
Porting the Oberon Compiler from Oberon to Oberon-07

Niklaus Wirth, 15. 8. 2007

After defining the Revised Oberon called Oberon-07 and implementing it, I have expressed the
compiler in the revised language. This should seem a trivial endeavour, but it is worth noting a
few experiences.

Features that had been removed

1. The Loop Statement

There were only 4 loop statements in the compiler – a sign of good programming ☺. The principal
characteristic of the loop statement is that it allows several termination points. Thus, there is no
general recipe for translating it into a repeat or while statement. In my experience, a careful
search for a new formulation is worth while. In all cases, the new solution turned out to be more
satisfactory.

2. Forward declarations of procedures

First, one should see if the forward reference can be eliminated by a mere exchange of procedure
declarations, or by a nesting. If, for example, P calls Q and Q calls P, the forward reference might
possibly be eliminated by nesting, namely if one of the procedures is called only from within the
other:

PROCEDURE P;

 PROCEDURE Q;
 BEGIN …. P …….
 END Q;

BEGIN …. Q ….
END P

A general solution is the introduction of a procedure variable. If, for example, P(…) would require
a forward declaration, declare

VAR p: PROCEDURE (…);

and (in the same scope) initialize it with the assignment p:= P, and replace all calls of P by calls
of p.

3. SHORTINT, LONGINT, and LONGREAL

Change all occurrences of SHORTINT and LONGINT to INTEGER. This may require the
elimination of calls of type transfers SHORT and LONG, an exercise in text editing. LONGREAL
has not been implemented in Oberon-ARM. Replace it by REAL, but do not expect exactly the
same results ☺.

4. Structured value parameters

Structured value parameters imply the copying of the parameter’s value and therefore should be
avoided if possible. But strings are structured constants and therefore cannot be passed as VAR
parameters – although some implementations allow it – because the string’s value might be
changed by assignment to the formal parameter. To remedy this defect, Oberon now features a
third kind of parameter, the Const parameter. Hence, if strings are to be passed to a formal
parameter of type ARRAY OF CHAR, the symbol CONST must be used as a prefix.

5. Standard procedures INC, DEC, INCL, EXCL, COPY, ASH, SHORT, LONG

INC(x, y) x := x + y, unless y is a constant (0 <= y < 256)
DEC(x, y) x := x – y
INCL(s, k) s := s + {k}
EXCL(s, k) s := s – {k}
COPY(x, y) y := x
ASH(x, n) LSL(x, n), if n > 0
 ASR(x, n), if n < 0

Features that had been restricted or changed

1. The case statement

The new case statement requires that the case labels be non-negative integers The entire
compiler contained only 4 case statements. The transformation of labels of type CHAR to type
INTEGER in the scanner was tedious, but a one-time exercise in editing.

2. Export of variables

The export of variables is stylistically a dubious practice, because it contradicts the principle of
“information hiding” and of “abstract data types”. External access to variables should occur
through exported procedures only. In order to read a value, however, direct export of the variable
does not infringe on information hiding, because it does not permit the violation of module
invariants, while making access faster. Hence, Oberon-07 allows variable export in read-only
mode.

In order to alter the value of an imported variable, a corresponding procedure must be introduced
and exported.

New features

1. Set complement and inclusion

The set of set operators has been augmented with set complement and set inclusion. -s denotes
the complement of s; s0 <= s1 (or s1 >= s0) denotes inclusion.

2. The extended While statement

The while statement has been extended according to the suggestion of the late Edsger Dijkstra.
Note that it terminates, when all conditions are FALSE. This facility may, for example, be used to
express the following loop construct:

LOOP
 IF b0 THEN S0
 ELSIF b1 THEN S1
 ELSIF b2 THEN S2
 ELSE EXIT
 END
END

in a simpler way, without nesting:

WHILE b0 DO S0
ELSIF b1 DO S1
ELSIF b2 DO S2
END

3. The standard procedures PACK, UNPK, and ASSERT

PACK(x, e) is a new standard procedure to change the exponent of a floating-point number x. Its
effect is equal to x := x * 2e, and it is achieved by simply adding e to the exponent of x.

UNPK(x, e) does the inverse of PACK. It assigns to e the exponent of x, and divides x by 2e, such
that 1.0 <= x < 2.0.

ASSERT(b, n) traps, if the Boolean expression b yields FALSE. The integer n serves the
operating system to output this value, such that the programmer can easily determine which
assertion failed. n can be omitted.

