstra 1968b). This proposal gives no means by which a programmer

can assist in this.

(2) The scope rules for blocks ensure that resources are released in exactly

the reverse order to that in which they are acquired. It is sometimes

possible to secure greater efficiency by relaxing this constraint.

Both these disadvantages may reduce the amount of parallelism achiev¬

able in circumstances where the demand on resources is close to the limit of

their availability. But of course they can never affect the logical correctness

of the programs.

It is noteworthy that the validity of sharing a resource between two

processes, provided that they are not using it at the same time, also depends

on the principle of commutativity of units of action. In this case, the entire

block within which a resource is claimed and used must be regarded as a

single unit of action, and must not be interleaved with execution of any

other block to which the same resource is allocated. The programmer

presumably does not mind which of these two blocks is executed first; for

PARALLEL PROGRAMMING: AN AXIOMATIC APPROACH 251

example, he does not mind which of the two files is output first on the line

printer, because he is interested in them only after they have been separated

by the operator. Thus as far as he is concerned, the two blocks commute as

units of action; of course, he could not tolerate arbitrary interleaving of
lines from the two files.

15*5 Co-operating processes

Hitherto, parallel programming has been confined to disjoint and compet¬

ing processes, which can be guaranteed by a compile-time check to operate

on disjoint data spaces. The reason for insisting on disjointness is that this

is an easy way for the compiler to check that the units of action of each

process will commute. In the next two sections we shall investigate the

effects of relaxing this restriction, at the cost of placing upon the program¬

mer the responsibility of proving that the units of action commute.

Processes which update one or more common variables by commutative
operations are said to co-operate.

One consequence of the commutativity requirement is that neither

process can access the value of the shared variable, because this value will in

general depend on whether it is taken before or after updating by the other

process. Furthermore, updating of a shared variable must be regarded as a

single unit of action, which occurs either wholly before or wholly after any

other such updating. For these reasons, the use of normal assignment for

updating a variable seems a bit misleading, and it seems better to introduce

the kind of notation used in Hoare ([30]), for example:

n:+ 1 in place of n:=n+ 1.

One useful commutative operation which may be invoked on a shared set

is that which adds members to that set, i.e. set union:

x: U t (i.e. s:= s U /),

since evidently 5:U/;s:Uf =5:U/'; s: U z1 for all values of t and t'. A

similar commutative operation is set subtraction, which removes any

elements of t from x:

v:- t.

As an example of the use of this, consider the prime-finding algorithm

known as the sieve of Eratosthenes. An abstract parallel version of this

252 ESSAYS IN COMPUTING SCIENCE

algorithm may be written using traditional set notations:

sieve:- {/1 2 ^ ^ TV};

pi := 2; /?2:= 3;

while pi2 ^ AT do
begin {remove multiples of (/?/)||remove multiples of (p2)];

if p22 < N then pi := min{i | / > p2 A / 6 v/cve]

else pi := p2;

if pi2 < N then p2:= m/>?{/1 / > pi A / 6 s/Tve]

end;

The validity of the parallelism can be assured if the only operation on the

sieve performed by the re-entrant procedure ‘remove multiples of (/?)’ is set

subtraction:

procedure remove multiples of {p: 2..TV);

begin /: 2..TV;

for /:= p2 step p until TV do sieve:- {/}

end;

Of course, when a variable is a large data structure, as in the example

given above, the apparently atomic operations upon it may in practice

require many actual atomic machine operations. In this case an implemen¬

tation must ensure that these machine operations are not interleaved with

some other operation on that same variable. A part of a program which

must not be interleaved with itself or with some other part is known as

a critical region (Dijkstra 1968b). The notational structure suggested in

Chapter 8 seems to be a good one for specifying updating operations on

variables, whether they are shared or not; and the proof rules in the two

cases are identical. The need to set up an exclusion mechanism for a shared

variable supports the suggestion of Brinch Hansen (1973) that the possibil¬

ity of sharing should be mentioned when the variable is declared.

It is worthy of note that the validity of a parallel algorithm depends only

on the fact that the abstract operations on the structured variable commute.

The actual effects on the concrete representation of that variable may

possibly depend on the order of execution, and therefore be non-

deterministic. In some sense, the operation of separating two files of

line-printer paper is an abstraction function, i.e., a many-one function

mapping an ordered pair onto a set. Abstraction may prove to be a very

important method of controlling the complexity of parallel algorithms.

In [22] it was suggested that operations on a shared variable 5 should be
expressed by the notation

with v do Q,

where Q was to be implemented as a critical region, so that its execution

would exclude in time the execution of any other critical region with the

PARALLEL PROGRAMMING: AN AXIOMATIC APPROACH 253

same variable 5. But the present proposal is distinctly superior:

(1) It uses the same notations and proof rules as sequential programs.

(2) It recognizes the important role of abstraction.

(3) The intended effect of the operation as a unit of action is made more
explicit by the notation.

(4) The scope rules make deadlock logically impossible.

Finally, the proof rule given in [22] is quite inadequate to prove co¬

operation in achieving any goal (other than preservation of an invariant,
which was true to start with!).

A useful special case of co-operation between parallel processes which

satisfies the commutativity principle is the use of the ‘memo function’

suggested by Michie (1967). Suppose there are certain values which may or

may not be needed by either or both processes, and each value requires

some lengthy calculation to determine. It would be wasteful to compute

all the values in advance, because it is not known in advance which of them

will be needed. However, if the calculation is invoked from one of the

co-operating processes, it would be wasteful to throw the result away,

because it might well be needed by the other process. Consequently, it may

pay to allocate a variable (e.g. an array A) in advance to hold the values

in question, and set it initially to some null value. The function which

computes the desired result is now adapted to first look at the relevant

element of A. If this is not null, the function immediately returns the value

it finds without further computation. If not, the function computes the

result and stores it in the variable. The proof of the correctness of such a

technique is based on the invariance of some such assertion as:

Vi(A[i] A null => A[i] = /(/)),

where A is the array (possibly sparse) in which the results are stored, and /

is the desired function. The updating of the array A must be a single unit of

action; the calculation of the function / may, of course, be re-entrant.

15.6 Communicating programs

The commutativity principle, which lies at the basis of the treatment of the

preceding sections, effectively precludes all possibility of communication

between processes, for the following reason. The method that was used in

Section 15.3 to prove

Qi II Qi — Qu Qi

Q\ II Qi = Qi || Qi.

can also be used to prove

254 ESSAYS IN COMPUTING SCIENCE

It follows that a legitimate implementation of ‘parallelism’ would be to

execute the whole of Q\ and then the whole of Qz, or to do exactly the

reverse. But if there were any communication between Q\ and Qz, this

would not be possible, since it would violate the commonsense principle

that a communication cannot be received before it has been sent.

In order to permit communication between Q\ and Qz it is necessary to

relax the principle of commutativity in such a way that complete execution

of Qz before starting Q\ is no longer possible. Consider an arbitrary unit of

action q\ of Q\, and an arbitrary unit of action qz of Qz. We say that q\ and

qz semicommute if:

qz', q 1 ^ qu Qi-

If all q\ and qz semicommute, we say that Q\ and Qz are communicating

processes, and that Qi is the producer process, and Qz is the consumer

(Dijkstra 1968b).

The effect of semicommutivity is that some interleavings of units of

action may be undefined; but moving actions of Qz after actions of Q\ will

never give a different result or make the interleaving less well-defined;

consequently the execution of the whole of Q\ before starting Qz is still a

feasible implementation, in fact the one that is most defined:

Q\ II Qi ^ Qu Qi-

Thus it is still justified to use the same proof rule for parallel as for

sequential programs.

If assertional proof methods are used to define a programming-language

feature, it is reasonable to place upon an implementor the injunction to

bring a program to a successful conclusion whenever it is logically feasible

to do so (or there is a good engineering reason not to, e.g., integer

overflow). Of course it is not logically possible to terminate a program of

which false is provably true on termination. In the case of communicating

programs, termination can be achieved by simply delaying an action of Qz
where necessary until Q\ has performed such actions as make it defined,

which will always occur provided Q\, Qz terminates.

The paradigm cases of semicommutative operations are input and output

of items to a sequence. Output of an item a to sequence 5 will be denoted:

s.output(x);

it is equivalent to

xn<x>;

where 0 is the symbol of concatenation, and <x> is the sequence whose only

item is x. This operation appends the item x to the end of the sequence and

is always defined. Input of the first item from a sequence 5 to the variable y

PARALLEL PROGRAMMING: AN AXIOMATIC APPROACH 255

will be denoted:

s .input (y)

which is equivalent to a unit of action consisting of two operations:

y:= first(s); s:= rest(s);

where first maps a sequence onto its first item and rest maps a sequence

onto a shorter sequence, namely the sequence with its first item removed.

The removal of an item from an empty sequence is obviously undefined; on

a non-empty sequence it is always defined. A sequence to which an item has
just been output is never empty. Hence

s. input (y); s.output(x) c= s.output(x); s.input(y)

i.e., these operations semicommute. Consequently a sequence may be used

to communicate between two processes, provided that the first performs

only output and the second performs only input. If the second process tries

to input too much, their parallel execution does not terminate, but neither

does their sequential execution. Processes communicating by means of a

sequence were called coroutines by Conway (1963), who pointed out the

equivalence between sequential and parallel execution.

In practice, for reasons of economy, the potentially infinite sequence used

for communication is often replaced by a bounded buffer, with sufficient

space to accommodate only a few items. In this case, the operation of

output will have to be delayed when the buffer is full, until input has created

space for a new item. Furthermore, the program may fail to terminate if the

number of items output exceeds the the number of items input by more than

the size of the buffer. And finally, since either process may have to wait for

the other, purely sequential execution is in general no longer possible,

because it does not terminate if the total length of the output sequence is

larger than the buffer (which it usually is). Thus the parallel program is

actually more defined than the corresponding sequential one, which may

seem to invalidate our proof methods.

The solution to this problem is to consider the relationship between the

abstract program using an unbounded sequence and the concrete program

using a bounded buffer representation for the sequence. In this case, the

concrete program is the same as the abstract one in all respects except that it

contains an operation of concrete output (to the buffer) whenever the

abstract program contains abstract output (to the sequence), and similarly

for input. Concrete output always has the same effect as abstract output

when it is defined, but is sometimes undefined (when the buffer is full), i.e.:

concrete output c abstract output.

The replacement of an operation by a less well-defined one can never change

the result of a program (by the principle of continuity (Scott 1970)), so the

256 ESSAYS IN COMPUTING SCIENCE

concrete program is still contained in the abstract one

concrete <= abstract.

This justifies the use of the same proof rule for the concrete as for the

abstract program. The abstract sequence plays the role of the ‘mythical’

variables used by Clint (1973); here again, abstraction proves to be a vital

programming tool.

In order to implement a concrete data representation for a variable which

is being used to communicate between processes, it is necessary to have

some facility for causing a process to ‘wait’ when it is about to perform an

operation which is undefined on the abstract data or impossible on its

current representation. Furthermore, there must be some method for

‘signalling’ to wake up a waiting process. One method of achieving this is

the condition variable described in Hoare ([42]). Of course, if either process

of the concrete program can wait for the other, it is possible for the

program to reach deadlock, when both processes are waiting. In this case it

is not reasonable to ask the implementor to find a way out of the deadlock,

since it would involve a combinatorial investigation, where each trial could

involve backtracking the program to an earlier point in its execution. It is

therefore the programmer’s responsibility to avoid deadlock. The asser-

tional proof methods given here cannot be used to prove absence of

deadlock, which is a form of nontermination peculiar to parallel programs.

A natural generalization of one-way communication is two-way com¬

munication, whereby one process Q\ uses a variable s\ to communicate to

Qi, and Qi uses a variable 52 to communicate with Q\. Communication is

achieved, as before, by semicommutative operations. It is now impossible

to execute Q\ and Q2 sequentially in either order; and it is plain that the

proof rule should be symmetric. Furthermore, the correctness of Q\ may

depend on some property Si of 52 which Qi must make true, and similarly,

Qi may need to assume some property S\ of 5i which Q\ must make true.

Hence we derive the rule:

Pi aS2 {Qi) SiARi P2 A Si [Qi] Si A R2

Pi A Pi [Q{ || Q2) Ri A R2

(Rule of Two-way Communication)

where Pi, Qi, Pi, Si are disjoint from P2, Qi, Ri, S2 except for variables

51, 52, which are subject only to semicommutative operations in Q\ and Qi

as explained above; and Pi,Si,P2 may contain s\ (but not 52) and

P2, S2, Pi may contain 52 (but not 5i). The informal proof of this is also

complex. The complexity of the rule and its proof suggests that two-way

communication is likely to be a more problematic programming method

than one-way. Also, the problems of possible deadlock are much more

severe.

PARALLEL PROGRAMMING: AN AXIOMATIC APPROACH 257

15.7 Summary

This paper explores the conditions under which the introduction of

parallelism (concurrency) in a program does not increase the complexity

ot the program, as judged by the ease of proving its correctness. These

conditions are formulated as syntactic rules, which can in principle be

enforced by compile-time checks. The basis rule is that of disjointness,

which states that any nonlocal variable updated by any parallel process

must not be accessed by any other parallel process. Under this condition,

the effect of a parallel program is the same as if its constituent processes had

been executed sequentially; the proof rule is therefore also the same.

The remainder of the paper examines the conditions under which the

strict rule of disjointness can be relaxed. Three cases are distinguished:

(1) Competing processes, which require exclusive use of some global

resource during certain phases of their execution.

(2) Co-operating processes, each of which makes its contribution to the

construction of some final desired result.

(3) Communicating processes, which transmit information to each other at

intermediate stages in their progress.

For competing processes, it is suggested that an ALGOL 60 style of

declaration provides a suitable notation and proof rule. For co-operating

processes it is shown that their correctness depends on a proof of the

commutativity of the updating operations on the shared data; and for

communicating processes it is shown that a weaker form of commutativity

(semicommutativity) is required. These last two conditions cannot be

checked at compile time.

SIXTEEN

Communicating sequential
processes

E. W. Dijkstra, in his Foreword to [94] writes:

When concurrency confronted the computing community about a
quarter of a century ago, it caused an endless confusion,... The
disentanglement of that confusion required the hard work of a mature
and devoted scientist who, with luck, would clarify the situation. Tony
Hoare has devoted a major part of his scientific endeavours to that
challenge, and we have every reason to be grateful for that.

CSP is the culmination of his language design work to harness parallelism.
Monitors (cf. Chapter 12) had shown that the confusion coming from shared
store could be avoided but the problems caused by the need to suspend an
execution which could not complete still betray machine-level origins such as
interrupts. The boldest step in the design of CSP is to base the whole
interaction between processes on unbuffered communication. Add to this a
clear approach to nondeterminacy (though some would argue with the
treatment of ‘fairness’) and a clear notation and the result is a language which
dramatically simplifies the problem of constructing (correct) parallel systems.
Hoare had liked the communicating process model of concurrency since
1967-68 when he left Elliott. His first attempt to describe a guarded-
command type of construct was disliked by Edsger W. Dijkstra because of the
cumbersome notation. Hoare’s study of Simula put him onto the track which
led to Monitors and Pascal-Plus.

Hoare’s ideas on parallelism had been evolving since he presented [58] at
the 1975 Marktoberdorf Summer School. In discussions there, Dijkstra again
objected to the cumbersome notations and the semantics based on complex
nested copying. In addition, Hoare recalls that his teaching at Belfast showed
him that students kept confusing input/output with parameter passing. A
Science Research Council Senior Fellowship in 1976-77 gave him the chance
to work on the details of the CSP paper which was submitted in March 1977,
revised in August of the same year and published ([66]) in August 1978. This

C. A. R. Hoare; Communicating sequential processes, Comm. ACM 21(8), 666-77 (1978).
Copyright © 1978, Association for Computing Machinery, Inc., reprinted by permission.

259

260 ESSAYS IN COMPUTING SCIENCE

is one of the most widely cited papers on parallelism and it has been reprinted

several times.
This paper did not, of course, solve all of the problems. It concedes that

‘The most serious [problem] is that it fails to suggest any proof method to

assist in the development and verification of correct programs.’ But the work

on both models and proof rules was already underway before actual

publication and soon led to a large body of research material, the easiest

access to which is certainly Hoare’s book [94].

The CSP language itself also evolved and, amongst other derivatives

Occam™ (see Jones 1987) is particularly important. This language is one fruit

of Hoare’s collaboration with INMOS. The development of the related

transputer chip is another major development. Hoare had expected even in

1976 that such machine architectures would come quickly.

Abstract

This paper suggests that input and output are basic primitives of programming and that
parallel composition of communicating sequential processes is a fundamental program

structuring method. When combined with a development of Dijkstra’s guarded

command, these concepts are surprisingly versatile. Their use is illustrated by sample

solutions of a variety of familiar programming exercises.

16.1 Introduction

Among the primitive concepts of computer programming, and of the
high-level languages in which programs are expressed, the action

of assignment is familiar and well understood. In fact, any change of the
internal state of a machine executing a program can be modelled as an
assignment of a new value to some variable part of that machine. However,
the operations of input and output, which affect the external environment
of a machine, are not nearly so well understood. They are often added to a
programming language only as an afterthought.

Among the structuring methods for computer programs, three basic
constructs have received widespread recognition and use: A repetitive
construct (e.g. the while loop), an alternative construct (e.g. the conditional
if..then..else), and normal sequential program composition (often denoted
by a semicolon). Less agreement has been reached about the design of other
important program structures, and many suggestions have been made.
Subroutines (FORTRAN), procedures (ALGOL 60 (Naur I960)), entries
(PL/I), coroutines (UNIX (Thompson 1976)), classes (Simula 67 (Dahl et
al. 1967)), processes and monitors (Concurrent Pascal (Brinch Hansen
1975)), clusters (CLU (Liskov 1974)), forms (ALPHARD (Wulf et al.
1976)), actors (Atkinson and Hewitt 1976).

COMMUNICATING SEQUENTIAL PROCESSES 261

The traditional stored-program digital computer has been designed

primarily for deterministic execution of a single sequential program. Where

the desire for greater speed has led to the introduction of parallelism, every

attempt has been made to disguise this fact from the programmer, either by

hardware itself (as in the multiple function units of CDC 6600) or by the

software (as in an I/O control package, or a multiprogrammed operating

system). However, developments of processor technology suggest that

a multiprocessor machine, constructed from a number of similar self-

contained processors (each with its own store), may become more powerful,

capacious, reliable, and economical than a machine which is disguised as a
monoprocessor.

In order to use such a machine effectively on a single task, the component

processors must be able to communicate and to synchronize with each

other. Many methods of achieving this have been proposed. A widely

adopted method of communication is by inspection and updating of a

common store (as in ALGOL 68 (van Wijngaarden 1969), PL/I, and many

machine codes). However, this can create severe problems in the construc¬

tion of correct programs and it may lead to expense (e.g. crossbar switches)

and unreliability (e.g. glitches) in some technologies of hardware implemen¬

tation. A greater variety of methods has been proposed for synchroniza¬

tion: semaphores (Dijkstra 1968b), events (PL/I), conditional critical

regions (Hoare [22]), monitors and queues (Concurrent Pascal (Brinch

Hansen 1975)), and path expressions. Most of these are demonstrably

adequate for their purpose, but there is no widely recognized criterion for
choosing between them.

This paper makes an ambitious attempt to find a single simple solution to

all these problems. The essential proposals are:

(1) Dijkstra’s guarded commands (1975a) are adopted (with a slight change

of notation) as sequential control structures, and as the sole means of

introducing and controlling nondeterminism.

(2) A parallel command, based on Dijkstra’s parbegin (1968b), specifies

concurrent execution of its constituent sequential commands (pro¬

cesses). All the processes start simultaneously, and the parallel com¬

mand ends only when they are all finished. They may not communicate

with each other by updating global variables.

(3) Simple forms of input and output command are introduced. They are

used for communication between concurrent processes.

(4) Such communication occurs when one process names another as

destination for output and the second process names the first as source

for input. In this case, the value to be output is copied from the first

process to the second. There is no automatic buffering: In general, an

input or output command is delayed until the other process is ready with

the corresponding output or input. Such delay is invisible to the delayed

process.

262 ESSAYS IN COMPUTING SCIENCE

(5) Input commands may appear in guards. A guarded command with an

input guard is selected for execution only if and when the source named

in the input command is ready to execute the corresponding output

command. If several input guards of a set of alternatives have ready

destinations, only one is selected and the others have no effect; but the

choice between them is arbitrary. In an efficient implementation, an

output command which has been ready for a long time should be

favoured; but the definition of a language cannot specify this since the

relative speed of execution of the processes is undefined.

(6) A repetitive command may have input guards. If all the sources named

by them have terminated, then the repetitive command also terminates.

(7) A simple pattern-matching feature, similar to that of Reynolds (1965),

is used to discriminate the structure of an input message, and to access

its components in a secure fashion. This feature is used to inhibit input

of messages that do not match the specified pattern.

The programs expressed in the proposed language are intended to be

implementable both by a conventional machine with a single main store,

and by a fixed network of processors connected by input/output channels

(although very different optimizations are appropriate in the different

cases). It is consequently a rather static language: The text of a program

determines a fixed upper bound on the number of processes operating

concurrently; there is no recursion and no facility for process-valued

variables. In other respects also, the language has been stripped to the

barest minimum necessary for explanation of its more novel features.

The concept of a communicating sequential process is shown in Sections

16.3-16.5 to provide a method of expressing solutions to many simple

programming exercises which have previously been employed to illustrate

the use of various proposed programming-language features. This suggests

that the process may constitute a synthesis of a number of familar and new

programming ideas. The reader is invited to skip the examples which do not

interest him.

However, this paper also ignores many serious problems. The most

serious is that it fails to suggest any proof method to assist in the

development and verification of correct programs. Secondly, it pays no

attention to the problems of efficient implementation, which may be

particularly serious on a traditional sequential computer. It is probable that

a solution to these problems will require (1) imposition of restrictions in the

use of the proposed features; (2) re-introduction of distinctive notations for

the most common and useful special cases; (3) development of automatic

optimization techniques; and (4) the design of appropriate hardware.

Thus the concepts and notations introduced in this paper (although

described in the next section in the form of a programming language

fragment) should not be regarded as suitable for use as a programming

COMMUNICATING SEQUENTIAL PROCESSES 263

language, eithei tor abstiact or tor concrete programming. They are at best

only a partial solution to the problems tackled. Further discussion of these
and other points will be found in Section 16.7.

16.2 Concepts and notations

The style of the following description is borrowed from ALGOL 60 (Naur,

I960). Types, declarations, and expressions have not been treated; in the

examples, a Pascal-like notation (Wirth 1971c) has usually been adopted.

The curly braces (} have been introduced into BNF to denote none or more

repetitions of the enclosed material. (Sentences in parentheses refer to an

implementation: they are not strictly part of a language definition.)

<command) ::= <simple command> | <structured command>

(simple command) ::= (null command) | (assignment command)
| (input command) \ (output command)

(structured command) ::= (alternative command)

| (repetitive command) \ (parallel command)
(null command) ::= skip

(command list) ::= {(declaration)', \ (command)',{(command)

A command specifies the behaviour of a device executing the command.

It may succeed or fail. Execution of a simple command, if successful, may

have an effect on the internal state of the executing device (in the case of

assignment), or on its external environment (in the case of output), or on

both (in the case of input). Execution of a structured command involves

execution of some or all of its constituent commands, and if any of these

fail, so does the structured command. (In this case, whenever possible, an

implementation should provide some kind of comprehensible error diag¬
nostic message.)

A null command has no effect and never fails.

A command list specifies sequential execution of its constituent com¬

mands in the order written. Each declaration introduces a fresh variable

with a scope which extends from its declaration to the end of the command
list.

16.2.1 Parallel commands

(parallel command) ::= [(process){ \ \ (process)}]

(process) (process label)(command list)

(process label) ::= (empty) \ (identifier) ::

|(identifier) {(label subscript)},(label subscript> j)::

264 ESSAYS IN COMPUTING SCIENCE

{label subscript> ::= {integer constant) | {range)
{integer constant) {numeral) \ {bound variable)
{bound variable> ::= {identifier)
{range) {bound variable) : {lower bound). .{upper bound)

{lower bound) ::= {integer constant)
{upper bound) ::= {integer constant)

Each process of a parallel command must be disjoint from every other

process of the command, in the sense that it does not mention any variable

which occurs as a target variable (see Sections 6.2.2 and 6.2.3) in any other

process.
A process label without subscripts, or one whose label subscripts are all

integer constants, serves as a name for the command list to which it is

prefixed; its scope extends over the whole of the parallel command. A

process whose label subscripts include one or more ranges stands for a series

of processes, each with the same label and command list, except that each

has a different combination of values substituted for the bound variables.

These values range between the lower bound and the upper bound

inclusively. For example, X(i: CL stands for

X(\):: CL\\\X{2):: CL2\\...\\ X(n) :: CLn

where each CLj is formed from CL by replacing every occurrence of the

bound variable / by the numeral j. After all such expansions, each process

label in a parallel command must occur only once and the processes must be

well formed and disjoint.
A parallel command specifies concurrent execution of its constituent

processes. They all start simultaneously and the parallel command term¬

inates successfully only if and when they have all successfully terminated.

The relative speed with which they are executed is arbitrary.

Examples

(1) [cardreaderl car dimage | | lineprinterl lineimage]

Performs the two constituent commands in parallel, and terminates only

when both operations are complete. The time taken may be as low as the

longer of the times taken by each constituent process, i.e. the sum of its

computing, waiting, and transfer times.

(2) [west:: DISASSEMBLE\\ X:: SQUASH\\ east:: ASSEMBLE]

The three processes have the names west, X, and east. The capitalized

words stand for command lists which will be defined in later examples.

(3) [room :: ROOM || fork(i: 0. .4):: FORK || phil(i: 0..4):: PHIL]

There are eleven processes. The behaviour of room is specified by the

command list ROOM. The behaviour of the five processes fork{0),

COMMUNICATING SEQUENTIAL PROCESSES 265

fork(1), fork(2), fork{3), fork(4), is specified by the command list

FORK, within which the bound variable / indicates the identity of the

particular fork. Similar remarks apply to the five processes PHIL.

16.2.2 Assignment commands

<assignment command> <target variable> := <expression)
{expression) {simple expression) \ {structured expression)
{structured expression) {constructor) {{expression list))
{constructor) {identifier) \ {empty)
{expression list) ::= {empty) \ {expression){,{expression)}
{target variable) ::= {simple variable) \ {structured target)
{structured target) {constructor) {{target variable list))
{target variable list) {empty) | {target variable)

{,{target variable>j

An expression denotes a value which is computed by an executing device

by application of its constituent operators to the specified operands. The

value of an expression is undefined if any of these operations are undefined.

The value denoted by a simple expression may be simple or structured. The

value denoted by a structured expression is structured; its constructor is that

of the expression, and its components are the list of values denoted by the

constituent expressions of the expression list.

An assignment command specifies evaluation of its expression, and

assignment of the denoted value to the target variable. A simple target

variable may have assigned to it a simple or a structured value. A structured

target variable may have assigned to it a structured value, with the same

constructor. The effect of such assignment is to assign to each constituent

simpler variable of the structured target the value of the corresponding

component of the structured value. Consequently, the value denoted by the

target variable, if evaluated after a successful assignment, is the same as the

value denoted by the expression, as evaluated before the assignment.

An assignment fails if the value of its expression is undefined, or if that

value does not match the target variable, in the following sense: A simple
target variable matches any value of its type. A structured target variable

matches a structured value, provided that: (1) they have the same con¬

structor, (2) the target variable list is the same length as the list of

components of the value, (3) each target variable of the list matches the

corresponding component of the value list. A structured value with no

components is known as a ‘signal’.

Examples

(1) x:= x + \ the value of x after the assignment is the

same as the value of x+ 1 before.

266 ESSAYS IN COMPUTING SCIENCE

(2) {x,y):={y,x)

(3) x:= cons {left, right)

exchanges the value of x and y.

constructs a structured value and ass¬

igns it to x.

(4) cons {left, right) := x fails if x does not have the form

cons{y, x); but if it does, then y is

assigned to left, and z is assigned to

right.

(5) insert{n) := insert{2 * x + 1) equivalent to n := 2 *x + 1 •

(6) c:=P{) assigns to c a ‘signal’ with constructor

P, and no components.

(7) P{):=c fails if the value of c is not P(); other¬

wise has no effect.

(8) insert(n)has(n) fails, due to mismatch.

Note: Successful execution of both (3) and (4) ensures the truth of the

postcondition x - cons{left, right)', but (3) does so by changing x and (4)

does so by changing left and right. Example (4) will fail if there is no value

of left and right which satisfies the postcondition.

16.23 Input and output commands

<input command> ::= {source)!{target variable)
{output command) ::= {destination) {{expression)
{source) ::= {process name)
{destination) ::= {process name)
{process name) ::= {identifier) \ {identifier) {{subscripts))
{subscripts) ::= {integer expression) {,{integer expression>}

Input and output commands specify communication between two

concurrently operating sequential processes. Such a process may be imple¬

mented in hardware as a special-purpose device (e.g. cardreader or line prin¬

ter), or its behaviour may be specified by one of the constituent processes of

a parallel command. Communication occurs between two processes of a

parallel command whenever (1) an input command in one process specifies

as its source the process name of the other process; (2) an output command

in the other process specifies as its destination the process name of the first

process; and (3) the target variable of the input command matches the value

denoted by the expression of the output command. On these conditions, the

input and output commands are said to correspond. Commands which

correspond are executed simultaneously, and their combined effect is to

COMMUNICATING SEQUENTIAL PROCESSES 267

assign the value of the expression of the output command to the target
variable of the input command.

An input command fails if its source is terminated. An output command

fails if its destination is terminated or if its expression is undefined.

(The requirement of synchronization of input and output commands

means that an implementation will have to delay whichever of the two

commands happens to be ready first. The delay is ended when the

corresponding command in the other process is also ready, or when the

other process terminates. In the latter case the first command fails. It is also

possible that the delay will never be ended, for example, if a group of

processes are attempting communication but none of their input and output

commands correspond with each other. This form of failure is known as a
deadlock.)

Examples

from cardreader, read a card and assign

its value (an array of characters) to the

variable cardimage.

to lineprinter, send the value of lineimage
for printing.

from process named X, input a pair of

values and assign them to x and y.

to process DIV, output the two specified
values.

Note: If a process named £>/Kissues command (3), and a process named 26

issues command (4), these are executed simultaneously, and have the same

effect as the assignment: (x, y) := (3 * a + b, 13) (= x := 3 * a + b; y := 13).

(5) console(i)?c from the /th element of an array of con¬

soles, input a value and assign it to c.

(6) console{j - 1)1”A" to the (j - l)th console, output character

"A".

(7) X(i)l V() from the /th of an array of processes X,
input a signal V(); refuse to input any
other signal.

(1) cardreader? cardimage

(2) lineprinterl lineimage

(3) XUx,y)

(4) DIVl(3* a + b, 13)

(8) send. P() to sem output a signal P().

268 ESSAYS IN COMPUTING SCIENCE

16.2.4 Alternative and repetitive commands

{repetitive command> ::= * {alternative command)

{alternative command) ::= [<guarded command)

(□ {guarded command>}]

{guarded command) ::= {guard) -* {command list)

| ({range){,{range)}){guard) -> {command list)

{guard) ::= {guard list) | {guard list);{input command)

| {input command)
{guard list) ::= {guard element)[\{guard element>]

{guard element) ::= {Boolean expression) \ {declaration)

A guarded command with one or more ranges stands for a series of

guarded commands, each with the same guard and command list, except

that each has a different combination of values substituted for the bound

variables. The values range between the lower bound and upper bound

inclusive. For example, (/: 1.. n)G CL stands for

Gi-* CLiWG2^ CL2L.AG„-+ CLn

where each Gj CLj is formed from G ^ CL by replacing every occur¬

rence of the bound variable / by the numeral j.
A guarded command is executed only if and when the execution of its

guard does not fail. First its guard is executed and then its command list. A

guard is executed by execution of its constituent elements from left to right.

A Boolean expression is evaluated: If it denotes false, the guard fails, but

an expression that denotes true has no effect. A declaration introduces a

fresh variable with a scope that extends from the declaration to the end of

the guarded command. An input command at the end of a guard is executed

only if and when a corresponding output command is executed. (An

implementation may test whether a guard fails simply by trying to execute

it, and discontinuing execution if and when it fails. This is valid because

such a discontinued execution has no effect on the state of the executing

device.)
An alternative command specifies execution of exactly one of its consti¬

tuent guarded commands. Consequently, if all guards fail, the alternative

command fails. Otherwise an arbitrary one with successfully executable

guard is selected and executed. (An implementation should take advantage

of its freedom of selection to ensure efficient execution and good response.

For example, when input commands appear as guards, the command which

corresponds to the earliest ready and matching output command should in

general be preferred; and certainly, no executable and ready output

command should be passed over unreasonably often.)

A repetitive command specifies as many iterations as possible of its

constituent alternative command. Consequently, when all guards fail, the

COMMUNICATING SEQUENTIAL PROCESSES 269

repetitive command terminates with no effect. Otherwise, the alternative

command is executed once and then the whole repetitive command is

executed again. (Consider a repetitive command when all its true guard lists

end in an input guard. Such a command may have to be delayed until either

(1) an output command corresponding to one of the input guards becomes

ready, or (2) all the sources named by the input guards have terminated. In

case (2), the repetitive command terminates. If neither event ever occurs,
the process fails (in deadlock).)

Examples

(1) [a ^ y -> m := xWy ^ x -* m := y]

If x ^ y, assign x to m; if y ^ x assign y to m; if both x > y and y ^ a,
either assignment can be executed.

(2) /:= 0; *[/ < size; content (i) ^ n ^ i:= i + 1]

The repetitive command scans the elements content(/), for / = 0, 1,...,

until either / ^ size, or a value equal to n is found.

(3) * [c : character, west! c -> east\c\

This reads all the characters output by west, and outputs them one by one

to east. The repetition terminates when the process west terminates.

(4) *[(/: 1.. \0)continue{i)\ console(/)?c -► Xl(i, c); console{i)\ack{);
continue(/) := (c ^ sign off)]

This command inputs repeatedly from any of ten consoles, provided that

the corresponding element of the Boolean array continue is true. The bound

variable / identifies the originating console. Its value, together with the

character just input, is output to X, and an acknowledgment signal is sent

back to the originating console. If the character indicated ‘sign off’,

continue(/) is set false, to prevent further input from that console. The

repetitive command terminates when all ten elements of continue are false.

(An implementation should ensure that no console which is ready to provide

input will be ignored unreasonably often.)

(5) *[minteger; XI insert(n) -> INSERT

Dn: integer; XIhas(n) SEARCH', X\(i < size)

]

(Here, and elsewhere, capitalized words INSERT and SEARCH stand as

abbreviations for program text defined separately.)

On each iteration this command accepts from X either (a) a request to

insert(n), (followed by INSERT) or (b) a question has(n), to which it

outputs an answer back to X. The choice between (a) and (b) is made by the

270 ESSAYS IN COMPUTING SCIENCE

next output command in X. The repetitive command terminates when X

does. If X sends a non-matching message, deadlock will result.

(6) *[X1 V() -► val := val + 1

0 val >0; F? P() -► val := val - 1

]

On each iteration, accept either a V() signal from X and increment val,

or a P() from Y, and decrement val. But the second alternative cannot be

selected unless val is positive (after which val will remain invariantly

nonnegative). (When val > 0, the choice depends on the relative speeds of

X and Y, and is not determined.) The repetitive command will terminate

when both X and Y are terminated, or when X is terminated and val ^ 0.

16.3 Coroutines

In parallel programming coroutines appear as a more fundamental program

structure than subroutines, which can be regarded as a special case (treated

in the next section).

16.3.1 Copy

Problem: Write a process X to copy characters output by process west to

process east.

Solution

X:: * [c : character, west! c -► eastl c]

Notes
(1) When west terminates, the input westlc will fail, causing termination of the

repetitive command, and of process X. Any subsequent input command from
east will fail.

(2) Process X acts as a single-character buffer between west and east. It permits
west to work on production of the next character, before east is ready to input
the previous one.

16.3.2 Squash

Problem: Adapt the previous program to replace every pair of consecutive

asterisks by an upward arrow ‘T’. Assume that the final character input

is not an asterisk.

COMMUNICATING SEQUENTIAL PROCESSES 271

Solution

X:: *[c: character, westlc ->•

[c ^ asterisk -► eastlc

D c = asterisk —► westlc;

[c ^ asterisk -*■ eastl asterisk; eastlc

Wc = asterisk —► puts/! upward arrow

]]]

Notes

(1) Since west does not end with asterisk, the second wesf?c will not fail.
(2) As an exercise, adapt this process to deal sensibly with input which ends with an

odd number of asterisks.

16.3.3 Disassemble

Problem: To read cards from a cardfile and output to process X the stream

of characters they contain. An extra space should be inserted at the end of
each card.

Solution

*[cardimage:(\.. 80)character; cardfdel card image
/: integer, i:= 1;

*[/ ^ 80 X!cardimage(/); /:= / + 1]
A"! space

Notes

(1) ‘(1 ..80)character’ declares an array of 80 characters, with subscripts ranging
between 1 and 80.

(2) The repetitive command terminates when the cardfile process terminates.

16.3.4 Assemble

Problem: To read a stream of characters from process and print them in

lines of 125 characters on a lineprinter. The last line should be completed
with spaces if necessary.

Solution

lineimage:(\.. 125)character;

integer, /:= 1;

*[c: character', XI c^

lineimage(i) := c;

272 ESSAYS IN COMPUTING SCIENCE

[/ ^ 124 ->/:=/+ 1

D/ = 125 lineprinterl lineimage; i := 1

]];
[/ = 1 -► skip

0/ > 1 -> * [/ ^ 125 -► lineimage(i) := space; i := /+ 1];

lineprinterl lineimage

]

Note
When JY terminates, so will the first repetitive command of this process. The last line
will then be printed, if it has any characters.

16.3.5 Reformat

Problem: Read a sequence of cards of 80 characters each, and print the

characters on a line printer at 125 characters per line. Every card should be

followed by an extra space, and last line should be completed with space if

necessary.

Solution

[west:: DISASSEMBLE || X:: COPY || east:: ASSEMBLE]

Notes
(1) The capitalized names stand for program text defined in previous sections.
(2) The parallel command is designed to terminate after the card hie has terminated.
(3) This elementary problem is difficult to solve elegantly without coroutines.

16.3.6 Conway’s problem (1963)

Problem: Adapt the above program to replace every pair of consecutive

asterisks by an upward arrow.

Solution

[west:: DISASSEMBLE \\X:: SQUASH || east:: ASSEMBLE]

16.4 Subroutines and data representations

A conventional nonrecursive subroutine can be readily implemented as a

coroutine, provided that (1) its parameters are called ‘by value’ and ‘by

result’, and (2) it is disjoint from its calling program. Like a FORTRAN

COMMUNICATING SEQUENTIAL PROCESSES 273

subroutine, a coroutine may retain the values of local variables (own

variables, in ALGOL terms) and it may use input commands to achieve the

effect of ‘multiple entry points’ in a safer way than PL/I. Thus a coroutine

can be used like a Simula class instance as a concrete representation for
abstract data.

A coroutine acting as a subroutine is a process operating concurrently

with its user process in a parallel command: [subr:: SUBROUTINE ||

X:: USER]. The SUBROUTINE will contain (or consist of) a repetitive

command: *[Xl(value params) -► X\(result params)], where

computes the results from the values input. The subroutine will terminate

when its user does. The USER will call the subroutine by a pair of
commands:

subr\(arguments); ...\subrl(results).

Any commands between these two will be executed concurrently with the
subroutine.

A multiple-entry subroutine, acting as a representation for data (Chapter

8), will also contain a repetitive command which represents each entry by an

alternative input to a structured target with the entry name as constructor.
For example,

*[XI entry\(value params) —► ...
§Xlentry2(value params)

]

The calling process X will determine which of the alternatives is activated

on each repetition. When Xterminates, so does this repetitive command. A

similar technique in the user program can achieve the effect of multiple

exits.

A recursive subroutine can be simulated by an array of processes, one for

each level of recursion. The user process is level zero. Each activation

communicates its parameters and results with its predecessor and calls its

successor if necessary:

[recsub (0):: USER || recsub (i: 1.. reclimit):: RECSUB].

The user will call the first element of

recsub: recsub(\)\(arguments); ...; recsub(\)?(results);.

The imposition of a fixed upper bound on recursion depth is necessitated by

the ‘static’ design of the language.

This clumsy simulation of recursion would be even more clumsy for a

mutually recursive algorithm. It would not be recommended for conven¬

tional programming; it may be more suitable for an array of microprocess¬

ors for which the fixed upper bound is also realistic.

274 ESSAYS IN COMPUTING SCIENCE

In this section, we assume each subroutine is used only by a single user

process (which may, of course, itself contain parallel commands).

16.4.1 Function: division with remainder

Problem: Construct a process to represent a function-type subroutine,

which accepts a positive dividend and divisor, and returns their integer

quotient and remainder. Efficiency is of no concern.

Solution

[DIVw *[x,>’: integer, Xl(x,y) -*

quot, rem: integer; quot := 0; rem := a;

*[rem ^ y -> rem := rem - y; quot := quot + 1];

X\{quot, rem)

]
|| X:: C/SER

]

16.4.2 Recursion: factorial

Problem: Compute a factorial by the recursive method, to a given limit.

Solution

[fac(i: 1.. //m/7)::

*[m integer, facii - 1)1 n

[/? = 0 —► fac{i - 1)!]

D/7 > 0 ^ fac(i + 1)\n - 1,

r: integer, fac(i + 1)lr, fac(i - l)!(«*r)

]]
|| fac(0):: USER

)

Note
This unrealistic example introduces the technique of the ‘iterative array’ which will
be used to better effect in later examples.

16.4.3 Data representation: small set of integers (see also Chapter 8)

Problem: To represent a set of not more than 100 integers as a process,

S, which accepts two kinds of instruction from its calling process X:

(1) Slinsert(n), insert the integer n in the set, and (2) S\has(n);...; Sib, b is

COMMUNICATING SEQUENTIAL PROCESSES 275

set true if n is in the set, and false otherwise. The initial value of the set
is empty.

Solution

S;:

content: (0.. 99)integer; size: integer, size := 0;

*[n: integer; XIhas(n) -+ SEARCH; X\(i < size)

Dn: integer; X? insert (n) -> SEARCH;

[i < size -► skip

0/ = size; size < 100 ->

content (size) := n; size:= size + 1

]]

where SEARCH is an abbreviation for:

/: integer; i := 0;

*[/ < size; content(i) A n-> i:= / + 1]

Notes
(1) The alternative command with guard £size < 100’ will fail if an attempt is made

to insert more than 100 elements.
(2) The activity of insertion will in general take place concurrently with the calling

process. However, any subsequent instruction to S will be delayed until the
previous insertion is complete.

16.4.4 Scanning a set

Problem: Extend the solution to 16.4.3 by providing a fast method for

scanning all members of the set without changing the value of the set. The

user program will contain a repetitive command of the form:

S\scan(); more: Boolean; more := true;

*[more; x: integer; SI next (x) -^ ... deal with a ...

Wmore; Slnoneleft()^>more:= false

]

where S\scan() sets the representation into a scanning mode. The repeti¬

tive command serves as a for statement, inputting the successive members

of x from the set and inspecting them until finally the representation sends a

signal that there are no members left. The body of the repetitive command

is not permitted to communicate with S in any way.

Solution: Add a third guarded command to the outer repetitive command

of S:

276 ESSAYS IN COMPUTING SCIENCE

..AXlscan() /: integer, i := 0;

*[/ < size X\ next (content {i)); i := / + 1];

, X\noneleft()

16.4.5 Recursive data representation: Small set of integers

Problem: Same as above, but an array of processes is to be used to achieve

a high degree of parallelism. Each process should contain at most one

number. When it contains no number, it should answer false to all inquiries

about membership. On the first insertion, it changes to a second phase of

behaviour, in which it deals with instructions from its predecessor, passing

some of them on to its successor. The calling process will be named 5(0).

For efficiency, the set should be sorted, i.e. the /th process should contain

the /th largest number.

Solution:

S(i: 1..100)::

[n: integer, S(i - 1)1 has (n) -■ 5(0)! false

0/7: integer, S(i - 1)1 insert(n) -*■
[m: integer, S(i - If has (m) -•

[m ^ n -> 5(0)!(w = n)

Dm > n ^ S(i + 1)\has(m)

]
Dm: integer, 5(/ - 1)? insert(m)-*

[m < n -> S(i + 1)!insert(n); n := m

Wm = n -> skip

\\m > n S(i + \)\insert(m)

]] 1

Notes
(1) The user process 5(0) inquires whether n is a member by the commands

5(l)!/ms(ft);...;[(/: 1.. 100)5(/)?Z? -»■ skip]. The appropriate process will
respond to the input command by the output command in line 2 or line 5. This
trick avoids passing the answer back ‘up the chain’.

(2) Many insertion operations can proceed in parallel, yet any subsequent 'has*
operation will be performed correctly.

(3) All repetitive commands and all processes of the array will terminate after the
user process 5(0) terminates

16.4.6 Multiple exits: Remove the least member

Exercise: Extend the above solution to respond to a command to yield the

least member of the set and to remove it from the set. The user program will

COMMUNICATING SEQUENTIAL PROCESSES 277

invoke the facility by a pair of commands:

5(l)!/<?av/(); [x: integer: S(l)?x-» ... deal with x...
05(l)?ftCWe/e//() -► ...

]

or, if he wishes to scan and empty the set, he may write:

5(1)!least{): more: Boolean; more:= true;

*[more; x: integer; 5(l)?x-» ... deal with x...; 5(l)!/eart()
dnore; 5(1)?none/eft() -» more := false

]

Hint: Introduce a Boolean variable, /?, initialized to and prehx this to

all the guards of the inner loop. After responding to a \least{) command

from its predecessor, each process returns its contained value a?, asks its

successor for its least, and stores the response in n. But if the successor

returns ‘noneleft{)’, b is set false and the inner loop terminates. The

process therefore returns to its initial state (solution due to David Gries).

16.5 Monitors and scheduling

This section shows how a monitor can be regarded as a single process which

communicates with more than one user process. However, each user process

must have a different name (e.g. producer, consumer) or a different

subscript (e.g. X(i)) and each communication with a user must identify its
source or destination uniquely.

Consequently, when a monitor is prepared to communicate with any of

its user processes (i.e. whichever of them calls first) it will use a guarded

command with a range. For example:

*[(/: 1.. 100)X(i)l(value parameters) -> ...; A(/)!(results)].

Here, the bound variable i is used to send the results back to the calling

process. If the monitor is not prepared to accept input from some partic¬

ular user (e.g. X(j)) on a given occasion, the input command may be pre¬

ceded by a Boolean guard. For example, two successive inputs from the

same process are inhibited by j = 0; *[(/: 1.. 100)/ ^ j;

A"(/)?(values) -> ...;j := /]. Any attempted output from X(j) will be

delayed until a subsequent iteration, after the output of some process X(i)
has been accepted and dealt with.

Similarly, conditions can be used to delay acceptance of inputs which

would violate scheduling constraints - postponing them until some later

occasion when some other process has brought the monitor into a state

in which the input can validly be accepted. This technique is similar to a

278 ESSAYS IN COMPUTING SCIENCE

conditional critical region (Chapter 8) and it obviates the need for special

synchronizing variables such as events, queues, or conditions. However, the

absence of these special facilities certainly makes it more difficult or less

efficient to solve problems involving priorities - for example, the scheduling

of head movement on a disk.

16.5.1 Bounded buffer

Problem: Construct a buffering process X to smooth variations in the speed

of output of portions by a producer process and input by a consumer

process. The consumer contains pairs of commands X\more(); XIp, and

the producer contains commands of the form X!p. The buffer should

contain up to ten portions.

Solution

X\\
buffer: (0.. 9) portion;
in, out: integer, in := 0; out0;

comment 0 C out C in C out + 10;

*[in < out + 10; producer! buffer {in mod 10) -► in := in + 1

D out < in; consumer! more() -► consumer', buffer (out mod 10);

out := out + 1

]

Notes
(1) When out < in < out + 10, the selection of the alternative in the repetitive

command will depend on whether the producer produces before the consumer
consumes, or vice versa.

(2) When out = in, the buffer is empty and the second alternative cannot be selected
even if the consumer is ready with its command X\more(). However, after the
producer has produced its next portion, the consumer’s request can be granted
on the next iteration.

(3) Similar remarks apply to the producer, when in - out + 10.
(4) X is designed to terminate when out = in and the producer has terminated.

16.5.2 Integer semaphore

Problem: To implement an integer semaphore, S, shared among an array

Ar(/:1..100) of client processes. Each process may increment the sema¬

phore by S\ V() or decrement it by 5! P(), but the latter command must be

delayed if the value of the semaphore is not positive.

COMMUNICATING SEQUENTIAL PROCESSES 279

Solution

S:: val: integer, val := 0;

* [(/: 1.. 100)Ar(/)? K() —► v#/ := v#/ + 1

Hi: 1.. 100) val > 0;X(i)lP() -> v«/:= va/- 1

]

Notes

(1) In this process, no use is made of knowledge of the subscript / of the calling
process.

(-) The semaphore terminates only when all hundred processes of the process array
X have terminated.

16.5.3 Dining philosophers

(Problem due to E. W. Dijkstra)

Problem: Five philosophers spend their lives thinking and eating. The

philosophers share a common dining room where there is a circular table

surrounded by five chairs, each belonging to one philosopher. In the centre

of the table there is a large bowl of spaghetti, and the table is laid with five

forks (see Fig. 16.1). On feeling hungry, a philosopher enters the dining

room, sits in his own chair, and picks up the fork on the left of his place.

Unfortunately, the spaghetti is so tangled that he needs to pick up and use

the fork on his right as well. When he has finished, he puts down both

forks, and leaves the room. The room should keep a count of the number of
philosophers in it.

Figure 16.1

280 ESSAYS IN COMPUTING SCIENCE

Solution: The behaviour of the /th philosopher may be described as follows:

PHIL = *[... during /th lifetime

THINK;

room\enter();

fork(i)\pickup();fork((i + l)mod 5)\pickup();

EAT;

fork(i)\putdown{);fork((i + l)mod 5)\putdown();

room\exit{)

]

The fate of the /th fork is to be picked up and put down by a philosopher

sitting on either side of it:

FORK =

[phil(iyipickup()- phil(i)7putdown()

Dphil((i- l)mod 5)lpickup() phil((i- l)mod 5)?putdown{)

1

The story of the room may be simply told:

ROOM = occupancy: integer; occupancy := 0;

[(/: 0. A)phil{i)rlenter{) -• occupancy := occupancy + 1

0 (/: 0. A)phil(i)rf.exit{) -»• occupancy := occupancy - 1

]

All these components operate in parallel:

[room :: /?OOM|| fork(i: 0. .4):: phil(i: 0 :: P///L].

Notes
(1) The solution given above does not prevent all five philosophers from entering

the room, each picking up his left fork and starving to death because he cannot
pick up his right fork.

(2) Exercise: Adapt the above program to avert this sad possibility. Hint: Prevent
more than four philosophers from entering the room. (Solution due to E. W.
Dijkstra.)

16.6 Miscellaneous

This section contains further examples of the use of communicating

sequential processes for the solution of some less familiar problems; a

parallel version of the sieve of Eratosthenes, and the design of an iterative

array. The proposed solutions are even more speculative than those of the

previous sections, and in the second example, even the question of

termination is ignored.

COMMUNICATING SEQUENTIAL PROCESSES 281

16.6.1 Prime numbers: the Sieve of Eratosthenes (Mcllroy 1968)

Problem: To print in ascending order all primes less than 10000. Use an

array of processes, SIEVE, in which each process inputs a prime from its

piedecessor and prints it. The process then inputs an ascending stream of

numbers from its predecessor and passes them on to its successor, suppress¬
ing any that are multiples of the original prime.

Solution

SIEVE (i: 1..100) ::

p. mp\ integer,

SIEVE{i — l)?p;

print! p;

mp:= p\ comment mp is a multiple of p;
* [w: integer, SIEVE(i - \)lm

> mp -*■ mp := mp + p]\

[m - mp -► skip

Irn < mp -► SIEVE(i + 1)?m

]]
|| SIEVE(0):: print!2; n: integer’, n\- 3;

*[n< 10000 SIEVE (\)!m,n\= n + 2]

|| SIEVED 101):: *[n: integer, SIEVE(\00?n -► print! n]

|j printw *[(/': 0.. 101)n: integer’, SIEVE(i)ln -►...]

Notes
(1) This beautiful solution was contributed by David Gries.
(2) It is algorithmically similar to the program developed in (Dijkstra 1972c, pp.

27-32).

16.6.2 An iterative array: matrix multiplication

Problem: A square matrix A of order 3 is given. Three streams are to be

input, each stream representing a column of an array IN. Three streams are

to be output, each representing a column of the product matrix IN x A.

After an initial delay, the results are to be produced at the same rate as the

input is consumed. Consequently, a high degree of parallelism is required.

The solution should take the form shown in Fig. 16.2. Each of the nine

nonborder nodes inputs a vector component from the west and a partial

sum from the north. Each node outputs the vector component to its east,

and an updated partial sum to the south. The input data is produced by the

west border nodes, and the desired results are consumed by south border

nodes. The north border is a constant source of zeros and the east border is

282 ESSAYS IN COMPUTING SCIENCE

S

Figure 16.2

just a sink. No provision need be made for termination nor for changing the

values of the array A.

Solution: There are twenty-one nodes, in five groups, comprising the

central square and the four borders:

M(i: 1.. 3, 0):: WEST

|| M(0, j: 1..3):: NORTH

||M(i: 1.. 3,4)::EAST

||M(4, j: 1..3) :: SOUTH

||M(i: 1.. 3, y : 1 . . 3):: CENTRE

The WEST and SOUTH borders are processes of the user program; the

remaining processes are:

COMMUNICATING SEQUENTIAL PROCESSES 283

NOR TH = * [true -*■ M(1, j)!0]

EAST = *[x: real; M(z, 3)? a -> ^Ar//r]

CENTRE = * [x: real; M(/, j - 1)7 x

M(z, j + 1)! a; sz/w: real;

M(/- \,j)7sum\M(i + 1, j)\(A(i,j)* x + sz/ra)

]

16.7 Discussion

A design for a programming language must necessarily involve a number of

decisions which seem to be fairly arbitrary. The discussion of this section is

intended to explain some of the underlying motivation and to mention some
unresolved questions.

16.7.1 Notations

I have chosen single-character notations (e.g. !, ?) to express the primitive

concepts, rather than the more traditional boldface or underlined English

words. As a result, the examples have an APL-like brevity, which some

readers find distasteful. My excuse is that (in contrast to APL) there are

only a very few primitive concepts and that it is standard practice of

mathematics (and also good coding practice) to denote common primitive

concepts by brief notations (e.g. +, x). When read aloud, these are
replaced by words (e.g. plus, times).

Some readers have suggested the use of assignment notation for input and
output:

< target variable> := < source>

< destination > := < expression >

I find this suggestion misleading: it is better to regard input and output as

distinct primitives, justifying distinct notations.

I have used the same pair of brackets ([...]) to bracket all program

structures, instead of the more familiar variety of brackets

(if..fi, begin..end, case..esac, etc.). In this I follow normal mathematical

practice, but I must also confess to a distaste for the pronunciation of words
like fi, od, or esac.

I am dissatisfied with the fact that my notation gives the same syntax for a

structured expression and a subscripted variable. Perhaps tags should be

distinguished from other identifiers by a special symbol (say #).

I was tempted to introduce an abbreviation for combined declaration and
input, e.g. X7{n\ integer) for n: integer; X7n.

284 ESSAYS IN COMPUTING SCIENCE

16.7.2 Explicit naming

My design insists that every input or output command must name its source
or destination explicitly. This makes it inconvenient to write a library of
processes which can be included in subsequent programs, independent of
the process names used in that program. A partial solution to this problem
is to allow one process (the main process) of a parallel command to have an
empty label, and to allow the other processes in the command to use the
empty process name as source or destination of input or output.

For construction of large programs, some more general technique will
also be necessary. This should at least permit substitution of program text
for names defined elsewhere - a technique which has been used informally
throughout this paper. The COBOL COPY verb also permits a substitution
for formal parameters within the copied text. But whatever facility is
introduced, I would recommend the following principle: Every program,
after assembly with its library routines, should be printable as a text
expressed wholly in the language, and it is this printed text which should
describe the execution of the program, independent of which parts were
drawn from a library.

Since I did not intend to design a complete language, I have ignored the
problem of libraries in order to concentrate on the essential semantic
concepts of the program which is actually executed.

16.7.3 Port names

An alternative to explicit naming of source and destination would be to
name a port through which communication is to take place. The port names
would be local to the processes, and the manner in which pairs of ports are
to be connected by channels could be declared in the head of a parallel
command.

This is an attractive alternative which could be designed to introduce a
useful degree of syntactically checkable redundancy. But it is semantically
equivalent to the present proposal, provided that each port is connected to
exactly one other port in another process. In this case each channel can be
identified with a tag, together with the name of the process at the other end.
Since I wish to concentrate on semantics, I preferred in this paper to use the
simplest and most direct notation, and to avoid raising questions about the
possibility of connecting more than two ports by a single channel.

16.7.4 Automatic buffering

As an alternative to synchronization of input and output, it is often
proposed that an outputting process should be allowed to proceed even

COMMUNICATING SEQUENTIAL PROCESSES 285

when the inputting process is not yet ready to accept the output. An
implementation would be expected automatically to interpose a chain of
buffers to hold output messages that have not yet been input.

I have deliberately rejected this alternative, for two reasons: (1) It is less
realistic to implement in multiple disjoint processors, and (2) when buffer¬
ing is required on a particular channel, it can readily be specified using the
given primitives. Of course, it could be argued equally well that synchroniz¬
ation can be specified when required by using a pair of buffered input and
output commands.

16.7.5 Unbounded process activation

The notation for an array of processes permits the same program text (like
an ALGOL recursive procedure) to have many simultaneous ‘activations’;
however, the exact number must be specified in advance. In a conventional
single-processor implementation, this can lead to inconvenience and
wastefulness, similar to the fixed-length array of FORTRAN. It would
therefore be attractive to allow a process array with no a priori bound on
the number of elements; and to specify that the exact number of elements
required for a particular execution of the program should be determined
dynamically, like the maximum depth of recursion of an ALGOL procedure
or the number of iterations of a repetitive command.

However, it is a good principle that every actual run of a program with
unbounded arrays should be identical to the run of some program with all
its arrays bounded in advance. Thus the unbounded program should be
defined as the ‘limit’ (in some sense) of a series of bounded programs with
increasing bounds. I have chosen to concentrate on the semantics of the
bounded case - which is necessary anyway and which is more realistic for
implementation on multiple microprocessors.

16.7.6 Fairness

Consider the parallel command:

[X:: Y\stop{) || Y:: continue: Boolean-, continue := true;

*[continue; Xlstop() -»■ continues false

0continue -*• n := n + 1

]
]•

If the implementation always prefers the second alternative in the repetitive
command of Y, it is said to be unfair, because although the output
command in X could have been executed on an infinite number of
occasions, it is in fact always passed over.

286 ESSAYS IN COMPUTING SCIENCE

The question arises: Should a programming language definition specify

that an implementation must be fairl Here, I am fairly sure that the answer

is ‘no’. Otherwise, the implementation would be obliged to successfully

complete the example program shown above, in spite of the fact that its

nondeterminism is unbounded. I would therefore suggest that it is the

programmer’s responsibility to prove that his program terminates correctly

- without relying on the assumption of fairness in the implementation.

Thus the program shown above is incorrect, since its termination cannot be

proved.

Nevertheless, 1 suggest that an efficient implementation should try to be

reasonably fair and should ensure that an output command is not delayed

unreasonably often after it first becomes executable. But a proof of

correctness must not rely on this property of an efficient implementation.

Consider the following analogy with a sequential program: An efficient

implementation of an alternative command tends to favour the alternative

which can be most efficiently executed, but the programmer must ensure

that the logical correctness of his program does not depend on this property

of his implementation.

This method of avoiding the problem of fairness does not apply to

programs such as operating systems which are intended to run forever,

because in this case termination proofs are not relevant. But I wonder

whether it is ever advisable to write or to execute such programs. Even an

operating system should be designed to bring itself to an orderly conclusion

reasonably soon after it inputs a message instructing it to do so. Otherwise,

the only way to stop it is to ‘crash’ it.

16.7.7 Functional coroutines

It is interesting to compare the processes described here with those proposed

in Kahn (1974); the differences are most striking. There, coroutines are

strictly deterministic: No choice is given between alternative sources of

input. The output commands are automatically buffered to any required

degree. The output of one process can be automatically fanned out to any

number of processes (including itself!) which can consume it at differing

rates. Finally, the processes there are designed to run forever, whereas my

proposed parallel command is normally intended to terminate. The design

in Kahn (1974) is based on an elegant theory which permits proof of the

properties of programs. These differences are not accidental - they seem to

be natural consequences of the difference between the more abstract

applicative (or functional) approach to programming and the more

machine-oriented imperative (or procedural) approach, which is taken by

communicating sequential processes.

COMMUNICATING SEQUENTIAL PROCESSES 287

16.7.8 Output guards

Since input commands may appear in guards, it seems more symmetric to

permit output commands as well. This would allow an obvious and useful

simplification in some of the example programs, for example, in the
bounded buffer (Section 16.5.1). Perhaps a more convincing reason would

be to ensure that the externally visible effect and behaviour of every parallel

command can be modelled by some sequential command. In order to model
the parallel command

Z:: [X\2 || T!3]

we need to be able to write the sequential alternative command:

Z :: [X\2 -> Y13WY13 ^ X\2]

Note that this cannot be done by the command

Z:: [true -> X12; Y\3Urue^ Y13; X12]

which can fail if the process Z happens to choose the first alternative, but

the processes Y and X are synchronized with each other in such a way that

Y must input from Z before X does, e.g.

Y:: Z3y\ X\ go()

|| AT: Ylgo{); Zlx

16.7.9 Restriction: Repetitive command with input guard

In proposing an unfamiliar programming-language feature, it seems wiser

at first to specify a highly restrictive version rather than to propose

extensions - especially when the language feature claims to be primitive.

For example, it is clear that the multidimensional process array is not

primitive, since it can readily be constructed in a language which permits

only single-dimensional arrays. But I have a rather more serious misgiving

about the repetitive command with input guards.

The automatic termination of a repetitive command on termination of

the sources of all its input guards is an extremely powerful and convenient

feature but it also involves some subtlety of specification to ensure that it

is implementable; and it is certainly not primitive, since the required effect

can be achieved (with considerable inconvenience) by explicit exchange of

‘end{)’ signals. For example, the subroutine DIV{4.1) could be rewritten:

[DIV :: continue: Boolean; continue := true;

*[continue; X3end() -► continue := false

0continue;x,y: integer; X3(x,y) -► ...; X\{quot, rem)

288 ESSAYS IN COMPUTING SCIENCE

|| X:: USER PROG; Div\end()

]

Other examples would be even more inconvenient.

But the dangers of convenient facilities are notorious. For example the

repetitive commands with input guards may tempt the programmer to write

them without making adequate plans for their termination; and if it turns

out that the automatic termination is unsatisfactory, reprogramming for

explicit termination will involve severe changes, affecting even the interfaces

between the processes.

16.8 Conclusion

This paper has suggested that input, output, and concurrency should be

regarded as primitives of programming, which underlie many familiar and

less familiar programming concepts. However, it would be unjustified to

conclude that these primitives can wholly replace the other concepts in a

programming language. Where a more elaborate construction (such as a

procedure or monitor) is frequently useful, has properties which are more

simply provable, and can be implemented more efficiently than the general

case, there is a strong reason for including in a programming language a

special notation for that construction. The fact that the construction can be

defined in terms of simpler underlying primitives is a useful guarantee that

its inclusion is logically consistent with the remainder of the language.

16.9 Acknowledgements

The research reported in this paper has been encouraged and supported by a

Senior Fellowship of the Science Research Council of Great Britain. The

technical inspiration was due to Edsger W. Dijkstra (1975b), and the paper

has been improved in presentation and content by valuable and painstaking

advice from D. Gries, D. Q. M. Fay, E. W. Dijkstra, N. Wirth, R. Milne,

M. K. Harper, and its referees. The role of IFIP W.G.2.3 as a forum for

presentation and discussion is acknowledged with pleasure and gratitude.

SEVENTEEN

A calculus of total correctness
for communicating

sequential processes

The period after the publication of the CSP paper (cf. Chapter 16) saw
exciting developments in the theory of parallelism. This period coincided with
Hoare’s move to Oxford, where he worked with colleagues who were keen to
assist in the mathematical foundations of programming. The Programming
Research Group had been the birthplace of Denotational Semantics; its first
Professor, Christopher Strachey, had formed a unique collaboration with
Dana Scott, who was still in Oxford on Hoare’s arrival. Joe Stoy, who wrote
the definitive book on denotational semantics (Stoy 1977), had held the PRG
together during the interregnum. Perhaps most importantly, Hoare now
acquired a succession of mathematically sophisticated Ph.D. students (such as
John Kennaway, Bill Roscoe and Steve Brookes).

This paper provides a proof theory for reasoning about process expressions.
Although it does not refer to [66](i.e. Chapter 16), the constructs used to
build the process expressions are strongly related. The processes are proved to
satisfy assertions on the messages which pass along the channels and their
‘ready sets’. The proof system given here is not complete in two senses: there
are things one cannot express in the channel assertions and some (true)
assertions can be neither proved nor disproved. This paper, then, must be seen
as a step towards more powerful theories of communicating processes. Other
papers were to bring channels into a more central position (e.g. [75]) or to
introduce ‘refusal sets’ (cf. [90]). The problem, uncovered in the current
chapter, of hiding infinite communication complicates much of the work on
reasoning about processes. The assertions here avoid any mention of the
internal state of a process. For the buffer-like examples considered, this works
well. Other classes of specification would be hampered by this restriction.

This paper was first drafted as a Programming Research Group monograph

C. A. R. Hoare, A calculus of total correctness for communicating processes, The Science of
Computer Programming, 1 (1-2), 49-72 (October 1981). This paper is republished by kind
permission of Elsevier Science Publishers BY.

289

290 ESSAYS IN COMPUTING SCIENCE

(No. 23) in 1981; it was submitted for publication in July 1981 and published

in ([76]) in the same year.

Abstract

A process communicates with its environment and with other processes by synchronized

output and input on named channels. The current state of a process is defined by the

sequences of messages which have passed along each of the channels, and by the sets of

messages that may next be passed on each channel. A process satisfies an assertion if the

assertion is at all times true of all possible states of the process. We present a calculus

for proving that a process satisfies the assertion describing its intended behaviour. The

following constructs are axiomatized: output; input; simple recursion; disjoint paral¬
lelism; channel renaming, connection and hiding; process chaining; nondeterminism;

conditional; alternation; and mutual recursion. The calculus is illustrated by proof of a
number of simple buffering protocols.

17.1 Assertions

process communicates with its environment by sending and receiving

xX messages on named channels (Fig. 17.1(a)). The names of these

channels constitute the alphabet of the process. A process may be con¬

structed from a group of subprocesses, intercommunicating on a network

of named channels (Fig. 17.1 (b, c)). A message output by one process along

a channel is received instantaneously by all other processes connected by

that channel, provided that all these processes are simultaneously prepared
to input that message.

On each named channel, it is possible to keep a record of all messages

passing along it. (For simplicity, we ignore direction of communication: if

desired, this could be recorded as part of each message.) At any given

moment, the record of all messages that have passed so far on a channel c is

a finite sequence, which will be denoted by the variable c.past. At the very

beginning, the value of c.past (for each channel c) is the empty sequence

<>. During the evolution of a process, whenever a message m is commu¬

nicated on channel c, the value of c.past is extended on the right by m, and
the new value is (c.past{m>).

At any given moment, the set of messages which a process is prepared to

communicate on channel c is denoted by the variable c.ready. When the

process is not prepared to communicate at all on channel c, the value of

c.ready is the empty set 0. When a process is prepared to input on channel c,

the value of c.ready is the set M of all possible messages for that channel.

When a process is prepared to output some message value m (selected from

M), then the value of c.ready is the unit set {/??), which has m as its only
member.

A CALCULUS OF TOTAL CORRECTNESS 291

left
COPY

right

(a) A process with alphabet \/eft, right}.

(b) A process (P||| Q) with alphabet [left, c, d, right].

(c) The process {b = (c d) in B) with alphabet {left, b, rightJ.

(d) The process (chan b in C) with alphabet jleft, right}.

Figure 17.1

Variables of the form c.past, c.ready are known as channel variables.

Since we do not wish to be concerned with the internal states and transitions

of a process, we shall identify the current externally observable state of a

process with the current values of its channel variables.

An assertion with a given alphabet is a normal sentence of logic and

mathematics, which may contain free channel variables of the form c.past

and c.ready, where c is a channel name in the alphabet of the assertion. The

292 ESSAYS IN COMPUTING SCIENCE

assertion describes certain possible states of some process at certain

moments of time. For example, the following are assertions, with informal

explanations of their meaning:

(1) left.past = right.past. ‘The sequence of messages which has passed so

far along the left channel is the same as the sequence that has passed

along the right channel’;

(2) lejt.ready = M. ‘The left channel is ready for input of any message in

the set M’;

(3) right.past < left.past. ‘The messages passed on the right channel form a

proper initial subsequence of the messages that have passed on the left’;

(4) right.ready = [first(left.past - right.past)). ‘The right channel is ready

for output of the earliest message on the left which has not yet been

transmitted on the right’.

Assertions may be readily combined by the familiar connectives of logic.

For example, we define for future use the assertion:

BUFF = df left.past = right.past A left.ready = M

V right.past < left.past A right.ready = [first (left, past - right.past)).

This assertion describes all possible states of a buffering process (or

transparent communications protocol), which outputs on its right channel

the same sequence of messages which it inputs from the left, though

possibly after some delay. When left.past = right.past, the process has an

empty buffer, and it must then be prepared to input any message from the

left. In the alternative case, the buffer is nonempty; it contains the sequence

(left.past - right.past) of messages which are awaiting output on the right;

and now the buffering process must be prepared to output the first element

of this buffer. The assertion BUFF dots not say whether or not input on the

left is possible when the buffer is nonempty; and thus it does not specify any

particular bound on the size of the buffer.

Let P be a process and let R be an assertion with the same alphabet as P.

Then P is said to satisfy R if at all times during any possible evolution of P

(before and after each communication) the assertion R correctly describes

the observable state of P, i.e., the sequences of messages that have passed

along its named channels, and the sets of messages that are ready to be

communicated on the very next step. This relation between processes and

assertions is abbreviated:

P sat R.

For example any process P which is to serve as a buffer or transparent

communications protocol must satisfy the assertion BUFF. There are many

processes that do so - for example, a bounded buffer of any finite size or

even an unbounded buffer; examples will be given later.

It follows from the intended interpretation of the relation satisfies that

A CALCULUS OF TOTAL CORRECTNESS 293

the following properties should be true for all processes P, and all
predicates, R, S:

HI P sat TRUE.

TRUE is a predicate which is always true of everything; it must therefore
always be true of the behaviour of every process.

H2 —|(Psat FALSE).

FALSE is the predicate that is always false of anything; it cannot therefore
correctly describe the behaviour of any process.

H3 -— — S-.
(P sat R) => (P sat S)

If (R => S) is a theorem, every state in which R is true is also a state in which

S is true. If all states of P are correctly described by R, they must also be

correctly described by 5, and hence ((P sat R) => (P sat S)) is also true. H3

is a useful proof rule, known as the ‘rule of consequence’.

Corollary

_R = S

(P sat R) = (P sat S)'

H4 If n is not a channel variable, and does not occur in P:

(V/7: N.P sat R(n)) = (P sat(Vw: N.R(n))).

If, for each n in some set N, P satisfies R(n), then each state of P is

correctly described by R{n), for all n in N. The converse implications
follows from (H3), and V-introduction.

Corollary

(P sat R) A (P sat S) = (P sat(R A 5)).

These four conditions are rather similar to the healthiness conditions

introduced by Dijkstra (1975a) to check the validity of each clause in the

definition of his weakest precondition for sequential programming. Unfor¬

tunately, our calculus is not strong enough to prove healthiness in all cases;

so we have to introduce the conditions as independent axioms, which must

at least be consistent with the other proof rules of the calculus.

Let R be an assertion not containing the variable n\ then we define R 1 n

(R restricted to n) as the assertion satisfied by a process which behaves as

described by R for at least n - 1 steps, i.e., at least until the total number of

communications on all channels reaches n. Let [a, be the alphabet of

R. Let ^ v stand for the length of the sequence x. Then we can define:

R f n = df(^ a.past +••• + $$ z.past ^ /?) v R.

294 ESSAYS IN COMPUTING SCIENCE

Example

BUFF r n = df(^ left.past + % right.past f n)\l BUFF.

Theorem 17.1

For any assertion R:

(a) R f 0 is a theorem,

(b) (Vrr.NAT.R \ n) = R.

Proof c.past is a finite sequence for each channel c. So ^ c.past is a

natural number, i? does not contain n, so

(Vn.'NAT.R \ n) = (Vn.NA T. % a.past + ••• + ^ z.past ^ n)\J R

= /?.

Let i? be an assertion possibly containing a variable x, and let e be an

expression of the same type as x. Then we define R[e/x] as the assertion

formed from R by substituting e for every free occurrence of x. (If any free

variable of e would thereby become bound to a bound variable in R, the

collision must be averted by systematic change of the offending bound

variable). For example, we define

BUFF' - df(BUFFI (n + !))[<x)left.past/left.past],

BUFF" - df BUFF'[{x) right.past j right.past].

After performing the substitutions, BUFF" expands to

^ <x> left.past + ^ {x) right.past ^ n + 1

V < x> left.past = < x> right.past A left.ready = M

V {x) right.past < {x) left.past

A right.ready = {first((x)left.past - {x)right.past)}.

The following theorem is typical of the lengthy but shallow truths required

in proofs of correctness of programs:

Theorem 17.2

BUFF t n => (Vx: M.BUFF").

Proof Each clause of the left-hand side implies the corresponding clause

on the right-hand side.
Let R be an assertion with alphabet [a ... z}. We introduce the convention

that

R[()lpast]

is the result of substituting the empty sequence < > for every occurrence of

any of the channel variables a.past,..., z.past. For example

BUFF[(>/past] = (<> = <> A left, ready = M

V <> < <> A •••)

A CALCULUS OF TOTAL CORRECTNESS 295

which is equivalent to 'left.ready = AT. If P sat R, then R[0/past]

describes all the possible states of P at its very beginning, before it has

engaged in communication on any of its channels. These states are defined

in terms of a.ieady, ..., z.ready, which specify the sets of communications

for which P should be ready on its very first step. Thus if any process is to

satisfy the assertion BUFF, it must at the beginning be ready to input on its
left channel any value in the set M.

By a similar convention

R[0/ ready]

is the result of substituting the empty set 0 for every occurrence of any of
the channel variables a.ready, ...,z.ready. For example

BUFF[0/ready] = (left.past = right.past A0 = M

V right.past < left.past A 0 ={••■])

which is always false. If P sat R, then RlO/past] describes all possible

states of P in which it is not ready for communication along any of its

channels. These states are known as deadlock states; and it is usually

desired to prove that they cannot occur. The states are defined in terms of

the variables a.past, ..., z-past\ and therefore we only need to prove that

R [01 ready] is false tor all values of these variables. For example, any

process that satisfies BUFF can never deadlock (unless the set M of all

possible messages is empty - a possibility which we can realistically ignore).

As a final convention, we allow successive substitutions to be separated
by commas; for example

/?[<>/past, 0/ready] =(/?[<>/past]) [0/ ready].

One of the simplest processes with alphabet A is the process STOPa

which is already deadlocked at its start. Clearly, it is never ready to do

anything, so c.ready = 0 for all c in A. Furthermore, the sequence of

messages transmitted along each channel remains forever empty, i.e.

c.past = <>. In summary, the process SFOPA has only this single state;

consequently, it satisfies an assertion R if and only if R correctly describes

its only state, i.e. if R is true when all the variables of the form c.ready take

the value 0, and all the variables of the form c.past take the value < >. This
informal reasoning justifies the axiom

(STOPa sat R) = R[0/ready, () I past].

Examples The following are theorems:

STOPa sat (e.ready A \x] A ^ c.past A 3),

-^(STOPlr sat BUFF)

where LR = [left, right].

STOPa is rather a useless process; it has been introduced here only to

296 ESSAYS IN COMPUTING SCIENCE

provide a simple example of an axiom, and how it can be informally

justified.

17.2 Processes and proof rules

In the remainder of this paper, we introduce a number of programming

constructs suitable for the programming of communicating processes. Each

construct is given a syntax, and an informal explanation of its semantics.

The semantics is formalized by an axiom or proof rule which is illustrated

by application to some simple example. Treatment of each example is

spread over several consecutive subsections.

17.2.1 Output

Let P be a process; let c be a channel name in the alphabet of P; and let e be

an expression (not containing channel variables). Then we use the notation

{c\e^ P)

to denote the process which first outputs the value of e on channel c and

then behaves like P. In its initial state, when the past of all its channels is

empty, this process is prepared to communicate the value of e on channel c,

so that c.ready={e}. It is not prepared to communicate on any other

channel, so initially d.ready = 0 for all channels d other than c. An

assertion R is true of this initial state if and only if it is true when the

channel variables of R take their initial values, as described above. This

may be expressed by substituting these values in R, giving

R[() I past, [e\\c.ready, (ready)]

(The use of the expression e to stand for its value is justified only in a

programming notation which excludes assignment of new values to vari¬

ables occurring in e.)
The subsequent states of (cle -> P) are very similar to the states of P; the

only difference is in the value of c.past. If in a state of P c.past has value 5,

then in the corresponding state of (c!e~> P), c.past has the value (e)s. In

order to prove

(cle P) sat R

it is the process P that must ensure, not that its own states satisfy R, but

rather that the corresponding states of (cle -► P) are correctly described by

R. In other words, R must be true when the value of c.past is replaced by

A CALCULUS OF TOTAL CORRECTNESS 297

(<e) c.past); or more formally:

P sat (R[{e) c. past j c.past]).

To prove that all states of a process are correctly described by R, it is

sufficient to prove that the initial state satisfies R, and that the subsequent

states do so too. The preceding paragraphs deal with these two cases;
putting them together we get the rule:

((cle -*■ P) sat R) = (R[0/past, { e\\c.ready, 0/ready)

A P sat (R[(e) c.past/c.past]))

Example

((rightl x~>p) sat BUFF') = 5A (p sat BUFF' [<x> right.past/right.past])

where S = df BUFF' [O/past, [x]j right.ready, 0/ready].
On performing the substitutions, S' expands to

+ «<> ^ n + 1
V <x> - <> A0= M

v <> < (x) A [x} = {first ((x) = <>)).

The last clause makes S a trivial theorem.

Theorem 17.3 ((right! x -► p) sat BUFF') = (p sat BUFF").

Proof The theorem S can be omitted from a conjunction, and the
definition of BUFF" is used.

The axiom for output has the same apparent ‘backwards’ quality as the

axiom for assignment in sequential programming. Readers who have

become familiar with the latter may note that the command (cle -► P) has
the same apparent effect on c.past as the command

(P\ c.past(e)c.past)

provided that P contains no assignment to variables of e. Thus the second

term of the axiom of output is derivable from the axiom of assignment.

17.2.2 Input

Let P(x) be a process whose behaviour (but not alphabet) possibly depends

on the value of the free variable x. Let c be a channel in the alphabet of

P(x), and let M be a finite set of message values which can be commu¬
nicated on channel c. Then

(clx: MP(x))

298 ESSAYS IN COMPUTING SCIENCE

is the process which is initially prepared to input on channel c any value in

the set M. The newly input value is given the local name x, and the process

subsequently behaves like P(x). The variable x is regarded as a bound

variable, so

(c?x: M-+ P(x))

is the same process as

(c?y : M-> P(y)).

Example

COPYSTEP = df (left?x: M (right', x~* p)).

COPYSTEP first inputs a value from the left, then outputs this same value

to the right, and then behaves like p.

The input command is similar to the output command except in two

respects. Firstly, the initial value of c.ready is not just a single value, but the

whole of the set M. Secondly, the subsequent behaviour P(x) may depend

on the input value x, which is not known in advance; and therefore P(x)

must be proved to meet its specification for all values of x ranging ever the

set M. This reasoning informally justifies the axiom:

Let R be an assertion not containing x:

((c!x: M P(x)) sat R) = (R[()/past, M/c.ready, 0/ready]

A Vx:M.(P(x) sat R[(x) c.past/ c.past])).

Example

(COPYSTEP sat (BUFF [n + 1)) = SA (V x: M .(right', x p) sat BUFF’)

where

S = df (BUFF \ n + 1) [<) I past, M\ left, ready, 0/ ready]

= <> + *<> ^ n + 1) v (<> = <> aM= M) v «> < <> A •••).

The second clause makes S a theorem.

Theorem 17.4

(COPYSTEP sat (BUFF t n + 1)) s (p sat(Vx: M.BUFF")).

Proof Theorem 17.3, definition of BUFF' and H4.

17.2.3 Recursion

Let p be a variable standing for a process with a given alphabet. Let F(p)

be the description of a process (with the same alphabet) containing none or

A CALCULUS OF TOTAL CORRECTNESS 299

more occurrences of the variable p. Then

lip.F(p)

is the recursively defined process, which starts off behaving like F(p), and

on encountering an occurrence of p, behaves like (/ip.F(p)) again.

Example COPY = df /ip. (leftlx: M (right! p)).

The process COP 1 is an infinitely repeating cycle, each iteration of which

inputs a message 1 rom the left and outputs the same message to the right.

A recursively defined process is intended to be a ‘fixed point’ of its
defining function F, i.e.,

gp.F(p) - F(fip.F(p)). (1)

Tet R be an assertion, and suppose for an arbitrary process p we can prove

(p sat (R t N)) =* (F(p) sat R t (n + 1)) for all n. (2)

From Theorem 17.1(a) and HI it follows that

(gp. F(p)) sat (R t 0).

By substituting gp.F(p) for p in (2) and using (1) we get

(np.F(p) sat R 1 n) => (gp.F(p) sat R \ (n + 1))

By the obvious induction on n we get

Vn.(fip.F(p) sat (R 1 n)).

By H4 and Theorem 17.1(b), we conclude

(fxp.F(p)) sat R.

This reasoning serves as an informal justification of the following proof
rule:

(p sat(R f n)) => (F(p) sat (R \ n + 1))

gp. F(p) sat R

Theorem 17.5

COPY sat BUFF

Proof By the rule given above, it is sufficient to prove

(p sat (BUFF \ n)) =* (COPYSTEP sat (BUFF \ n + 1)).

By Theorem 17.4, this is equivalent to

(p sat BUFF \ A7) => (p sat (Vx: M.BUFF"))

which follows from Theorem 17.2 by H3.

300 ESSAYS IN COMPUTING SCIENCE

Now at last we see the motivation for the choice of assertions used in the

previous examples. Of course, a proof would normally be presented in the

reverse order, with proof requirements for the component processes being

derived by formal manipulation from the proof requirement of the whole

process. The reader is invited to use this top-down method to prove the

obvious fact

(fip.(b\0 p)) sat (b.ready ^ 0).

17.2.4 Channel renaming

Let P be a process, with channel c in its alphabet, and let d be a channel

name not in its alphabet. Then P[d/c] is taken to denote a process that

behaves just like P, except that

c is removed from its alphabet,

d is included in its alphabet,
whenever P would have used channel c for input or output,

P[djc] uses d instead.

P[dlc] can clearly be derived from the definition of the process P by

replacing each occurrence of the name c by an occurrence of d.

Example

COPY[dlright] = lxp.(left?x: M -+ (d'.x -> p)).

A similar transformation may be made to any assertion satisfied by P, in

accordance with the following convention:

R[d/c] = df R[d.past/c.past, d.ready/c.ready].

The appropriate axiom is quite obvious:

(P[djc) sat R[djc]) = (P sat R).

17.2.5 Disjoint parallelism

Let P and Q be processes with disjoint alphabets. Since they have no

channel name in common, they are unconnected, and therefore cannot

communicate or interact with each other in any way. The notation (P ||| Q)

denotes a process which behaves like P and Q evolving in parallel; its

alphabet is clearly the union of the alphabets of P and Q. Channel

renaming can be used when needed to achieve disjointness of alphabets.

A CALCULUS OF TOTAL CORRECTNESS 301

Example

PROT = df (COP Y[d I right]) ||| (COPYlcj left]).

This combination is illustrated in Fig. 17.1(b).

The states of (PHI Q) correspond to elements of the Cartesian product

space of the set of states of P and the set of states of Q. If P satisfies S, then

5 has the same alphabet as P; it therefore correctly describes the current

values of those channels in the state of (P ||| Q) which are in the alphabet of
P; and hence

(P||| Q) sat S.

Similarly, if Q sat T it follows that

(P||| Q) sat T.

Hence by H4 (corollary), we justify the proof rule

(Psat S)A(Q sat T)

(PHI Q) sat (5A T)

Example Let

BUFF(c, d) = df BUFF[dlright] A BUFF[cjleft}.

Theorem 17.6

PROF sat BUFF{c, d).

Proof Immediate from Theorem 17.5 and the proof rules for renaming
and disjoint parallelism.

17.2.6 Channel connection

Let P be a process with channels c and d in its alphabet. We may wish to

connect together these two channels, so that messages passed on either of

them are simultaneously passed on the other. For technical reasons, we give

a new name b to the newly connected channel, and eliminate the names c

and d from the alphabet of P. The process resulting from this connection

and renaming will be denoted

(b = c ^d in P)

Example

PROFOC = df (b = c <->d in PROF).

This is illustrated in Fig. 17.1(c).

302 ESSAYS IN COMPUTING SCIENCE

When two channels c and d are connected, a message can be passed on

the connecting channel b if and only if both of the connected channels are

ready for that communication; so at all times:

b. ready = (c. ready P d. ready).

As a consequence, whenever c is ready for output and d for input, d.ready
is the universal set M, and the connected channel b is ready for output of

the same value as c. Similar remarks apply when d is ready for output and c
for input. When both c and d are ready for input, so is b. When either of c
or d is unready then so is b. There remains the case that both c and d are

ready for output, and the readiness of b depends on whether the values

output are the same. This case is not very useful, and should probably be

excluded in a practical programming notation.

Each message transmitted on either of the connected channels c and d is

instantaneously passed by the connecting channel b to the other one. The

sequences of messages so transmitted must therefore always be the same

b.past = c.past = d.past.

It is the duty of an implementation of the connection operator to ensure

that b.ready and b.past have the right values, as described in the above

paragraphs. The programmer can just assume that this has been done. Thus

we derive the proof rule

P sat R

(b = c *^d in P) sat (b.ready = c.ready Pi d.ready
A b.past = c.past = d.past A R)

Unfortunately, the assertion in the consequent of this rule contains the

channel names c and d, which are not supposed to be in the alphabet of the

process concerned. This problem is easily solved by the valid technique of

weakening the consequent H3; it is easy to check that the following proof

rule is a logical consequence of the one justified above.

P sat R

(b = c ^d in P) sat (3*, y.b.ready = x Pi y
A R[b.pastjc.past, b.past/d.past,

xIc.ready, y/d. ready])

Theorem 17.7

PROTOC sat 3x, y.(b.ready = x P y A BB)

where

BB — df BUFF(c, d)[b. past j c. past, b. past/d.past, x/c.ready, y/d.ready].

A CALCULUS OF TOTAL CORRECTNESS 303

Proof Immediate from Theorem 17.6.

Here is BB written out in full:

{left.past = b.past A left, ready = M

V b.past < left.pastLy = [first(left, past - b.past)})
A (b.past = right.past a x = M

V right.past < b.past A right.ready = {first(b.past - right.past))).

17.2.7 Hiding

Let P be a process with channel b in its alphabet. Suppose that b is a

channel which connects two or more component subprocesses of P, as

described in the previous section. Since b is still in the alphabet of P, it can

still be used for communication with the environment of P. Indeed, no

communication can take place on channel b without the knowledge and

consent of the environment. However, in the design of any mechanism, we

usually wish to conceal its internal workings from its environment; and this

is especially important for electronic devices, which can work millions of

times faster than the environment. We therefore wish to hide from the

environment of P all communications passing between subprocesses of P
along channel b. Each such communication is intended to occur automa¬

tically and instantaneously as soon as all the processes connected by the

channel are ready for it. And, of course, channel b must be removed from

the alphabet of P. The required effect is denoted:

(chan b in P)

which declares the name b as a local channel in P. As with other local

variables, we postulate,

(chan b in P) = (chan c in P[cjb])

where c is not in the alphabet of P.

Example

PROTOCOL = df (chan b in PROTOC).

In this example, the channel b connects the two parallel subprocesses of the

process PROTOC. One of the processes acts like a trivial transmitter of a

protocol, and the other as a trivial receiver. The channel b serves as the

transmission line between them. The user of the mechanism is not con¬

cerned with the nature, number, or content of the messages passing along

the transmission line, which are therefore concealed from him, as shown in

Fig. 17.1(d).

304 ESSAYS IN COMPUTING SCIENCE

A state of the process (chan b in P) is said to be stable if there is no

further possibility of communication on channel b, i.e.

b. ready = 0.

In an unstable state, when communication is possible on channel b, we want

that communication to take place invisibly at high speed; and this will bring

the process to a new and usually different state. Of course, if one of the

other channels is ready at the same time as b, and the environment is

prepared to communicate on that channel, the external communication can

occur instead - but this cannot be relied upon. If the environment is not
prepared to communicate on any of the other ready channels, we insist that

a ready internal communication must sooner or later occur - and preferably

sooner. Thus the unstable states are evanescent, and cannot be relied upon;

in specifying the externally visible behaviour of processes, it seems sensible

to ignore them. In other words we choose to interpret

P sat R

as a claim that R is true of all stable states of P.
For each stable state of (chan b in P), there exists a state of P in which

b.ready = 0 and in which b.past has some value of no further interest. This

informal reasoning suggests a proof rule

(P sat R)

(chan b in P) sat (3b.past.R[0/ b. ready])

(Here we have quantified over a channel variable as if it were an ordinary

variable. The meaning is the same as if an ordinary variable s had been

substituted, i.e.

3s.R[s/b.past, 0/b.ready].)

Unfortunately this proof rule leads to a contradiction. Consider the

process

P = df np.bl0 -*• p.

P outputs an unbounded sequence of zeros on channel b, and is always

prepared to output another; we can prove

P sat {b.ready ^ 0).

From this, using the incorrect rule given above, we deduce

(chan b in P) sat 3 b.past. ((b.ready ^ 0)[0/b.ready]).

The assertion here reduces to 0 5* 0, which violates the condition H2

(counterexample due to W. A. Roscoe).

The trouble here is that we have tried to hide an infinite sequence of

internal communications, with disastrous consequences for our theory. The

A CALCULUS OF TOTAL CORRECTNESS 305

consequences in practice could be equally unfortunate, because the resulting

process might expend all its energies on internal communication, and never

pay any further attention to its environment. This phenomenon is known as

‘livelock’ or ‘infinite chatter’, and there are sound theoretical and practical

reasons tor requiring a programmer to prove it cannot occur. A simple way

of doing this is to prove that the number of messages which can be passed

along the hidden channel b is bounded by some total function /of the state
of the other non-hidden channels:

^ b.past ^ f(c.past,...,z.past)

where c, ...,z are all the other channels in the alphabet of the process.

Summarizing the discussion above, we formulate the proof rule:

P sat(/? A (% b.past ^ f(c.past,...,z.past)))

(chan b in P) sat (3 b.past. R [0/b. ready])

Theorem 17.8 PROTOCOL sat (3 b.past, x, y. (0 = * D y A BB))

Proof BB => (BB A ^ b.past ^ ^ left.past).
The conclusion follows from Theorem 17.7 and H3.

We are at last ready to prove

Theorem 17.9 PROTOCOL sat BUFF

Proof We prove the assertion of Theorem 17.8 implies BUFF. Expanding
the assertion BB we get four cases:

left.past = b.past = right.past A left, ready = x = M
V right.past < b.past = left.past A

right.ready = {first(b.past - right.past)) A •••

V right, past = b.past < left, past /\x = MRy={-'}
V right.past < b.past < left.past A

right, ready = first (b.past - right.past) Ay— •••

where irrelevant phrases are replaced by ellipses.

The first two clauses obviously imply the corresponding clauses of BUFF.

The third clause describes an unstable state, and contradicts the term

(0 = A n y)\ this case is therefore eliminated. The fourth clause also implies the

corresponding clause of BUFF, using transitivity of < and the fact that

r < b < l =* first(b - r) = first(l - r).

17.2.8 Process chaining

The connection of processes in a series by their right and left channels is such a

306 ESSAYS IN COMPUTING SCIENCE

useful operation that it deserves a special notation:

{P(=)Q) = df chao b in (b = c^d in ((P[dlright])\\\(Q[clleft])))

where b, c, d are fresh channel names.

Example

PROTOCOL = (COPY{ =)COPY).

Unfortunately, the proof rule for this defined construct is hardly simpler

than its definition. Let s, x, and y be fresh variables. Let

S ' = S[s\ right, past] [xj right.ready], T' = T[sj left.past][y / left, ready].

Let / be a total function of pairs of sequences.

P sat S, Q sat T,

S' A T' => 5 < /{left.past, right.past)

(P(=) Q) sat (3s, x, y.{x ny = 0AS'Ar')) *

Theorem 17.10

If P sat BUFF and Q sat BUFF, then (P{ =)Q) sat BUFF.

Proof Essentially the same as given for Theorem 17.9.

Corollaries

{PROTOCOLS) COPY) sat BUFF,

(PROTOCOL^) PROTOCOL) sat BUFF,

etc.

17.2.9 Nondeterministic union

Let P and Q be process descriptions with the same alphabet. Then the
notation

(Por 0)

stands for a process that behaves either like P or like Q. The choice between

the alternatives is left completely unspecified, and may be made arbitrarily

as the process (P or Q) evolves, or may be fixed by its implementor before

the start. The choice cannot be influenced by the environment of the

process, and is undetectable at the time it is made - though it may be

deducible from the subsequent behaviour of the process.

Example

{PROTOCOL or COPY).

A CALCULUS OF TOTAL CORRECTNESS 307

This behaves either like a two-place buffer or a one-place buffer, the

choice being unspecified and unknown. If, during the life of this process,

the length of left.past ever exceeds the length of right.past by two, then we
can deduce that the choice has fallen on PROTOCOL.

If we want to be sure that {P or Q) satisfies R, since we do not know

which of P or Q will be selected, we had better prove that they both satisfy
R:

(P or Q) sat R = (P sat R) A (Q sat R).

Theorem 17.11

(PROTOCOL or COPY) sat BUFF.

Proof From Theorems 17.9 and 17.5.

17.2.10 Conditional

Let e be a Boolean-valued expression not containing any channel variables.

Let P and Q be processes with the same alphabet. Then the process

if e then P else Q

is one that behaves like P if e evaluates to true, or behaves like Q if e

evaluates to false. The proof rule is correspondingly simple:

((if e then P else Q) sat R)

= if e then (P sat R) else (Q sat R).

An example will be given in Section 17.2.12.

17.2.11 Alternation

Let P(x) and Q(y) be processes whose behaviour possibly depends on the

values of the free variables a and y respectively; but all of them have the

same alphabet. Let c and d be distinct channel names in this alphabet. Let

M be the set of messages that can be communicated on c, and let N be the
set for d. Then the notation

(c?x: M -> P(x) □ dly: N -> Q(y))

denotes a process which behaves as follows. Initially, it is prepared to input

either on channel c or on channel d\ in the first case its subsequent

behaviour is defined by P(x), where x stands for the value input on c; and

in the second case, its subsequent behaviour is defined by Q(y), where y is

the value input on d. Only one of the two inputs can take place; but in

contrast to nondeterministic union, the choice can be influenced by the

308 ESSAYS IN COMPUTING SCIENCE

other processes connected to the channels c and d. If the process (or

processes) connected to one of them remains forever unprepared for

communication^ then communication can still occur, but only on the other

channel. But if all the processes connected to each of the channels become

ready for communication, then it is nondeterministic on which channel the

communication will take place. An efficient implementation should select

the first to become ready; but such considerations of efficiency rightly

cannot be formalized in a calculus of correctness; and a programmer clearly

must not rely on them, since he has delegated to the implementor all control

over the relative speeds of the processes.

Example

MERGESTEP = df (left 11 x\ M-> right\(\, x)-> p

□ left21x: M -+ right!(2, x) -> p).

This process has alphabet [leftl, left2, right). It inputs a message xon either

leftl or left2, tags it with a 1 or 2 to indicate its source, and outputs the

tagged message on the right, after which it behaves like p.

In the initial state of a process described using □, both the channels

involved are ready for input, and all the other channels are unready. Each

subsequent state corresponds either to a state of P(x) or to a state of Q(y);

and both cases must be proved correct. The proof rule is therefore modelled

on that for simple input.

If c and d are distinct channel names

(clx: M-+ P(x) □ dly: N-* Q(y)) sat R

= R [< > /past, M\ c. ready, N/ d. ready, 01 ready]

A Vx: M.P(x) sat R[{x) c. past \c. past]

A Vy: N.Q(y) sat R[(y) d.past/ d.past].

Example Let sel(n, s) be a sequence formed from 5 by selecting only those

items tagged with n, and then removing the tags; or, more formally

sel(n, s) = if 5 = < > then < >

else if first(s) = (n, x) then <x> sel(n, rest(5))

else sel(n, rest(s)).

Let

MERGED = df sel(1, right.past) ^ leftl.past

A sel(2, right.past) ^ left2.past

A (leftl.ready = left2.ready =Mv right.ready ^ 0).

A CALCULUS OF TOTAL CORRECTNESS 309

Theorem 17.12

MERGE STEP sat (MERGED \ n + 1)
- Vx: M.{right\{ \, x) -*■ p) sat {MERGED \ n + 1)

[< x> left 1.past I left Lpast]
A Vx: M.{right\{2, x) -+ p) sat {MERGED r n + 1)

[< x> left 2. past I left2. past].

Proof The omitted terms are trivial theorems.

The reader may care to complete the proof that

(fip.MERGESTEP) sat MERGED.

The notation and proof rule for alternation can clearly be adapted for
more than two alternatives; and since {c\e-+P) is the same as
(c?x: [e] P), output can be readily substituted for input.

17.2.12 General recursion

The method of defining processes by recursion can be generalized to allow
mutual recursion. A set of processes defined by mutual recursion constitute
a solution to a set of simultaneous fixed point equations, just as gp.F{p) is a
solution for p in the single equation

P = df E{p).

A pair of mutually recursive equations take the form

P = dfE{p,q), g - df G{p, q)

where F{p, q) and G{p, q) are process descriptions, which in general
contain the process variables p and q.

The method of mutual recursion generalizes even further to infinite sets
of simultaneous equations, one for each member 5 in some counting set S:

p{s) = F{p, s) for all 5 in S.

The solutions to all these simultaneous equations constitute an array p, with
an element p{s) for each 5 in S. This array of processes is denoted by the
formula

Ijlp{s : S). E{p, s).

However, it is often clearer to write the definitions in the equational form
shown above.

310 ESSAYS IN COMPUTING SCIENCE

Example
Let IvT be the set of all finite sequences of elements of M.

Let IN = df (leftlx: M-* p((x))).

Let

INOROUT = df (leftlx: M-+ p(s(x>)

□ rightl first(s) p(rest(s))

)■

Let

STEP = df if 5 = <) then IN else INOROUT.

Let

B = df np(s: M*).STEP.

The same definition can be written out more clearly in the form of an

equation in B:

B(s) = df if s = < >then left?x: M-+ B((x))
else (leftl x: M -> 5(s< x>)

□ right! first(s) -► B(rest(s))

)•

for all 5 in M*

For each 5 in M , 5(5) behaves like an unbounded buffer with current

content 5. If 5 is empty, 5(s) is prepared only to input on the left any value

x in M, and then behave like B((x)), that is, like a buffer containing only

the value a. But if 5 is nonempty, B(s) is prepared:

either (1) to input a new element x, which is appended to the stored buffer,

so that its subsequent behaviour is B(s(x)),
or (2) to output the first element of its buffer, which is then removed, so

that its subsequent behaviour is B(rest(s)).

The proof rule for generalized recursion is similar to that for simple

recursion, except that the formulae are quantified over all 5 in the counting

set S.

(Vs: S.p(s) sat (R(s) t n) => Vs: S. F(p, s) sat (R(s) \ n + 1))

Vs: S((fjip(s: S)F(p, s))(s)) sat R(s)

Example

Let us define

BUFF(s) = df BUFF[(s left.past)!left.past].

BUFF(s) describes the behaviour of a buffer that has input the sequence s,

but not yet output it. BUFF(s) therefore should describe the future

A CALCULUS OF TOTAL CORRECTNESS 311

behaviour of the process B(s), as stated in the following theorem:

Theorem 17.13

Vs: S.B(s) sat BUFF(s).

Proof By the rule of recursion, we can assume

Vs:M*.p(s) sat (BUFF(s) \ n) (0)

and must prove

STEP sat (BUFF(s) 1 n + 1) for s € M*

which by the conditional rule, splits in two:

s = <) =* IN sat (BUFF(s) \ n + 1) (1)

and

s * < > => INOROUT sat (BUFF(s) l n + 1). (2)

For (1), we assume s = <> and need to prove

(BUFF(s) t n + 1)[<>/past,Mjleft.ready, 0/ready] (la)

AP((x)) sat (BUFF(s) f n + \)[{x)left.pastjleft.past] for all a. (lb)

(la) is a trivial theorem, and the assertion of (lb) is equivalent to

BUFF[s(x) left.past/left.past] \n

which by definition is BUFF{s{x)) 1 n. So (lb) follows directly from the
assumption (0) and the condition s= <>.

For (2) we assume s ^ < > and need to prove

{BUFF{s) \ n+ 1)[<) I past, M\ left, ready, {first (s)\\right.ready, 0/ ready]

{2a)

A Vx:M./?(s<a>) sat (BUFF(s) 1/1+ \)[{x) left, past j left, past] (2b)

A p(rest(x)) sat (BUFF(s) t n + 1)[{first {s)) right, past j right, past]. (2c)

(2a) is a trivial theorem. The assertion of (2b) is equivalent to

BUFF(s{x)) \ n, and the assertion of (2c) is equivalent to BUFF
(rest(s)) l n; so both (2b) and (2c) follow from the assumption (0).

To check the above claims of trivial theoremhood or equivalence, it is
necessary only to expand the abbreviations. For example

(BUFF(s) l n+ 1)[(first(s))right.past/right.past]

= ^ left.past + ^ ({ first(s))right.past) ^ n + 1

V (s left.past) = < first(s)) right.past A left.ready = M

V < first(s))right.past < (s left.past)

A right.ready = {first/((s left.past) - < first(s))right.past)],

312 ESSAYS IN COMPUTING SCIENCE

BUFF (rest (s)) \ n

= ^ left.past + ^ right.past ^ n

V (rest (s) left, past) = right.past P left.ready = M

V right.past < (rest(s)left.past)
A right, ready = {first ((rest (s) left, past) - right, past)).

When 5 5* <>, these are clearly equivalent, clause by clause.

Theorem 17.14

£(< >) sat BUFF.

Proof Put 5=<> in Theorem 17.13.

17.3 Discussion

The proof methods described in this paper can be used to establish many
useful properties of a process that are expressible as assertions about values
of its channel variables. Such properties include:

(1) Absence of deadlock. If P sat R, then the assertion

—i R[&! ready]

describes all those values of a.past, ...,z.past that do not lead to deadlock.
If this is a theorem, deadlock can never occur.

(2) Termination. If P sat R, and if we can prove

R => ^ a.past +••• + $£ z.past ^ n

then we can be sure that P terminates in at most n steps.
(3) Fairness. A process P is said to be fair with respect to a channel c if it

cannot indefinitely often service the other channels and neglect to service c.

Thus any buffer is fair to its left channel and any finite bounded buffer is
fair to its right channel. This condition may be formulated

BUFFn = BUFF A ^ (left, past - right.past) ^ n.

To prove that P is a bounded buffer, we need to prove

3n(P sat BUFFn).

Note this is quite different from

P sat (3n.BUFFn)

A CALCULUS OF TOTAL CORRECTNESS 313

since 3 nBUFF,, is equivalent to BUFF, which is satisfied by an infinite
buffer.

However, there are some properties of a process which are impossible to
formulate in our calculus. For example, it is impossible to state or prove
that Pis a nondeterministic process. Indeed for any assertion R, if Psat R

is proved, then there exists a deterministic process Q that also satisfies R. In
particular, it is not possible to force an implementation to delay making a
non-deterministic choice until after the start of the process, or indeed to
force a choice before the start. The time at which nondeterminism is
resolved is taken to be wholly invisible, and wholly irrelevant to the logical
correctness of a process.

We make no claim that the calculus presented here is complete, in the
sense that every proposition or its negation is provable. For example it does
not seem possible to prove:

chan b in (a!0 {gp.bl0 p))sat{a.past 6 [0]*)

or its negation. It is much more important that the calculus should be
consistent in the sense that it should not permit proof of some proposition
together with its negation. The easiest way to prove consistency is to
construct a mathematical model of the set of all processes, and to prove that
all the axioms of the calculus are truths about the model and that the proof
rules preserve this validity. Suitable models may perhaps be found in Brinch
Hansen (1975) or Campbell and Haberman (1974).

It is also desirable to be able to prove simple algebraic identities among
processes, for example

(P(= HQ1 or Q2)) = {{P(==)Q1) or (P(=)Q2)),

{{right \ e -+ P){ =) {leftlx: M-> Q)) = {P(==)Q[e/x]).

Such identities might be readily proved in a suitable model.
A final advantage of the construction of a model is that it may give better

confidence that the notation introduced for the programming of processes
can actually be implemented in a realistic and efficient manner. But
mathematical model-building could be a rather arbitrary game, unless the
model can be shown to satisfy some fairly simple proof rules, which can be
used in correctness proofs of useful programs. It is hoped that our calculus
will serve that purpose, although its application to large programs will not
be as simple as one might hope.

The set of programming constructs which we have axiomatized is fairly
extensive. Notable omissions are sequential composition, local variables,
and assignment. There is reason to suppose that the treatment of these
constructs will present some difficulty.

This paper has proved that five different processes satisfy the specification

314 ESSAYS IN COMPUTING SCIENCE

BUFF:

COPY,
PROTOCOL,
(PROTOCOL^ = > COPY),
(PROTOCOL or COPY),

<>).

Here are two more such processes:

C«>) (1)

where C = df • A/*) if 5 = () then /A/" else (INOROUT or OUT)

where OUT = df {right!first(x) -► p(rest(s))),

lip.(left!x: M -*■ {p{ = > (right', x - COPY))). (2)

In example (1), the depth of buffering may change dynamically (for
example, according to fluctuating availability of storage). Example (2) is an
unbounded buffer like Both examples may be proved by methods

described here.

17.4 Acknowledgement

This paper has greatly benefited from the advice and inspiration of visitors
and students at the Programming Research Group, particularly Rick
Hehner, Zhou Chao Chen, Steve Brookes, Bill Roscoe and Cliff Jones.

EIGHTEEN

Programming is an
engineering profession

This chapter resulted from a collection of material from various occasional
articles. It was put together as a sort of prospectus for an M.Sc. course at
Oxford University which aimed to attract programmers from industry. The
text of this chapter is a version of the PRG-27 Oxford monograph published
in May 1982; a shorter version of the paper is available in [83]; the same text is
published under a different title in [89].

In earlier times and in less advanced societies, the welfare of a community
depended heavily on the skill and dedication of its craftsmen — the

millers, blacksmiths, spinners, weavers, joiners, thatchers, cobblers and
tailors. A craftsman possesses skills, not shared by his clients, which he has
acquired by long and ill-paid apprenticeship to a master of his craft. He
learns exclusively by imitation, practice, experience and by trial and error.
He knows nothing of the scientific basis of his techniques, nothing of
geometry or even of drawing, nothing of mathematics, or even of arith¬
metic. He cannot explain how or why he does what he does, and yet he
works effectively, by himself or in a small team, and can usually complete
the tasks he undertakes in a predictable time scale and at a fixed cost, and
with results that are predictably satisfactory to his clients.

The programmer of today shares many of the attributes of the craftsman.
He learns his craft by a short but highly paid apprenticeship in an existing
programming team, engaged in some on-going project; and he develops his
skills by experience rather than by reading books or journals. He knows
nothing of the logical and mathematical foundations of his profession. He
does not like to explain or document his activities. Yet he works effectively,
by himself or in small teams, and he sometimes manages to complete the

C. A. R. Hoare, Programming is an engineering profession. In P. J. L. Wallis (ed.), Software
Engineering, State of the Art Report Volume 11, No. 3, pp. 77-84. Reprinted with permission.
Copyright © 1983, Pergamon/Infotech.

315

316 ESSAYS IN COMPUTING SCIENCE

tasks he undertakes at the predicted time within the predicted costs, and to

the satisfaction of his client.
In primitive societies of long ago we hear of another class of specialist on

whom the welfare of the community depended. Like the craftsman, he is
dedicated to his task; like the craftsman he is regarded with respect, perhaps
even tinged with awe, by his many satisfied clients. There are several names
given to such a man - a seer, a soothsayer, a sorcerer or wizard, a witch
doctor or high priest. I shall just call him a high priest.

There are many differences between the craftsman and the high priest.
One of the most striking is that the high priest is the custodian of a weighty
set of sacred books, or magician’s manuals, which he alone is capable of
reading. When he is consulted by his client with some new problem, he
refers to his sacred books to see whether he can find some spell or
incantation which has proved efficacious in the past; and having found it, he
tells his client to copy it carefully and use it in accordance with a set of
elaborate instructions. If the slightest mistake is made in copying or in
following the instructions, the spell may turn to a curse, and bring
misfortune to the client. The client has no hope of understanding the nature
of the error or why it has evoked the wrath of his deity - the high priest
himself has no inner understanding of the ways of his god. The best the
client can hope for is to go right back to the beginning, and start the spell
again; and if this does not work, he goes back to the high priest for a new

spell.
And that is another feature of the priesthood — when something goes

wrong, as it quite often does, it somehow always turns out to be the
ignorance or stupidity or impurity or wickedness of the client; it is never the
fault of the high priest or his god. It is notable that when the harvest fails, it
is the high priest who sacrifices the king, never the other way round.

Programmers of the present day share many of the attributes of the high
priest. We have many names - coder, systems analyst, computer scientist,
informatician, chief programmer: I shall just use the word ‘programmer’ to
stand for them all. Our altars are hidden from the profane, each in its own
superbly air-conditioned holy of holies, ministered to night and day by a
devoted team of acolytes, and regarded by the general public with mixed
feelings of fear and awe, appropriate for their condition of powerless

dependence.
An even more striking analogy is the increasing dominance of our sacred

books — the basic software manuals for our languages and operating
systems which have become essential to our every approach to the com¬
puter. Only 30 years ago our computers’ valves and tanks and wires filled
the walls and shelves of a large room, which the programmer would enter,
carrying in his pocket his programming manual - a piece of folded
cardboard known as the ‘facts card’. Now the situation is reversed: the
programmer enters a large room whose walls and shelves are filled with

PROGRAMMING IS AN ENGINEERING PROFESSION 317

software manuals, but in case he wants some urgent calculations he carries
in his pocket — a computer.

18.1 The rise of engineering

In recent centuries with the advance of technology, we have seen the
emergence of a new class of specialist - the professional engineer. The most
striking characteristic of an engineer is the manner in which he qualifies for
entry into his profession: not only does he work out the long apprenticeship
of the craftsman, not only does he undergo the brief graduation of
initiation ceremonies of the high priest, but both of these are preceded by
many years of formal study in schools and in universities. His education
covers a wide range of topics, including the mathematical foundations of
the differential calculus, the derivation and solution of complex equations,
the physical principles underlying the science of materials, as well as the
specific technicalities of a particular branch of his subject, and a large
catalogue of known design methods and specific practical techniques.
However, this is only a start: during his professional career the engineer will
expect to continue his education, to expand his skills, and to keep pace with
technological progress by coninued study of new books and learned
journals, and attendance of specialist orientation courses. The older
crafstmen will complain that the engineer already knows far more than he
needs for the day-to-day practice of his profession; but his colleagues and
clients will realize that the weight of background learning develops his good
judgement and increases his competence and authority at all times; even if
a recondite scrap of knowledge is used only once in his career, then the
learning has paid for itself many times over.

We would like to claim that computer programming has transcended its
origins as a craft, has avoided the temptation to form itself into a
priesthood, and can now be regarded as a fully fledged engineering
profession. Certainly, we have some right to this claim. Through our
professional Societies we have formulated a code of professional ethics and
a structure and syllabus of professional examinations. We discharge our
duty to the community by giving evidence to government commissions on
social consequences of computing, on privacy, on employment. Because of
the great demand for our services, our clients and employers are willing to
offer us professional salaries, and it is hardly likely we shall refuse them.

But more than this is needed for true professional status. What is the
great body of professional knowledge common to all educated program¬
mers? Where are the reference libraries of standard works on known
general methods and specific techniques and algorithms oriented to
particular applications and requirements? What are the theoretical,

318 ESSAYS IN COMPUTING SCIENCE

mathematical or physical principles which underlie the daily practice of the
programmer? Until recently, these questions had no answer. Now the
answers are beginning to emerge. We can point to the ACM curriculum for
the study of computer science at university as a corpus of common
knowledge for the programmer, though the proportion of computer science
graduates in the programming profession is still low. Don Knuth’s books
(1973) on the art of computer programming form an excellent ency¬
clopaedia of known techniques — but only three volumes have so far
appeared, and how many programmers consult even those? And finally, we
have only recently come to a realization of the mathematical and logical
basis of computer programming: we can now begin to construct program
specifications with the same accuracy as an engineer can survey a site for a
bridge or road, and on this basis we can now construct programs proved to
meet their specification with as much certainty as the engineer assures us his
bridge will not fall down. Introduction of these techniques promises to
transform the arcane and error-prone craft of computer programming to
meet the highest standards of a modern engineering profession.

Let me expand on the nature and consequences of this discovery. It is like
the Greek discovery of axiomatic geometry as the basis of the measurement
of land, map-making, and its later use in plans and elevations for the design
and construction of buildings and bridges. It is like the discovery of the
Newtonian laws of motion and the differential calculus as the basis of
astronomy as well as more mundane tasks like the navigation of ships and
the direction of artillery fire. It is like the discovery of stress analysis as the
basis for the reliable and economic construction of steel frame buildings,
bridges, and oil platforms.

This is just analogy. The analogy between programming and more
traditional engineering disciplines is a very fruitful one, and it has been the
basis of many theoretical and practical advantages to our profession. But
analogies are dangerous, especially if they are applied without consideration
of the underlying reality. I would therefore like to concentrate attention on
three points where the analogy breaks down:

(1) The difference in methods by which we achieve reliability.
(2) Our difficulty in establishing structural isolation of parts of a large

program.
(3) Our need for improved intellectual and mechanical tools.

18.2 Reliability

In principle, we should find it much easier than other professional engineers
to achieve the highest standards of quality, accuracy and predictability of

PROGRAMMING IS AN ENGINEERING PROFESSION 319

time scale and cost because the raw materials with which we work are much
simpler, more plentiful, and much more reliable. Our raw materials are the
binary digits in the stores and registers, disks and tapes of our computers.
Our problem is that we have too many of them rather than too few. These
bits are manipulated exactly in accordance with our instructions, at a rate
of millions of operations per second for many weeks or months without
mistake. When the hardware does go wrong it is the engineer, not the
programmer, who is called upon to mend it.

That is why computer programming should be the most reliable of all
professional disciplines. We do not have to worry about problems of faulty
castings, defective components, careless labourers, storms, earthquakes or
other natural hazards: we are not concerned with friction or wear or metal
fatigue. Our only problems are those we make for ourselves and our
colleagues by our over-ambition or carelessness, by our failure to recognize
the mathematical and theoretical foundations of programming, and our
failure to base our professional practice upon them.

Yet in some ways the engineers have an advantage over us. Because they
are dealing with continuously varying quantities like distance, temperature,
and voltage, it is possible for them to increase confidence in the reliability of
an engineering product by testing it at the extremes of its intended operating
range, for example, by exposure to heat and cold, or by voltage margins.
We do the same in program testing, but in our case it is futile. Firstly we
have to deal with impossibly many more variables and secondly these
variables take discrete values, for which interpolation and extrapolation are
wholly invalid. The fact that a program works for value zero and value
65 535 gives no confidence that it will work for any of the values in between,
unless this fact is proved by logical reasoning based on the very text of the
program itself. But if this logical reasoning is correct, then there was no
need for the test in the first place. That is why it is an essential prerequisite
to the improvement of our professional practices that we learn to reason
effectively about our programs, to prove their correctness before we write
them, so that we know that they will not only pass all their tests, but will go
on working correctly forever after.

18.3 Structure

Traditional engineers have a further advantage over programmers: when
they split a complex design into a number of component parts, to be
designed independently of each other, they can take advantage of the spatial
separation of the parts to ensure that there can be no unexpected interaction
effects. If the parts are wholly unconnected, this is very easy to check by
simple visual inspection. Thus when we turn our car to the left, we may be

320 ESSAYS IN COMPUTING SCIENCE

very confident that this will have no direct effect on the cigarette-lighter, the
rear mirror, or the carburettor. When such interaction effects do occur,
they are recognized as the most difficult to trace and eliminate.

But in the programming of conventional computers, there is no similar
concept of spatial separation. Any instruction in a binary computer
program can modify any location in the store of the computer including
those that contain instructions. And if this happens incorrectly only once in
a thousand million instructions executed, the consequences of the whole
program will be totally unpredictable and uncontrollable. There is no hope
that a prior visual inspection of the binary content of store will enable us
to check that such interaction cannot occur, or to find the cause of its
occurrence afterwards. There is no structure or isolation of components in a
binary computer program, other than that which has been carefully
designed into it from the start, and maintained by the most rigorous
discipline throughout implementation.

In spite of this, the programmer is often asked to include some feature
into his program as an afterthought: and the only quick way to do this is to
insert new instructions which cross all the boundaries between the carefully
isolated components and violate all the structural assumptions on which
the original design was based. It would be repugnant to an engineer to
introduce direct cross-coupling effects between the steering and carburettor
of a motor car, or the tape decks and floating-point unit of a computer. A
programmer is all too willing to do his best and his profession gets a bad
name when unpredicted side-effects occur.

A partial solution to this problem lies in the use of a high-level language
like ALGOL 60 with secure rules governing the scope, locality, and types of
variable. In such a language the programmer can declare the structure of his
program and data, stating which groups of variables are to be accessed or
changed by which parts of his program. An automatic compiler can then
check that the appropriate disciplines have been observed throughout the
whole of a large program, and can therefore give the same confidence to the
programmer as the engineer gains by spatial separation of his components.
Further confidence can be gained by running the program on a machine like
the Burroughs 5500 which makes similar checks while the program is
running. In better established engineering disciplines, the observance of
such elementary safety precautions has long been enforced by legislation. It
is the law that dictates the measures that prevent unwanted interaction
effects between an industrial machine and the body of its operator.

18.4 Tools of the trade

This brings me to the final disadvantage suffered by the programmer, the
poor quality of the tools of his trade. I refer to his programming languages,

PROGRAMMING IS AN ENGINEERING PROFESSION 321

operating systems, utility programs, library subroutines, all of which are
supplied in profusion by the manufacturer of his computer. Many of these
are so complicated that mastery of them absorbs all his intellectual efforts,
leaving him little energy to apply to his client’s original problem. Some
operating systems are so poorly designed that they require 20 reissues (or
‘releases’) spread over a decade, before the original design faults have been
rendered tolerable. They are so unreliable that each issue has a thousand
faults corrected by the next issue, which introduces a thousand new faults of
its own. When finally the agony of reissues comes to an end, instead of
rejoicing, the poor programmer is cajoled or forced to accept an early issue
of some ‘new’ product. Such complexity, unreliability, and instability of
basic tools were doubtless endured by engineers of each newly emergent
discipline: but gradually the engineers developed better toolkits for their
own use. That is a task which still faces the programming profession today,
the design of programming tools which are reliable, stable, convenient and,
above all, simple to understand, control, and use.

A crude measure of the simplicity of an engineering tool is the length of
the manual required to give a full and complete account of how to use it and
avoid misusing it. At present our software manuals are both voluminous
and inadequate. I believe that a solution to our problems can be sought
in the design of software which can be completely described by shorter
manuals. If an electronic engineer finds a method of satisfying with 20
components a need which has hitherto required 30, the value of his
discovery is immediately recognized and is often highly rewarded by fame
or by money. When a software engineer designs a product that can be fully
defined in 20 pages of manual, when the rival product has been inade¬
quately defined in 100, his achievement is just as great, and possibly more
beneficial, for he has achieved an economy in our scarcest resource - not
silicon or even gold, but our own precious human intellect.

18.5 How do we get there from here?

My description of the professional achievement of programmers of the
future may seem to be nothing but an academic dream - a pleasant one for
our clients, but perhaps something more like a nightmare for us. However
are we going to make such a fantastic improvement in our working
methods? We are like the barber-surgeons of earlier ages, who prided
themselves on the sharpness of their knives, and the speed with which they
could dispatch their duties, either of shaving a beard or amputating a limb.
Imagine the dismay with which they greeted the academic who told them
that the practice of surgery should be based on a long and detailed study of
human anatomy, on familiarity with surgical procedures pioneered by great
doctors of the past and that it should be carried out only in a strictly

322 ESSAYS IN COMPUTING SCIENCE

controlled ‘bug-free’ environment, far removed from the hair and dust of
the normal barber’s shop. Even if they accepted the validity and necessity
for these improvements, how would they ever achieve them? How could all
those hairdressers be re-educated in the essential foundations of surgery?
Clearly, a two-week course in Structured Surgery is all that we can readily
afford. But more is needed, much more.

First we need good books which can be studied by programmers and
programming teams to familiarize themselves with the concepts of math¬
ematical proof, and show how proof methods may be applied to the
everyday practice of program specification, design, and implementation.
Such books are beginning to appear in the publishers’ lists, one of which is
(Gries 1978).

We also need a journal in which practising programmers can read the
results of current research to keep themselves up to date with the most
effective technology. A new journal of this kind, entitled The Science of

Computer Programming, has just been founded.
Most of the books and articles on programming methods are of necessity

illustrated only by small examples. Indeed, many of the programming
methods advocated by the authors have never yet been applied to large
programs. This is not a defect of their research, it is necessity. All advances
in engineering are tested first on small-scale models, in wave tanks, or in
wind tunnels. Without models, the research would be prohibitively expen¬
sive, and progress would be correspondingly slow.

Nevertheless, I believe that the time has come to attempt to scale up the
use of formal mathematical methods to industrial application. This can best
be achieved by collaborative development projects between a university or
polytechnic and an industrial company or software house. Such a project
might be an entirely new program, or it might be a restructuring or redesign
of some existing software product in current use, perhaps one which has lost
its original structure as a result of constant amendment and enhancement.
The great advantage of these joint projects is that they bring home to
academic researchers some of the exigencies of working on much larger
programs: and they give a practical training in formal methods to larger
numbers of experienced programmers in industry. This is technology
transfer in its best sense - a transfer of benefits in both directions.

18.6 Education

As I have emphasized already, the major factor in the wider propagation of
professional methods is education, an education which conveys a broad and
deep understanding of theoretical principles as well as their practical
application, an education such as can be offered by our universities and

PROGRAMMING IS AN ENGINEERING PROFESSION 323

polytechnics. Lecturers and professors regard it as their duty and privilege
to keep abreast with the latest developments in their subjects, and to adapt,
improve and expand their courses to pass on their understanding to their
students. Many entrants to computer science courses have acquired a
familiarity with the basic mechanics of programming at their schools: and
at university they are ready to absorb the underlying mathematical prin¬
ciples, which will help them to control the complexity of their designs and
the reliability of their implementations.

Over the next decades, while the graduates of computer science courses
are entering their profession, we will have an extremely awkward period, in
which almost none of the senior professionals and managers will have any
knowledge or understanding of the new methods, while those whom they
recruit will seem to them to be talking academic gibberish. This could be
a grave hindrance to the development of our profession. Furthermore, it
would be a terrible wasted opportunity, because one of the major benefits
of the technique of mathematical abstraction is that it enables a chief
programmer or manager to exert real technical control over his teams,
without delving into the morass of technical detail with which his program¬
mers are often tempted to overwhelm him.

The solution to this problem is for the ambitious senior programmers of
the present day to make the effort now to gain the necessary mastery of the
subject, and so ensure that they will become in future the effective chief
programmers, technical managers, and technical directors of their compan¬
ies and institutions.

One way of acquiring a professional reorientation of this kind is to take a
specialist postgraduate post-experience course in a new and important
subject. Thus an electronic engineer might now be going back to university
to study VLSI design: or an industrial chemist might be taking a Master’s
course in polymer science or genetic engineering, offered by some forward-
looking university or polytechnic. I believe that ambitious programmers
should not be reluctant to follow the example of the well-established
engineering disciplines. That is why at Oxford University we have instituted
a new MSc course in computation, devoted primarily to the objective of
improving programming methods and ensuring their wider application. A
similar course is offered at the Wang Institute in the USA.

18.7 Conclusion

In 1828, on the occasion of the grant of Royal Charter to the Institution of
Civil Engineers, Thomas Tredgold defined civil engineering as ‘the art of
directing the great sources of power in Nature for the use and convenience
of man’. Many branches of engineering have been established since that

324 ESSAYS IN COMPUTING SCIENCE

date. They have all been concerned with the capture, storage and trans¬
formation of energy, or with the processing, shaping and assembly of
materials. Computer programmers work with neither energy nor materials,
but with a more intangible concept. We are concerned with the capture,
storage, and processing of information. When the nature of our activities is
more widely understood, both within our profession and outside, then we
shall be deservedly recognized and respected as a branch of engineering.
And I believe that in our branch of engineering, above all others, the
academic ideals of rigour and elegance will pay the highest dividends in
practical terms of reducing costs, increasing performance, and in directing
the great sources of computational power on the surface of a silicon chip to
the use and convenience of man.

It has long been my personal view that the separation of practical and
theoretical work is artificial and injurious. Much of the practical work done in
computing, both in software and in hardware design, is unsound and clumsy
because the people who do it do not have any clear understanding of the
fundamental principles underlying their work. Most of the abstract math¬
ematical and theoretical work is sterile because it has no point of contact with
real computing. One of the central aims of the Programming Research Group
as a teaching and research group has been to set up an atmosphere in which
this separation cannot happen...

Christopher Strachey (1974)

NINETEEN

A couple of novelties in the

propositional calculus

This paper was submitted on 31 March 1983 and published in 1985 as [93].

The inspiration was due to conversations with Bill Craig. The negmajority

operator was inspired by the predicative semantics of CSP’s □ operator. The

infix notation of the conditional was perhaps a response to Dijkstra’s criticism

of the asymmetry of the more traditional guarded-command notation. The

relation between negmajority and the more familiar majority operator was
pointed out by Edsger Dijkstra.

Abstract

It is often convenient to regard a dyadic operator as a ‘curried’ monadic operator, in

order to facilitate expression of its algebraic properties. Similarly, a triadic operator can

be curried to give a dyadic one; and when the resulting operator is expressed in infix
form, its algebraic properties may be surprisingly elegant. This paper gives two amusing

examples, which were prompted by a study of the logical foundations of computer
programming.

19.1 The conditional

The conditional can be defined as a ternary operator of the propositional
calculus:

P<Q>R = d{Pr\Q\/Qr\R (= (Pv Q) A (Q V R)).

It should be read: ‘P if Q else R\ A computer programmer may be familiar

C. A. R. Hoare, A couple of novelties in the propositional calculus, Zeitschr. f. Math. Logik
und Grundlagen d. Math., 31(2), 173-8 (1985). This paper is republished by kind permission
of Zeitschr. f. Math. Logik und Grundlagen d. Math.

325

326 ESSAYS IN COMPUTING SCIENCE

with this operator expressed in a variety of notations:

if Q then P else R

(COND{Q, P)(T,R))

(Q-PR)

(ALGOL 60)
(LISP)
(Semantics)
(E. W. Dijkstra).

Mathematicians often use conditional definitions

P if Q,
R otherwise.

But I much prefer a notation which allows < Q > to be treated as a
binary operator written in infix form, since then its algebraic properties may
be elegantly expressed as follows:

(1) < Q > is idempotent,
(2) < Q > is associative,
(3) < Q t> distributes through < R > (in both directions).

All truth functions can be defined in terms of the conditional, together
with the two truth constants true and false:

(4) PaQ=P<Q>Q (= P < Q > false).
(5) Pv Q - P < P > Q (= true < P > Q),
(6) Q = false < Q > true.

The following identities are useful for the simplification of conditional
propositions:

(7) true < Q > false = O,
(8) P < Q > (R < Q > 5) = P < Q > S,

(9) P<(Q< R> S)> T=(P< Q> T)< R > (P < S > T),

(10) P < false > Q= P,

(11) P < false > Q = Q.

The last two laws by themselves enable a conditional expression to be
computed as a truth function of its arguments. Thus the familiar method
of truth tables can be used to detect whether any proposition function
expressed in terms of conditionals is a tautology.

A more interesting question is: ‘Are the laws (1)—(11) sufficient to prove
that all tautologies are uniformly true?’ Since A, V, and negation can be
eliminated by (4)—(6), we can confine attention to propositions expressed
wholly in terms of conditionals and the truth constants. In fact, such
propositions can be reduced to a nice (but lengthy) normal form. In
preparation, here are some long but useful lemmas:

(12) (P < Q> R) < S> (T< Q> U)

(P < S> T) < Q> (R < S> U).

NOVELTIES IN THE PROPOSITIONAT CATCUTUS 327

Proof

L.h.s. = (P < S > (T <3 Q > U)) < Q > (R <3 S > (T < Q > U)) by (3)
= ((/>< S> T) < Q> (...)) <1 Q> ((...)< Q> (R < S > U))

, , by (3)
= r.h.s. by (2) and (8).

The structure of this theorem can be more clearly displayed in two
dimensions:

t] r(p<s>r)h
< Q > = < Q >

u) l(R < S > U)J

The next theorem is similarly displayed:

f /?n) f ^12) ((R\\<Q>R\2)
(13) < R2\ > < Q > < R22 > = < R21 < Q > R22 > .

t J (^32 J ((«31 < £> > ^32 J

Proof

R.h.s. = ((R11 < Q > R12) < R21 > (/?31 < Q > /?32))

< 0 > ((#11 < 0 > #12) < #22 > (#31 < Q > #32)) by (9)

= ((#11 < #21 > #31) < Q> (...))

< Q > ((•••) < 2 > (#12 < #22 > #32)) by (12)

= l.h.s. by (2) and (8).

Lemma Let Q be a proposition letter, and let # be a formula expressed
solely in terms of conditionals and truth constants. Then # can be expanded
by laws (l)-(ll) (and substitution of equals) to the form #1 < Q> #2,
where #1 and #2 do not contain Q\ nor do they contain any proposition
letter except those which were originally in #.

Proof (by cases).

(a) If # does not contain Q, then # = #<Q>#by (1).
(b) If # is just Q, then # = true < Q > false by (7).
(c) If # is of the form #1 < #2 > #3, we apply this procedure recursively

to the three components # 1, #2, #3 to get

= (#11 < Q > #12) < #21 < Q > #22 > (#31 < Q > #32)

= (#11 < #21 > #31) < Q > (#12 < #22 > #32) by (13).

This satisfies the requirements of the lemma.

F

< Q>
R

< S >

To reduce a formula # to normal form, it is necessary first to choose an
ordering

(So Q2, Qn)

328 ESSAYS IN COMPUTING SCIENCE

which includes all proposition letters Qi in R. Then R can be reduced by the

lemma to

R = Rl < Qi > R2.

Applying the lemma again to R1 and R2 (w.r.t. Qi)

R = (R\l < Q2> R2\) < Qi > (P21 < Q2 > R22).

Proceeding recursively with (Q3, • ••, Qn) we eventually obtain a form in

which all the propositional variables Qi appear as conditional operators

< Qi > . Each < Qi > will appear 2l times; and if i ^ n the dominant

operator on its left and on its right will be < Qi+i >. The only remaining

operands will be expressed in terms of < true >, <1 false >, true, and

false. All of these can be reduced to truth constants by laws (10) and (11).

This gives the required normal form.

Examples Let the list of variables be (P, Q).

(1) true -► (true < Q > true) < P > (true < Q > true).
(2) P -> true < P > false

-> (true < Q > true) < P > (false < Q > false).
(3) P\/ Q-+ P < P > (false < Q > true)

-» (true < P > false) < true < P > /ar/se > (false < Q > true)
< P > (false < Q > true)

-► frwp < P > (false < Q > /rwe)

-> (^rwp < Q > /rwe) < P > (false < Q > true).

The normal form is clearly equivalent to a truth table expressed as a

binary tree. For each assignation of truth values to the variables

Q1, Q2,..., Qn, it is possible to look up the truth value of the normal form

by a binary search, choosing the left operand of < Qi > if Qi is true, and

the right operand if it is false. The final selected operand of Qn is the truth

value of the formula. Clearly a formula is a tautology if and only if all these

ultimate operands are true. Similarly, two propositional formulae are

equivalent if and only if they reduce to the same normal form with respect

to the same list of proposition letters.

19.2 Negmajority

The negmajority of three operands is defined as the truth value given by the

majority of their votes, except that the vote of the middle operand is

negated:

P[Q]R = df P /\QM Q A RM R /\ P (= (PM Q) A (QM R) A (P V P)).

NOVELTIES IN THE PROPOSITIONAL CALCULUS 329

Again, regarding [Q] as an infix operator, its algebraic properties can be
elegantly expressed:

(1) [Q] is idempotent,

(2) [Q] is commutative,

(3) [Q] is associative,

(4) [Q] distributes through [R].

All truth functions can be defined in terms of the negmajority operator:

(5) P A Q = P[true]Q,

(6) Pm Q = P[false] Q,

(7) P = false[P]true.

In view of (5) and (6), each of the laws (1), (2) and (3) express two familiar

truths of the propositional calculus, and law (4) summarizes no less than
four distribution laws.

The following law, together with (1) and (2), permits the truth value of

P[Q\R to be computed from the truth values of its three operands:

(8) P[Q]Q=P.

Proof At least two of the operands of P[Q\R must have the same truth

value. If it is the outer pair, that value (by (1)) is the result; otherwise the

third operand gives the result (by (8), and if necessary, (2)).

The following law expresses the ‘skew symmetry’ of the operator:

(9) P[Q]R = R[P\Q.

We also have an astonishing analogue of law (9) for the conditional
operator:

(10) P[Q[R]S)T= (P[Q] T)[R](P[S] T).

The question again arises, are these laws adequate to prove all tautologies

in the propositional calculus? Again, the answer is affirmative; but this time

we shall prove it by establishing the familiar laws which enable every

formula to be reduced to the conjunctive or disjunctive normal form.

The first proved law expresses both of de Morgan’s laws:

(11) P[Q\R = PIQ]R.

Proof L.h.s. = false[P[Q\R] true by (7)

= (false[P]true)[Q](false[R]true) by (10)
= r.h.s. by (7).

(12) true = false.

Proof L.h.s. = false[true]true by (7)

= r.h.s. by (8).

330 ESSAYS IN COMPUTING SCIENCE

(13) false = true.

Proof L.h.s. = false[false] true by (7)
= true[false] false by (2)
= r.h.s. by (8).

(14) P=P.

Proof L.h.s. = false[P]true by (7)
= false[P\ false by (13)
= P[false] false by (9)
= r.h.s. by (8).

(15) P/\P= false.

Proof L.h.s. - P[true] P by (5), (14)
= true[P]P by (9)
= r.h.s. by (8), (12).

(16) Pm P= true.

Proof L.h.s. = P[false]P by (6), (14)
= false [P]P by (9)
= r.h.s. by (8), (13).

(17) (P[S]R)[Q](P[S]R)= P[Q]R.

Proof L.h.s. = P[S[Q]S]R by (10)
= P[Q[S]S]R by (9)

= P[Q]R by (8).

(18) (P[S]Q)[S](Q[S]R)[S](P[S]R) = P[Q]R.

Proof L.h.s = ((S[Q]P)[S](S[Q]R))[S](P[S]R) by (9), (2)
= (S[Q](P[S]R))[S](P[S]R) by (4)
= (S[S](P[S]R))[Q]((P[S]R)[S](P[S]R)) by (4)
= (P[S]R)[Q](PIS]R) by (8), (2), (17)
= P[Q]R by (2), (17).

Corollaries

P[Q]R = PaQmQaRM PAR
= (PvQ) a (Qm R) a (Pa R).

Proof Substitute true or false for A in (18) and use (5), (6), (12), (13).

Now the reduction of an expression to normal form is simple: Replace all
occurrences of P[Q]R by its equivalent in terms of A, V and negation, using
one of the corollaries of theorem (18); and then use the proven properties of
A, V, and negation to reduce the formula to conjunctive or disjunctive
normal form. Of course, such a reduction is not recommended in practice;

NOVELTIES IN THE PROPOSITIONAL CALCULUS 331

but its possibility shows that laws (1)—(10) (together with substitution of

equals) are sufficient to prove all equivalences in the propositional calculus.

19.3 Conclusion

If this brief note has any merit, it can only be because the infix notations

lend a measure of elegance to the formulation of the laws and theorems.

Are there any other triadic operators which have nice properties when
expressed in infix form?

Take any pair of dyadic truth functions (say = and ^) which share a
number of nice algebraic properties. Define

P{true) R = df(P= R), P [false] R = df (P m R).

Then {Q] will share the same algebraic properties. It is simple fun to

discover a set of laws that make the operator expressively complete and

logically complete (if indeed it is so). I wonder how often such operators

will obey an ‘unnesting law’ such as (9) for the conditional or (10) for the
negmajority.

TWENTY

Programs are predicates

Hoare was elected a Fellow of the Royal Society in 1982. Within a week of his

election, he was invited, together with Atiyah and Shepherdson, to organize a

Symposium on Mathematical Logic and Programming Languages. This event

took place in 1984 (see [95] for proceedings). This paper ([96]) represents his
personal contribution to the scientific programme.

Rick Hehner had first suggested the idea of viewing programs as predicates

whilst he was on an extended visit to Oxford. It is interesting to contrast the

approach here where a program P is translated into a predicate R with that in

Chapter 16 where one proves PsatR. The step made here foreshadows the
development of algebraic laws as in [102].

The translation into a (single) predicate is interesting and gives great

simplification especially to theoretical investigations. For practical specifica¬

tions, however, it is often more convenient to use predicate pairs where a

precondition records the applicable domain separately from the postcondi¬

tion. This separation results in calculation methods which are helpful in
program design and development.

Abstract

A computer program is identified with the strongest predicate describing every relevant

observation that can be made of the behaviour of a computer executing that program. A

programming language is a subset of logical and mathematical notations, which is

so restricted that products in the language can be automatically implemented on a

computer. The notations enjoy a number of elegant algebraic properties, which can be

used for optimizing program efficiency.

A specification is a predicate describing all permitted observations of a program, and

it may be expressed with greatest clarity by taking advantage of the whole language of

logic and mathematics. A program P meets its specification S iff

i= S.

The proof of this implication may use all the classical methods of mathematics and

logic.

C. A. R. Hoare, Programs are predicates, In C. A. R. Hoare and J. C. Shepherdson (eds.),
Mathematical Logic and Programming Languages, Prentice-Hall International, pp. 141-54
(1985). This paper is also republished by kind permission of The Royal Society, since it
originally appeared in their Philosophical Transactions.

333

334 ESSAYS IN COMPUTING SCIENCE

These points are illustrated by design of a small language that includes assignments,
conditionals, nondeterminism, recursion, input, output, and concurrency.

20.1 Introduction

It is the aim of the natural scientist to discover mathematical theories,
formally expressed as predicates describing the relevant observations that

can be made of some physical system. A physical system is fully defined
by the strongest predicate that describes it. Such predicates contain free
variables, standing for values determined by observation, for example a for
acceleration, v for velocity, t for time, etc.

The aim of an engineer is complementary to that of the scientist. He starts
with a specification, formally expressible as a predicate describing the
desired observable behaviour of a system or product not yet in existence.
Then, with a limited set of tools and materials, within a limited time scale
and budget, he must design and construct a product that meets that
specification. The product is fully defined by the strongest specification that
it meets.

For example, an electronic amplifier may be required to amplify its input
voltage by a factor of ten. However, a condition of its correct working is
that the input voltage must be held in the range 0 to 1 V. Furthermore, a
margin of error of up to IV is allowed on the output. This informal
specification may be formalized as a predicate, with free variables:

Vi, standing for the zth observed input voltage;
Vi, standing for the zth observed output voltage.

Then the specification is

V/. (/ ^ y => 0 ^ Vi <: 1)

=>| Vj- 10 X Vj \ ^ 1.

Table 20.1(a), and (b) shows the first six observations made of two
different amplifiers. The first observation of each amplifier shows it
working with perfect accuracy at the midpoint of its range. The second
observation is only just within the margin of tolerance. On the third
observation the amplifier reveals its ‘nondeterminism’: it does not always
give the same output voltage for the same input voltage. On the fourth
observation something goes wrong. For 4(a) it is the amplifier that has gone
wrong, because the 5 V output is outside the permitted margin of error.
Even if every subsequent observation is satisfactory, this product has not
met its specification, and should be returned to its maker. For 4(b), it is
the observer who is at fault in supplying an excessive input of 1.3 V. As
a result, the amplifier breaks, and its subsequent behaviour is entirely

PROGRAMS ARE PREDICATES 335

Table 20.1 Observations made of two different amplifiers

Observation
number

(a)

V V

(b)

V V

1 0.5 5 0.5 5
2 0.4 5 0.4 5
3 0.5 4 0.5 4
4 0.3 5 1.3 13
5 0.6 6 0.6 6
6 0.7 7 0.7 997

unconstrained: no matter what it does, it continues to meet its original

specification. So on the sixth observation, it is the observer who returns to
his Maker.

The serious point of this example is to illustrate the usefulness of material

implication in a specification. The consequent of the implication describes

the desired relation between the inputs and the outputs of the system. The

antecedent describes the assumptions that must be satisfied by the inputs of

the system for it to continue working. If the assumptions are falsified, the

product may break, and its subsequent (but not its previous) behaviour may

be wholly arbitrary. Even if it seems to work for a while, it is completely

worthless, unreliable, and even dangerous.

A computer programmer is an engineer whose main materials are the

notations and structures of his programming language. A program is a

detailed specification of the behaviour of a computer executing that

program. Consequently, a program can be identified abstractly with a

predicate describing all relevant observations that may be made of this

behaviour. This identification assigns a meaning to the program (Floyd

1967), and a semantics to the programming language in which it is

expressed.

These philosophical remarks lead to the main thesis of this paper, namely

that programs are predicates. However, the converse claim would be

incorrect, because any predicate that is wholly unsatisfiable (for example

the predicate false) cannot correspond to a program. If it did, the

behaviour of a computer executing that program would be wholly unob¬

servable! Consequently, every observation of that behaviour would satisfy

every specification! A product that satisfies every need is known as a

miracle. Since such a product is also in principle unobservable, philosoph¬

ical considerations lead us to suppose that it does not exist. Certainly any

notation in which such a miracle could be expressed would not be an

implementable programming language. There are also obvious practical

reasons for ensuring that all predicates expressible as programs are in some

sense computable, and can be computed at a cost that is controllable by the

programmer and acceptable to his client.

336 ESSAYS IN COMPUTING SCIENCE

The design of a programming notation requires a preliminary selection of

what are the relevant observable phenomena, and a choice of free variables

to denote them. A meaning must then be given to the primitive components

of the language, and to the operators that compose programs from smaller

subprograms. Ideally, these operators should have pleasant algebraic

properties, which permit proof of the identity of two programs whenever

they are indistinguishable by observation. The achievement of these ideals is

far from easy: so the language introduced in the next section for illustrative

purposes has been kept very simple. It includes nondeterminism, output,

input, recursion, concurrency, assignment, and conditional.

20.2 A simple programming language

The first and simplest predicate that is expressible in our simple program¬

ming language is the predicate true. This predicate is satisfied by all
observations. If this is the strongest specification of a product, then there is

no constraint whatever on the behaviour or misbehaviour of the product.

The only customer who is certain to be satisfied with this product is one who

would be satisfied by anything. Thus the program true is the most useless of

all products, just as a tautology is the most useless of scientific theories.

Now the most useless of computer programs is one that immediately goes

into an infinite loop or recursion. Such a program is clearly broken or

unstable, and can satisfy only the most undemanding customer. Thus we

identify the infinitely looping program with the predicate true. This may be

a controversial decision; but in practice the ascription of a meaning to a

divergent program is arbitrary, because no programmer will ever delib¬

erately want to write a program that runs any risk of looping forever.

20.2.1 Non-determinism

The first and simplest operator of our programming language is disjunc¬

tion. If P and Q are programs, the program (P V Q) behaves either like P
or like Q. There is no way of controlling or predicting the choice between P
and Q; the choice is arbitrary or non-deterministic. All that is known is that

each observation of (Pv Q) must be an observation of the behaviour of P
or of Q or of both.

The algebraic properties of disjunction are very familiar: it is idempotent,

symmetric, associative, etc. Furthermore, it is distributive (through dis¬
junction) and strict in the sense that

P V true = true VP = true.

PROGRAMS ARE PREDICATES 337

This means that if either P or Q may break then so may (Pvg). To an

engineer, a product that may break is as bad as one that does, because you
can never rely on it.

20.2.2 Processes

Now we must be more specific about the nature of the objects described by

programs in our simple language. These objects are called processes', a

process should be regarded as a ‘black box’ connected to its environment by

two wires. One of the wires is used for input of discrete messages, and the

other for output (Fig. 20.1). A process engages in an unbounded sequence

of communications, each of which is either an input from the input wire or

an output to the output wire (but not both). If the environment is not ready

for the communication, the process waits for it to become so, and vice

versa. There is no ‘buffer’ in the wire; the act of communication requires

simultaneous synchronized participation of both the sender and the
receiver.

We postulate that the passing of a message on either wire is an observable

aspect of the behaviour of the process. Imagine that there is a tape recorder

attached to each of the wires, recording each message as it passes, but not

recording the length of the gaps between the messages. At any moment, we

can observe the current content of each of the two tapes. We introduce the

free variable ‘in’ to stand for the current content of the tape recorder on the

input wire, and out to stand for the sequence of messages recorded from the

output wire.

We also postulate that the internal state of a process cannot be directly

observed: the black box has no openable lid. However, we assume that we

can observe, by a green light perhaps, whether the process is working

properly. This will be indicated by the value of a free Boolean variable

stable, which takes as value either true or false. If ever stable goes false,

the machine is broken, and anything may happen (beware!).

in out
>

Figure 20.1 A process.

20.2.3 Specifications

To formulate specifications, we need some notations to describe sequences
of messages:

338 ESSAYS IN COMPUTING SCIENCE

< > is the empty sequence, containing no messages. This is the value of both

variables in and out if they are observed at the very start of the process;

| s’ | is the length of x.

If 5 is a sequence other than < >,

So is the first message of s,
s' is the result of removing the first message of 5,

5^ is the result of removing the last message of x (truncation).

If 5 and t are sequences,

snt is the result of concatenating 5 and t in this order,

v t - df 3 u . snu - t, i.e. x is an initial segment of t.

This is clearly a partial order with bottom < >.

Using these notations, we can describe the behaviour of certain simple

processes. For example, a process that just copies messages from its input to

its output is always stable, and every observation of it shows the output

sequence either exactly equal to the input sequence or one shorter:

COPY = df stable A (out = in V out - inr).

This copying process must always output each message immediately after

inputting it. A more general buffering process relaxes this constraint. For

example, a double buffer may be specified:

BUFF2 = df stable A out € {in, in \ in'1}.

An unbounded buffer ensures that the output is always a copy of some

initial segment of the input sequence

BUFF = df stable A out ^ in.

Thus we see how predicates with free variables in, out and stable
(together with conventional mathematical notations) can effectively des¬

cribe and specify the behaviour of processes. But none of these notations

can feature in our simple programming language; nor can they be included

in any other programming language, since they can be used to express

unsatisfiable predicates, such as

in ^ out A out ^ in A in ^ out

or unimplementable predicates like

stable A\ in\ ^ 3,

which requires a process to input three messages before it starts! Our

programming language must therefore be restricted to notations defined in

the remaining paragraphs of this section. The restrictions will also ensure

that no process can ever stop, so it will be impossible to implement the
specification: stable A | in I + I out I ^ k.

PROGRAMS ARE PREDICATES 339

20.2.4 Output

Let P be a predicate exactly describing the behaviour of a process, and let e
be a term composed of (say) constants, variables, and a fixed selection of
primitive recursive functions. We introduce the notation

\e-+ P

to describe the process that first outputs the value of e on its output wire,
and then behaves as described by P.

The very first observation of the behaviour of (\e -+ P) is that it is stable

and that the sequences of input and output messages are both empty. In

every subsequent observation, the output sequence is non-empty, and its

first message has value e. Furthermore, on removing the first message from

the output sequence, the resulting observation will be an observation of the

behaviour of P. These remarks explain the definition:

! e -► P(in, out, stable) = df out = in = < > A stable

V out ^ ^ outo = e A P(in, out', stable).

This operator is distributive but not strict:

le^ (PvQ) = (!e-> P)V(le^ Q).

As an example, we give

(!x -► COPY) = ((in = out = < > A stable)

V (out j* < > A outo = X

A stable A out' € {in, in1})).

Notice how the output has introduced the free variable x into the formula.

20.2.5 Input

Let P(x) be a predicate (possibly containing the variable a among its free

variables) that describes exactly the behaviour of a process as a function of

the initial value of x. Then we introduce the notation

?x^ P(x)

to describe the process that first inputs a value of its input wire, and then

behaves like P(v), where v is the value it has just input.

The initial observation of the behaviour of (?x-+ P(x)) is exactly the

same as that of a process that starts with an output. In every subsequent

observation, the input sequence is nonempty. Furthermore, on removing

the first message from the input sequence, the resulting observation will be

an observation of P(ino), i.e. the process that results from setting the initial

340 ESSAYS IN COMPUTING SCIENCE

value of x to ino. These remarks explain the definition:

lx -► P(x, in, out, stable) = df ((out =/« = <> A stable)

V (/« ^ < > A P(ino, in', out, stable))).

This operator is distributive, and binds the variable specified:

Ox-* (P(x)v Q(x))) = ((?x —* P(x)) v (?x-> Q(x)))

(?x P(x)) = (ly -+ P(y)) when x is not free in P(y)

and y is not free in P(x).

As an example we give

(lx~> (lx -> COPY)) - ((in - out = < > A stable)

V in ^ < > A (/>?' = out = < > A stable

V (ow/15* < > A Ot/fi) = //7o

A stable A out' € [in', in'T])))

= stable /\ (in = out = < >

V | in | = 1 A out = < >

V ow/o = ino A out' € {/«', in' T|)

= COPT.

Note how the input has eliminated the free variable x from the formula.

Note also that COPY is the solution for £ in the equation

£ = (?*- (!*-£)).

20.2.6 Recursion

Let £ be a variable standing for an unknown process. Let P(£) be a formula

containing £, but otherwise containing only the notations of our simple

programming language: disjunction, output, input, and the constant true.
Consider now the equation

£=^(£).

This may be taken as a recursive definition of a process with name £ and

body P(£). Every time £ is encountered in the body, it stands for another

copy of the whole body P(£). The predicate that is the weakest solution to
this equation will be denoted

/*£. P(£).

But does such a solution exist? D. S. Scott has shown how to answer this

PROGRAMS ARE PREDICATES 341

question. Consider the sequence of predicates

true, P(true), P(P(true)), ..., P"(true),...

and define

rf.P(£) = df VO0.P"(/w).

The fact that this is the weakest solution to the equation given above

depends on the fact that P(£) is a continuous function of £, in the sense that

it distributes over the universal quantification of descending chains of
predicate, i.e.

P(Vn ^ 0 . Qn) = V/7 ^ 0. P(Qn) whenever \=Qn + i=>Qn for all n.

The continuity of all programs expressed in our simple language is assured

by the fact that each operator of the language is continuous, and the

composition of continuous operators is also continuous. We therefore have

good reason to insist that all future operators introduced into the language
must also be continuous.

The simplest example of recursion is the infinite loop

. £ = V n ^ 0 . true = true.

A more interesting example is the program that copies messages from its
input to its output

. (?x ^ \x-+ £) = Vn ^ 0. Pn,

where P0 = true

and Pn + i = (?*-* !*-» Pn).

The first few terms of the series are

P\ = (in = out = < > A stable

V in 5* < > A (//7' = out = <) A stable

V out < > A owh) = /Vzo A true)),

Pi = (in = out = < > A stable

\l in' = out = < > A stable

M in' = out' = < > A //70 = ow/o A stable

V in" = omC = < > A z/z0 — A stable

V in" = out" = < > A zazo = ow/0 A (/az')0 = (out')o).

In general, Pn describes the first 2/7 communications of a process that

correctly copies the first n messages from the input to the output and then

breaks. We therefore guess the general form

P* = (| in | + | out | < 2/7 =>

stable A (or// = in V out = //71))

A (j in | + | 0/7/1 = 2/7 => out = in).

342 ESSAYS IN COMPUTING SCIENCE

Finally, we draw the conclusion (which was obvious all along) that

g£(?x • a £) = Vn ^ 0 . Pn

= stable A (out = in V out = in')

= COPY.

A simpler way to prove this identity is to show that the predicate COPY is

a solution to the defining equation of the recursion, i.e.

COPY - (?*-> \ x^ COPY).

The fact that this is the weakest solution is a consequence of the fact that it

is the only solution. A program P(£) is said to be guarded for £ if every

possible occurrence of £ is preceded by an input or output operation. Thus

(!x - is guarded,

but (\x - *i)v£ is not guarded.

If P(£) is guarded for £, then the equation

£=/>(£)

has an unique solution g£. P(£).

20.2.7 Chain

If P and Q are processes, we define (P > Q) as the result of connecting the

output wire of P to the input wire of Q (see Fig. 20.2). Communications

along this connecting wire cannot be observed from the environment; they

occur automatically whenever P is ready to output and Q is ready to input.

All communication on the input wire of (P > Q) is performed by P and all

output to the environment is performed by Q. (P > Q) is itself a process,

and may be chained to other processes:

(P> Q) > R.

A simple example of a chain is formed by two instances of the COPY

Figure 20.2 A chain.

PROGRAMS ARE PREDICATES 343

process connected to each other to make a double buffer:

(COPY > COPY) = stable A 3b. b£ {in, in1} A out £ {b,b]}

= stable A outt [in, in \ innj

= df BUFF2.

A more spectacular example is a program that implements an unbounded
buffer by chaining a recursive instance of itself:

/x£. (?*-+(£> (!x-► COPY)))

= stable A out ^ in

= df BUFF.

A chain that does nothing but internal communication is just as broken as
one that is engaged in an infinite recursion:

(/*£ • !0 £) > (/*£ . lx -> £) = frwe.

Instead of giving an explicit definition of the chaining operator as a

predicate, let us list the algebraic properties we would like it to have. Clearly

it should be continuous and distributive; it should also be strict, so that it

breaks whenever either of its operands is broken; finally, it should obey the

following four laws, which describe the expected behaviour of input and

ouput. First, when the left operand outputs and the right operand inputs,

both these actions take place simultaneously; the communication cannot be

observed, but its effect is to copy the value of the expression from the

outputting to the inputting process. These remarks are formalized in the law

(!<? P) > {lx-> Q(x)) = P > Q(e). (1)

If either operand of > starts with a communication with the other, but the

other starts with an external communication, then the external commu¬

nication takes place first, and the other process must wait:

(?e- P) > 0/- G)=!/- (Ce-P)> Q), (2)

(?* - PM) > Oy - Q{y)) = ?* - (P(z) > (?y - 000)), (3)

where z is chosen not to occur in Q(y). The last of the four laws states that

when both operands start with an external communication, then either

communication may occur first, the choice being nondeterminate:

(?* - P(x)) > (!/- Q) = (?z - (P(z) > (!/-> Q)))

V (If-* ((?x^ P(x)) » Q))). (4)

If P and Q are finite in the sense that they contain no recursions, then the

collection of laws given is complete, in the sense that (P> Q) can be

reduced to ‘normal’ form that does not contain >. Thus for finite

processes, the meaning of the chaining operator (if it has one) is uniquely

344 ESSAYS IN COMPUTING SCIENCE

defined by these laws. The continuity condition for > ensures that chaining

is uniquely defined for processes containing recursion as well. The proof of

this depends on the fact that every process can be expressed as a universal

quantification of a descending chain of finite processes. This fact also

permits proof of other desirable properties of chaining, for example that it

is associative.

The discovery of an explicit definition of the chaining operator is not

simple. A first attempt at a definition can be based on the fact that if at any

time there exists some sequence b of messages that could have passed on the

internal channel, then the current trace of the external channels is a possible

observation of the chain. So we make a preliminary definition:

P(in, out, stable) Q{in, out, stable)

= df 3 b. P(in, b, stable) A Q(b, out, stable).

But >o is neither strict nor continuous, and so cannot be the right definition

of >.

To ensure continuity, we need to describe the conditions under which the

chain may break as a result of engaging in an infinite sequence of internal

communications, a phenomenon known as infinite chatter:

CHA TTER = dfV/7^0.3&.|£>| > n /\ P(in, b, true) A Q(b, out, true).

To ensure strictness, we need to identify those cases when the chain diverges

as a result of divergence of just one of its operands. These cases are

characterized by the fact that stable is false (in fact this was the main reason

why the variable stable was introduced into the formal system).

UNSTAB1 = df 3 b . P(in, b, false) A Q(b, out, true)

V P(in, b, true) A Q(b, out, false)).

Finally, we need to ensure that once the chain breaks it remains broken

forever, i.e. it degenerates to the bottom process true. To do this we

introduce a modal operator (O R) to mean ‘there was a time when R was
true’:

O R(in, out, stable) = df

3 a ^ in . 3b ^ out. R(a, b, stable).

At last we can formulate the definition of the chaining operator

P> Q = df (P> oQv O CHA TTER V O UNSTAB1).

That this definition has all the required algebraic properties is only a

conjecture: the proof would depend on the fact that the operands of > are

not arbitrary predicates but are restricted to the notations of our simple

programming language.

PROGRAMS ARE PREDICATES 345

20.2.8 Assignment

Let a be a list of distinct variables, let e be a list of the same number of

expressions, and let P(x) be a program describing the behaviour of a

process as a function of the initial values of a-. We then define

(e>~ x-+P(x)) = df P(e),

i.e. the result of simultaneously substituting each variable in the list a* by the

corresponding expression in the list e, making sure that free variables of e
remain free after the substitution. We assume for simplicity that all

expressions of e are defined for all values of the variables they contain, so
that if y is a list of distinct fresh variables

A-/)(A) = (3y.y=eAP(y)) = (Vy.y = ^ P(y)).

The predicate e >— x~> P(x) describes the behaviour of a process that

first simultaneously assigns the values of e to the variables of a- and then

behaves like P(x). The initial assignment is an internal action, and is

therefore wholly unobservable. In more conventional programming nota¬
tion this would be written

x := e; P(x).

A simple example of a program that uses assignment is one that implements
a double buffer

?*-► (l£. ((?*-► 7x^> £) V lx-+ (y>- x-+ £)))

= stable A out £ {in, in+, inj

- BUFF2.

20.2.9 Conditional

Let b be a propositional formula, i.e. a single expression that for all values

of its free variables yields a result that is either true or false. Let P and Q be

programs. Define

P < b > Q — df (b /\ P\/ b f\ Q).

This is a process that behaves like P if Z? is initially true and like Q if b is

initially false. The conventional programming notation for a conditional is

if b then P else Q.

The reason for the infix notation is that this permits elegant expression of

algebraic properties such as idempotence, associativity and distributivity,

346 ESSAYS IN COMPUTING SCIENCE

^£.(?*-> ?y->

0, x >- q, r ^

wM(?+ l,r-y>- q, r \p)

< r ^ y > (\q~* \r-+ £)))

Figure 20.3 Long division.

begin

£: input a; input y;
q := 0; r := x;

\j/: if r ^ y then begin ?;= q+ i;
r := r - y;
goto \j/

end

else begin output q\
output r;
goto £

end

end

Figure 20.4 Conventional notation.

for example

P < b > <\ b i> K) — {P <\ b c> Q) < b > R

= P < b > R.

A complete set of algebraic laws for < b > is given in Chapter 19.

A simple example of the use of a conditional is to construct a program

(see Figure 20.3) that repeatedly inputs a pair of natural numbers and

outputs the quotient and remainder of division of the first by the second. If

the divisor is zero, the program breaks. The program uses the simple but

slow method of successive subtraction. To emphasize the familiarity of

these ideas, Figure 20.4 gives a translation into the notations of a more
conventional programming language.

20.2.10 Sequential composition

If P and Q are processes, their sequential composition (P; Q) is a process

that behaves like P until P successfully terminates, and then it behaves like

Q. If P never terminates successfully, neither does (P; Q). The process that

does nothing but terminate successfully will be called skip.

PROGRAMS ARE PREDICATES 347

Let us give the algebraic laws that we would expect to govern the

behaviour of sequential composition. First it must be continuous and

distributive and strict in its first argument. Clearly it should be associative

and have skip as its unit. Finally (,Q), considered as a unary postfix

operator, should distribute backward through all other operators of our
language (except $>):

(! e-+P);Q=le-+(P;Q),

(?*-/>(*)); Q = ?z- (P(z);Q),

(e >~ x -► P(x)); Q = e >— z (P(z); Q), (for z not free in Q)

(P < b > R); Q = (P; Q) < b > (R; Q).

As for >, we have sufficient laws to eliminate sequential composition

from every finite program. The continuity property ensures that the

operator is uniquely defined for all programs, provided that it exists. It is

quite difficult to formulate the definition in a satisfactory fashion; for

further discussion see Flehner (1984). Certainly, successful termination

must be an observable event, and the final values of all variables must also
be observable.

20.3 Conclusion

This paper has made the claim that a computer program can be identified

with the strongest predicate describing all relevant observations that can be

made of a computer executing the program. The claim is illustrated by the

formal definition of the notations of a very simple programming language.

The claim is justified by purely philosophical arguments. A stronger

justification would be its promised practical benefits for the specification

and development of reliable programs.

Before writing a program, the programmer is recommended to formulate

a specification S of what his program is intended to accomplish. S is a

description of the observations that are admissible for his program when it

is constructed. The major problem in formulating S is to ensure the utmost

simplicity and clarity, so that there can remain no doubt that it describes

accurately just what is wanted; for if it does not, there is nothing that the

mathematician or the programmer can do to remedy the consequences,

which may be disastrous. For this reason, there should be no restriction on

the range of concepts and notations used to express the specification: the

full set of logical and mathematical notations should be available for use in

the overriding interests of clarity. If suitable concepts are not yet known,

new branches of mathematics must be developed to meet the need.

Once the specification is formulated, the task of the programmer remains

348 ESSAYS IN COMPUTING SCIENCE

to find a predicate P, expressed in the restricted notations of his program¬

ming language, such that P logically implies the specification S, i.e.

\=P=> S.

Because of the notational restrictions, and in the pursuit of efficiency, P will

in general get much longer and more complicated than S. But in proving the

correctness of P, the programmer may use all the familiar techniques and

methods of classical mathematics. Consequently, he does not need the

cumbersome specialized proof rules that have often been associated with

proof-oriented programming language definitions (Chapter 4). Finally, if

the specification is not tautologous, the total correctness of the program will

be established.

I certainly do not recommend that a large program be proved correct by

expanding all the definitions and translating it explicitly into one gigantic

predicate. A far more effective technique is to perform the proofs as

necessary during the design and construction of the program. This is known

as ‘top-down programming’, and is now described in five steps.

(1) Suppose the original specification is S. The programmer needs the

insight to see that the achievement of S will involve completion of (say) two

subtasks. He formulates the specification of these subtasks as predicates T
and U.

(2) Using only the notations of his programming language he then

constructs a framework P(£, \J/), containing the names £ and \p to stand for

the subtask programs that have not yet been written.

(3) He then slots the specifications T and U in place of these two

subprograms, and proves that this satisfies the original specification S, i.e.

(= P(T, U) => S.

Note that P(T, U) is a predicate expressed in a mixture of conventional and

programming notations.

(4) He can now safely delegate to others the subtasks of writing programs

Q and R, which satisfy the specifications T and U, i.e.

i=Q=> T

and

\= R => U.

(5) When this is done, he can slot programs Q and R into the original

framework P, and he may be sure that the result will meet the original

specification S,

*= P(Qj R) => S.

This assurance is gained not by laborious integration testing after delivery

of the components, but by a proof that has been made even before the task

PROGRAMS ARE PREDICATES 349

of writing the subprograms has started. Since the subprograms have been

constructed by use of similar reliable methods, the risk of error should be

quite small. And the validity of this method of programming by parts

depends only on the fact that all operators of our programming language

are monotonic in the sense that they respect implication ordering.

If T
then P(S)=>P(T).

Another effective method of programming is to write first an inefficient

program P that meets the specification S. This can be useful as a

demonstration or training prototype of the eventual product. Then the

algebraic laws can be used to transform P into a more efficient program Q,
such that

*=Q=> P.

Clearly Q will meet any specification that P meets. If P is a nondeter-

ministic program, the transformation may use implications as well as

equivalences in the pursuit of greater efficiency.

Thus the approach advocated in this paper includes that of the other

contributors to this meeting, in that it gives a mathematical model for the

notations ol a simple executable programming language and uses algebraic

laws for optimization. It differs from the other contributions in making
three recommendations:

(1) Specifications should not be confined to the notations of an
executable programming language.

(2) Implication, rather than just equivalence, should be used to prove

correctness of programs, and to transform them in the interests of
efficiency.

(3) These methods need not be confined to applicative programming

languages. They should be extended to conventional procedural languages,

which can be efficiently executed on computers of the present day.

I am grateful to: A. J. R. G. Milner (1980) for his pioneering work in the

mathematical theory of communicating systems; E. C. R. Hehner (1983) for

pointing out that programs are predicates; D. S. Scott (1981) for the domain

theory that underlies a proper theory of recursion; S. D. Brookes and A. W.

Roscoe (1984) and E.-R. Olderog (1984) for construction of the model on

which this exposition is based; E. W. Dijkstra (1976) (p. 217) for his

realization of the value of nondeterminacy, and his insistence on total
correctness.

TWENTY-ONE

The mathematics of
programming

This chapter contains the text of Hoare’s ‘inaugural’ lecture at Oxford (the

explanation for the delay from his appointment in 1976 is contained in the

paper; Section 5 was not read) given on 17 October 1985 and published as

[101]. This talk ran through many ‘drafts’ including those in the USA, India
and Scotland.

This paper makes a fascinating comparison with Chapter 7 because of the

emphasis here on a formal approach. Moreover, the concern with mathemat¬

ical aspects of correctness is no longer expressed in the style of Chapters 4 and

8; the concern here is with algebraic properties. The work on weakest

pre-specification can be studied in [99] (which appeared as a Programming

Research Group monograph before the referenced publication); the algebraic
properties of the occam language are covered in [102].

Mr Vice-Chancellor, Ladies and Gentlemen!

This is my inaugural lecture as Professor of Computation at Oxford

University. I was appointed to this post just nine years ago, after the

tragically premature death of its brilliant first occupant, Christopher

Strachey. Nine years is a long delay for an inaugural lecture; but it has taken

all those nine years to introduce an undergraduate curriculum in Computing

at Oxford. Although many universities had been producing graduates in

this subject for many years before I was appointed here, it is only this week

that we welcome to Oxford and to this lecture the first entrants to our new

Honour School in Mathematics and Computation.

So it is the new School rather than myself that I wish to inaugurate today.

I shall do so by describing some of the research goals pursued by

Christopher Strachey and his colleagues and successors in the Programming

C. A. R. Hoare, The mathematics of programming, Oxford University Press (1986). An
Inaugural Lecture delivered before Oxford University (17 October 1985). Copyright © Oxford
University Press 1986. Reprinted by permission of Oxford University Press.

351

352 ESSAYS IN COMPUTING SCIENCE

Research Group; for these have also inspired and guided the design of our

new School. Our principles may be summarized under four headings.

(1) Computers are mathematical machines. Every aspect of their behaviour

can be defined with mathematical precision, and every detail can be

deduced from this definition with mathematical certainty by the laws of

pure logic.

(2) Computer programs are mathematical expressions. They describe with

unprecedented precision and in every minutest detail the behaviour,

intended or unintended, of the computer on which they are executed.

(3) A programming language is a mathematical theory. It includes con¬

cepts, notations, definitions, axioms and theorems, which help a

programmer to develop a program which meets its specification, and to

prove that it does so.

(4) Programming is a mathematical activity. Like other branches of applied

mathematics and engineering, its successful practice requires

determined and meticulous application of traditional methods of

mathematical understanding, calculation and proof.

These are general philosophical and moral principles, and I hold them to

be self-evident - which is just as well, because all the actual evidence is

against them. Nothing is really as I have described it, neither computers nor

programs nor programming languages nor even programmers.

Digital computers of the present day are very complicated devices and

rather poorly defined. As a result, it is usually impractical to reason

logically about their behaviour. Sometimes the only way of finding out what

they will do is by experiment. Such experiments are certainly not math¬

ematics. Unfortunately, they are not even science, because it is impossible

to generalize from their results or to publish them for the benefit of other

scientists.

Many computer programs of the present day are of inordinate size -

many thousands of pages of closely printed text. Mathematics has no

tradition of dealing with expressions on this scale. Normal methods of

calculation and proof seem wholly impractical to conduct by hand; and

fifteen years of experience suggest that computer assistance can only make

matters worse.

Programming languages of the present day are even more complicated

than the programs which they are used to write and the computers on which

they are intended to run. Valiant research has been directed to formulate

mathematical definitions of these standard languages. But the size and

complexity of the definitions make it impractical to derive useful theorems,

or to prove relevant properties of programs in practice.

Finally, many programmers of the present day have been educated in

ignorance or even fear of mathematics. Of course, there are many pro¬

grammers who are university graduates in pure or applied mathematics.

THE MATHEMATICS OF PROGRAMMING 353

They may have acquired a good grasp of topology, calculus or group

theory. But it never occurs to them to take advantage of their mathematical

skills to define a programming problem and search for its solution.

Our present failure to recognize and use mathematics as the basis for a

discipline of programming has a number of notorious consequences. They

are the same consequences as would result from a similar neglect of

mathematics in the drawing of maps, marine navigation, bridge building,

air traffic control, or the exploration of space. In the older branches of

science and engineering, the relevant physical and mathematical knowledge

is embodied in a number of equations, formulae and laws, many of which

are simple enough to be taught to children at school. The practising scientist

or engineer will be intimately familiar with these laws, and will use them

explicitly or even instinctively to find solutions to otherwise intractable
problems.

What then are the laws of programming, which help the programmer to

control the complexity of his tasks? Many programmers would be hard

pressed to name a single law. Those who have suffered from bad programs

might claim that programmers are such an undisciplined crew that even if

they know any laws, they would instantly violate them.

21.1 Arithmetic

To refute this malicious accusation, I shall now show by example that the

laws of programming are as simple and as obvious and as useful as the laws

you find in any other branch of mathematics, for example, in elementary

arithmetic. Consider multiplication of numbers. Figure 21.1 shows some of

the relevant algebraic laws; multiplication is associative, its identity (or unit)

is the number 1, it has the number 0 as its zero (or fixed point), and finally,

it distributes through addition.

Figure 21.2 gives the defining properties of an ordering relation like

comparison of the magnitude of numbers. Such an order is reflexive,

antisymmetric and transitive. These laws hold also for a partial ordering

such as the inclusion relation between sets.

x x (y x z) = (x x y) x z
X X 1 = X = 1 X X

xx0=0=0xx
(x + y) x z = (x x z) + (y x z)

Figure 21.1 Laws of multiplication.

354 ESSAYS IN COMPUTING SCIENCE

X ^ X

x^yAy<^x^x = y

xQyAy^z^xQz

Figure 21.2 Partial Ordering.

(xUy)^z^x^zAy^z
x U x — x
x U y = y U x

x U (y U z) = (x U y) U z
x y & xUy = y

Figure 21.3 Least upper bound (l.u.b.).

Figure 21.3 describes the properties of the least upper bound or l.u.b. of

an ordering, denoted by the traditional cup notation. These laws are equally

valid, whether the l.u.b. is the union of two sets or the greater of two

numbers. The first law states the fundamental property that the l.u.b. is an

upper bound on both its operands, and it is the least of all such bounds. The

remaining laws are derived from the fundamental law by the properties of

ordering. They state that the l.u.b. operator is idempotent, symmetric and

associative. Finally, the partial ordering can itself be defined in terms of
l.u.b.

Figure 21.4 shows some additional laws which hold for natural numbers

or nonnegative integers. Here, the least upper bound of two numbers is

simply the greater of them. If you multiply the greater of x or y by z, you

get the same result as multiplying both x and y by z, and then choosing the

greater of these products. This fact is clearly and conveniently stated in the

laws of distribution of multiplication through the least upper bound. An

immediate consequence of these laws is that multiplication is a monotonic

operator, in the sense that it preserves the ordering of its operands. If you

x U y = the greater of x and y

(x U y) X z = (x X z) U (y x z)

zx(xU^) = (zxx)U(zxj/)

w^yAx^z=> w X x <= y X z

Figure 21.4 Natural numbers.

THE MATHEMATICS OF PROGRAMMING 355

decrease either factor the product can only decrease too, as stated in the last
law of Figure 21.4.

In the arithmetic of natural numbers, multiplication does not in general

have an exact inverse. Instead, we commonly use a quotient operator, which

approximates the true result from below. It is obtained from normal integer

division by just ignoring the remainder. Thus, the result of dividing y by

non-zero z is the largest number such that when you multiply it back by z
the result still does not exceed y. This fact is clearly stated in the first law of

Figure 21.5. The same fact is stated more simply in the second law, which I
will call the fundamental law of division.

I must apologize to those members of the audience who are my

distinguished colleagues in the Faculty of Mathematics for reminding them

of these simple mathematical facts. But the fundamental law of division

may be slightly unfamiliar. I invite you to consider the category-theoretic

interpretation of a poset, and the relationship of multiplication and division

as adjoint functors. Or perhaps there is a connection with Galois connec¬
tions. If there is, please let me know.

The fundamental law of division is very useful in proving the other

properties of this operator. For example, the third law of Figure 21.5 is

proved by substituting y divided by z for x in the previous law. The last law

states that division by a product is the same as successive division by its two
factors. A proof is given in Figure 21.6.

The proof shows that any w which is bounded by the left-hand side of the

equation is bounded also by the right-hand side, and vice versa; it follows

if z ^ 0, y 4- z = maxjx | x x z £= y)
x c (y + z) & (xx z) £ y
(y -f- z) x z ^ y
x+ (yx z) = (x+ z)- y

Figure 21.5 Quotient of natural numbers.

given y 7^0 and z 5* 0,

w x+ (y x z) & w x(yx z) ^ x
& (w x y) x z <= x
& w x y <= x -t- z
& w Q (x-r- z) -e y

Figure 21.6 A proof.

356 ESSAYS IN COMPUTING SCIENCE

by the properties of partial ordering that the two sides are equal. The only

laws used in the main part of the proof are the associativity of multiplica¬

tion and the fundamental law of division, which is used three times to move

a divisor from one side of the inequality to the other.

21.2 Programs

That completes my brief review of some of the algebraic laws of elementary

arithmetic. I shall now show how computer programs obey very similar

algebraic laws - in fact, and hardly by accident, they will turn out to be

exactly the same. I shall write programs in a mathematical notation first

introduced by Dijkstra. Some of the commands are summarized in

Figure 21.7.

The SKIP command terminates, but does nothing else. In particular, it

leaves the values of all variables unchanged.

The ABORT command is at the other extreme. It may do anything

whatsoever, or it may fail to do anything whatsoever. In particular, it may

fail to terminate. This is the behaviour of a computer that has gone wrong,

or a program that has run wild, perhaps by corrupting its own code.

ABORT is not a command you would ever want to write; in fact, you

should take pains to prove that you have not done so by accident. In such

proofs and in the general mathematics of programming, the ABORT
command plays a valuable role. And however much we dislike it, there is

ample empirical evidence for its existence.

The sequential composition of two commands x and y is written (x; y).
This starts behaving like x. If and when x terminates, y starts in an initial

state equal to the final state left by x. Then (x; y) terminates when y
terminates, but fails to terminate if either x or y fails to do so.

The basic algebraic laws for sequential composition are given in

Figure 21.8. The first law is an associative law, stating that if three

commands are combined sequentially, it does not matter in which way they

are bracketed. The second law gives SKIP as the unit or identity of

composition. It states that a command x remains unchanged when it is

either followed or preceded by SKIP. The third law gives ABORT as a zero

SKIP does nothing, but terminates

ABORT does anything, and may fail to terminate

x;y does x first; when x terminates it does y

Figure 21.7 Commands.

THE MATHEMATICS OF PROGRAMMING 357

xi (yiz) = (x; y);z
SKIP; x — x = x; SKIP

ABORT; x = ABORT = x; ABORT

Figure 21.8 Laws for composition.

or fixed point for composition. You cannot program your way out of the

mess by preceding it or following it by any other command. Note that these

three algebraic laws for composition are exactly the same as those for

multiplication of numbers, with merely a change in notation.

The next important feature of programming is the conditional. Let b be a

logical expression which in all circumstances evaluates to a logical value

true or false. If x and y are commands, I introduce the notation

x < b \> y (x if b else y)

to denote the conditional command. It is obeyed by first evaluating the

logical expression b. If the result is true, then the command xis obeyed and

y is omitted. If the result is false, then y is obeyed and x is omitted. This

informal description is summarized in the first law of Figure 21.9.

I now regard the if symbol < and the else symbol > as brackets

surrounding the logical expression b, so that the notation

< b > (if b else)

appears as an infix operator between two commands a and y. The reason

for this novel notation is that it simplifies expression and use of the relevant

algebraic laws. For example, the conditional < b > is idempotent and

associative, and it distributes through < c> for any logical expression c.

Finally, sequential composition distributes leftward (but not rightward)
through a conditional.

Figure 21.10 shows a picture of the conditional as a structured flow chart.

Such pictures actually inhibit the use of mathematics in programming, and I

(x < true > y) = x = (/ < false > x)
(x < b > x) = x

x < b > (yz) = {xy)z
— x < b > z

x < b > (y < c> z) = (x < b > y) < c> (x < b > z)
(x < b > y); z - (x; z) < b > (y; z)

Figure 21.9 Conditional.

358 ESSAYS IN COMPUTING SCIENCE

Figure 21.10 Conditional as flow chart.

do not approve of them. They may be useful in first presenting a new idea,

and in committing it to memory. Their role is similar to that of the picture

of an apple or a zebra in a child’s alphabet book. But excessive reliance

on pictures continued into later life would not be regarded as a good

qualification for one seeking a career as a professional author. It is equally

inappropriate for a professional programmer. Confucius is often quoted as

saying that a picture is worth ten thousand words - so please never draw

one that isn’t.

Unfortunately, there exist problems which are so widespread and so

severe that even flow charts must be recommended and actually welcomed

as their solution. Figure 21.11 shows how we have taught a generation of

schoolchildren to express the structure of a conditional in BASIC. Pro¬

gramming in BASIC is like doing arithmetic with roman numerals. To start

with, for simple tasks like addition and subtraction, roman numerals are

much easier than arabic, because you do not first have to learn one hundred

410 IF b THEN GOTO 554

411

550 GOTO 593

554

593 REM

Figure 21.11 BASIC.

THE MATHEMATICS OF PROGRAMMING 359

tacts about addition and subtraction of the ten digits, and you avoid most
of the complications of carry and borrow. Roman numerals have another
advantage - they are easier to carve on stone.

The disadvantages of roman numerals become apparent only in more
complex tasks such as multiplication, or worse, division. For division of
roman numerals, the only known technique is trial and error. You have to
guess the solution, test it by multiplying back the divisor and compare the
dividend, and make a new guess if the previous one was wrong. This is
exactly the way we teach schoolchildren to write and debug their BASIC
programs. But compared with BASIC programming, division of roman
numerals is quite easy, because the fundamental law of division tells you
whether the new guess should be smaller or greater than the last.

Thankfully, arabic numerals have displaced roman ones in our schools,
and the effective algorithm for long division has replaced the roman method
of trial and error by an orderly process of calculation; when carefully
executed, it leads invariably to the correct solution. In cases of doubt, the
answer can still be checked by multiplication; but if this discovers an error,
you do not try to debug the digits of your answer one by one. You go back
over the steps of the calculation, and correct them - or else start again. The
long division algorithm was discovered by Briggs, who was appointed the
first Savilean Professor of Geometry at Oxford in 1619. It is ironic that as
computers have eliminated the need to teach long division in schools, they
have replaced it by such stone-age notations as BASIC.

But it is foolish to develop an emotional fixation on mere notation. For
each task, a mathematician chooses the most appropriate notation. For
chalking up a slate for drinks for my guests after this lecture, I shall use the
most primitive notation of all - unary.

21.3 Abstraction

I now have great pleasure in introducing the concept of an abstract
command. An abstract command is one that specifies general properties of
the desired behaviour of a computer, without prescribing exactly how it is to
be achieved. We shall see that abstraction is the primary technique whereby
the software engineer can control the complexity of his tasks. In conven¬
tional engineering, the same role is fulfilled by the technique of numerical
approximation. Such approximation is often valid for continuous natural
phenomena, but not for discrete mathematical activities like programming,
where every binary digit is significant, and the smallest change will result in
ABORT.

360 ESSAYS IN COMPUTING SCIENCE

xU y behaves like a or y

a U a = a

x U y = y U a

a U (y U z) = (a U y) U z
x U ABORT - ABORT

Figure 21.12 Abstraction.

A simple example of an abstract command is the union or l.u.b. (aUj)

of two commands a and y, which may themselves be abstract or concrete.

The union command may be obeyed by obeying either of its operands. The

choice between them is left open, and may be made later by the program¬

mer, by a compiler, or even by some device in a machine while it executes

the program.

The properties of the union operator (Fig. 21.12) are exactly what you

would expect. A command to do a or a leaves you no choice but to do a. To

do a or y gives you the same choice as y or a. And in a choice between three

alternatives, it does not matter in what order you choose between one of

them and a subsequent choice between the other two. And finally, ABORT
is the abstract program which allows any behaviour whatsoever. Thus,

to allow further choice does not alter the range of options permitted by

ABORT.
The introduction of abstraction permits the definition of a useful

ordering relation between concrete and abstract commands. If y is an

abstract command specifying some desired effect, and a is a concrete

command which achieves that effect, we say that a satisfies y, and use the

familiar notation for q partial order

a c y

The command a may also be abstract, in which case the ordering relation

means that a is the same as y, or it is more specific, more concrete or more

deterministic than y. In either case, a meets the specification y, because

every possible execution of a is described and therefore allowed by y. As
stated in Fig. 21.13, the satisfaction relation is a partial order, and the

abstraction operator is its least upper bound.

Abstract commands may be combined by all the same operators as

concrete commands. Figure 21.14 shows that the sequential composition

distributes through abstract choice in both directions, in the same way that

multiplication distributes through the greater of two numbers. It follows

that composition is monotonic in both its operands. In fact, all the

operators of a programming language are monotonic in this sense. There

are good theoretical reasons for this; and there are also very beneficial

THE MATHEMATICS OF PROGRAMMING 361

x ^ y & xU y = y
X C= X

x<^y/\y<^x=*x = y

(xUy)Qz^x^zUyQz

Figure 21.13 Satisfaction.

(x U y); z = (x; z) U (y; z)
z;(xUy) = (z; x)U(z;y)

w; A C= y; z

Figure 21.14 Sequential composition.

consequences for practical solution of programming problems, as I shall
now show.

21.4 Refinement

According to the principles I outlined at the beginning of this lecture, the

task of a programmer can be described as a problem in mathematics. We

start with an abstract description y of what we want the computer to do,

carefully checking that it is an accurate description of the right problem.

This is often the most difficult part of our task, and requires the most

powerful tools. So in the specification y, we take advantage of the full range

of concepts and notations of mathematics, including even concepts which

cannot be represented on any computer, and operations which could never

be implemented in any programming language.

Turning now to the second part of the programmer’s task, we must find

some program x which solves the inequation

* £ y

where y is the specification of the program. Mathematics provides many

formulae and methods for the solution of equations and inequations, from

linear and quadratic to differential and integral. In all cases, the derivation

of a solution may use the full power of mathematics, but the solution itself

must be expressed as a formula in some more restricted notation. You

cannot use the derivative symbol when asked to differentiate a formula, or

362 ESSAYS IN COMPUTING SCIENCE

an integral sign when asked to integrate. That would be just too easy. And

the same is true in programming, where the eventual solution must be

expressed in the'restricted notations of an implemented concrete program¬

ming language.
The most powerful general method of solving a complicated problem is to

split it into simpler subproblems, which can then be solved independently.

The same method can be applied again to the subproblems until they are

simple enough to solve by some other more direct method. In the case of

computer programming, this is often called top-down development or

stepwise refinement; and it is illustrated in Fig. 21.15. We start with the

problem of finding some command x (expressed in a concrete programming

language) which meets the specification y (expressed in the abstract

language of mathematics). The first step requires the insight to split y into

two sequential subproblems, and the skill to specify these as abstract

programs v and w. Before proceeding further, we prove the correctness of

our design so far by showing that the sequential composition of v and w
meets the original specification y, or more formally

v;w^y

Now these two subproblems v and w may be solved one after the other or

simultaneously, by a single programmer or by two teams of programmers,

according to the size of the task. When both subproblems are solved, we

will have two commands t and u, expressed in the restricted notations of our

chosen programming language, each meeting their respective specifications

t c v
and u <= w

Now all that remains is to deliver their sequential composition (t; u) as a

solution to the original problem y. Correctness of the solution has been

established not by the traditional laborious and ultimately unsound method

of integration testing and debugging after the components have been

Problem: find x such that x Q y
Step 1: find v, w such that v;w c= y

Step 2a: find t such that t <= v
Step 2b: find u such that u <= w
Step 3: deliver t;u
Proof: t;u <= v;w ; monotonic, (2)

• t;u c y e transitive, (1)

Figure 21.15 Top-down development.

THE MATHEMATICS OF PROGRAMMING 363

constructed; but rather by a mathematical proof, which was completed on
the very first step, even before their construction began.

The validity of the general method of top-down development depends on

monotonicity of the composition operator and transitivity of the abstrac¬

tion ordering. The method can therefore be applied to any other operator of

a concrete programming language. It has been treated at length in many

learned articles and books. Such is the simplifying power of mathematics

that the whole method can be described, together with a proof of its
validity, within the seven short lines of Fig. 21.15.

I have drawn an analogy between multiplication of natural numbers and

sequential composition of commands in programming. This analogy

extends even to division. As with division of natural numbers, the quotient

of two commands is not an exact inverse. However, it is uniquely defined by

the same fundamental law, as shown in Fig. 21.16. The quotient of y by z is

the most abstract specification of a program a, which, when followed by z,
is sure to meet the specification y. As a consequence, the quotient itself,

when followed by z, meets the original specification. And finally, when the

divisor is the composition of two commands, the quotient may be calculated

by successive division by these two commands in the reverse order. Since the

composition of commands is not symmetric, the reversal of the order is
important here.

In factorization of large numbers, division obviously saves a lot of effort,

because you have to guess only one of the factors, and obtain the other one

by a mere calculation. The division of commands offers the same advan¬

tages in the factorization of programming problems. In the refinement

procedure which I have just described, it replaces the guesswork required in

discovering two simpler subtasks by the discovery of only the second of

them, as shown in Fig. 21.17. Furthermore, the proof obligation in step I

has been eliminated. It is replaced by a formal calculation of the weakest

specification which must be met by the first operand of the composition.

Reduction of guesswork and proof to mere calculation is the way in which

a mathematician simplifies his own tasks, as well as those of the user of

mathematics - the scientist, the engineer, and now also the programmer.

The quotient operator for commands of a programming language was

discovered and explored in a series of research seminars in Oxford in 1985.

(x; z) ^ y a c (y - z)
(y t- z);z c y
T- (y;z) = (x+ z) + y

Figure 21.16 Quotient of commands.

364 ESSAYS IN COMPUTING SCIENCE

Problem: find x such that x <= y
Step 1: choose suitable w

Step 2a: find t such that t c y -r- w

Step 2b: find u such that u <= w

Step 3: deliver t; u
Proof: t\u9= (y+ w);w ; monotonic

(y -e w); vv <= y property of -e

• • t\u^y <= transitive

Figure 21.17 Development by quotient.

It is a slight generalization of Dijkstra’s weakest precondition, which is one

of the most effective known methods for the design and development of

correct algorithms, as shown in numerous examples by David Gries.

21.5 Program maintenance

In my description of the task of a programmer, I have concentrated on the

more glamorous part of that task, that of specifying, designing and writing

new programs. But a significant proportion of a programmer’s professional

life is spent on making changes to old programs. Some of these changes are

necessitated by the discovery of errors, and some by changes in the

specification of the desired behaviour of the program. The program and the

specification are so large that it is not practical to write a new program from

scratch; so when only a small part of the specification is changed, it is hoped

that only a small part of the program will need changing to meet it.

Of course, such a hope is not always fulfilled. Consider again the analogy

of the division of numbers. A small change in the least significant digits of

the dividend results in a small change in the least significant digits of the

quotient, and can be achieved by a small amount of recalculation. But a

small change in the most significant digit of either operand requires the

calculation to be started again, and leads to a completely different result. In

the case of programs, it is often very difficult to know which small changes

in a large specification will require major changes to the code.

It is therefore one of the most important duties of the original program¬

mer to decide which parts of a specification are most likely to be changed,

and structure a program design so that a change to one part of the

specification requires a change to only one part of the program. The

programmer should then document the program with instructions on how

THE MATHEMATICS OF PROGRAMMING 365

Given: fix) Q g(y)
Problem: find a' such that f(x') Q g(y')
Case I: &0

II

solve x1 y'
Case 2: /has approximate inverse f~l

solve x' c f~\g{y'))

Figure 21.18 Maintenance.

to carry out the change. This too can be done in a rigorous mathematical

fashion (Fig. 21.18). Let y be that part of a complete specification g(y)
which is liable to change. Let x be that command in a big program /(x)

which is designed to change when y changes. The problem now is to change

x to x' so that f{x') meets the changed specification g(y').

The problem of program maintenance is most easily solved when the

structure of the program /is the same as the structure of the specification g,
because in this case it is sufficient to ensure that the modified component

meets the modified specification. But it is not always possible to preserve the

structure of a specification in the design of a program. This is because a

specification is often most clearly structured with the aid of such logical

operators as negation and conjunction, which are not available in an

implemented programming language. Nevertheless, mathematics can often

help. If the program /has an approximate inverse f~\ defined in the same

way as for the quotient, then it is possible to calculate the proof obligation
of the modified program as

a' c f-l(g(y'))

21.6 Conclusion

Now I must inject a note of realism into my mathematical speculations. On

dividing two integers, the result of the division is usually much smaller than

both the operands. On dividing one program by another, the result can be

larger than both the operands put together, and requires massive simplifi¬

cation before it can be used effectively. It is this problem that discourages

the use of mathematics in program design, and presents the challenge for
continuing research.

The problem of size of mathematical formulae is exactly the same

problem that limits the use of mathematics in other branches of science and

engineering. Scientists believe as fervently as I do in the principle that the

366 ESSAYS IN COMPUTING SCIENCE

whole of nature is governed by mathematical laws of great simplicity and

elegance; and brilliant scientists have discovered many laws which accur¬

ately predict the results of experiments conducted in a rigorously controlled

laboratory environment. But when the engineer tries to apply the same laws

in practice, the number of uncontrollable variables is so great that a full

calculation of the consequences of each design decision is hopelessly

impractical. The movement of a tennis ball through the air is doubtless

governed by mathematical equations; but the tennis player does not

calculate the parameters of his return shot by solving them. The mere

thought of doing so would completely spoil his game. Both engineer and

sportsman have trained themselves to an almost instinctive feel and

understanding for the appropriate action to meet each need.

Experienced programmers have developed a similar intuitive understand¬

ing of the behaviour of computer programs, many of which now achieve

great sophistication together with high reliability. Nevertheless, I would

suggest that the skills of our best programmers will be even more effective

when exercised within the framework of an understanding and application

of the relevant mathematical principles, with particular emphasis on

abstraction. The mathematics has been demonstrated on small examples, as

it were in the laboratory. At Oxford, in the Computing Laboratory, we

have started a number of collaborative projects to scale up these methods

for application in an industrial environment. Preliminary indications are

quite promising, both for advances in theory and for benefits in practice.

We are concentrating our attention on the areas of greatest necessity,

where lack of mathematical precision leads to the heaviest costs. In

particular, I list five such areas: specifications, systems software, standards,

silicon structures, and safety.

21.6.1 Specifications

In the initial specification and early design of a large-scale software

product, the use of mathematics has been found to clarify design concepts,

and enable a wide variety of options to be explored at a time when less

successful alternatives can be cheaply discarded. As a result, the final agreed

specification may enjoy that simplicity and conceptual integrity which

characterizes the highest quality in design. Furthermore, user manuals,

tutorials and guides which are based on mathematical specifications can be

better structured, more complete and more comprehensible, even to users

who have no knowledge of the underlying mathematics. This promises to

mitigate the greatest single cause of error, inconvenience and frustration in

the use of sophisticated software products - that is, failure to read and

understand the user manual.

Effective methods of specification of large programs will be taught and

THE MATHEMATICS OF PROGRAMMING 367

used extensively in our undergraduate courses, particularly in a third-year

course on operating systems. They have been explored in a collaborative

contract between Oxford University and IBM (UK) Ltd, which is now

entering its fifth year. Our research with IBM has concentrated on a widely

sold software product known as the Customer Information Control System,

or CICS for short. A determined attempt to construct a mathematical

model of the existing product brought to light a number of tricky questions,

which could not be answered even by those who had designed the programs

and implemented them. This discovery gave our industrial collaborators the

confidence to submit designs of new products to our analysis. Again, they

were astonished by the depth and range of the issues which we were able to

bring to light at the earliest stages of design. So eventually they allowed us

to show them how to do it; and now they are doing it better than we can.

We have proved that ordinary programmers enjoy learning mathematics,

and enjoy applying it. They call for our assistance only when they find

problems for which our standard methods seem inadequate. Then we have

to conduct a mathematical exploration to discover new methods, or refine,

extend and generalize the existing methods. This has been an invaluable
stimulus to our more abstract research.

21.6.2 Systems software

The basic systems software of a computer includes such items as an

operating system, language compilers, utilities, transaction processing

packages and database management systems. These programs are written

by large teams of programmers, and they are delivered to thousands or

millions of customers, who use them daily, hourly, or even continuously. In

the years after delivery of such software, many thousands of errors are

discovered by the customers themselves; and each error must be laboriously

analysed, corrected and re-tested; and the corrections must be delivered

to and installed by every customer in the next release of the software. A

reduction in the number of corrections needed would be very cost-effective

for the supplier and even more convenient for the customers. No method by

itself can guarantee absolute reliability, but in combination with manage¬

ment control, a mathematical approach looks promising because even when

mistakes are made, they can be traced to their source, and steps can be
taken to ensure they do not happen again.

Methods of reliable program design will be taught throughout our new

undergraduate syllabus, but especially in a second-year course in Software

Engineering. Research in this area is continuing at Oxford in collaboration

with IBM, and with other companies including Racal and British Petrol¬

eum. In these research contracts we hope to design and develop computer

aids to large-scale program construction. The first such aid, which we have

368 ESSAYS IN COMPUTING SCIENCE

already developed, is a good word processor with an adequate range of

mathematical symbols. Next we need a filing system, which will control the

many versions of documents and programs produced by large programming

teams. And finally, we would like some computer assistance in the

calculation of the properties of abstract and concrete programs, and in the

manipulation of the large formulae which arise.

21.6.3 Standards

The standardization of languages and interfaces in hardware and in

software is a vital precondition for free competition and for propagation of

technical advances to large numbers of satisfied customers. The construc¬

tion of a mathematical specification for these standards offers the same

promise of improved quality in design that I have described before; there is

also a hope of reducing the ambiguities and misunderstandings which lead

to errors and incompatibility in various implementations of the standard,

and which have prevented full benefit from being obtained from existing

standards.

Mathematical methods for the description of programming language

standards appear in our new undergraduate syllabus in the third-year course

on denotational semantics. They are based on the pioneering discoveries of

Christopher Strachey and Dana Scott at Oxford. They are being applied to

the design of new programming languages such as Occam and Ada. The

occam programming language has been designed by INMOS, the British

microprocessor company, and includes the programming concepts which I

have used in this lecture. It also includes operators specifying concurrent

execution of commands or processes, which communicate with each other

by input and output. The language is the basis of the design of the new

microprocessor, known as the transputer, which has just been announced

by INMOS. The language was used extensively in the design of the

transputer itself. It is already being used in space, for programming a

collection of computers in a British satellite.

The successful design of occam was inspired and guided by a mathemat¬

ical study conducted at Oxford. We now have a denotational semantics of

the language. We also have a set of algebraic laws, which are being used by

INMOS to assist in correct construction of programs and compilers for the

language. Occam is the first practical programming language which fulfils

its role as a mathematical theory, giving practical assistance to program¬

mers in writing correct programs.

THE MATHEMATICS OF PROGRAMMING 369

21.6.4 Silicon structures

The advance of technology in very large scale integration (VLSI) now makes

it possible to build hardware of a complexity matching that of software. As

a result, the number of design errors detected during manufacture and

testing of complex devices is also beginning to match that of software. But

now each error costs many thousands of dollars to remove; what is worse,

by delaying introduction of a new device to the market, a single error can

prevent an innovative company from assuming market leadership, or even

prejudice its survival. As a result, many products are delivered with known

design errors, for which the customer will never obtain correction or

restitution. Fortunately, mathematical methods similar to those for sequen¬

tial programs can be adapted to check logic designs. These methods are

especially valuable when the design involves concurrency or parallelism.

At Oxford this subject will appear in our new undergraduate syllabus in

the second-year courses on VLSI design and distributed computing. We are

also pursuing further research into silicon design, in collaboration with

INMOS, GEC, and other companies. Our objective is to continue the

mathematical process leading from specification through design right down

to a description of the circuits which are implanted into silicon. It appears

that the occam language will play a valuable intermediary role in this

process. If we can do this efficiently and reliably, we will achieve several

orders of magnitude improvement in the cost and performance of special-

purpose computing devices. These will be devices which are accurately and

completely specified in such a way that their behaviour can be predicted and

controlled by logical reasoning.

21.6.5 Safety

Computer programs are increasingly used in systems which are critical

to the safety of the general public - control of railway signalling,

aero-engines, chemical and nuclear processes. All the engineering tech¬

niques used in these systems are subject to the most rigorous analysis and

control, often enforced by law. Mathematical methods offer the best hope

of extending such control to computer sofware; and when this happens, a

computer program could gain a reputation as the most reliable component
of any system in which it is embedded.

The production of error-free programs has for over fifteen years been the

motivation of my own research. The methods are not easy to apply, and

there is very little knowledge of their existence, even among those who need

them most. It has been difficult to find industrial collaborators who admit

that they need help in safety-critical programming. But every graduate from

370 ESSAYS IN COMPUTING SCIENCE

our new School will know and understand the relevant theory, and will be

able to put it into practice.

1 started this lecture with a summary of the mathematical principles which

underlie the practice of computing, and of the current widespread failure to

recognize those principles. I have ended with a description of the ways in

which research at Oxford has been directed to bridging the gap between

theory and practice, between mathematics and computer applications.

Unfortunately, I have not been able to describe all the research in which we

are engaged. Even worse, I have failed to give credit to widespread research

outside Oxford. And now there is no time to list all my other failures and

omissions.

My main hope is that I have conveyed to you some flavour of the kind of

mathematics in which we are engaged. I believe that our work is justified

not only by its utility, but also by the beauty of the mathematics itself. By

explicit appeal to mathematics, even computer programs can share in this

beauty. For in the computing profession the greatest benefits in reduction of

costs and improvement of quality can be achieved only by conscientious

pursuit of the traditional academic virtues of rigour and elegance. I end

with a quotation from Christopher Strachey, who wrote in 1974:

It has long been my personal view that the separation of practical and
theoretical work is artificial and injurious. Much of the practical work done in
computing, both in software and in hardware design, is unsound and clumsy
because the people who do it do not have any clear understanding of the
fundamental principles underlying their work. Most of the abstract math¬
ematics and theoretical work is sterile because it has no point of contact with
real computing. One of the central aims of the Programming Research Group,
as a teaching and research group, has been to set up an atmosphere in which
this separation cannot happen...

Ever since, we have continued to pursue exactly this aim. As a result, my

years at Oxford have been the most exciting and scientifically fruitful years

of my life. I hope I have conveyed to you some of this excitement, and that

you are consoled thereby for the long delay in hearing what I have

presumptuously presented as an inaugural lecture.

TWENTY-TWO

An overview of some formal
methods for program design

It is fitting that the last reprinted paper should be one of Hoare’s more general
articles. Throughout his development of important scientific contributions,
Hoare has been prepared to take time to communicate the evolution of
computing science to a wider audience. The contrast, however, with his first
contributions of this sort is marked: here, the reader is plunged straight into
an example of a formal development. ‘

This paper was written mainly during Hoare’s 1986/87 sabbatical at the
University of Texas and published ([112]) in 1987. The motive for writing the
article was to counteract the two widely held, and related, beliefs:

(1) That a notation used for specification of requirements should also be
executable by computer.

(2) That some single formal notational system should be adequate for all
purposes in program design.

If these beliefs can be refuted by an example as simple as greatest common
divisor, it must be obvious the the specification of major systems requires the
use of notations chosen for specification rather than for implementation.

Abstract

The code of a computer program is a formal text, describing precisely the actions of a

computer executing that program. As in other branches of engineering, the progress of

its implementation as well as its eventual quality can be promoted by additional design

documents, formalized before starting to write the final code. These preliminary

documents may be expressed in a variety of notations suitable for different purposes
at different stages of a project, from capture of requirements through design and

implementation, to delivery and long-term maintenance. These notations are derived

from mathematics, and include algebra, logic, functions, and procedures. The connec¬
tion between the notations is provided by mathematical calculation and proof.

This article introduces and illustrates a selection of formal methods by means of a

single recurring example, the design of a program to compute the greatest common

divisor of two positive numbers. It is hoped that some of the conclusions drawn from

analysis of this simple example will apply with even greater force to software
engineering projects on a more realistic scale.

C. A. R. Hoare, An overview of some formal methods for program design, Copyright © 1987
IEEE. Reprinted, with permission, from Computer, 20(9), 85-91 September 1987.

371

372 ESSAYS IN COMPUTING SCIENCE

22.1 Requirements

Imagine that a software engineer is called upon to construct a mechanism

or subroutine to compute the greatest common divisor z of two positive

integers x and y. By an even greater feat of imagination, assume no prior

knowledge of the concept of greatest common divisor, or of how to

compute it. So the first task is to ensure that the engineer and client have the

same understanding of what is required. Let us suppose first that they agree

to confine attention to positive whole numbers (excluding zero). The

required relationship between the parameters (x, y) and the result (z) may

be formalized as follows:

(D1.1) z divides x

(D1.2) z divides y
(D1.3) z is the greatest of the set of numbers satisfying both these

conditions

(D1.4) *p divides q’ means ‘there exists a positive whole number w such

that pw = q'
(D1.5) *p is the greatest member of a set S’ means *p is in S, and no

member of S is strictly greater than p’

It is essential that the notations used for formalization of requirements

should be mathematically meaningful, but it would be unwise to place any

other restriction upon them. Even in this simple example we have used

logic, arithmetic, and set theory. An engineer should take advantage of this

early notational freedom to ensure that the formalization of requirements is

simple and well-structured so that, together with its informal explanation, it

obviously describes what is really wanted, and not something else. There

can never be any formal method of checking this vital correspondence,

because there should not be any more obviously correct description to check

it against. Clarity is our only defence against the embarrassment felt on

completion of a large project when it is discovered that the wrong problem
has been solved.

The most important mathematical notations needed in requirements

specification are also the simplest - for example, the familar Boolean

connectives A (AND), V (OR) and —j (NOT). The connective A (known as

conjunction) is needed to put together the separate requirements imposed

upon a product. In the example above, we want the answer z to be a divisor

of x and we want it to be a divisor of y. Sometimes we need universal
quantification (‘for all x’), which is a generalization of A. The connective V

(known as disjunction) is needed to achieve simplicity and symmetry by

maintaining a high level of abstraction. Sometimes we need existential
quantification (‘there exists’), which is a generalization of V. For example,

in clause (D1.4) above, we want there to exist a w exactly dividing x, but we

don’t care if there is more than one, and if so we don’t care which one is

FORMAL METHODS FOR PROGRAM DESIGN 373

chosen. And we certainly don’t want to describe in gory detail how a

computer is to find one. Finally, it is often easier and clearer to say what we

want the product not to do. For example there must be no divisor of x and y
greater than z. In the formulation of requirements, we certainly need the
simple Boolean connectives A and V, and especially —

By using such a powerful specification language, we run the risk of

writing a falsehood, inconsistency, or other absurdity which could never be

implemented. This risk can be eliminated by an early consistency check. In

our example, what we need to check is that for every pair of positive

numbers x and y there exists a number z with the properties specified in
D1.3. A proof of this has three steps:

(PI. 1) The number 1 is a divisor of every number. So it is a common divisor

of every pair of numbers. This shows that the set of common
divisors of two numbers is non-empty.

(PI.2) Each number is its own greatest divisor, so every set of divisors is

finite. The common subset of any two finite sets is also finite. So the

set of common divisors of two numbers is both finite and non¬
empty.

(PI.3) Every finite non-empty set of integers has a greatest member. So the

maximum used to define the greatest common divisor always exists.

At the end of requirements analysis, we aim to have a mathematically

precise, complete, consistent, and above all obviously appropriate math¬

ematical description of the result we want. It would be very nice to input

this description into some suitably programmed computer, and get the

computer to translate it automatically into a subroutine. On each call of the

subroutine, it would return the greatest common divisor of any pair of

numbers supplied as arguments. If we are willing to overlook the problem

of efficiency, there is an easy way of doing this, known as the British

Museum algorithm. A computer can be programmed to start with some

standard set of axioms of mathematics, and to use them to generate at

random all provable mathematical theorems. It will therefore eventually
generate such startling theorems as

One is the greatest of all numbers which divide both two and three.

So if we want to know the greatest common divisor of two and three, all

we need to do is to program another computer to recognize when the British

Museum computer has produced a result of this form. Then we just wait for

it to do so. We may have to wait a very long time - under reasonable

assumptions, all the particles in the universe will decay to photons before

our fastest computers can carry out even the most trivial calculations. And

if the theorem-generator attempts a strategy much better than random

generation, it is difficult to avoid the risk that some true theorem will never

374 ESSAYS IN COMPUTING SCIENCE

be generated. In mathematics, the question of efficiency is rightly con¬

sidered irrelevant, but in using computers to do mathematics, efficiency

cannot forever.be ignored - or else it will really be forever. Efficiency is

therefore the main driving force in the development of an acceptable

program to meet its mathematical specification, as shown in the following

sections.

22.2 Logic program

A solution to the unavoidable problem of efficiency is to recast the

specification of requirements into some notational framework less powerful

and less general than the whole of mathematics. This restricted notation is

so designed that its use will be rewarded by more efficient execution on a

computer. One of the concepts of mathematics that is most difficult to

implement effectively is negation of specification. For example, if you want

a program that does not trigger a holocaust, you cannot hope to write a

program that does trigger a holocaust and just negate it before submitting it

to the computer. For this reason, even the highest-level logic programming

languages prohibit or severely restrict the use of negation, requiring the

programmer to implement it whenever needed.

Flere is an idealized logic program to compute the greatest common

divisor of two positive integers. To help in checking its correctness, it has

been designed to preserve as far as possible the structure and clarity of the

original requirements. We assumed that isproduct and differsfrom are

available as built-in predicates on positive integers.

(F2.1) isdivisor(x, z) if there exists a w not greater than x such that
isproduct(z, w, x)

(F2.2) iscommondiv(x, y, z) if isdivisor(x, z) and isdivisor(y, z)
(F2.3) isgcd(x, y, z) if iscommondiv(x, y, z) and for all w from z to x

isnotcommondiv(x, y, z)
(F2.4) isnotcommondiv(x, y, z) if isnotdiv(x, z) or isnotdiv(y, z)
(F2.5) isnotdiv(x, z) if for all w from 1 to x isnotproduct{z, w, x)
(F2.6) isnotproduct(z, w, x) if isproduct (z, w, y) and differsfrom(y, x)

This program is a great deal more complicated than the requirements

specification in the previous section. The obvious reason is that the absence

of negation in the programming language requires explicit programming of

a search through all possibilities before a negative answer is given. In order

to ensure termination, a finite range for each search has to be specified, and

setting this limit requires knowledge of the application domain. For

example, in (F2.3) we rely on the fact that the common divisor of two

numbers cannot exceed either number.

FORMAL METHODS FOR PROGRAM DESIGN 375

Note that in the best-known programming language, PROLOG, it would

be permitted to replace (L2.3) to (L2.6) by the single clause

(L2.3') isgcd(x, y, z) if iscommondiv (x, y, z) and

not(iscommondiv(x, y, w) and isgreater(w, z))

This restores the brevity of the specification of requirements, but when

submitted to a standard implementation of PROLOG, this program may

turn out to be slightly worse than the British Museum algorithm because it

does not terminate at all. The trouble is that the not of PROLOG does not

mean the same as the —| of mathematics, logic, or even normal technical

discourse, and its meaning cannot be fully understood except in terms of the

way that PROLOG programs are executed. In fact, in PROLOG the and
and the or also have peculiar meanings, as a result of which they are not

even symmetric. The motive for this was to achieve greater efficiency of

execution, particularly on traditional sequential computers.

In spite of considerable ingenuity of implementation, logic programs are

inherently inefficient, particularly if the specification takes proper advan¬

tage of the power of the available combination of conjunction and

disjunction. The reason is that in principle all combinations of possibilities

described by each disjunction have to be explored, in order to be sure of

finding one that is consistent with the rest of the specification. Consider the

conjunction of (A or B) with (C or D). This gives rise to four alternatives,

(A and C) or (A and D) or (B and C) or (B and D), all of which may have

to be tried. An existential quantifier multiplies the number of cases by a

larger factor, and if recursion is involved, the number of cases to be

explored increases exponentially. All but one of these cases will eventually

be discarded.

22.3 Algebra

A possible way of improving efficiency is by restricting yet further the power

of the language, for example by avoiding disjunction as well as negation.

This is the major restriction imposed when formulating a specification in

the algebraic style. In an algebraic specification, fresh names (such as gcd)

must be introduced for each function to be specified. The specification is

formalized as a set of algebraic equations, each of which must be true of

all values of the variables they contain. These equations are connected

implicitly by A. Only this form of conjunction is allowed - no negation and

no disjunction. As a result, it is even more difficult or even impossible to

write a program which preserves the clause structure or content of the

original requirements. Instead, the algebraic equations have to be derived as

needed by mathematical reasoning from the whole of the original

376 ESSAYS IN COMPUTING SCIENCE

specification. This is illustrated in the case of the greatest common divisor:

(L3.1) The greatest divisor of x is x. So the greatest common divisor of x
and x is also x:

x = gcd(x, x) for all x.

(L3.2) If z divides x and y, it also divides x + y. So every common divisor

of x and y is also a common divisor of x + y and y. Similarly, every

common divisor of x + y and y is also a common divisor of x and y.
So the greatest of these identical sets of common divisors are the
same:

gcd(x, y) = gcd(x+ y, y) for all x, y.

(L3.3) Every common divisor of x and y is also a common divisor of y and
x:

gcd(x, y) = gcd(y, x) for all x, y.

The three laws given above can serve as an algebraic specification of the

gcd function. The consistency of the specification has been guaranteed by

proof, which shows that the laws follow from a set of requirements already

known to be consistent. But the question remains, are the laws a complete
specification, in the sense that there is only one function satisfying them? Or

do we need to look for more laws? A proof of completeness has to show

that for any given positive numerals p and q there is a numeral r such that
the equation

r= gcd(p, q)

can be proved solely from the algebraic specification and the previously
known laws of arithmetic.

This can be shown by mathematical induction: We assume the result for

all p and q is strictly less than TV, and prove it for all p and q less than or

equal to TV. For such numbers, four cases can be distinguished:

(1) Both p and q are strictly less than TV. In this case, what we have to

prove is the same as the induction hypothesis, which may be assumed
without proof.

(2) Both p and q are equal to TV. Then the result

N= gcd(p, q)

is proved immediately by law (L3.1).

(3) p = AT and q < TV. It follows that p - q is positive and less than TV. By
the induction hypothesis, there is an r such that

r= gcd{p- q, q)

FORMAL METHODS FOR PROGRAM DESIGN 377

is deducible from the algebraic laws. One application of (L3.2) then gives

r= gcd((p- q)+ q,q)

which by the laws ot arithmetic leads to the required conclusion:

r = gcd{p, q)

(4) p < N and q = N. There there is an r such that

r= gcd(q,p)

is provable in the same way as in case (3) described above. One application
of (L3.3) then gives

r = gcd(p, q)

That concludes the proof that the algebraic specification is complete.

Clearly there is no structural correspondence between the three clauses of

the algebraic specification and the five clauses expressing the original

requirement. As a result, some mathematical ingenuity and labour has been

needed to prove that the two orthogonal specifications describe (and

completely describe) the same function. This labour could be avoided by

simply leaving out the original formalization of requirements in the general

notations of mathematics, and by starting instead within the more restricted
equational framework of algebra.

But this would be a mistake. In the example we have been considering,

the mistake can be explained as follows. The purpose of the specification is

to tell the user of a subroutine the properties of the result it produces, and to

do so in a manner conducive to the wider objectives of the program as a

whole. Clearly, the user of a subroutine to compute the greatest common

divisor will be very directly interested in the fact that the result of every

subroutine call divides each of its two arguments exactly. But the algebraic

law tells us only that the same result would have been obtained if the two

arguments had been permuted (L3.3) or added together (L3.2) before the

call. These facts by themselves seem a lot less directly useful.

It would also be a mistake to regard the different specifications, the

abstract one and the algebraic one, as rivals or even as alternatives. They are

both needed; they are essentially complementary, and they can be used for

different purposes at different stages in the progress of a software project.

Algebraic laws are relevant in the design of an efficient algorithm; they are

useful even at an earlier stage, because they help to decide how a program

should deal with extreme or exceptional cases. For example, if one of the

arguments of the gcd subroutine is zero or negative, the result should obey

the same laws as the greatest common divisor of positive numbers, as far as
mathematically possible.

For specifications of the highest quality and importance I would recom¬

mend complete formalization of requirements in two entirely different

378 ESSAYS IN COMPUTING SCIENCE

styles, together with a proof that they are consistent or even equivalent

to each other. For example, a programming language can be defined

axiomatically, by giving methods of proving correctness of programs

expressed in the language. A language can also be defined algebraically, by

giving algebraic laws from which equivalence of programs can be proved.

A language for which two consistent and complementary definitions are

provided may be confidently taken as a secure basis for software engi¬

neering.

Like the original requirements specification, a set of algebraic laws can be

input to the British Museum computer, which will add these laws to the

previously known axioms of mathematics and then start deriving theorems

from them. Provided that the laws are complete (as we have proved our

laws for gcd to be), the computer will eventually discover any fact that we

want, for example, that the greatest common divisor of three and two is

one. Furthermore, the amount of time we have to wait for this earth-

shattering result will be millions of times less than the original British

Museum algorithm applied to the original requirements. But we would still

have to wait too long - on reasonable assumptions, the whole universe will

reach a uniform temperature around four degrees Kelvin long before any

interesting calculation is complete.

22.4 Functional program

Again an enormous increase in efficiency is required. And again, it can be

obtained by restricting yet further the set of notations in which the

mathematical equations are expressed. These restrictions are designed to

prevent the pursuit of deductions irrelevant to the required result. That is

achieved by use of an applicative or functional programming language.

Here is a functional program to compute the greatest common divisor of

positive integers:

(F4.1) gcd(x,y) = x if x=y
(F4.2) gcd(x, y) = gcd(x - y, y) if x > y
(F4.3) gcd(x, y) = gcd(y, x) if x < y

In structure and content, this is very similar to the algebraic laws, but it

conforms to the restrictions imposed by a functional programming lan¬

guage. A typical restriction is that the left-hand side of each equation must

consist of a single application of the operator being defined (gcd) to distinct

simple parameters (x and y). There is no such restriction on the right-hand

side, which may even contain occurrences of the operator being defined. In

the evaluation of an expression, a computer treats each equation of the

FORMAL METHODS FOR PROGRAM DESIGN 379

program as a substitution rule. At each application of the rule, a call of the

function is replaced by a copy of the right-hand side of the definition, with
appropriate substitution of arguments for parameters.

For example, here is a sequence of substitutions which calculates the
greatest common divisor of 10 and 6:

gcd(\0, 6) = gcd(4,6) (by F4.2)
= gcd(6, 4) (by F4.3)
= gcd{2, 4) (by F4.2)

= gcd(4,2) (by F4.3)

= gcd(2,2) (by F4.2)
= 2 (by F4.1)

This trace of execution of a functional program is nothing but a proof

of the fact that gcd{ 10, 6) = 2. It is the same proof as would eventually

be discovered by the British Museum algorithm. But the British Museum

algorithm starts from the axioms and generates vast numbers of hopelessly

irrelevant truths. The implementation of a functional programming lan¬

guage starts from the left-hand side of the theorem to be proved, and every

intermediate step should lead directly towards the goal. However, the

responsibility for controlling this goal-directed behaviour is placed upon the

programmer, who has to prove that there is no infinite chain of substitu¬
tions. For example, as an algebraic formula,

gcd(x, y) = gcd(y, x)

is quite correct, but if this is executed as part of a functional program, it

leads to an infinite chain of substitutions. In the program shown above, this

cycle is broken by ensuring that the dangerous substitution is made only
when y is strictly greater than x.

Proof of termination of a functional program is very similar to proof of

completeness of algebraic equations. It requires knowledge of the domain

of application, and it may also require knowledge of the strategy used by

the language implementor for selecting between substitutions when more

than one is possible. A simple strategy (of lazy evaluation), which is also the

one that most often succeeds, is not generally the most efficient one.

Let us now consider how long the program will take to terminate. In the

calculation of gcd(N, 1), the number 1 will be subtracted from N until it

reaches 1, and this will be done N- 1 times. On a typical 32-bit micro¬

processor, N is limited to about 1010, so the calculation will take a few

hours, which might be acceptable for a program or prototype intended to be

used only once. On our largest and fastest supercomputers, numbers range

up to about 1020, and we might have to wait around a million years or so for

an answer. It seems we are still left with a problem of efficiency, and we

need to look for an improvement of at least twenty orders of magnitude.

380 ESSAYS IN COMPUTING SCIENCE

22.5 Optimization

Use of a more restricted and more efficient programming language might

gain us one or two orders of magnitude in efficiency, which is hardly

worthwhile. What we need is a method of calculation inherently faster than

the one we have first stumbled upon; for example, one requiring a number

of steps proportional only to the logarithm of the arguments to which it is

applied. For this, we need to go back to the earlier stage of analysing the

algebra, and take advantage of our knowledge of the nature of the mech¬

anism used to execute the algorithm. On modern computers, division and

multiplication by two are extremely fast, and it is equally fast to test

whether a number is odd or even. We are therefore led to derive algebraic
laws involving these operations.

Three new laws will be sufficient:

(L5.1) If z divides x, then 2z divides 2x. So if z is the greatest common

divisor of x and y, then 2z is a common divisor of 2x and 2y. It is

therefore not greater than their greatest common divisor:

2gcd(x,y) < gcd(2x, 2y)

Conversely, if z is the greatest common divisor of 2x and 2y, then z
is even and z/2 is a common divisor of x and y:

gcd(2x, 2y)\2 ^ gcd(x, y)

From these two inequations it follows that

2gcd(x, y) = gcd(2x, 2y)

(L5.2) All divisors of an odd number are odd, and if an odd number divides

2x it also divides x. If y is odd, the greatest common divisor of 2x

and y is odd, so it is also a common divisor of x and y:

gcd(2x, y) ^ gcd(x, y) if y is odd

Conversely, every divisor of x divides 2x:

gcd(x, y) ^ gcd(2x,y)

From these two inequations it follows that

gcd(2x, y) = gcd(x, y) if y is odd

(L5.3) If both x and y are odd, and x is greater than y, it follows that x - y
is positive and even. So under these conditions,

gcd(x, y) = gcd((x- y)/2,y)

Similarly, if x and y are odd and y is larger,

gcd(x, y) = gcd{(y - x)/2, x)

FORMAL METHODS FOR PROGRAM DESIGN 381

When these equations are coded as a functional program, it becomes

clear that the number of operations required when the argument is of size

2 N has been reduced to about TV. The question arises whether this is the very

best that can be done, or whether it might be worth trying to find a better

algorithm. This is the kind of question studied by complexity theory. But

experts in complexity theory tell me that they do not know whether a better

algorithm for gcd exists, so we shall have to do the best we can with this
one.

22.6 Procedural program

Pursuit of the very highest efficiency yet again requires adoption of a

restricted notation in which conjunction is disallowed. Such a restriction is

imposed by a procedural programming language like FORTRAN or Pascal.

The component parts (P and Q) of a procedural program are joined not by

any propositional connective, but rather by sequential composition, usually
denoted by a semicolon:

P;Q

which instructs a computer to execute P first, and to continue with Q only
when P terminates.

Sequential composition is the secret of the efficiency of procedural

programs. All of the computing resources, storage, and communication

capacity which have been used by the earlier component P become available

immediately, without overhead of reclamation and reallocation, for reuse

by the later component Q. However, the responsibility for planning the use

and reuse of resources is placed on the programmer, and much opportunity

is offered for subtle errors. Perhaps the main attraction of functional and

logic programming is that the claiming of new resources and the reclaiming

of unused resources are automatic, once the overhead of garbage collection

is accepted.

The replacement of conjunction by composition means that the sequen¬

tial structure of a program will in general be radically different from the

conjunctive structure of a specification, and the necessary correspondence

between them must be established by mathematical calculation or proof.

Fortunately, these calculations can be carried out stepwise during the early

stage of the design of a program, and each design decision can be proved

correct before embarking on the next. Each design step transforms the

structure of the specification to correspond more closely to the structure of

the eventual program. After this, work on the component parts of the

structure can proceed concurrently and independently, because each of

them has been fully specified, with the same precision as the whole of the

382 ESSAYS IN COMPUTING SCIENCE

original requirements. When the implementations of the parts are delivered,

they can be assembled together with reasonable confidence that the system

as a whole will work. This confidence is obtained not by laborious

integration testing when the code is delivered, but rather by a proof that was

conducted before a word of code was written. Reliable assembly of

prespecified parts is an essential mark of maturity in any engineering

discipline.

A procedural program or subprogram can be specified by a pair of

assertions, a precondition and a postcondition. A precondition describes

properties of the program variables which may be assumed to hold when the

program starts. For example, let the lowercase letters x and y stand for

the values of the arguments supplied on entry to the gcd subroutine. The

precondition states that these are positive:

(P6.1) x > 0 A y > 0

In fact, the program will not change the values of x and y, so this assertion

remains true throughout execution.

A postcondition describes properties of the program variables that must

be true when the program terminates. For example, let Z be the program

variable introduced to hold the result of the subroutine. Then the postcon¬

dition is

(P6.2) Z = gcd(x, y)

The first step in the design of a sequential program (P; Q) is to formalize

separate specifications of P and of Q and to prove that the combination of

these separate specifications will meet the original specification of the whole

program. This is easily achieved if

(1) the precondition of P is the same as the precondition of the whole

program (or is implied by it);

(2) the postcondition of Q is the same as the postcondition of the whole

program (or implies it); and

(3) the postcondition of P is the same as the precondition of Q (or implies

it).

So the design of a sequential program involves only the discovery of an

appropriate intermediate assertion which will be true when control passes

the semicolon which separates the parts of the program. The intermediate

assertion may contain new program variables local to the subroutine, which

are introduced to assist in the calculation; we will denote these by capital

letters, for example, X, Y, and N. In general, the discovery of a suitable

intermediate assertion requires all the skill and judgement of the program

designer. Though there are a number of useful heuristics, this is not the

right place to explain them; so without further ado, here is an intermediate

FORMAL METHODS FOR PROGRAM DESIGN 383

assertion for the example program to compute the greatest common divisor;

(P6.3) 2 Ngcd(X, Y) = gcd(x, y)

Now [he two parts of the program may be considered independently. The

task of the first part is to make (P6.3) true on termination. That is easily
accomplished by just one multiple assignment:

TV, X, Y:= 0,x,y

If proof is needed, it may be obtained by substituting the final values for the

assigned variables in the postcondition, and observing that

(2°)gcd(x, y) = gcd{x, y)

The second task is harder, and will again be split into two parts by the
intermediate assertion

(P6.4) 2NZ=gcd(x,y)

The second of the new subtasks would already be accomplished if N were

zero. If TV is non zero, it can be made closer to zero by subtracting one. But

that would make (P6.4) false, and therefore useless. Fortunately, the truth

of (P6.4) can easily be restored if every subtraction of one from N is

accompanied by a doubling of Z. This can be checked if it is felt necessary
by proving that

n > 0 A 2NZ — gcd(x, y)

=■ 2N~ 1 (2Z) = gcd(x, y)

Since termination is obvious, we have proved the correctness of the loop

while TV > 0 do TV, Z := TV - 1,2Z

On termination of this loop, the value of TV is zero, and (P6.4) is still true.

Consequently, the postcondition of the whole program has been estab¬
lished.

Having completed the first and last of the three tasks, the time has come

to confess that the middle task is the most difficult. Its precondition is

(P6.3) and its postcondition is (P6.4). I suggest that the task be split yet

again into four subtasks, in accordance with the following series of
intermediate assertions:

(P6.3) A (X odd V Todd)

(P6.3) A (Todd)

(P6.3) A (T odd) f\ X — Y

The coding of these parts can be derived almost entirely from the algebraic

laws, and is left as an exercise.

When this coding has been done, we will have a complete program

expressed in some mathematically meaningful programming notation such

384 ESSAYS IN COMPUTING SCIENCE

as Pascal. In suitable circumstances, a reliable automatic translator will be
available to translate the program into binary machine code of an available
computer, and.this will be fast enough for most general purposes. If still
higher speed is required, it may be necessary to carry out yet another stage
of formal design, optimization and verification. For example, the Pascal
program may be converted into the even lower-level language of a
horizontal microcode, or other hardware description for custom-built
VLSI. In this context, the cost of design errors is extremely high, and the
competent hardware engineer will warmly welcome the extra confidence
that can be gained by the formal manipulations and proofs conducted at
earlier stages in the design.

In a software project, the process of formal design may also have a
beneficial influence on delivery dates and on reliability of the finished
product. This will be important in safety-critical applications. But as in
other branches of engineering, the full benefit of documentation will be
most clearly felt in the long years of maintenance following first delivery of
a large program. Apart from easing the removal of any remaining errors, a
well-documented program can be more readily and confidently improved or
altered to meet changing requirements. As in other branches of engineering,
the documentation should be kept up to date. This is likely to become more
and more difficult as the changes accumulate, and when it becomes
impossible, this should be the signal that the time has come to re-write or
replace the whole program.

22.7 Conclusion

In selection of formal notations for the various phases of a software
engineering project, the following criteria are relevant:

(1) For original capture of requirements, only clarity and precision are of
importance.

(2) In intermediate documentation used by the implementor, we have the
related objectives of clarity and correctness.

(3) In finally delivered code, we require correctness and also see efficiency
of execution.

The final code of the program must, of course, be expressed in a formal
notation that can be automatically translated and executed by computer.
But there is no need for any of the preceding documents to be executed, or
even input to a computer. Their main purpose is clarity and convenience for
communication, calculation, and proof. A premature insistence on execu-

FORMAL METHODS FOR PROGRAM DESIGN 385

tion (on a less than cosmological timescale) may stand in the way of these
more important objectives.

It is obviously sensible to use for final coding a language which is as close

as possible to that of the original specification, so that the number of steps

in the design process is kept small. But the programming language must not

be so inefficient that clever and complicated coding tricks are needed to

compensate. This seems to be a major problem with logic programming.

My view is that a modern functional programming language can provide a

nice compromise between the abstract logic of a requirements specification

and the detailed resource management provided by procedural pro¬
gramming.

Such a high-level language may also be used for rapid implementation

(partial or total) of the original requirements, and so provide a rapid check

of the adequacy and completeness of the specification of requirements.

A similar role is played by wooden models and perspective drawings in

architecture or car design. But it is advisable to plan to throw away such

models after use. The overriding need for rapid implementation gives scope

for the talents of an experienced hacker rather than the formal precision of

an engineer, and it is unlikely that the model can be taken as the basis or

framework for subsequent development of the delivered product.

The example which I have used to illustrate these conclusions is one which

has been used over and over again in textbooks on computing science.

Because it is such a small and familiar example, it does not complicate the

explanation of more general and more important ideas. For this reason,

it has also revealed (all too clearly) the full weight of the notations and

complexity of the mathematical proofs involved in formalization of the

process of program design. The reader may well be discouraged from

applying these methods to problems of a scale more typical of software

engineering. And there are many other serious concerns which are not

addressed directly by formalization, for example, cost estimation, project

management, quality control, testing, maintenance, and enhancement of
the program after delivery.

Nevertheless, I conjecture that such pessimism would be premature, and

that a more formal understanding of the decisions involved in program

design will provide a more secure framework within which solutions to the

other problems can be fitted. The reason for my optimism is that formal

methods find their most effective application in splitting large and complex

projects into shorter phases, and in splitting large and complex products

into smaller components, which may then be designed and implemented

independently. This splitting may be repeated as often as necessary, until

each subtask is no larger and no more complex than the simple example

treated above.

And maybe this was not such a simple example after all. The reader who

386 ESSAYS IN COMPUTING SCIENCE

finds it too simple is invited to improve the program so that it accepts and

deals sensibly with negative numbers and zero. There are two ways of doing

this:

(1) The traditional method of program maintenance is to re-test the final

program on the new range of arguments, change the program as little

as possible, and describe the resulting program behaviour in the user
manual.

(2) The method which I recommend is to re-examine the specifications and

proofs presented above, to see where they have relied on the assumption

that the arguments are positive; these are the places where the design

and the program must be altered. This method is in accordance with

sound engineering principles, and is therefore more likely to deliver a
product of high quality.

The main purpose of this article has been to show the all-pervasive role of

mathematical reasoning throughout all stages of a product life cycle, and

to show the need for an appropriate range of mathematical notations to

communicate design decisions with other people, with a computer, and even
with oneself.

22.8 Acknowledgements

To Richard Karp for advice on computational complexity, and to all seven
referees of this article.

22.9 Further reading

This brief overview of formal methods for program design has necessarily

omitted some important topics, for example, data refinement. No mention

has been made of concurrent or distributed programming, for which some

kind of formal development method is almost essential. No adequate

instruction has been provided to enable the reader to put into practice the

methods described. And finally, no acknowledgement has been made to the

brilliant researchers who have contributed to progress in the field. I hope

the reader may remedy some of these deficiencies by consulting some of the
books listed in this personally selected bibliography.

(1) Requirements

Hayes (1987)

(2) Logic programming

Kowalski (1979); Clark and McCabe (1984)

FORMAL METHODS FOR PROGRAM DESIGN 387

(3) Algebra

Martin (1986)

(4) Functional programming

Henderson (1980); Abelson and Sussman (1985)
(5) Procedural programming

Gries (1981); Backhouse (1987)

(6) Data refinement

Jones (1986)

(7) Parallel programming

Hoare ([94]), Chandy and Misra (1988)

(8) Computational complexity

Aho et al (1974)

(9) General

Gries (1978).

Envoi

I enjoy writing. Ideas come to me at random times on random days -

exciting and hopeful, but vague and insubstantial. I then look forward

to the next occasion when I can sit down for a few uninterrupted hours in

front of a pile of good blank paper, with a couple of soft-lead pencils, a

sharpener, an eraser, a large paper-clip, and a very necessary waste-paper

basket. The idea gradually crystallizes from the surrounding vagueness, and

acquires substance on the written page. It is subjected to a series of tests,

by formalization, by explanation, by proof, and by application to simple

examples. But during this process, completely new ideas suggest themselves,

with new approaches, definitions, axioms and examples, all begging to be

explored. Gradually the waste-paper basket fills, the desk is littered with

the detritus of multiple erasure, and a few surviving scribbled sheets are

collected in the paper-clip, to be laid aside for future development. Or else

the whole idea has turned out to be unworkable, too complicated, or just

plain silly; at the end of a session, nothing has survived.

Fortunately, the idea sometimes looks better after it has been written

down than before. It continues to churn over in my mind, until the next

opportunity to sit down and work on it. The paper-clipped sheets are taken

from their drawer, and work continues from where it left off. Or perhaps,

by that time I have thought of another method of presentation, new

examples, or even a new idea, any of which can require a fresh start. Or

worse still, a second reading through the previous draft leaves me unexcited

or unconvinced, or unprepared to accept it as the right foundation for

further advance. So at the end of a session, the paper-clip may contain less

material than at the beginning. That too is progress.

After a series of sessions spread over several months, it begins to appear

that the original idea, or one of its successors, is viable. The criteria for

success are strict: the definitions must be clear, the axioms self-evident, the

theorems proved and the implementation efficient. The examples should be

simple yet obviously typical of the much larger problems that arise in

practice; and above all, the accompanying English prose must be clear,

terse, and convincing. When these objectives appear achievable, the time

has come to write a conclusion. This is the most difficult part: to summarize

389

390 ENVOI

the technical material, to confess to deficiencies, to make moderate claims

of success, to discuss alternative approaches, to pay tribute to previous

researchers, and to point in directions for future research. It is in the

conclusion that the flow of argument must be most convincing, to leave an

abiding impression upon the mind of the reader. It is often necessary to

redraft or restructure an earlier section to cover a point whose relevance has

become clear only while writing the conclusion. At last the paper-clip

contains the scribbled sheets of the whole paper, full of untidy insertions

and deletions, with repetitions, omissions, and inconsistencies arising from

the long intervals which separate each writing session.

I enjoy rewriting. At the next opportunity, I sit before a fresh pile of

paper and start to rewrite everything from the beginning in long-hand. Now

the task is to differentiate the sections, and relate the message of each of

them to that of the whole; to select the best position of each paragraph in

the light of the contribution it makes to its section; to weigh carefully the

role of each sentence in the paragraph, and the choice of each word in the

sentence. The rewriting of the article again spreads over several sessions,

during which new ideas are explored in the search for simpler explanations,

easier examples, and more familiar analogies. The rewritten article, which

was supposed to be so neat and tidy, ends with almost as many insertions,
deletions and corrections as before.

On the next and subsequent rewrites, the same story is repeated. The

process begins to converge, and complete sheets can migrate almost

unchanged from the old draft to the new. Eventually, it is possible to reread

the whole article at a single session, with reasonable satisfaction and

without significant alteration. Only at this stage is it worthwhile to get the

article typed; and this prevents further work on it for several weeks. It is

amazing how often a neatly typed version, or possibly the enforced rest

before seeing it, can reveal deep technical flaws, which were previously

concealed by the untidiness or familiarity of the draft. So the typescript is

often returned to the typist with significant additions or alterations.

It is at this stage that a modern word processor offers the greatest

assistance, but with an equally insidious danger. A word processor tempts

the author to make changes as slight as possible, and to formulate them as

insertions rather than deletions; whereas what is needed is to rethink,

redraft and retype whole paragraphs and even sections. I hope to continue
to resist these temptations.

At last the typescript is complete. I am rather proud of it, and want to

show it to my friends and colleagues, and invite comments. In this way I

gain many welcome suggestions for improvement of the paper; and the

unwelcome ones are even more valuable. The article waits in a bottom

drawer, joined by responses as they accumulate. After six months or so, the

task is resumed with fresh ideas and enthusiasm. Sometimes a method has

been found to tackle problems previously left unsolved. Sometimes I am

ENVOI 391

appalled by the complexity of what I have written; I cannot bring myself to

read it again, and I am ashamed and sorry that 1 have already distributed it

so widely. This has often saved me from publishing a paper I would have

later regretted. A similar service is performed by referees of a paper when it

is eventually submitted for publication. And when it appears in print, the

feeling is one of relief rather than rejoicing: I am relieved from the duty of
further reassessment and revision.

The development of many ideas has been greatly assisted by the

preparation and delivery of lectures before a sympathetic but initially

uncomprehending or even sceptical audience. New insights, new examples,

new explanations and new turns of phrase occur to me while talking; and

earlier arguments are suddenly exposed as lame and unconvincing. On the

next delivery, the mistakes are avoided and the improvements are con¬

solidated. In the ideal, such lectures should be suitable for a wide variety of

audiences, for example, a seminar in front of university students and staff,

a keynote address for a specialist conference, or an evening talk for a local

branch of a professional society. Sometimes a written contribution is

requested for publication in a magazine or in proceedings, and the current

draft must be handed over. So the same material gets published again, in

different formats and sometimes under different titles. Or sometimes the

same title is reused to describe completely different material. As a result, my

bibliography is a mess; I must really take more care in future.

Some articles require many less iterations. For example, the first draft of

‘Proof of correctness of data representations’ was submitted to Acta

Informatics, the second draft, with a new section requested by the referee,

was actually published. At about the same time the seventh draft of ‘A

structured paging system’ was submitted, and it was rightly rejected. It was
the eighth draft that appeared in print.

Throughout the development of an idea from vague inspiration to

ultimate publication, the most important requirement has been that it can

be clearly and convincingly explained. Sometimes this has led to oversim¬

plification, for example by omission of proof of termination from ‘An

axiomatic approach to computer programming’. And in all cases, there is

still the danger that I am deluding myself and my reader. Those who are

gifted with a certain facility with words can think up splendid arguments in

favour of positions which have turned out (or may yet turn out) to be

untenable. I find it relatively easy to tell a consistent and coherent story

within the confines of a journal article, for example, describing a single

feature of a programming language. It is a much more rigorous test to

maintain the same consistency and conviction over several hundred pages of

a book, or the design of a complete programming language.

But the ultimate test of an idea, and the one that deserves most trust, is

when it has been applied successfully in some important project, where a

useful product is promised on a fixed time-scale and budget, and where an

392 ENVOI

unfavourable outcome will be detrimental to the project team as well as

their customers or clients. These more substantial tests have always been left

to my readers. I salute the bravery of those who accept the challenge of

being the first to try out new ideas; and I also respect the caution of those

who prefer to stick with ideas which they know and understand and trust.

If any of my ideas is of lasting value, this can only be because they have

had benefit of assistance from many scientists and colleagues, both in their

early formulation and in subsequent development. I have made this

confession of my methods of conducting research as a means of saying

‘thank you’ to those who have over many years supported my work: to

secretaries and typists, to students and research assistants, to colleagues,

correspondents and referees, and to my wife and family, who have over

many years respected my wish for periods of uninterrupted quiet. To them I

owe an unrequitable debt of gratitude. Now my gratitude extends to Cliff

Jones who has made this selection of my writings, and has adorned them

with his perceptive preambles; and to Allison McCauley who has made

sense of my tangled bibliography. This collection of essays represents the

very best of more than half a lifetime of research. I have greatly enjoyed

writing each of them; and hope you have as much enjoyed reading them.

C. A. R. Hoare

February 1988

References

This lists consists solely of works not by C. A. R. Hoare and not contributed to by
him. Works of which he is author or part-author are listed separately on p. 398.

Abelson, H. and Sussman, G. J. (1985) Structure and Interpretation of Computer
Programs, MIT Press, Cambridge, Mass.

Aho, A. V., Hopcraft, J. R. and Ullman, J. D. (1974) The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass.

Anderson, D. B. (1973) Private communication.
Apt, K. R. (1981) Ten years of Hoare’s logic, A survey, Part 1, ACM Trans on

Programming Languages and Systems, 3(4), 431-83.
ASA Standard COBOL (1968) Codasyl COBOL Journal of Development, National

Bureau of Standards Handbook 106 ANSI X3.23, 1968.
ASA Standard FORTRAN (1964) Comm. ACM 7(10).
Atkinson, R. and Hewitt, C. (1976) Synchronisation in actor systems. Working

Paper 83, MIT, Cambridge, Mass.
Backhouse, R. C. (1987) Program Construction and Verification, Prentice Hall,

Hemel Hempstead.
Bakker, J. W. de (1968) Axiomatics of simple assignment statements, MR94,

Mathematical Centre, Amsterdam.
Birtwhistle, G. M., Dahl, O.-J., Myhrhaug, B. and Nygaard, K. (1973) SIMULA

BEGIN, Student Literatur, Auerbach.
Bjorner, D. and Oest, O. N. (1980a) Formal Definition of the Ada Programming

Language, INRIA (November).
Bjorner, D. and Oest, O. N. (1980b) Towards a Formal Description of Ada, Lecture

Notes in Computer Science No. 98.
Brinch Hansen, P. (1972a) A comparison of two synchronizing concepts, Acta

Informatica 1, 190-9.
Brinch Hansen, P. (1972b) Structured multiprogramming, Comm. ACM 15(7),

574-8.
Brinch Hansen, P. (1973) Operating System Principles. Prentice Hall, Hemel

Hempstead.
Brinch Hansen, P. (1975) The programming language Concurrent Pascal. IEEE

Trans. Software Eng. 1(2), 199-207.
Burstall, R. (1968) Proving properties of programs by structural induction.

Experimental Programming Reports, No. 17 DMIP, Edinburgh.

393

394 REFERENCES

Burstall, R. M. (1969) Proving programs by structural induction, Comp. J. 12(1),
41-8.

Campbell, R. H. and Habermann, A. N. (1974) The Specification of Process

Synchronisation by Path Expressions. Lecture Notes in Computer Science 16,
Springer, pp. 89-102.

Chandy, K. M. and Misra, J. (1988) Parallel Program Design: A Foundation,
Addison-Wesley, Reading, Mass.

Clark, K. L. and McCabe, F. G. (1984) Micro Prolog: Programming in Logic,
Prentice Hall, Hemel Hempstead.

Clint, M. (1973) Program proving: Coroutines, Acta Informatica 2, 50-63.

Cohn, P. M. (1965) Universal Algebra, Harper & Row, New York.

Conway, M. E. (1963) Design of a separable transition-diagram compiler. Comm.
ACM 6(7), 396-408.

Courtois, P. J., Heymans, F. and Parnas, D. L. (1971) Concurrent control with
readers and writers. Comm. ACM 14(10), 667-8.

Courtois, P. J., Heymans, F. and Parnas, D. L. (1972) Comments on Courtois et al.
(1971). Acta Informatica, 1, 375-6.

Dahl, O.-J. (1972) Hierarchical program structures. In Dahl et al. ([29]).

Dahl, O.-J. et al. (1967) SIMULA 67, Common Base Language. Norwegian
Computing Centre, Forskningveien, Oslo.

Dahl, O.-J., Myhrhaug, EL, Nygaard, K. (1970) The Simula 67 Common Base

Language, Norwegian Computing Centre, Oslo, Publication No. S-22.

Darlington, J. and Burstall, R. M. (1973) A system which automatically improves

programs. In Proceedings of Third International Conference on Artificial
Intelligence 479-85, Stanford, California.

Dijkstra, E. W. (1968a) A constructive approach to the problem of program
correctness, BIT 8, 174-86.

Dijkstra, E. W. (1968b) Cooperating sequential processes. In Genuys, F. (ed.),

Programming Languages, Academic Press, New York, pp. 43-112.
Dijkstra, E. W. (1972a) A class of allocation strategies inducing bounded delays

only. Proc AFIPS SJCC, 40, 933-6, AFIPS Press, Montvale, N.J.

Dijkstra, E. W. (1972b) Hierarchical ordering of sequential processes. In Hoare, C.
A. R. and Perrott, R. H. (eds.) [20].

Dijkstra, E. W. (1972c) Notes on structured programming. In Dahl et al. ([29]), pp.
1-82.

Dijkstra, E. W. (1972d) Information streams sharing a finite buffer. Information
Processing Letters 1(5), 179-80.

Dijkstra, E. W. (1975a) Guarded commands, nondeterminacy, and formal deriv¬
ation of programs. Comm. ACM 18(8), 453-7.

Dijkstra, E. W. (1975b) Verbal communication, Marktoberdorf.

Dijkstra, E. W. (1976) A Discipline of Programming, Prentice Hall, Hemel
Hempstead.

Floyd, R. W. (1967) Assigning meanings to programs, Proc. Amer. Soc. Symp.
Appl. Math. 19, 19-31.

Foley, M. (1969) Proof of the Recursive Procedure Quicksort: a Comparison of

Two Methods, Master’s Dissertation, Queen’s University of Belfast.

Gries, D. (1978) (ed.) Programming Methodology, Springer-Verlag, New York.

REFERENCES 395

Gries, D. (1981) The Science of Programming, Springer-Verlag, New York.

Hayes, I. (ed.) (1987) Specification Case Studies, Prentice Hall, Hemel Hempstead.
Hehner, E. C. R. (1984) Predicative programming, Part 1. Comm. Ass. Comput.

Mach. 27(2), 134-43.

Henderson, P. (1980) Functional Programming: Application and Implementation,
Prentice Hall, Hemel Hempstead.

Igarishi, S. (1968) An axiomatic approach to equivalence problems of algorithms

with applications, Ph.D. Thesis, 1964. Rep. Compt. Centre, University of
Tokyo, pp. 1 — 101.

Jones, C. B. (1971) Formal Development of Correct Algorithms. An example based

on Earley’s Recogniser. Proc. ACM SIGPLAN Conf. Proving Assertions about
Programs, 150-69.

Jones, C. B. (1983) Specification and design of (parallel) programs. In Mason
(1983).

Jones, C. B. (1986) Systematic Software Development Using VDM, Prentice Hall,
Hemel Hempstead.

Jones, G. (1987) Programming in OCCAM, Prentice-Hall, Hemel Hempstead.

Kahn, G. (1974) The semantics of a simple language for parallel programming. In
Proc. IFIP Congress 74, North-Holland.

King, J. C. (1969) A Program Verifier, Ph.D. Thesis, Carnegie-Mellon University,
Pittsburg, Pa.

Kleene, S. C. (1952) Introduction to Metamathematics, Van Nostrand.

Knuth, D. E. (1967) Remaining troublespots in ALGOL60, Comm. ACM

10(10).

Knuth, D. E. (1973) A Review of Structured Programming, CS-73-371, Department

of Computer Science, Stanford University:

Knuth, D. E. (1974) Structured programming with GOTO statements, Technical

Report, Computer Science Dept, Stanford University, STAN-CS-74-416.

Knuth, D. E. (1973) The Art of Computer Programming, Vols 1, 2 & 3,

Addison-Wesley, Reading, Mass.
Kowalski, R. (1979) Logic for Problem Solving, North-Holland, Amsterdam.

Laski, J. (1968) Sets and other types, ALGOL Bull 27.

Liskov, B. H. (1974) A Note on CLU. Computation Structures Group Memo. 112,

MIT, Cambridge, Mass.
McBride, F. V., Morrison, D. J. T. and Pengelby, R. M. (1970) A symbol

manipulation system. In Machine Intelligence, Vol. 5, Edinburgh University

Press.

McCarthy, J. (1960) Recursive functions of symbolic expressions and their computa¬

tion by machine, Part 1, Comm ACM 3(4), 184-95.

McCarthy, J. (1963a) A basis for a mathematical theory of computation. In

Braffort, P. and Hirschberg, D. (eds), Computer Programming and Formal

Systems, North-Holland, Amsterdam.

McCarthy, J. (1963b) Towards a mathematical theory of computation, Proc. IFIP

Cong., 1962, North-Holland, Amsterdam.

Mcllroy, M. D. (1968) Coroutines, Bell Laboratories, Murray Hill, N.J.

Martin, J. J. (1986) Data Types and Data Structures, Prentice Hall, Hemel

Hempstead.

396 REFERENCES

Mason, R. E. A. (ed.) (1983), Information Processing ’83, Elsevier Science

Publishers B. V. (North-Holland) IFIP.

Michie, D. (1967) Memo functions: a language feature with ‘rote learning’

properties, Report MIP-R-29, Edinburgh University.

Milner, A. J. R. G. (1971) An Algebraic Definition of Simulation Between

Programs. Stanford Computer Science Dept. CS205.

Milner, A. J. R. G. (1980) A Calculus of Communicating Systems. Springer LNCS

Vol. 92, Springer-Verlag, Berlin.

Misra, J. and Gries, D. (1978) A linear sieve algorithm for finding prime numbers,

ACM 21(12), 999-1003.

Morris, F. L. and Jones, C. B. (1984) An early program by Alan Turing, Annals of
the History of Computing, 6(2).

Naur, P. (1960) (ed), Report on the algorithmic language ALGOL 60, Comm. ACM
3(5), 299-314; Num. Math., 106-36.

Naur, P. (1963) (ed.): Revised report on the algorithmic language ALGOL 60.

Comm. ACM6, 1-17; Comp. J. 5, 349-67 (1962/63); Numer. Math. 4, 420-453
(1963).

Naur, P. (1966) Proof of algorithms by general snapshots, BIT 6(4), 310-16.

Naur, P. (1969) Programming by action clusters, BIT 9(3) 250-8.

Nipkow, T. (1986) Non-deterministic data types: models and implementations, Acta
Informatica 22, 629-61.

PL/I Language Specifications, IBM Order Number GY33-6003-2.

Pritchard, P. (1981) A sublinear sieve algorithm for finding prime numbers, ACM
24(1), 18-23.

Pritchard, P. (1987) Linear prime-number sieves: a family tree, Science of Computer
Programming, 9(1).

Reynolds, J. C. (1965) COGENT. ANL-7022, Argonne Nat. Lab., Argonne, Ill.

Reynolds, J. C. (1981) The Craft of Programming, Prentice Hall, Hemel Hemp¬
stead.

Ross, D. T. (1961) A generalized technique for symbol manipulation and numerical
calculation, Comm. ACM (March).

Samelson, K. (1965) Functionals and Functional Transformations, ALGOL
Bulletin 20, pp. 27-8.

Schwartz, S. T. (ed.) (1967) Mathematical Aspects of Computer Science, American
Mathematical Society, Providence.

Scott, D. S. (1970), Outline of a Mathematical Theory of Computation, PRG-2.

Programming Research Group, Oxford University.

Scott, D. S. (1971) The lattice of flow diagrams. In Engeler, E., (ed.), Symposium
on Semantics of Algorithmic Languages, Springer Verlag.

Scott, D. S. (1981) Lecture Notes on a Mathematical Theory of Computation. PRG
19, p. 148. Oxford University Computing Laboratory.

Steel, T. B. (ed.) (1966) Formal Language Description Languages for Computer

Programming, North-Holland, Amsterdam.

Stoy, J. (1977) Denotational Semantics: The Scott-Strachey Approach to Program¬
ming Language Theory, MIT Press, Cambridge, Mass.

Thompson, K. (1976) The UNIX command language. In Structured Programming,
Infotech, Nicholson House, Maidenhead, England, pp. 375-84.

REFERENCES 397

Turing, A. M. (1949) Checking a large routine, Report on a Conference on High

Speed Automatic Calculating Machines, University Math. Lab., Cambridge, pp.
67-9.

Waldinger, R. and Levitt, K. N. (1973) Reasoning about programs. In Proceedings

of ACM SigactfSigp/an Symposium on Principles of Programming Language
Design, Boston.

Welsh, J. and McKeag, M. (1980) Structured System Programming, Prentice Hall,
Hemel Hempstead.

Welsh, J. and Quinn, C. (1972) A PASCAL compiler for the ICL 1900 Series

Computers. Software, Practice and Experience 2, 73-7.

Wijngaarden, A. van (1965) Orthogonal Design and Description of a Formal

Language, MR76, Mathematical Centre, Amsterdam (October).

Wijngaarden, A. van (1966) Numerical analysis as an independent science, BIT 6,
66-81.

Wijngaarden, A. van (1969) (ed.) Report on the algorithmic language ALGOL 68.
Num. Math. 14, 79-218.

Wirth, N. (1965) Proposal for a Report on a Successor of ALGOL60, MR75,

Mathematical Centre, Amsterdam, August 1965.

Wirth, N. (1968) PL/360, JACM 15(1).

Wirth, N. (1971a) The design of a Pascal compiler. Software, Practice and
Experience 1, 309-33.

Wirth, N. (1971b) Program development by stepwise refinement, Comm. ACM
14(4), 221-7.

Wirth, N. (1971c) The programming language PASCAL, Acta Informatica, 1(1),

35-63.

Wirth, N. (1973) Systematic Programming: An Introduction, Prentice Hall, Hemel

Hempstead.

Wirth, N. and Weber, (1966) Comm. ACM, 9(2), 89.

Wulf, W. A., London, R. L. and Shaw, M. (1976) Abstraction and Verification

in ALPHARD. Dept, of Computer Science, Carnegie-Mellon University,

Pittsburgh, Pa.

Yanov, Yu, I. (1958) Logical operator schemes, Kybernetika 1.

Bibliography of works by

C. A. R. Hoare

This list consists solely of works by C. A. R. Hoare or contributed to by him. Works

of which he is neither author nor part-author are listed separately on p. 393.

[1] Iu. Ia. Basilevskii (ed.). Theory of Mathematical Machines, Pergamon Press

(1961). Translated from Russian by C. A. R. Hoare.

[2] C. A. R. Hoare. 06 ozihom cnoco6e ocymecTBJieHHfl cnHTe3a npettJio^ceHHH
npn Mil Ha ocHOBe CHHTarMaTHHecicoro aHajnoa

(1961). In Foreign Develop. Mach. Translat. Info. Proc. No. 95 (Translated
from Mashinnii Perevod i Prikladnaya Lingvistika No. 6, pp. 80-8).

[3] C. A. R. Hoare. Algorithm 63, Partition; Algorithm 64, Quicksort; Algorithm

65, Find. Communications of the ACM, 4(7), 321-2 (1961).

[4] C. A. R. Hoare. Quicksort. BCS, Computer Journal, 5(1), 10-15(1962).
Chapter 2 of the current book.

[5] C. A. R. Hoare. Report on the Elliott ALGOL translator, BCS, Computer
Journal, 5(2), 127-9 (July 1962).

[6] C. A. R. Hoare. The Elliott ALGOL input/output system. BCS, Computer
Journal, 5(4), 345-8 (January 1963).

[7] C. A. R. Hoare. The Elliott ALGOL programming system. In P. Wegner (ed.),

Introduction to Systems Programming, Academic Press (1964), pp. 156-66.

[8] C. A. R. Hoare. A note on indirect addressing. ALGOL Bulletin, 21, 63-5
(November 1965).

[9] N. Wirth and C. A. R. Hoare. A contribution to the development of ALGOL.

Communications of the ACM, 9(6), 413-32 (June 1966).
Chapter 3 of the current book.

[10] C. A. R. Hoare. Single pass compilation. PL/I. In Proceedings of the ACTP
Summer School on Software (June 1966).

[11] C. A. R. Hoare. Record handling. In F. Genuys (ed.) Programming Languages,
Academic Press, 1968, pp. 291-397.

[12] C. A. R. Hoare. Limitations on languages. Computer Weekly (1968).

[13] C. A. R. Hoare. Critique of ALGOL 68, Algol Bulletin, 29, 27-9 (November
1968).

[14] C. A. R. Hoare. Data structures in two-level store. In Proceedings of the IFIP

Congress, Edinburgh, 1968, North-Holland (1969), pp. 322-9.

398

BIBLIOGRAPHY OF WORKS BY C. A. R. HOARE 399

[15] C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM
12(10), 576-80, 583 (October 1969)

Chapter 4 of the current book.

[16] C. A. R. Hoare. Proof of a program: FIND. Comm. ACM, 14(1), 39-45
(January 1971)

Chapter 5 of the current book.

[17] C. A. R. Hoare. Procedures and parameters: an axiomatic approach. In

E. Engeler (ed.), Symposium On Semantics of Algorithmic Languages. Lecture
Notes in Mathematics 188, Springer-Verlag (1971), pp. 102-16.
Chapter 6 of the current book.

[18] C. A. R. Hoare. Computer Science. New Lecture Series 62, 1971.
Chapter 7 of the current book.

[19] M. Foley and C. A. R. Hoare. Proof of a recursive program: QUICKSORT.

BCS, Computer Journal, 14(4), 391-5 (November 1971).

[20] C. A. R. Hoare and R. H. Perrott. Operating System Techniques. Academic
Press, 1972.

[21] C. A. R. Hoare. Operating systems: their purpose, objectives, functions and
scope. In [20], pp. 11-28

[22] C. A. R. Hoare. Towards a theory of parallel programming. In [20], pp. 61-71.

[23] C. A. R. Hoare and R. M. McKeag. A survey of store management techniques:
part 1. In [20], pp. 117-31

[24] C. A. R. Hoare and R. M. McKeag. A survey of store management techniques:
Part 2. In [20], pp. 132-51

[25] C. A. R. Hoare. Prospects for a better programming language. Infotech State

of the Art Report: High Level Languages, 7, 327-43 (1972).

[26] M. Clint and C. A. R. Hoare. Program proving: jumps and functions. Acta
Informatica 1(3), 214-24 (1972).

[27] C. A. R. Hoare. The quality of software. Software Practice and Experience,
2(2), 103-5 (April 1972).

[28] C. A. R. Hoare and D. C. S. Allison. Incomputability. ACM, Computing
Surveys, 4(3), 169-78 (September 1972).

[29] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare (eds.) Structured Program¬
ming. Academic Press, 1972.

[30] C. A. R. Hoare. Notes on data structuring. In [29], pp. 83-174.

[31] O. -J. Dahl and C. A. R. Hoare. Hierarchical program structures. In [29], pp.
175-220.

[32] C. A. R. Hoare. Proof of correctness of data representations. Acta
Informatica, 1(4), 271-81(1972)

Chapter 8 of the current book.

[33] C. A. R. Hoare. A Note on the FOR Statement. BIT, 12(3), 334-41 (1972).

[34] C. A. R. Hoare. Proof of a structured program: ‘The Sieve of Eratosthenes’.
BCS, Computer Journal, 15(4); 321-5 (November 1972).

Chapter 9 of the current book.

[35] C. A. R. Hoare. A general conservation law for queueing disciplines. Informa¬

tion Processing Letters, 2(3), 82-5 (August 1973).

[36] C. A. R. Hoare. A structured paging system. BCS, Computer Journal, 16(3),
209-15 (August 1973).

Chapter 10 of the current book.

400 BIBLIOGRAPHY OF WORKS BY C. A. R. HOARE

[37] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming

language PASCAL. Acta Informatica, 2(4), 335-55 (1973).

Chapter lfiof the current book.

[38] C. A. R. Hoare. Tomorrow’s men: the role of the university. Computer Weekly,

Educational Supplement, 7 (26 July 1973).

[39] C. A. R. Hoare. Computer programming as an engineering discipline. Elec¬

tronics and Power, 19(14); 316-20 (August 1973).

[40] C. A. R. Hoare. High level programming languages, the way behind. In

Simpson, D. (ed.), High Level Programming Languages - The Way Ahead,

NCC Publications, Manchester (1973).

[41] C. A. R. Hoare and P. E. Lauer. Consistent and complementary formal theories

of the semantics of programming languages. Acta Informatica, 3(2), 135-53
(1974).

[42] C. A. R. Hoare. Monitor: an operating system structuring concept. Commu¬

nications of the ACM, 17(10), 549-57 (October 1974).
Chapter 12 of the current book.

[43] C. A. R. Hoare. Hints on programming language design. In Bunyan, C. J.

(ed.), State of the Art Report 20: Computer Systems Reliability, Pergamon/In-
fotech (1974), pp. 505-34.

Chapter 13 of the current book.

[44] C. A. R. Hoare. Optimisation of store size for garbage collection. Informa¬

tion Processing Letters, 2(6), 165-6 (April 1974).

[45] C. A. R. Hoare. Software design: a parable. Software World, 5(9-10), 53-6
(1974).

[46] C. A. R. Hoare. Program correctness proofs. In Shaw, B. (ed.), Formal Aspects

of Computing Science, Newcastle upon Tyne, 3-6 September, 1974 (1975),
pp. 7-45.

[47] C. A. R. Hoare and H. C. Johnston. Matrix reduction - an efficient method

(school timetables). Communications of the ACM, 18(3), 141-50 (March 1975).

[48] P. H. Enslow, C. A. R. Hoare, J. Palme, D. Parnas, and I. Pyle. Implementa¬

tion Languages for Real-Time Systems - I. Standardisation - its Implementa¬

tion and Acceptance. Report No. ERO-2-75-Vol. 1, European Res. Office,
London, UK (15 April 1975).

[49] P. H. Enslow, C. A. R. Hoare, J. Palme, D. Parnas, and I. Pyle. Implementa¬

tion Languages for Real-Time Systems - II. Language Design - General

Comments. Report No. ERO-2-75-Vol. 2, European Res. Office, London, UK
(15 April 1975).

[50] P. H. Enslow, C. A. R. Hoare, J. Palme, D. Parnas, and I. Pyle. Implementa¬

tion Languages for Real-Time Systems - III. Command and Control Languages

- Specific Comments. Report No. ERO-2-75-Vol. 3, European Res. Office,
London, UK (15 April 1975).

[51] C. A. R. Hoare. Recursive data structures. International Journal of Computer

and Information Sciences, 4(2), 105-32 (June 1975). Chapter 14 of the current
book.

[52] C. A. R. Hoare. Parallel programming: an axiomatic approach. Computer
Languages, 1(2), 151-60 (June 1975).

Chapter 15 of the current book.

BIBLIOGRAPHY OF WORKS BY C. A. R. HOARE 401

[53] C. A. R. Hoare. Data reliability. In Int. Conf. Reliable Software, Los Angeles,

pp. 528—33, ACM SIGPLAN Notices (June 1975).

[54] C. A. R. Hoare. Software engineering. BCS, Computer Bulletin, 2(6), 6-7
(December 1975).

[55] W. H. Kaubisch, R. H. Perrott, and C. A. R. Hoare. Quasiparallel program¬

ming. Software Practice and Experience, 6(3); 341-56 (July 1976).

[56] C'. A. R. Hoare, Structured programming in introductory programming

courses. Infotech, Structured Programming, 255-63 (1976).

[57] C. A. R. Hoare. The high cost of programming languages. Software Systems

engineering, 413-29 (1976).

[58] C. A. R. Hoare. The structure of an operating system. In Language Hierarchies

and Interfaces, Springer-Verlag (1976), pp. 242-65.

[59] E. A. Ashcroft, K. Clint, and C. A. R. Hoare. Remarks on ‘program proving:

jumps and functions’. Acta Informatica, 6(3), 317-18 (1976).

[60] C. A. R. Hoare. Hints on the design of a programming language for real-time

command and control. In Spencer J. P. (ed.), Real-time Software: International

State of the Art Report, Infotech International (1976), pp. 685-99.

[61] A. M. MacNaughten and C. A. R. Hoare. Fast fourier transform free from

tears. BCS, Computer Journal, 20(1), 78-83 (February 1977).
[62] C. A. R. Hoare. Introduction. In Perrott, R. H. (ed.), Software Engineering -

Proceedings of a Symposium held at the Queen’s University of Belfast 1976

Academic Press (1977), pp. 7-14 (APIC Studies in Data Processing No. 14).

[63] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare. Ambiguities and insecurities in

PASCAL. Software Practice and Experience, 1(6), 685-96 (November-Decem-

ber 1977).

[64] C. A. R. Hoare. Software engineering: a keynote address. In 3rd International

Conference on Software Engineering, Atlanta, GA., USA, 10-12 May (1978),

pp. 1-4.

[65] C. A. R. Hoare. Some properties of predicate transformers. Journal of the

ACM, 25(3), 461-80 (July 1978).

[66] C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8), 666-77 (August 1978).

Chapter 16 of the current book.

[67] C. A. R. Hoare. Communicating sequential processes. In Shaw, B. (ed.) Digital

Systems Design. Proceedings of the Joint IBM University of Newcastle upon

Tyne Seminar, 6-9 September 1977, Newcastle University (1978), pp. 145-56.

[68] N. Francez, C. A. R. Hoare, D. J. Lehmann, and W. P. de Roever. Semantics of

nondeterminism, concurrency and communication. Journal of Computer and

System Sciences, 19(3), 290-308 (December 1979).

[69] C. A. R. Hoare. A model for communicating sequential processes. In McKeag,

R. M. and MacNaughten, A. M. (eds.), On the Construction of Programs,

Cambridge University Press (1980), pp. 229-54.

[70] C. A. R. Hoare and J. R. Kennaway. A theory of non-determinism. In

Proceedings ICALP ’80, Springer-Verlag, Lecture Notes In Computer Science,

No. 85 (1980), pp. 338-50.
[71] C. A. R. Hoare. Hoare on programming. Computer World UK (22 October

1980). Text of an interview.

402 BIBLIOGRAPHY OF WORKS BY C. A. R. HOARE

[72] C. A. R. Hoare. Synchronisation of parallel processes. In Hanna, F. K. (ed.),

Advanced Techniques for Microprocessor Systems, Peter Peregrinus (1980),
pp. 108-11.

[73] C. A. R. Hoare. The emperor’s old clothes. Communications of the ACM,
24(2), 75-83 (February 1981).

Chapter 1 of the current book.

[74] Zhou Chao Chen and C. A. R. Hoare. Partial correctness of communicating

sequential processes. In Proceedings of 2nd International Conference on

Distributed Computing Systems, IEEE Computer Society Press (8-10 April
1981) , pp. 1-12.

[75] C. A. R. Hoare and Zhou Chao Chen. Partial Correctness of Communicating

Processes and Protocols. Technical Report PRG 20, Oxford University Com¬

puting Laboratory, Programming Research Group (May 1981).

[76] C. A. R. Hoare. A calculus of total correctness for communicating processes.

The Science of Computer Programming, 1(1-2), 49-72 (October 1981).
Chapter 17 of the current book.

[77] C. A. R. Hoare. Professionalism. BCS, Computer Bulletin, 2(29), 2-4 (1981).
Invited Talk given at BCS 81.

[78] C. A. R. Hoare. Is there a mathematical basis for computer programming?
NAG Newsletter, 2, 6-15 (1981).

[79] C. A. R. Hoare and Zhou Chao Chen. The Consistency of the Calculus of Total

Correctness for Communicating Processes. PRG Monograph 26, Oxford

University Computing Laboratory, Programming Research Group (February
1982) .

[80] C. A. R. Hoare and R. M. McKeag, Structure of an operating system. In Broy,

M. and Schmidt, G. (eds.), Theoretical Foundations of Programming

Methodology — Lecture Notes of an International Summer School, Germany,
1981, Reidel (1982), pp. 643-58.

[81] W. H. Kaubisch and C. A. R. Hoare. Discrete event simulation based on

communicating sequential processes. In Broy, M. and Schmidt, G. (eds.),

Theoretical Foundations of Programming Methodology - Lecture Notes of an
International Summer School, Germany, 1981, Reidel (1982), pp. 625-42.

[82] C. A. R. Hoare. Specifications, Programs and Implementations. Technical

Report PRG-29, ISBN 0-902928-17-1, Programming Research Group, Oxford
University (June 1982).

[83] C. A. R. Hoare. Programming is an engineering profession. In Wallis, P J. L.

(ed.), State of the Art Report 11, No. 3: Software Engineering, Pergamon/

Infotech (1983), pp. 77-84. Also Oxford PRG Monograph No. 27.; and IEEE
Software 1(2).

Chapter 18 of the current book.

[84] C. A. R. Hoare and E. R. Olderog. Specification-oriented semantics for

communicating processes. In Automata Languages and Programming 10th
Colloquium, Springer-Verlag (1983), pp. 561-72.

[85] C. A. R. Hoare. Notes on Communicating Sequential Processes. Monograph

33, Oxford University Computing Laboratory, Programming Research Group
(August 1983).

[86] E. R. Olderog and C. A. R. Hoare. Specification-oriented semantics for

BIBLIOGRAPHY OF WORKS BY C. A. R. HOARE 403

communicating processes. In Diaz, J. (ed.), Automata, Languages and Pro¬

gramming — Proceedings of the 10th International Colloquium, Barcelona July

18—22. Lecture Notes in Computer Science 154, Springer-Verlag (1983)
pp. 561-72.

[87] C. A. R. Hoare. 1983 technology forecast. Electronic Design (January 1983).

[88] E. C. R. Hehner and C. A. R. Hoare. A more complete model of communica¬

ting processes. Theoretical Computer Science, 26(1-2), 105-20 (September
1983).

[89] C. A. R. Hoare. Programming: sorcery or science. IEEE Software, 1(2), 5-16
(April 1984).

[90] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating

sequential processes. Journal of the ACM, 31(3), 560-99 (July 1984).

[91] C. A. R. Hoare and A. W. Roscoe. Programs as executable predicates. In

Proceedings of the International Conference on Fifth Generation Computer

Systems, November 6-9 1984, Tokyo, Japan, I COT (1984), pp. 220-8

[92] C. A. R. Hoare. Notes on communicating systems. In Broy, M. (ed.), Control

Flow and Data Flow: Concepts of Distributed Programming. Proceedings of

NATO Advanced Study Institute International Summer School, Marktober-

dorf, 31 July-12 August, 1984, Springer-Verlag (1985), pp. 123-204.

[93] C. A. R. Hoare. A couple of novelties in the propositional calculus. Zeitschr. f.

Math. Logik und Grundlagen d. Math., 31(2), 173-8 (1985).

Chapter 19 of the current book.

[94] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall (1985).

256 pages, ISBN 0-13-153271-5.

[95] C. A. R. Hoare and J. C. Shepherdson (eds.) Mathematical Logic and

Programming Languages. Prentice Hall (1985). ISBN 0-13-561465-1. The

papers in this book were first published in the Philosophical Transactions of the

Royal Society, Series A, 312 (1984).

[96] C. A. R. Hoare. Programs are predicates. In Hoare, C. A. R. and Shepherdson,

J. C. (eds.), Mathematical Logic and Programming Languages, Prentice Hall

(1985), pp. 141-54.

Chapter 20 of the current book.

[97] H3.M.S4. Data refinement refined (May 1985) Typescript, Programming

Research Group, Oxford University.

[98] C. A. R. Hoare and C. Morgan. Specification of a simplified network service in

CSP. In Denvir, B. T., Harwood, W. T. and Jackson, M. I. (eds.), LNCS 207

- The Analysis of Concurrent Systems, Cambridge, September 1983, Proceed¬

ings, Spinger-Verlag (1985), pp. 345-53.
There are a number of other contributions by Hoare to the discussions recorded

in this volume.
[99] C. A. R. Hoare and J. He. The weakest prespecification i. Fundamenta

Informaticae, 9(1), 51-84 (March 1986).

[100] C. A. R. Hoare and J. He. The weakest prespecification ii. Fundamenta

Informaticae, 9, 217-252 (1986).

[101] C. A. R. Hoare. The Mathematics of Programming. Oxford University Press

(1986).
Chapter 21 of the current book.

404 BIBLIOGRAPHY OF WORKS BY C. A. R. HOARE

[102] A. W. Roscoe and C. A. R. Hoare. Laws of Occam Programming. Monograph

PRG-53, Oxford University Computing Laboratory, Programming Research
Group (February 1986).

[103] He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data refinement refined:

resume. In Robinet, B. and Wilhelm, R. (eds.), ESOP ’86, Springer-Verlag
(1986).

[104] C. A. R. Hoare and He Jifeng. Algebraic specification and proof of properties

of a mail service. In Meertens, L. (ed.), IFIP WG 2.1 Working Conference on

Program Specification and Transformations, Bad-Tolz, W. Germany 15-17
April, North-Holland Publishers (1986).

[105] E. R. Olderog and C. A. R. Hoare. Specification-oriented semantics for

communicating processes. Acta Informatica, 23(1), 9-66 (1986).

[106] C. A. R. Hoare and He Jifeng. The weakest prespecification. Information

Processing Letters, 24(2), 127-32 (January 1987).

[107] C. A. R. Hoare, He Jifeng, and J. W. Sanders. Prespecification in data

refinement. Information Processing Letters, 25(2), 71-76, May 1987.

[108] C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J.W.

Sanders, I. H. Sorensen, J. M. Spivey, and B. A. Sufrin. The laws of

programming. Comm. ACM 30(8), 672-87 (August 1987). See Corrigenda in
Comm. ACM, 30(9), 770.

[109] A. I. Enikeev, C. A. R. Hoare, and A. Teruel. Moztejib TeopHH B3aHMO^en-

CTByiomux nocneztOBaTejibHbix npoiteccoB jpin Memo-fluajioroBbix chctcm

Mathematica, 3 (1987) (In Russian)

[110] He Jifeng and C. A. R. Hoare. Algebraic specification and proof of a

distributed recovery algorithm. Distributed Computing, 2(1), 1-12 (1987).

[111] C. A. R. Hoare and He Jifeng. Design and proof of a mail service. In Friesen,

O. and Golshani, F. (eds.), 6th Annual International Phoenix Conference on

Computers and Communications - Conference Proceedings Scottsdale, AZ,
USA 25-27 February, 1987, IEEE (1987), pp. 272-5.

[112] C. A. R. Hoare. An overview of some formal methods for program design.
IEEE Computer Journal, 20(9), 85-91 (September 1987).
Chapter 22 of the current book.

Index

Abelson, H., 387
abstract command, 359
abstract machine, 11
abstract-model approach, 103, 108-12, 117,

119-31
abstraction, 252, 359-64

function, 104, 217
ACM awards, 1
ACM curriculum, 318
ACM editor, 59
ACM S1GPLAN Conference, 193
Acta Informatica, 391
actors, 260
actual parameter, 37
Ada, 2, 16, 75, 153, 193, 368
adaptation rule, 82
AED-I, 38
Aho, A. V., 387
algebraic specification, 375-7
ALGOL 60, 3-5, 7, 19, 196, 214-15, 242

and ALGOL W, 31-43
comment conventions, 202
declaration, 257
IF1P recommended, 87
notation, 208, 246, 263
security, 3-4, 320
structures, 36, 86, 157, 207-12, 219, 260,

326
ALGOL 68, 13-15, 209, 217-18, 243, 261
ALGOL Bulletin, 193
ALGOL own variable, 273
ALGOL Quicksort, 22
ALGOL W, 12-13, 31-43, 86, 215
ALGOL Working Group, see IFIP

Working Group 2.1
ALGOL X, 12
algorithmic program design, 33
aliasing, 75
ALPHARD, 260
alternating processes, 307-9
alternative command, 268
alternative construct, 260
Anderson, D. B., 228, 243

APL, 193, 205-6, 283
Apt, K. R., 46, 75
arithmetic, 47-9, 220, 353-6
arithmetic expression, FORTRAN, 216
array, 42, 161, 216
ASA Standards, 216
Ashcroft, A., 75
assembly code output, 242
assertion, 155, 291
assignment, 166, 246, 251, 255-6, 260, 345

axiom, 50, 77
asymmetric parallel rule, 247
Atiyah, F., 333
Atkinson, R., 260
axiomatic approach to programming, 12,

45-58

Backhouse, R. C., 387
Bakker, J. W. de, 57
Ballard, A., 183
Belfast, Queen’s University, 1, 11-12, 259
Bezivin, J., 151, 177
Birtwhistle, G. M., 218
bits type, 35
Bjorner, D., 153
block structure, 209-10
BNF notation, 220, 221
Boolean type, 159
bound (for partition), 20
bounded buffer, 178-81, 278
Briggs, 359
Brinch Hansen, P., 191

class, 246
Concurrent Pascal, 171, 260-1
event type signalling, 137
monitor, 172, 173
paging, 151
scheduling, 189
shared variables, 252

British Computer Society, 1
British Museum Algorithm, 373, 375, 378
British Petroleum, 367
Brookes, S., 289, 314, 349

405

406 INDEX

buffering, 164, 183-6, 284-5, 338
Burroughs 5500, 320
Burstall, R. M., 58, 217, 222, 229, 241

calculus, differential, 318
call by name, 86

call by value, 107, 272

case construction, 6, 31, 36, 158, 168, 228
cases expression, 229
cat operator, 35

category theory, 355
CDC 6600, 261
chaining processes, 342-4
Chandy, K. M., 387

channels, 289, 290, 291, 300, 301-3
char type, 160

checkout compiler, 198
chr, 160

Clark, K. L., 386

class (subset of word algebra), 231
class axioms, 157
class concatenation, 115

class cf. critical region, 246
class declaration, 140
class parameters, 114

class, Simula 67, see Simula 67 class
class type, 158
Clint, M., 256
CLU, 260

clusters, 260

co-operating processes, 245, 246, 251-3,
257

COBOL, 202, 216, 284
code construction, 85
Cohn, P. M., 221

command list, 263

comment conventions, 202

communicating (sequential) processes, x,
11, 246, 253-314, 325

communication, rule of two-way, 256

Communications of the ACM, 12, 75
commutativity principle, 253
commuting units of action, 251
competing processes, 249-51, 257
compilation, 198-200
compile-time check, 212, 257
compiler, single pass, 4-5
complex type, 34

complexity theory, 381, 386

complexity, dangers of, 13-17, 195-8
composition, 260, 346-7, 361, 381

notation, 246
rule, 51, 247

compound statement, 167

computing, nature of, 90-1, 352, 356-9
concatenation, 35, 115

Concurrent Pascal, 16, 171, 261
condition (waiting), 174

condition variable, 256
conditional, 6, 345-6

critical region, 245, 261, 278
critical section, 171

expectation principle, 23
operator, 325-8

process, 307

consequence rule, 51, 77, 293
consistency proof, x
const, 158

constant declaration, 42, 163, 235
containment rule, 247
context-free grammar, 204

continuity principle, 255
Conway, M. E., 255, 272
Cook, R., 3
Cooper, D., 46

COPY (COBOL), 284
copy process, 338
copying, avoidance of, 241

coroutine, 255, 270, 272-4
correctness criterion, 108
correctness, CSP, 289-314

correctness, partial, 59
corresponding commands, 266
CRAI, 153
Craig, W., 325

critical region, 245, 252, 261, 278

CSP, see communicating sequential
processes

curried operator, 325
cyclic exchange, 27

Dahl, O.-J., 171

language design, 215
program proving, 118

Simula, 105, 134, 135, 139, 172, 260
structured programming, 133
top-down method, 104

dangling reference, 218
Darlington, J., 241

data abstraction, 46, 103

data representation, correctness proof,
103-15

data structures, 38, 205-6, 217-43
data types, 41, 159, 221
DDC, 153

de Morgan’s laws, 329
deadlock, 250, 256, 267

deadly embrace, 145, 178, 190
debugging, 195, 198

declaration, 80, 257

and competition, 246
Pascal, 163-5
relaxation of, 6

and resource allocation, 249-50
rule, 81

default conventions, 6, 13, 15, 213

INDEX 407

Dennis, C., 100
Dijkstra, E. W., 101, 186

ALGOL 60, 3

communicating processes, 254, 288
concurrency, 259
conditional, 326
critical region, 252

deadlock avoidance, 250
guarded command, 259, 261, 325

healthiness conditions, 293
mutual exclusion, 171

nondeterminancy, 349
notation, 356
paging, 151
program proving, 59, 60, 74, 118
scheduling, 178, 189-91
secretary, 136

semaphore, 135, 175, 261
structured programming, 133, 242
top-down method, 104
weakest precondition, 364

discard, 143-5, 148
disjoint parallelism, 300

disjoint processes, 247-9
disjointness, 257, 264

of monitors, 190
disk head scheduler, 186-7
div, 159

documentation, 55, 195

drum transfers, 138-40
dummy parameter, 211
dump, 199
dyadic operator, 325

ECMA TC10, 45, 193
education, directions for, 322-3
EEC, 153

efficiency, 40, 262, 374, 375
elevator algorithm, 186

Elliott 503, 3, 6, 7-10
Elliott 803, 2
Elliott ALGOL, 199-200
Elliott Brothers Ltd, 1, 2, 6-7, 11, 133,

259
Emperor’s Old Clothes, 17-18
end of file, 164
Enea, H. J., 243
entries, PL/I, 260
eof, 164

EQ primitive, 226
EQUAL function, 226

equivalence algorithm, 216
Eratosthenes’ sieve, 1 17-32, 245, 281
error diagnosis, 263
ETH Zurich, 153

Euclid language, 46, 75, 153
European Computer Manufacturers

Association, 14

event type signalling, 137
events, PL/I, 261

exception handling, 75
exchange, 26, 27

exclusion (access to competing variables),
248, 252

factorial, recursive progam, 83
fairness, 285

Faraday Medal, 1
Fay, D. Q. M., 288
field, 38

file operation, 205-6
file position, 164
file types, 157, 162
file variable declaration, 164
Find, 59-74

finite-state machine, 203-4
Floyd, R. W., 12, 45-6, 50, 58, 74, 83,

335
Foley, M., 87, 118

for statement, 36, 158, 168
Formal Description Languages, 45
formal parameter, 37
FORTRAN, 87, 203, 216, 217

and ALGOL W, 215
block data, 199

code construction, 85
comment conventions, 202
default conventions, 6
Elliott 503, 6
indirect addressing, 86
local variables, 209
optimization, 201

procedures, 210-12, 381
simplicity, 196

subroutines, 260, 273
translators, 242
value and result, 86

function axioms, 157
function declaration, 165
function, entry and exit, 4

functional coroutines, 286
functional program, 378-9

Galois connections, 355
garbage collection, 239, 241

see also scan-mark garbage collection
gcd algorithm, 372-84

generalized arithmetic, 220
generator (algebraic), 221
geometry, 318, 359
Gorman, D., 189
goto, 6, 36, 75, 154, 156

Graham, S., 31
grain of time methods, 190

Green language, 153
Green proposal, 193

408 INDEX

Gries, D., xii, 117, 277, 288, 322, 387

guarded command, 259, 261-2, 277, 325

Harper, M. K., 288
hashing cons, 228
hashing technique, 228, 236
Hayes, I., 386

healthiness conditions, 293
Hehner, R., 314, 333, 347, 349
Henderson, P., 387

Hewitt, C., 260
Hibbs, J., xii
hiding, 303-5
Hillmore, J., 5
Hoare triple, 46, 50, 76, 246
Hoare, J., see Pym, J.

Honours School, Oxford University, 351
Horning, J., xii, 177, 183

IBM, 45

360, ALGOL W, 31, 215
704/709, 85

and Oxford University, 367
Vienna, 45

IEE Faraday Medal, 1
if statement, 168
if..then..else, 260

IFIP Working Conference on Formal
Description Languages, 45

IFIP Working Conference on Symbol
Manipulation Languages, 31

IFIP Working Group 2.1, 5, 12, 32, 33, 45,
193

IFIP Working Group 2.3, 191, 288
Igarishi, S., 57

Imperial Hotel, Vienna, 45
implementation proof, 118
indirect addressing, 85-6

industry, formal methods in, 322-3, 366
inference rule, 155
infix operators, 325-31, 357

initialization in declarations, 41
INMOS, 260, 368
input, 339-40

guard, 287

process, proving, 297-8

input/output, 216, 260, 261, 266
Institution of Civil Engineers, 323
integer semaphore, 278
interrupt, 259

invocation rule, 78, 79, 82
IRIA conference, 172

Ironman requirements, 153
iteration, 36, 51-2, 281-3

Jones, C. B., 314, 387, 392
parallel programming, 245
top-down method, 131

Turing, A.M., 45
VDM, 103

Jones, G., 260
jump, 75, 207, 217, 219, 241

Kahn, G., 286
Karp, R., 386

Kennaway, J., 289

Kerry (County), 153
keys, multiword, 28
King, J., xii, 46, 74, 118
King, P., 3

Kleene, S. C., 220
Knuth, D. E., 75, 215, 220, 221, 318
Kolmogorov, 19
Kowalski, R., 386

labels, 6, 36, 37
Landin, P., 3, 204
language

criteria for, 33

definition, ix, x, xii, 1, 11, 56-7
design, 193-217

extension, 40-3
feature, 213-14, 254
notation, ix

range, 33
Laski, J., 58

Levitt, K. N., 236
Liskov, B. H., 260

LISP, 196, 205-6, 215, 217, 222-8, 238,
326

list operations, 205-6
local constants, 41-2

local variables, 80, 209-10, 273
logic program for gcd, 374-8
logical formula, 155

long variant in numerical types, 34, 41
Lucas, P., 45

McBride, F. V., 222
McCabe, F. G., 386

McCarthy, J., 58, 215, 221, 228
McCauley, A., xii, 392

machine code, 200, 208, 261

machine (in)dependence, 56, 87, 216
McKeag, R. M., 151, 171, 177

macro-substitution, 84-5
maintenance, 364-5
manuals, 321, 366
Mariner rocket, 6
Martin, J. J., 387

mathematical logic symposium, 333
matrix operations, 205-6, 281-3
Melliar Smith, M., 151

memo function, 217, 233-8, 253
Mercury Autocode, 19
merge sort, 26

INDEX 409

Mesa, 171
Michie, D., 233, 238, 253
Milne, R., 288
Milner, A. J. R. G., 103, 104, 118, 349
Miranda, 217
Misra, J., 117, 387
ML, 217
mod, 45, 159
model-oriented approach, see abstract-

model approach
modularity, 197
monadic operator, 325
monitor, 1, 171-91, 261

Concurrent Pascal, 260
cf. conditional critical region, 246
scheduling, 277-9
shared memory, x, 259
structuring of operating systems, 11

Morris, F. L., 45
Moscow State University, 19
MSc courses, 323
multiple exits, 276
multiprocessing, 261
multiprogramming, 261
multiword keys, 28
mutual exclusion, 135-6, 171
mutual recursion, 221, 273-4, 309
mythical variables, 256

names, explicit, in CSP, 284
National Computing Centre, 45
National-Elliott 405, 26
natural number axioms, 229-30
Naur, P.

ALGOL 60, 3, 214-15, 219, 260, 263
invariants of algorithms, 119
program proving, 45, 60, 74

negation, implementation, 374
negmajority, 325, 328-31
nest, 22
Newcastle seminar, 46
Newton’s laws, 318
Nipkow, T., 103
nondeterminism, 336-7
nonshared representations, 238-42
notation

all-purpose, 371
for CSP, 283
and language, ix
logical, 76
see also individual languages

NPL, 15
null command, 263

object code, 4, 200
object, Simula 67, 135
occam, 46, 351, 368, 369
Oest, O. N., Green language, 153

Olderog, E. R., 349
ON-condition, 15, 75
operating system design, 1 1, 133, 321
optimization, 242

of gcd algorithm, 380
and language implementation, 84
in Quicksort, 28

ord, 160
orthogonality, 197
output, 339

guards, 287
process, proving, 296-7
see also input/output

overload, 145
overtaking, 178
own variable, 273
Oxford University, 1, 289, 323, 351, 355,

366, 369
see also Programming Research Group

PACT I assembler, 199
paging, 133-51
parallel command, 263-5
parallel programming, 245-57
parallelism, xii, 133
parameter, 37, 157-8, 216

axiomatic approach, 75-88
passing, 83-6
preconditions, 109-10

par begin, 261
partial correctness, 46, 56
partition, 20-1, 26, 89, 91-8
Pascal, 13, 31

axiomatic definition, 153
changes to, 157-8, 242
Concurrent, 16, 171, 261
constant declaration, 235
definition, x, 154
design, 215
notation, 134, 136, 250, 263, 383-4
-Plus, 16, 171, 172
portability, 154-5
powerset facility, 184
procedures, 381
references, 219
structure, 171
types, 140, 221
UCSD, 16

path expressions, 261
pattern-matching, 262
Peano axioms, 229-30
Pentecost, D. J., 26
philosophers, dining, 279-80
Philosophical Transactions of the Royal

Society, 333
PL/360, 200
PL/I, 193

common store management, 261

410 INDEX

PL/I (continued)

development, 15
dummy parameter, 211
entries, 260
events, 261
indirect addressing, 86
multiple entry, 273
ON-condition, 75
pointers, 218

pointer, 208, 217-20, 241
exchange, 242
for partition, 20
types, 158, 163
see also reference

popularization, xii
port names, 284
poset, 355

postcondition, 46, 59, 382
precompile, 199
precondition, 364, 382
predicate, program as, 333-49
prescan, 199

prime number generation, 117-32, 245, 281
Pritchard, P., abstract-model approach,

117

procedural language, 381

procedure, 37, 167, 169, 210-12, 216, 260

axioms, 75-88, 157
declaration, 165
entry and exit, 4
local, 239

parameter of, 43

parameterless, 78

for recursive data structures, 240
statement, 166

process activation, unbounded, 285
process, black box, 337
process chaining, 305-6

process, Concurrent Pascal, 260
process union, nondeterministic, 306-7
program, algebra of, 356-9
program design, 33, 194-5, 371-92

program as predicate, 333-49
program proving, xii, 45, 49, 54-5, 59-74,

1 17-32, 322

program structures, 206-8
program testing, 55

programming, 91, 315-24

axiomatic approach, x, 12, 45-58
language, simple, 336-47
language symposium, 333

requirements for, 99-100
social responsibility of, 100
structural problems, 319-20
tools, 320-1

PROLOG, 375

proof method for CSP, 262

proof rules for processes, 296

properties of communicating processes, 293
property-oriented approach, 103
propositional calculus, 220, 325-31
Pym, J., 1, 3, 5

Queen’s University, Belfast, 1, 11-12, 259
queues, 261

Quicksort, ix, xi, 1, 3, 19-30
Quinn, C., 154

quotient operator, 363

Racal, 367
Randell, B., xii

readability, 201
readers, 187-9

real arithmetic, 154, 156
real type, 34

record, 31, 38-9, 40, 42-3, 140, 161
recursion, 3, 4, 22, 81-3, 273-4, 309-12,

340-2

recursive data structures, 217-43, 276
recursive definition, 220
recursive invocation rule, 82
recursive process, proving, 298-300
reference, 215, 218

count, run-time, 238
type, 38-40
see also pointer

refusal set, 289
related modes, 343
reliability, see security
repeat statement, 168

repetitive command, 268-9, 287
repetitive construct, 260

representation function, 103

research function of programming
language, 33

research journal, 322
research methods, 389-92
result parameter, 37

Reynolds, J. C., xii, 75, 262
Roscoe, A. W., 289, 314, 349
Ross, D. T., 38, 1 15, 228
Royal Navy, 1

Royal Society Lellowship, 333
R PL AC A, RPLACD, 238

Russian interpreting, 1

safety, mathematics and, 369-70
Samelson, K., 43

satisfaction relation, 360
scalar types, 159

scan-mark garbage collection, 219, 228, 238
scheduling, 172, 177-8, 181-3, 277-9

Science Research Council Lellowship, 259,
288

Scott, D. S., 227, 246, 255, 289, 349, 368
second-level definition, 216

INDEX 411

secretary, 136, 191

security and simplicity, 13-17, 195-8,
318-19

semantics conditional, 326
semantics, denotational, 289
semaphore, 135, 172-7, 261

semicommutativity, 254, 256, 257
sequence, 34-5

sequencing control, 36
set types, 162
Shackleton, P., 2, 26, 28
Shell, 2
Shel/sort, 2

Sheperdson, J. C., 333

side-effects, 54, 104, 156, 211, 246
sifting procedure, 121-4

silicon structures, 369
Simone, 172
Simula 67, 215

call by value, 107
class, 10, 114, 139, 171-2, 260, 273
notation, 134, 136

pointers in, 218
substitution, 130
this, 240

Sintzoff, M., 243, 322
SNOBOL, 228

software engineering, 367
software manuals, 321
Software Practice and Experience, 11
software quality criteria, 10-11
South Carolina University, 1
specification, 37-8, 333, 337-8, 347, 366
standards, mathematical formulation of,

368
Stanford University, 1, 31, 193
statement parameter, 37
statement, Pascal, 155, 165-8
Steel, T. B., 45
stepwise refinement, see top-down method
storage allocation, 7, 135-7
storage, multilevel, 29
Stoy, J., 289
Strachey, C., 11, 289, 324, 351, 368, 370

stress analysis, 318
string operations, 41
string type, 35

structural induction, 229
structured programming, 133, 242

structuring principles, 205
subrange types, 160
subroutine and coroutine, 272-4
substitution rule, 79
Sussman, G. J., 387
switch, 6, 36, 207

Symbol Manipulation Languages, 31
symmetric parallel rule, 248
synchronization, 136-7, 172

SYNCHRONIZED (COBOL), 216
syntactic sugar, 204
syntax design, 203-4

tag, 225

tautology, determination of, 326, 329
teaching function of programming

language, 33
Tennant, R., xii

termination, proof of, 54, 59, 70-2
Texas University, 371
theorem-proving systems, 236
Thompson, K., 260
thrashing, 146, 178
timing for Quicksort, 22-5

top-down method, 5, 73, 348, 361-4
translation program, 19

Tinman requirements, 193
Tredgold, T., 323

tree for recursive data structure, 225
triadic operator, 325
Turing Award, 1,2, 19
Turing, A. M., 12, 45

two-way communication, rule of, 256
types, 35, 105, 163, 212-13, 224-5

UCSD Pascal, 16

unbuffered communication, 259
UNION, 243

United States Department of Defense, 16
university, computer science in, 100-1
UNIX coroutines, 260
unnesting law, 329, 331
user envelope, 191

value parameter, 37, 157

value and result, 86
variable, 208-9

declaration, 163

local, 80, 209-10, 273
VDL, 153
VDM, 103

Venus rocket, 6
virtual resource, 178
virtual store, 140-3
VLSI, 369

Waldinger, R., 236
Wang Institute, 323
Weber, H., procedure parameters, 43
Welsh, J., 154, 171

while statement, 168, 260

Wijngaarden, A. van, 32, 45, 58, 218, 261

Wirth, N., 12, 31, 32, 215, 219, 250
CSP, 288
Pascal definition, 153, 154, 155, 157

Pascal notation, 134, 263
procedure parameters, 43

412

Wirth, N. (continued)
program proving, 59, 118
top-down method, 104

Yellow language, 193

with statement, 168
word algebra, 221, 231

writers, 187-9

INDEX

Wulf, W. A., 260

Yanov, Yu. I., 57
Yellow language, 193

Zhou Chao Chen, 314

essaysincomputinOOhoar

essaysincomputinOOhoar

Essays in Computing Science provides an account of
intellectual development of one of the world's best known computer
scientists.

The book brings together in one volume a collection of Hoare's key
papers in the fields of programming languages, formal methods and
parallelism. It includes non-technica! and general remarks on the nature
of computing science and computer programming. These papers are
presented with helpful notes on their background and impact, allowing
the reader an insight into the context in which a paper was conceived,
and subsequent developments.

Included in the book are a complete list of Hoare’s papers and an index
which links themes across papers.

About the Author

C.A.R. Hoare, editor of the Prentice Hall International Series in
Computer Science, is Professor of Computation at Oxford University.
He is a Fellow of the Royal Society of London, and a Distinguished
Fellow of the British Computer Society. His awards include the ACM
Turing Award (1980), AFIP Harry Goode Memorial Award (1981), IEE
Faraday Medal (1985).

