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The author selects classic papers written by the computer scientists who made

the major breakthroughs in concurrent programming. These papers cover the

pioneering era of the field from the semaphores of the mid 1960s to the remote

procedure calls of the late 1970s. The author summarizes the classic papers

and puts them in historical perspective.

A PROGRAMMING REVOLUTION

This is the story of one of the major revolutions in computer programming:
the invention of concurrent programming.

Tom Kilburn and David Howarth pioneered the use of interrupts to simu-
late concurrent execution of several programs on the Atlas computer (Kilburn
1961). This programming technique became known as multiprogramming.

The early multiprogramming systems were programmed in assembly lan-
guage without any conceptual foundation. The slightest programming mis-
take could make these systems behave in a completely erratic manner that
made program testing nearly impossible.

By the end of the 1960s multiprogrammed operating systems had become
so huge and unreliable that their designers spoke openly of a software crisis
(Naur 1969).

As J. M. Havender (1968) recalled:
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The original multitasking concept of the [IBM OS/360] envisioned rel-
atively unrestrained competion for resources to perform a number of
tasks concurrently . . . But as the system evolved many instances of
task deadlock were uncovered.

Elliott Organick (1973) pointed out that the termination of a task in the
Burroughs B6700 system might cause its offspring tasks to lose their stack
space!

In the mid 1960s computer scientists took the first steps towards a deeper
understanding of concurrent programming. In less than fifteen years, they
discovered fundamental concepts, expressed them by programming notation,
included them in programming languages, and used these languages to write
model operating systems. In the 1970s the new programming concepts were
used to write the first concise textbooks on the principles of operating systems
and concurrent programming.

The development of concurrent programming was originally motivated
by the desire to develop reliable operating systems. From the beginning,
however, it was recognized that principles of concurrent programming “have
a general utility that goes beyond operating systems”—they apply to any
form of parallel computing (Brinch Hansen 1971a).

I would like to share the excitement of these discoveries with you by
offering my own assessment of the classic papers in concurrent programming.

This essay is not just an editorial overview of the selected papers. It is
also my personal reflections on the major contributions, which inspired me
(and others) in our common search for simplicity in concurrent programming.

If you compare my early papers with this essay, you will notice an oc-
casional change of perspective. With thirty years of hindsight, that is in-
evitable.

I have made an honest attempt to rely only on the publication record
to document historic events and settle issues of priority. However, as a
contributor to these ideas I cannot claim to have written an unbiased account
of these events. That can only be done by a professional historian.

THE CLASSIC PAPERS

Choosing the classic papers was easier than I thought:

• First I made a short list of fundamental contributions to abstract concurrent
programming of major and lasting technical importance.
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• Then I selected the original papers in which computer scientists first intro-
duced these ideas.

• I added a few papers that illustrate the influence of concurrent programming
concepts on operating system principles and programming language imple-
mentation.

• Finally I put the papers in chronological order to illustrate how each new idea
was motivated by earlier successes and failures.

Fundamental Concepts

Asynchronous processes
Speed independence
Fair scheduling
Mutual exclusion
Deadlock prevention
Process communication
Hierarchical structure
Extensible system kernels

Programming Language Concepts

Concurrent statements
Critical regions
Semaphores
Message buffers
Conditional critical regions
Secure queueing variables
Monitors
Synchronous message communication
Remote procedure calls
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Classic Papers

1. E. W. Dijkstra, Cooperating Sequential Processes (1965).

2. E. W. Dijkstra, The Structure of the THE Multiprogramming System
(1968).

3. P. Brinch Hansen, RC 4000 Software: Multiprogramming System (1969).

4. E. W. Dijkstra, Hierarchical Ordering of Sequential Processes (1971).

5. C. A. R. Hoare, Towards a Theory of Parallel Programming (1971).

6. P. Brinch Hansen, An Outline of a Course on Operating System
Principles (1971).

7. P. Brinch Hansen, Structured Multiprogramming (1972).

8. P. Brinch Hansen, Shared Classes (1973).

9. C. A. R. Hoare, Monitors: An Operating System Structuring Concept
(1974).

10. P. Brinch Hansen, The Programming Language Concurrent Pascal (1975).

11. P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal
Program (1976).

12. P. Brinch Hansen, The Solo Operating System: Processes, Monitors and
Classes (1976).

13. P. Brinch Hansen, Design Principles (1977).

14. E. W. Dijkstra, A Synthesis Emerging? (1975).

15. C. A. R. Hoare, Communicating Sequential Processes (1978).

16. P. Brinch Hansen, Distributed Processes: A Concurrent Programming
Concept (1978).

17. P. Brinch Hansen, Joyce—A Programming Language for Distributed
Systems (1987).

18. P. Brinch Hansen, SuperPascal: A Publication Language for Parallel
Scientific Computing (1994).

19. P. Brinch Hansen, Efficient Parallel Recursion (1995).

After following this selection procedure rigorously, I was surprised to see that
every single paper turned out to have been written by either Edsger Dijkstra,
Tony Hoare or me. In retrospect, this was, perhaps, not so surprising.

In Judy Bishop’s (1986) view:

The swing away from assembly language which gained genuine mo-
mentum during the seventies was slow to affect the area of concur-
rent systems—operating systems, embedded control systems and the
like. What happened was that three people—Edsger Dijkstra, Tony
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Hoare and Per Brinch Hansen—independently developed key abstrac-
tions which were taken up by researchers worldwide, realized in exper-
imental languages, reported on, adapted and refined. In this way, the
problems of concurrency could be expressed in well understood nota-
tion, and solutions and principles gradually evolved.

To produce an anthology of reasonable size (about 500 pages) I omitted:

• Subsequent work that built on the seminal papers without adding any-
thing fundamentally new.

• Survey papers and assessments of ideas.

• Implementation details (except in outline).

• Testing, verification, and formal theory.

• Functional multiprogramming and data parallel languages.

These guidelines eliminated many valuable contributions to concurrent pro-
gramming (as well as two dozen of my own papers). Some of them are listed
as recommended further reading in the bibliography at the end of this essay.

PART I CONCEPTUAL INNOVATION

It is difficult for students today to imagine how little anyone knew about
systematic programming in the early 1960s. Let me illustrate this by telling
you about my first modest experience with multiprogramming.

In 1963 I graduated from the Technical University of Denmark without
any programming experience (it was not yet being taught). There were
(as far as I remember) no textbooks available on programming languages,
compilers or operating systems.

After graduating I joined the Danish computer company Regnecentralen.
Working on a Cobol compiler project, headed by Peter Naur and Jørn
Jensen, I taught myself to program.

In 1966 Peter Kraft and I were asked to design a real-time system for
supervising a large ammonia nitrate plant in Poland. A small computer
would be used to perform a fixed number of cyclical tasks simultaneously.
These tasks would share data tables and peripherals. Since plant operators
could change the frequencies of individual tasks (and stop some of them
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indefinitely), we could not make any assumptions about the relative (or
absolute) speeds of the tasks.

It was obvious that we needed multiprogramming with process synchro-
nization. But what kind of synchronization?

A common technique at the time was to suspend a process in a queue until
it was resumed by another process. The trouble was that resumption had no
effect if the queue was empty. This happened if resumption was attempted
before a process was suspended. (This pitfall reminds me of a mailman who
throws away your letters if you are not at home when he attempts to deliver
them!)

This mechanism is unreliable because it makes a seemingly innocent as-
sumption about the relative timing of parallel events: A process must never
attempt to resume another process that is not suspended. However, since
the timing of events is unpredictable in a real-time system, this would have
been a disastrous choice for our real-time system.1

Regnecentralen had no experience with multiprogramming. Fortunately,
Edsger Dijkstra was kind enough to send me a copy of his 1965 monograph
“Cooperating Sequential Processes,” with a personal dedication: “Especially
made for graceful reading!” (I still have it.)

Using Dijkstra’s semaphores, Peter Kraft, Charles Simonyi and I were
able to implement the RC 4000 real-time control system on the prototype of
Regnecentralen’s RC 4000 computer with only 4K words of memory (without
a drum or disk) (Brinch Hansen 1967a, 1967b).

1 Cooperating Sequential Processes

The first classic is one of the great works in computer programming:

E. W. Dijkstra, Cooperating Sequential Processes (1965)

Here Dijkstra lays the conceptual foundation for abstract concurrent pro-
gramming. He begins by making the crucial assumption about speed inde-
pendence:

We have stipulated that processes should be connected loosely; by this
we mean that apart from the (rare) moments of explicit intercommu-
nication, the individual processes themselves are to be regarded as

1Around 1965 IBM’s PL/I language included queueing variables of this kind known as
events. Surprisingly, the suspend and resume primitives are also included in the recent
Java language (Doug Lea 1997).
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completely independent of each other. In particular, we disallow any
assumption about the relative speeds of the different processes.

Indivisible operations were well-known in multiprogramming systems, in
the form of supervisor calls (Kilburn 1961). Dijkstra’s contribution was to
make explicit assumptions about these critical sections (as he calls them).2

For pedagogical reasons, Dijkstra first attempts to program critical sec-
tions using assignments and inspection of simple variables only.

Through a carefully presented sequence of rejected solutions, Dijkstra
arrives at the following correctness criteria for cyclical processes cooperating
by means of common variables and critical sections:

1. Mutual exclusion: “At any moment at most one of the processes is engaged
in its critical section.”

2. Fairness: “The decision which of the processes is the first to enter its critical
section cannot be postponed to eternity.”

3. Speed independence: “Stopping a process in its ‘remainder of cycle’ [that is,
outside its critical region] has no effect upon the others.”

The Dutch mathematician T. J. Dekker found a general solution to
the mutual exclusion problem without synchronizing primitives. For single-
processor systems, I have always viewed this as an ingenious, academic ex-
ercise. Computer designers had solved the problem (in a restricted way) by
the simple technique of disabling interrupts.

As a more realistic solution, Dijkstra introduces binary semaphores, which
make the mutual exclusion problem trivial.3

Using general semaphores (due to Carel Scholten), Dijkstra implements
message communication through a bounded buffer.4 He achieves a pleasing
symmetric behavior of communicating processes by viewing senders as pro-
cesses that consume empty buffer slots and produce full slots. Similarly,
receivers consume full slots and produce empty ones.

Dijkstra also presents an ingenious method of deadlock prevention, known
as the banker’s algorithm.

2Hoare (1971) renamed them critical regions.
3Dijkstra used Dutch acronyms, P and V, for the semaphore operations. Being allergic

to acronyms in any language, I renamed them wait and signal (Brinch Hansen 1971a).
4The bounded buffer is used as a programming example throughout this essay.
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begin integer number of queuing portions,

number of empty positions,

buffer manipulation;

number of queuing portions:= 0;

number of empty positions:= N;

buffer manipulation:= 1;

parbegin

producer: begin

again 1: produce next portion;

P(number of empty positions);

P(buffer manipulation);

add portion to buffer;

V(buffer manipulation);

V(number of queuing portions);

goto again 1

end;

consumer: begin

again 2: P(number of queuing portions);

P(buffer manipulation);

take portion from buffer;

V(buffer manipulation);

V(number of empty positions);

process portion taken;

goto again 2

end

parend

end

The Bounded Buffer with Semaphores

In the 1960s Alan Perlis noticed that Regnecentralen’s compiler group
discussed programming problems by writing Algol 60 statements on a black-
board. This was unusual at a time when systems programs were still being
written in assembly language.

Edsger Dijkstra was also firmly in the Algol 60 tradition (Naur 1960).
He writes parallel algorithms in Algol extended with a parallel statement:5

parbegin S1; S2; . . . Sn parend

As Dijkstra defines it:

Initiation of a parallel compound implies simultaneous initiation of all

5Also known as a concurrent statement (Brinch Hansen 1972b).
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its constituent statements, its execution is completed after the comple-
tion of the execution of all its constituent statements.

This modest proposal is one of the first published examples of an abstract
programming notation for concurrent processes.

2 THE Multiprogramming System

Dijkstra demonstrated the depth of his ideas in the construction of an elegant
model operating system:

E. W. Dijkstra, The Structure of the THE Multiprogramming System (1968)

This was a spooling system that compiled and executed a stream of Algol
60 programs with paper tape input and printer output. It used software-
implemented demand paging between a 512K word drum and a 32K word
memory. There were five user processes and ten input/output processes,
one for each peripheral device. The system used semaphores for process
synchronization and communication.

Dijkstra’s multiprogramming system illustrated the conceptual clarity
of hierarchical ordering. His system consisted of several program layers,
which gradually transform the physical machine into a more pleasant abstract
machine:

Level 0: Processor allocation.
Level 1: Demand paging (“segment controller”).
Level 2: Operator console (“message interpreter”).
Level 3: Virtual devices (“input/output streams”).
Level 4: User processes.
Level 5: System operator.

Apart from the operator, these program layers could be designed and tested
one at a time.

This short paper concentrates on Dijkstra’s most startling claim:

We have found that it is possible to design a refined multiprogramming
system in such a way that its logical soundness can be proved a priori
and its implementation can admit exhaustive testing. The only errors
that showed up during testing were trivial coding errors . . . the resulting
system is guaranteed to be flawless.

The hierarchical structure was used to prove the following properties of
harmoniously cooperating processes:
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1. “Although a process performing a task may in so doing generate a finite
number of tasks for other processes, a single initial task cannot give rise to
an infinite number of task generations.”

2. “It is impossible that all processes have returned to their homing position
while somewhere in the system there is still pending a generated but unac-
cepted task.”

3. “After the acceptance of an initial task all processes eventually will be (again)
in their homing position.”

Software managers continue to believe that software design is based on
a magical discipline, called “software engineering,” which can be mastered
by average programmers. Dijkstra explained that the truth of the matter is
simply that

the intellectual level needed for system design is in general grossly un-
derestimated. I am convinced more than ever that this type of work is
very difficult, and that every effort to do it with other than the best
people is doomed to either failure or moderate success at enormous
expense.

Nico Habermann (1967), Edsger Dijkstra (1971), Coen Bron (1972) and
Mike McKeag (1976) described the THE system in more detail.

3 RC 4000 Multiprogramming System

In 1974 Alan Shaw wrote:

There exist many approaches to multiprogramming system design, but
we are aware of only two that are systematic and manageable and at
the same time have been validated by producing real working operating
systems. These are the hierarchical abstract machine approach devel-
oped by Dijkstra (1968a) and the nucleus methods of Brinch Hansen
(1969) . . . The nucleus and basic multiprogramming system for the RC
4000 is one of the most elegant existing systems.

The RC 4000 multiprogramming system was not a complete operating
system, but a small kernel upon which operating systems for different pur-
poses could be built in an orderly manner:

P. Brinch Hansen, RC 4000 Software: Multiprogramming System (1969)
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The kernel provided the basic mechanisms for creating a tree of parallel
processes that communicated by messages. Jørn Jensen, Søren Lauesen and
I designed it for Regnecentralen’s RC 4000 computer. We started working
on the system in the fall of 1967. A well-documented reliable version was
running in the spring of 1969.

Before the RC 4000 multiprogramming system was programmed, I de-
scribed a design philosophy that drastically generalized the concept of an
operating system (Brinch Hansen 1968):

The system has no built-in assumptions about program scheduling and
resource allocation; it allows any program to initiate other programs in
a hierarchal manner.6 Thus, the system provides a general frame[work]
for different scheduling strategies, such as batch processing, multiple
console conversation, real-time scheduling, etc.

This radical idea was probably the most important contribution of the RC
4000 system to operating system technology. If the kernel concept seems
obvious today, it is only because it has passed into the general stock of
knowledge about system design. It is now commonly referred to as the
principle of separation of mechanism and policy (Wulf 1974).

The RC 4000 system was also noteworthy for its message communication.
Every communication consisted of an exchange of a message and an answer
between two processes. This protocol was inspired by an early decision to
treat peripheral devices as processes, which receive input/output commands
as messages and return acknowledgements as answers. In distributed systems
this form of communication is now known as remote procedure calls.

The system also enabled a server process to be engaged in nondetermin-
istic communication with several client processes at a time. This was known
as a conversational process.

The RC 4000 system was programmed in assembly language. As a purely
academic exercise for this essay, I have used an informal Pascal notation
(Wirth 1971) to outline a conversational process that implements a bounded
buffer used by client processes. In retrospect, such a process is equivalent
to the “secretary” concept that Dijkstra (1971) would sketch two years later
(in very preliminary form).

In the RC 4000 system, the initial process was a conversational process
that spawned other processes in response to messages from console processes.

6Here I obviously meant “processes” rather than “programs.”
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{ The buffer process receives messages from client processes

requesting it to accept or return data items. The messages

arrive in buffer elements, which are linked to a message

queue. The buffer process receives a message in a buffer

element and uses the same buffer element to return an

answer to the client process. }

number of items := 0;

{ Inspect the message queue from the beginning }

current buffer := nil;

cycle

{ Postpone receipt of the current buffer element (if any) }

previous buffer := current buffer;

{ Wait for the next buffer element in the queue (which

may already have arrived) }

wait event(previous buffer, current buffer);

case current buffer.request of

accept item:

if number of items < N then

begin

take a data item from the current buffer element

and store it within the buffer process;

number of items := number of items + 1;

{ Remove the current buffer element from the queue }

get event(current buffer);

{ Use the same buffer element to return an

acknowledgment to the client process }

send answer(acknowledgment, current buffer);

{ Reinspect the queue from the beginning }

current buffer := nil;

end;

return item:

if number of items > 0 then

begin

select a data item stored within the buffer process;

number of items := number of items - 1;

{ Remove the current buffer element from the queue }

get event(current buffer);

{ Use the same buffer element to return the

data item to the client process }

send answer(data item, current buffer);

{ Reinspect the queue from the beginning }

current buffer := nil;

end

end

end

The Bounded Buffer as a Conversational Process
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If this basic operating system temporarily was unable to honor a request, it
would postpone the action by delaying its receipt of the message. In the
meantime, it would attempt to serve other clients.

According to Søren Lauesen (1975):

The RC 4000 software was extremely reliable. In a university envi-
ronment, the system typically ran under the simple operating system
for three months without crashes . . . The crashes present were possibly
due to transient hardware errors.

When the RC 4000 system was finished I described it in a 5-page journal
paper (Brinch Hansen 1970). I then used this paper as an outline of the
160-page system manual (Brinch Hansen 1969) by expanding each section of
the paper.7 The third article in this book is a reprint of the most important
part of the original manual, which has been out of print for decades.8

As usual, Niklaus Wirth (1969) immediately recognized the advantages
and limitations of the system:

I am much impressed by the clarity of the multiple process concept, and
even more so by the fact that a computer manufacturer adopts it as the
basis of one of his products. I have come to the same conclusion with
regard to semaphores, namely that they are not suitable for higher level
languages. Instead, the natural synchronization events are exchanges
of messages.

What does not satisfy me completely at your scheme is that a specific
mechanism of dynamic buffer space allocation is inextricably connected
with the problem of process synchronization, I would prefer a scheme
where the programmer himself declares such buffers in his programs
(which of course requires an appropriate language).

4 Hierarchical Ordering of Sequential Processes

E. W. Dijkstra, Hierarchical Ordering of Sequential Processes (1971)

7In May 1968 I outlined these ideas in a panel discussion on Operating Systems at
the Tenth Anniversary Algol Colloquium in Zurich, Switzerland. The panelists included
Edsger Dijkstra and Niklaus Wirth, both of whom received copies of the RC 4000 system
manual in July 1969.

8My operating system book (Brinch Hansen 1973b) includes a slightly different version
of the original manual supplemented with abstract (untested) Pascal algorithms.
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With deep insight, Dijkstra explains his layered approach to operating sys-
tem design in greater detail. This time he proves the correctness of critical
sections and the bounded buffer implemented with semaphores. He also in-
troduces and solves the scheduling problem of the dining philosophers, which
poses subtle dangers of deadlock and unfairness (described in flamboyant ter-
minology as “deadly embrace” and “starvation”).

The THE multiprogramming system was implemented in assembly lan-
guage without memory protection. Every process could potentially access
and change any variable in the system. However, using well-defined pro-
gramming rules and systematic testing, Dijkstra and his students were able
to verify that all processes cooperated harmoniously.

At the end of the paper, Dijkstra briefly sketches an alternative scenario
of secretaries and directors:9

Instead of N sequential processes cooperating in critical sections via
common variables, we take out the critical sections and combine them
into a N+1st process, called a “secretary”; the remaining N processes
are called “directors”. Instead of N equivalent processes, we now have
N directors served by a common secretary.

What used to be critical sections in the N processes are in the directors
“calls upon the secretary”.

A secretary presents itself primarily as a bunch of non-reentrant rou-
tines with a common state space.

When a director calls a secretary . . . the secretary may decide to keep
him asleep, a decision that implies that she should wake him up in one
of her later activities. As a result the identity of the calling program
cannot remain anonymous as in the case of the normal subroutine. The
secretaries must have variables of type “process identity”.

In general, a director will like to send a message to his secretary when
calling her . . . and will require an answer back from his secretary when
she has released his call.

On the basis of this proposal, Greg Andrews (1991) credits Dijkstra with
being “the first to advocate using data encapsulation to control access to
shared variables in a concurrent program.” Twenty-five years ago, I repeated
the prevailing opinion that “Dijkstra (1971) suggested the idea of monitors”
(Brinch Hansen 1975a). Today, after reading the classic papers again, I find
this claim (which Dijkstra never made) debatable.

9The gender bias in the terminology was not considered unusual thirty years ago.
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Dijkstra had implemented his multiprogramming system as cooperating
processes communicating through common variables in unprotected memory.
From his point of view, the idea of combining critical regions and common
variables into server processes (“secretaries”) was a new approach to resource
scheduling.

However, this idea was obvious to the designers of the RC 4000 mul-
tiprogramming system, based, as it was, on a paradigm of processes with
disjoint memories communicating through messages only. There was simply
no other way of using the RC 4000 system!

The “secretaries,” which Dijkstra described informally, had already been
implemented as “conversational processes” in the RC 4000 system. Mike
McKeag (1972) demonstrated the similarity of these ideas by using the RC
4000 message primitives to outline simple secretaries for well-known syn-
chronization problems, such as the bounded buffer, the dining philosophers,
and a readers and writers problem.

I am not suggesting that the RC 4000 primitives would have been a good
choice for a programming language. They would not. They lacked a crucial
element of language design: notational elegance. And I certainly did not
view conversational processes (or “secretaries”) as the inspiration for the
future monitor concept.

I am simply pointing out that the idea of a resource manager was already
known by 1969, in the form of a basic monitor, invoked by supervisor calls,
or a conversational process (a “secretary”), invoked by message passing.

What was new, was the goal of extending programming languages with
this paradigm (Discussions 1971). And that had not been done yet.

PART II PROGRAMMING LANGUAGE CONCEPTS

The invention of precise terminology and notation plays a major role not
only in the sciences but in all creative endeavors.

When a programming concept is understood informally it would seem to
be a trivial matter to invent a programming notation for it. But in practice
this is hard to do. The main problem is to replace an intuitive, vague idea
with a precise, unambiguous definition of its meaning and restrictions. The
mathematician George Pólya (1957) was well aware of this difficulty:

An important step in solving a problem is to choose the notation. It
should be done carefully. The time we spend now on choosing the
notation may well be repaid by the time we save later by avoiding
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hesitation and confusion. Moreover, choosing the notation carefully,
we have to think sharply of the elements of the problem which must be
denoted. Thus, choosing a suitable notation may contribute essentially
to understanding the problem.

A programming language concept must represent a general idea that is
used often. Otherwise, it will just increase the complexity of the language at
no apparent gain. The meaning and rules of a programming concept must be
precisely defined. Otherwise, the concept is meaningless to a programmer.
The concept must be represented by a concise notation that makes it easy
to recognize the elements of the concept and their relationships. Finally, it
should be possible by simple techniques to obtain a secure, efficient imple-
mentation of the concept. A compiler should be able to check that the rules
governing the use of the concept are satisfied, and the programmer should
be able to predict the speed and size of any program that uses the concept
by means of performance measurements of its implementation.

As long as nobody studies your programs, their readability may not seem
to be much of a problem. But as soon as you write a description for a wider
audience, the usefulness of an abstract notation that suppresses irrelevant de-
tail becomes obvious. So, although Dijkstra’s THE system was implemented
in assembly language, he found it helpful to introduce a programming nota-
tion for parallel statements in his description (Dijkstra 1965).

5 Conditional Critical Regions

In the fall of 1971, Tony Hoare enters the arena at a Symposium on Operating
Systems Techniques at Queen’s University of Belfast:

C. A. R. Hoare, Towards a Theory of Parallel Programming (1971)

This is the first notable attempt to extend programming languages with ab-
stract features for parallel programming. Hoare points out that the search for
parallel language features is “one of the major challenges to the invention,
imagination and intellect of computer scientists of the present day.”

Hoare boldly formulates design principles for parallel programming lan-
guages:

1. Interference control. The idea of preventing time-dependent errors by
compile-time checking was novel at a time when multiprogramming systems
relied exclusively on run-time checking of variable access:
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Parallel programs are particularly prone to time-dependent errors, which
either cannot be detected by program testing nor by run-time checks.
It is therefore very important that a high-level language designed for
this purpose should provide complete security against time-dependent
errors by means of a compile-time check.

2. Disjoint processes. Dijkstra’s parallel statement {Q1//Q2//. . .//Qn}
is used to indicate that the program statements Q1, Q2, . . ., Qn define disjoint
processes to be executed in parallel. According to Hoare:

It is expected that the compiler will check the disjointness of the pro-
cesses by ensuring that no variable subject to change in any of the Qj
is referred to at all in any Qi for i6=j. Thus it can be guaranteed by a
compile-time check that no time-dependent errors could ever occur at
run time.

3. Resources. The programming language Pascal is extended with a
notation indicating that a variable r of some type T is a resource shared
by parallel processes:

r: T; . . . {resource r; Q1//Q2//. . .//Qn}

4. Critical regions. Inside the process statements Q1, Q2, . . ., Qn a
critical region C on the resource r is expressed by the structured notation

with r do C

A compiler is expected to check that the resource is neither used nor referred
to outside its critical regions.

5. Conditional critical regions. Sometimes the execution of a critical
region C must be delayed until a resource r satisfies a condition, defined by
a Boolean expression B:

with r when B do C

The conditional form of a critical region is the most original language feature
proposed in Hoare’s paper.10

10Simula I and SOL also included statements for waiting on Boolean conditions (later
removed from Simula). However, these were simulation languages without any concept (or
need) of critical regions (Dahl 1963, Knuth 1964).
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B: record inpointer, outpointer, count: Integer;

buffer: array 0...N-1 of T end;

with B do

begin inpointer:= 0; outpointer:= 0;

count:= 0;

end;

{resource B;

...

with B when count < N do

begin buffer[inpointer]:= next value;

inpointer:= (inpointer + 1) mod N;

count:= count + 1

end

//

...

with B when count > 0 do

begin this value:= buffer[outpointer];

outpointer:= (outpointer + 1) mod N;

count:=count - 1

end

}

The Bounded Buffer with Conditional Critical Regions

Hoare emphasized that “The solutions proposed in this paper cannot
claim to be final, but it is believed that they form a sound basis for further
advance.”

At the Belfast symposium (Brinch Hansen 1971a), I expressed some reser-
vations from a software designer’s point of view:

The conceptual simplicity of simple and conditional critical regions
is achieved by ignoring the sequence in which waiting processes enter
these regions. This abstraction is unrealistic for heavily used resources.
In such cases, the operating system must be able to identify competing
processes and control the scheduling of resources among them. This
can be done by means of a monitor—a set of shared procedures which
can delay and activate individual processes and perform operations on
shared data.

Hoare’s response (Discussions 1971):

As a result of discussions with Brinch Hansen and Dijkstra, I feel that
this proposal is not suitable for operating system implementation . . .
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My proposed method encourages the programmer to ignore the ques-
tion of which of several outstanding requests for a resource should be
granted.

A year ago I would have said that this was a very serious criticism
indeed of a language proposal that it encouraged the programmer to
ignore certain essential problems. I now believe that a language should
be usable at a high level of abstraction, and at high levels of abstraction
it is an excellent thing to encourage the programmer to ignore certain
types of problems, in particular scheduling problems.

Hoare’s paper was as an eye-opener for me: It was my introduction to
the difficult art of language design. The idea of checking interference during
scope analysis struck me as magical!

Years later, I included variants of conditional critical regions in two pro-
gramming languages, Distributed Processes (Brinch Hansen 1978) and Edi-
son (Brinch Hansen 1981).

6 Operating System Principles

Abstract concurrent programming had an immediate and dramatic impact
on our fundamental understanding of computer operating systems.

The implementation techniques of operating systems were reasonably
well understood in the late 1960s. But most systems were too large and
poorly described to be studied in detail. All of them were written either in
assembly language or in sequential programming languages extended with
assembly language features. Most of the literature on operating systems
emphasized low-level implementation details of particular systems rather
than general concepts. The terminology was unsystematic and incomplete
(Brinch Hansen 2000).

Before the invention of abstract concurrent programming, it was im-
practical to include algorithms in operating system descriptions. Technical
writers mixed informal prose with unstructured flowcharts and complicated
pictures of linked lists and state transitions.11

In its Cosine Report (1971), the National Academy of Engineering sum-
marized the state of affairs at the time [with emphasis added]:

11See, for example, IBM (1965), Elliott Organick (1972), and Stuart Madnick (1974).
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The subject of computer operating systems, if taught at all, is typi-
cally a descriptive study of some specific operating system, with little
attention being given to emphasizing the relevant basic concepts and
principles. To worsen matters, it has been difficult for most university
departments to develop a new course stressing operating systems prin-
ciples . . . There are essentially no suitable textbooks on the subject.

I consider myself lucky to have started in industry. The RC 4000 project
convinced me that a fundamental understanding of operating systems would
change computer programming radically. I was so certain of this that I
decided to leave industry and become a researcher.

In November 1970 I became a research associate at Carnegie-Mellon Uni-
versity, where I wrote the first comprehensive textbook on operating system
principles:

P. Brinch Hansen, An Outline of a Course on Operating System Principles (1971)

While writing the book I reached the conclusion that operating systems are
not radically different from other programs. They are just large programs
based on the principles of a more fundamental subject: parallel programming.

Starting from a concise definition of the purpose of an operating system,
I divided the subject into five major areas. First, I presented the principles of
parallel programming as the essence of operating systems. Then I described
processor management, memory management, scheduling algorithms and
resource protection as techniques for implementing parallel processes.

I defined operating system concepts by abstract algorithms written in Pas-
cal extended with a notation for structured multiprogramming. My (unimple-
mented) programming notation included concurrent statements, semaphores,
conditional critical regions, message buffers, and monitors. These program-
ming concepts are now discussed in all operating system texts.

The book includes a concise vocabulary of operating system terminology,
which is used consistently throughout the text. The vocabulary includes the
following terms:

concurrent processes, processes that overlap in time; concurrent
processes are called disjoint if each of them only refers to pri-
vate data; they are called interacting if they refer to common
data.

synchronization, a general term for any constraint on the order in
which operations are carried out; a synchronization rule can, for
example, specify the precedence, priority, or mutual exclusion in
time of operations.
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monitor, a common data structure and a set of meaningful operations
on it that exclude one another in time and control the synchroniza-
tion of concurrent processes.

My book Operating System Principles was published in July 1973. Peter
Naur (1975) reviewed it:

The presentation is generally at a very high level of clarity, and gives
evidence of deep insight. In pursuing his general aim, the establish-
ment of a coherent set of basic principles for the field, the author is
highly successful. The principles are supported by algorithms written
in Pascal, extended where necessary with carefully described primitives.
Close attention is paid to the thorny question of terminology.

In my outline of the book I made a prediction that would guide my future
research:

So far nearly all operating systems have been written partly or com-
pletely in machine language. This makes them unnecessarily difficult
to understand, test and modify. I believe it is desirable and possible
to write efficient operating systems almost entirely in a high-level lan-
guage. This language must permit hierarchal structuring of data and
program, extensive error checking at compile time, and production of
efficient machine code.

7 Structured Multiprogramming

P. Brinch Hansen, Structured Multiprogramming (1972)

The conditional critical region, proposed by Hoare (1971), had minor nota-
tional limitations and a potentially serious implementation problem:

1. A shared variable is declared as both a variable and a resource. The
textual separation of these declarations can be misused to treat the same
variable as a scheduled resource in some contexts and as an ordinary variable
in other contexts. This would enable a process to refer directly to a variable
while another process is within a “critical” region on the same variable.

I closed this loophole by using a single declaration to introduce a shared
variable (of some type T ):

var v: shared T
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2. When a process is delayed by a Boolean expression without side ef-
fects, it cannot indicate the urgency of its request to other processes. This
complicates the programming of priority scheduling.

It was an obvious remedy to permit a conditional await statement to
appear anywhere within a critical region:

region v do
begin . . . await B; . . . end

3. The major concern was that it did not seem possible to implement con-
ditional critical regions efficiently. The root of the problem is the unbounded
reevaluation of Boolean expressions until they are true.

Many years later, Charles Reynolds (1993) asked:

How does a process wait for some condition to be true? It seems to me
that the critical insight occurred in realizing that the responsibility for
determining an awaited event has occurred must lie with the applica-
tion programmer and not with the underlying run-time support. The
awakening of processes awaiting events is part of the application algo-
rithm and must be indicated by explicit announcement of the events
by means of “signal” or “cause” commands present in the applica-
tion algorithm. This idea is clearly present as early as Brinch Hansen
(1972b).

I suggested that programmers should be able to associate secure queueing
variables with shared data structures and control the transfers of processes
to and from them.

In my proposal, the declaration

var e: event v;

associates a queuing variable e of type event with a shared variable v.
A process can leave a critical region associated with v and join the queue

e by executing the standard procedure

await(e)
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var B: shared record
buffer: array 0..max−1 of T;
p, c: 0..max−1;
full: 0..max;
nonempty, nonfull: event B;

end;

procedure send(m: T);
region B do
begin

while full = max do await(nonfull);
buffer[p] := m;
p := (p + 1) mod max;
full := full + 1;
cause(nonempty);

end

procedure receive(var m: T);
region B do
begin

while full = 0 do await(nonempty);
m := buffer[c];
c := (c + 1) mod max;
full := full − 1;
cause(nonfull);

end

The Bounded Buffer with Secure Events

Another process can enable all processes in the queue e to reenter their
critical regions by executing the standard procedure

cause(e)

If several processes are waiting in the same queue, a cause operation on the
queue will (eventually) enable all of them to resume their critical regions
(one at a time). Mutual exclusion is still maintained, and processes waiting
to resume critical regions have priority over processes that are waiting to
enter the beginning of critical regions.

In this situation, a resumed process may find that another process has
made its scheduling condition B false again. Consequently, processes must
use waiting loops of the form12

12Mesa (Lampson 1980) and Java (Lea 1997) would also require waiting loops on Boolean
conditions.
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while not B do await(e)

My proposal was completely unrelated to the unpredictable event queues
of the 1960s, which caused the programmer to lose control over schedul-
ing. The crucial difference was that the new queues were associated with
a shared variable, so that all scheduling operations were mutually exclusive
operations. The programmer could control the scheduling of processes to
any degree desired by associating each queue with a group of processes or an
individual process.

The idea of associating secure scheduling queues with a shared data struc-
ture to enable processes to delay and resume critical regions has been used
in all monitor proposals. In an unpublished draft, Hoare (1973a) proposed
wait and signal operations on condition variables, which, he says, “are very
similar to Brinch Hansen’s await and cause operations.” In the following I
will call all these kinds of queues secure queueing variables.

Secure queueing variables were an efficient solution to the problem of
process scheduling within critical regions. However, like semaphores, queue-
ing variables always struck me (and others) as somewhat too primitive for
abstract concurrent programming. To this day nobody has found a better
compromise between notational elegance and efficient implementation. Still,
I cannot help feeling that we somehow looked at the scheduling problem
from the wrong point of view.

We now had all the pieces of the monitor puzzle, and I had adopted a
programming style that combined shared variables, critical regions, secure
queueing variables, and procedures in a manner that closely resembled mon-
itors. But we still did not have an abstract monitor notation.

8 Shared Classes

The missing element in conditional critical regions was a concise represen-
tation of data abstraction. The declaration of a resource and the operations
associated with it were not combined into a single syntactical form, but were
distributed throughout the program text.

In the spring of 1972 I read two papers by Dahl (1972) and Hoare (1972)
on the class concept of the programming language Simula 67. Although
Simula is not a concurrent programming language, it inspired me in the
following way: So far I had thought of a monitor as a program module that
defines all operations on a single instance of a data structure. From Simula
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I learned to regard a program module as the definition of a class of data
structures accessed by the same procedures.

This was a moment of truth for me. Within a few days I wrote a chapter
on resource protection for my operating system book:

P. Brinch Hansen, Shared Classes (1973)

I proposed to represent monitors by shared classes and pointed out that re-
source protection and type checking are part of the same problem: to verify
automatically that all operations on data structures maintain certain prop-
erties (called invariants).

My book includes a single monitor for a bounded buffer. The shared class
defines a data structure of type B, two procedures that can operate on the
data structure, and a statement that defines its initial state.

shared class B =
buffer: array 0..max−1 of T;
p, c: 0..max−1;
full: 0..max;

procedure send(m: T);
begin

await full < max;
buffer[p] := m;
p := (p + 1) mod max;
full := full + 1;

end

procedure receive(var m: T);
begin

await full > 0;
m := buffer[c];
c := (c + 1) mod max;
full := full − 1;

end

begin p := 0; c := 0; full := 0 end

The Bounded Buffer as a Shared Class

The shared class notation permits multiple instances of the same monitor
type. A buffer variable b of type B is declared as

var b: B

Upon entry to the block in which the buffer variable is declared, storage is
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allocated for its data components, and the buffer is initialized by executing
the statement at the end of the class definition.

Send and receive operations on a buffer b are denoted

b.send(x) b.receive(y)

A shared class is a notation that explicitly restricts the operations on an
abstract data type and enables a compiler to check that these restrictions are
obeyed. It also indicates that all operations on a particular instance must
be executed as critical regions. In short, a shared class is a monitor type.

My decision to use await statements in the first monitor proposal was a
matter of taste. I might just as well have used secure queueing variables.

You might well ask why after inventing shared classes with secure queue-
ing variables I published my original ideas in a textbook, instead of a pro-
fessional journal. Well, I was young and idealistic. I felt that my first book
should include at least one original idea. It did not occur to me that re-
searchers rarely look for original ideas in undergraduate textbooks.13

Why didn’t I publish a tutorial on the monitor concept? My professional
standards were deeply influenced by the Gier Algol compiler (Naur 1963), the
THE multiprogramming system (Dijkstra 1968), the RC 4000 multiprogram-
ming system (Brinch Hansen 1969), and the Pascal compiler (Wirth 1971).
Every one of these systems had been implemented before it was described in
a professional journal.

Since this was my standard of software research, I decided to implement
monitors in a programming language before writing more about it.

9 Monitor Papers

In his first paper on monitors, Hoare (1973b) used my shared classes and
secure queueing variables (with minor changes) to outline an unimplemented
paging system. A year later, he published a second paper on monitors (Hoare
1974b). He acknowledged that “This paper develops Brinch Hansen’s con-
cept of a monitor.”

Avi Silberschatz (1992) concluded that “The monitor concept was devel-
oped by Brinch Hansen (1973b). A complete description of the monitor was
given by Hoare (1974b).”

13I did, however, send the complete manuscript of Operating System Principles, which
included my monitor concept, to Edsger Dijkstra and Tony Hoare in May 1972 (Horning
1972).
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C. A. R. Hoare, Monitors: An Operating System Structuring Concept (1974)

Hoare’s contribution to the monitor concept was to refine the rules of process
resumption:

1. He replaced the “resume-all, one-at-a-time” policy of secure event vari-
ables with the more convenient “first-come, first-served” policy of con-
dition variables.

2. He decreed “that a signal operation be followed immediately by re-
sumption of a waiting program, without possibility of an intervening
procedure call from yet a third program.” This eliminated the need
for waiting loops.

3. He advocated Ole-Johan Dahl’s simplifying suggestion that a signal
operation should terminate a monitor call (Hoare 1973c).

bounded buffer: monitor
begin buffer: array 0..N−1 of portion;

lastpointer: 0..N−1;
count: 0..N;
nonempty, nonfull: condition;

procedure append(x: portion);
begin if count = N then nonfull.wait;

note 0 ≤ count < N;
buffer[lastpointer] := x;
lastpointer := lastpointer ⊕ 1;
count := count + 1;
nonempty.signal

end append;
procedure remove(result x: portion);

begin if count = 0 then nonempty.wait;
note 0 < count ≤ N;
x := buffer[lastpoint ª count];
count := count − 1;
nonfull.signal

end remove;
count := 0; lastpointer := 0

end bounded buffer;

The Bounded Buffer as a Monitor

This influential paper deserves a place in the history of concurrent pro-
gramming as the first monitor tutorial:
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1. The monitor concept is illustrated by solutions to familiar programming
exercises: a single resource scheduler, a bounded buffer, an alarm clock,
a buffer pool, a disk head optimizer, and a readers and writers problem.

2. As an academic exercise he presents a semaphore implementation of
monitors. (In practice, monitors would, of course, be implemented by
uninterruptible operations in assembly language.)

3. Finally, he defines simple proof rules for condition variables.

PART III CONCURRENT PROGRAMMING LANGUAGES

Hoare (1974a) introduced the essential requirement that a programming lan-
guage must be secure in the following sense: A language should enable its
compiler and run-time system to detect as many cases as possible in which
the language concepts break down and produce meaningless results.14

For a parallel programming language the most important security measure
is to check that processes access disjoint sets of variables only and do not
interfere with each other in time-dependent ways.

Unless the parallel features of a programming language are secure in this
sense, the effects of parallel programs are generally both unpredictable and
time-dependent and may therefore be meaningless. This does not necessarily
prevent you from writing correct parallel programs. It does, however, force
you to use a low-level, error-prone notation that precludes effective error
checking during compilation and execution.

The only secret about secure concurrent languages was that they could be
designed at all. Once you have seen that this is possible, it is not so difficult
to invent other concurrent languages. That is why I have included only the
first secure concurrent language, Concurrent Pascal.

In the first survey paper on concurrent programming I cited 11 papers
only, written by four researchers. None of them described a concurrent pro-
gramming language (Brinch Hansen 1973e). The development of monitors
and Concurrent Pascal started a wave of research in concurrent programming
languages. A more recent survey of the field includes over 200 references to
nearly 100 languages (Bal 1989).

Concurrent Pascal had obvious limitations by today’s standards. But
in 1975 it laid the foundation for the development of secure programming
languages with abstract concepts for parallelism.

14This definition of security differs somewhat from its usual meaning of “the ability of
a system to withstand attacks from adversaries” (Naur 1974).
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10 Concurrent Pascal

On July 1, 1972, I became associate professor of computer science at Cal-
ifornia Institute of Technology. During my first academic year I prepared
three new courses and introduced Pascal on campus. These tasks kept me
busy for a while.

I also started thinking about designing a programming language with
concurrent processes and monitors. To reduce the effort, I decided to include
these concepts in an existing sequential language. Since I had used the
language in my operating system book, Pascal was an obvious choice for me.

In September 1973, I sent Mike McKeag “a copy of a preliminary working
document that describes my suggestion for an extension of Pascal with con-
current processes and monitors” (Brinch Hansen 1973d). This is the earliest
evidence of Concurrent Pascal.

By January 1975, the Concurrent Pascal compiler and its run-time sup-
port were running on a PDP 11/45 minicomputer at Caltech (Hartmann
1975, Brinch Hansen 1975f).

In May 1975, I published a paper on the new language:

P. Brinch Hansen, The Programming Language Concurrent Pascal (1975)

Concurrent Pascal extends Pascal with abstract data types known as pro-
cesses, monitors, and classes. Each type module defines the representation
and possible transformations of a single data structure. The syntax clearly
shows that each module consists of a set of variable declarations, a set of
procedures, and an initial statement.

A module cannot access the variables of another module. The compiler
uses this scope rule to detect synchronization errors before a program is ex-
ecuted. The run-time synchronization of monitor calls prevents other race
conditions.

A process can delay itself in a monitor variable of type queue. When an-
other process performs a continue operation on the same queue, the delayed
process (if any) immediately resumes execution of its monitor procedure. In
any case, the process performing the continue operation immediately returns
from its monitor procedure.

A queue is either empty or holds a single process. A multiprocess queue
can be implemented as an array of single-process queues.

As a language designer, I have always felt that one should experiment
with the simplest possible ideas before adopting more complicated ones. This
led me to use single-process queues and combine process continuation with
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type buffer =
monitor
var contents: array [1..max] of T;

head, tail, length: integer;
sender, receiver: queue;

procedure entry send(x: T);
begin

if length = max then delay(sender);
contents[tail] := x;
tail := tail mod max + 1;
length := length + 1;
continue(receiver)

end;

procedure entry receive(var x: T);
begin

if length = 0 then delay(receiver);
x := contents[head];
head := head mod max + 1;
length := length − 1;
continue(sender)

end;

begin head := 1; tail := 1; full := 0 end

The Bounded Buffer in Concurrent Pascal

monitor exit.
I felt that the merits of a signaling scheme could be established only by

designing real operating systems (but not by looking at small programming
exercises). Since Concurrent Pascal was the first monitor language, I was
unable to benefit from the practical experience of others. After designing
small operating systems, I concluded that first-in, first-out queues are indeed
somewhat more convenient to use.

In any case, the virtues of different signaling mechanisms still strike me
as being only mildly interesting. In most cases, any one of them will do,
and all of them (including my own) are slightly complicated. Fortunately,
monitors have the marvelous property of hiding the details of scheduling from
concurrent processes.

The programming tricks of assembly language were impossible in Concur-
rent Pascal: there were no typeless memory words, registers, and addresses
in the language. The programmer was not even aware of the existence of
physical processors and interrupts. The language was so secure that concur-
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rent processes ran without any form of memory protection.
The portable compiler (written in Sequential Pascal) generated platform-

independent code, which was executed by a small kernel written in assembly
language (Hartmann 1975, Brinch Hansen 1975e). The language was moved
from one computer to another by rewriting the kernel of 4K words in the
assembly language of the target computer (Brinch Hansen 1975f).15

Greg Andrews (1993) felt that:

The contribution of Concurrent Pascal was indeed that it added a new
dimension to programming languages: modular concurrency. Monitors
(and classes) were essential to this contribution. And the modulariza-
tion they introduced has greatly influenced most subsequent concurrent
language proposals.

In a later essay on language description (Brinch Hansen 1981), I said:

The task of writing a language report that explains a programming
language with complete clarity to its implementors and users may look
deceptively easy to someone who hasn’t done it before. But in reality it
is one the most difficult intellectual tasks in the field of programming.

Well, I was someone who hadn’t done it before, and the Concurrent Pascal
report (Brinch Hansen 1975d) suffered from all the problems I mentioned in
the essay. I added, “I am particularly uncomfortable with the many ad hoc
restrictions in the language.”

Ole-Johan Dahl (1993) disagreed:

I take issue with some of your reservations about Concurrent Pascal.
Of course a language built around a small number of mechanisms used
orthogonally is an ideal worth striving for. Still, when I read your
1977 book my reaction was that the art of imposing the right restric-
tions may be as important from an engineering point of view. So, here
for once was a language, beautiful by its orthogonal design, which at
the same time was the product of a competent engineer by the re-
strictions imposed in order to achieve implementation and execution
efficiency. The adequacy of the language as a practical tool has been
amply demonstrated.

15Twenty years later, the designers of the Java language resurrected the idea of platform-
independent parallel programming (Gosling 1996). Unfortunately, they replaced the secure
monitor concept of Concurrent Pascal with insecure shortcuts (Brinch Hansen 1999).
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Concurrent Pascal was followed by more than a dozen monitor languages,
listed in Brinch Hansen (1993a), among them Modula (Wirth 1977a), Pascal
Plus (Welsh 1979), and Mesa (Lampson 1980).

PART IV MODEL OPERATING SYSTEMS

By the end of 1975, I had used Concurrent Pascal to implement three small
operating systems of 600–1400 lines each:

• The single-user operating system Solo

• A job stream system

• A real-time scheduler

The development and documentation effort of each system took a few months
(or weeks) only.

11 Solo Operating System

As a realistic test of the new programming language, I used Concurrent
Pascal to program a small operating system:

P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal Program

(1976)

Solo was a portable single-user operating system for the development of
Sequential and Concurrent Pascal programs. It was implemented on a
PDP 11/45 minicomputer with removable disk packs. Every user disk was
organized as a single-level file system. The heart of Solo was a job pro-
cess that compiled and ran programs stored on the disk. Two additional
processes performed input/output spooling simultaneously.

Al Hartmann (1975) had already written the Concurrent Pascal compiler.
I wrote the operating system and its utility programs in three months. Wolf-
gang Franzen measured and improved the performance of the disk allocation
algorithm.

The Solo system demonstrated that it is possible to write small opera-
ting systems in a secure programming language without machine-dependent
features. The discovery that this was indeed possible for small operating
systems was more important (I think) than the invention of monitors.



     

THE INVENTION OF CONCURRENT PROGRAMMING 33

12 Solo Program Text

Solo was the first modular operating system implemented by means of abstract
data types (classes, monitors and processes) with compile-time checking of
access rights. The most significant contribution of Solo was undoubtedly
that the program text was short enough to be published in its entirety in a
computer journal:

P. Brinch Hansen, The Solo Operating System: Processes, Monitors and Classes

(1976)

The new programming language had a dramatic (and unexpected) impact on
my programming style. It was the first time I had programmed in a language
that enabled me to divide programs into modules that could be programmed
and tested separately. The creative part was clearly the initial selection of
modules and the combination of modules into hierarchical structures. The
programming of each module was often trivial. I soon adopted the rule that
each module should consist of no more than one page of text. Since each
module defined all the meaningful operations on a single data type (private
or shared), the modules could be studied and tested one at a time. As
a result these concurrent programs became more reliable than the hardware
they ran on.

In July 1975, when the Solo operating system had been working for three
months, I described it at the International Summer School in Marktoberdorf,
Germany. Hoare presented an outline of an unimplemented operating system
(Hoare 1976a).

At Caltech we prepared a distribution tape with the source text and
portable code of the Solo system, including the Concurrent and Sequential
Pascal compilers. The system reports were supplemented by implementation
notes (Brinch Hansen 1976b). By the spring of 1976 we had distributed the
system to 75 companies and 100 universities in 21 countries.

In a guest editorial on the Solo papers (Brinch Hansen 1976a), I wrote:

It is not uncommon for a computer scientist to make a proposal without
testing whether it is any good in practice. After spending 3 days writing
up the monitor proposal and 3 years implementing it, I can very well
understand this temptation. It is perhaps also sometimes a human
response to the tremendous pressure on university professors to get
funding and recognition fast.

Nevertheless, we must remember that only one thing counts in en-
gineering: Does it work (not “might it work” or “wouldn’t it be nice
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if it did”)? What would we think of mathematicians if most of their
papers contained conjectures only? Sometimes an educated guess can
be a great source of inspiration. But we must surely hope that the
editors of computer journals will reject most proposals until they have
been tried at least experimentally.

All reviewers of my [operating system] book correctly pointed out
that the chapter on resource protection [introducing shared classes]
was highly speculative. The Solo operating system described here is
an attempt to set the record straight by putting monitors to a realistic
test.

13 The Architecture of Concurrent Programs

In July 1976 I joined University of Southern California as professor and
chair of computer science. Now that Concurrent Pascal was running I knew
that the time was ripe for a book on the principles of abstract parallel
programming.

My second book, The Architecture of Concurrent Programs, includes the
complete text of the model operating systems written in Concurrent Pascal
(Brinch Hansen 1977b).

In a book review, Roy Maddux and Harlan Mills (1979) wrote: “This is,
as far as we know, the first book published on concurrent programming.”
They were particularly pleased with the Solo system:

Here, an entire operating system is visible, with every line of program
open to scrutiny. There is no hidden mystery, and after studying such
extensive examples, the reader feels that he could tackle similar jobs
and that he could change the system at will. Never before have we seen
an operating system shown in such detail and in a manner so amenable
to modification.

Twenty years later, two of my former Ph.D. students recalled their ex-
perience of working with Concurrent Pascal:

Jon Fellows (1993): “The beauty of the structures you created using
Concurrent Pascal created an aura of magical simplicity. While work-
ing with my own programs and those of other graduate students, I
soon learned that ordinary, even ugly, programs could also be written
in Concurrent Pascal . . . My current feeling is that the level of intel-
lectual effort required to create a beautiful program structure cannot
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be reduced by programming language features, but that these features
can more easily reveal a program’s beauty to others who need to un-
derstand it.”

Charles Hayden (1993): “I think the significance of the system was
. . . that one could provide a protected environment for concurrent
programming—a high-level language environment which could main-
tain the illusion that there was no “machine” level. It was remarkable
that through compile time restrictions and virtual machine error check-
ing . . . you could understand the program behavior by looking at the
Pascal, not at the machine’s registers and memory. It was remarkable
that the machine could retain its integrity while programs were being
developed, without hardware memory protection.”

In designing Concurrent Pascal and the model operating systems written
in the language I followed a consistent set of programming principles. These
principles carried structured programming (Dijkstra 1972a) into the realm of
modular, concurrent programming:

P. Brinch Hansen, Design Principles (1977)

Roy Maddux and Harlan Mills (1979) agreed that:

An author does well to start by stating those beliefs and biases he holds
that are relevant to his work so that the reader is forewarned about
what will follow and can understand the motivation behind subsequent
decisions and choices. Brinch Hansen’s opening chapter—a reasoned
essay on the fundamental principles of programming today—does this
remarkably well. The quotations at the end of the chapter are partic-
ularly well-chosen and make delightful reading.

PART V DISTRIBUTED COMPUTING

In the late 1970s, parallel computing was moving from multiprocessors with
shared memory towards multicomputers with distributed memory. For micro-
computer networks, Dijkstra, Hoare and I suggested different programming
models. Although our ideas opened the way for abstract distributed comput-
ing, they clearly needed further refinement before they could be incorporated
into programming languages.
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14 A Synthesis Emerging?

Edsger Dijkstra led the way. In a brief note he gave a personal account
of a discussion with Tony Hoare at the International Summer School in
Marktoberdorf, Germany, in July 1975:

E. W. Dijkstra, A Synthesis Emerging? (1975)

Hoare was trying to explain the class concept of Simula 67, when Dijkstra
began to:

change terminology, notation and a way of looking at it, things I had
to do in order to make it all fit within my frame of mind. To begin
with, I shall record how our discussions struck root in my mind. I don’t
know whether a real Simula fan will still recognize the class-concept;
he may get the impression that I am writing about something totally
different.

Indeed! What emerges is the exciting possibility of modular programs with
nondeterministic process types (called generators). In his usual colorful ter-
minology, Dijkstra calls these programs “elephants built from mosquitoes.”

His simplest example is a generator, named nn, for natural numbers:

nn gen begin privar x; x virint := 0;
do ?inc → x := x + 1

[] x > 0 cand ?dec → x := x − 1
od

end

(The notational details are not important here.)
The main program can declare a variable y as a natural number:

privar y; y vir nn;

The generator instance y keeps a natural number in a private variable x.
After initializing its value to zero, the generator is ready to perform an end-
less series of increase and decrease operations on x in response to commands
from the main program:

y.inc y.dec

The generator defines the increment operation as a guarded command
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?inc → x := x + 1

When the main program issues an increment command, the guard

?inc

is regarded as being true (once), enabling the generator to execute the
guarded statement

x := x + 1

However, if the main program issues a decrement command, the guard

x > 0 cand ?dec

does not become true until x > 0.
So far, the generator looks very much like a monitor implementation of

a semaphore, but there are subtle differences:

• Dijkstra views the main program and its generators as processes that
are synchronized during the execution of guarded commands.

• When the main program terminates, all guards within its local gener-
ators become false, and the generator loops terminate too.

Dijkstra emphasizes that:

[In the past] it was the purpose of our programs to instruct our ma-
chines: now it is the purpose of the machines to execute our programs.
Whether the machine does so sequentially, one thing at a time, or with a
considerable amount of concurrency, is a matter of implementation and
should not be regarded as a property of the programming language.

This viewpoint naturally leads him to conclude that

• If the main program is concurrent, the generator does indeed imple-
ment a semaphore that delays a decrement operation until x > 0.

• However, if the main program is sequential, an attempt to decrement
a natural number equal to zero will cause the main program to get
stuck.
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At this point Dijkstra introduces the powerful concept of recursive non-
deterministic processes. He programs a generator that defines a sequence of
integers recursively. A parallel execution of this program can be visualized as
a pipeline of processes. Each process accepts commands from its predecessor
(which is either another pipeline process or the main program).

An insert command, issued by the main program, propagates to the end
of the chain, where the last process extends the pipeline with another process.

A membership query moves down the pipeline until it either reaches a
process that holds the desired element or is absorbed at the end of the
pipeline. In a parallel implementation, a wave of queries can move down the
pipeline simultaneously.

Edsger Dijkstra called it “A surprising discovery, the depth of which is
as far as I am concerned still unfathomed.” In 1982 he added a final remark:

In retrospect this text is not without historical interest: it records the
highlights of a discussion mentioned [as “Verbal communication” (Dijk-
stra 1975)] in C. A. R. Hoare’s “Communicating sequential processes”,
Comm. ACM 21, 8 (Aug. 1978), 666-677. The text was evidently writ-
ten in a state of some excitement; in retrospect we may conclude that
this excitement was not entirely unjustified. Seeing Hoare keenly in-
terested in the topic, I left that arena.

15 Communicating Sequential Processes

Three years after his discussion with Edsger Dijkstra in Marktoberdorf, Tony
Hoare publishes a paper on communicating sequential processes (also known
as CSP):

C. A. R. Hoare, Communicating Sequential Processes (1978)

This classic paper develops Dijkstra’s (1975a) vision of nondeterministic pro-
cesses communicating by means of guarded commands (but without recur-
sion).

The bounded buffer, shown here, is a CSP process, named X, that can hold
up to ten buffer portions. After making the buffer empty to begin with, the
process executes a repetitive command (prefixed by an asterisk *). In each
cycle, the buffer process is delayed until one of two possible communications
takes place:

1. A process named producer is ready to execute an output command
X!e. In that case, the buffer process inputs the value of the expression
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X::

buffer:(O..9)portion;

in,out:integer; in:= 0; out:= 0;

comment 0 ≤ out ≤ in ≤ out + 10;

∗[in < out + 10; producer?buffer(in mod 10) → in:= in + 1

[]out < in; consumer?more() → consumer!buffer(out mod 10);

out := out + 1

]

The Bounded Buffer in CSP

e in the last buffer element, provided that there is room for it in the
buffer. This is the effect of the guarded input command:

in < out + 10; producer?buffer(in mod 10) → in:= in + 1

2. A process named consumer outputs a request for more input, X!more(),
and inputs the next buffer portion in a local variable v by executing
the command X?v. When the buffer is nonempty, it accepts the request
before outputting the first portion:

out < in; consumer?more() →
consumer!buffer(out mod 10); out:= out + 1

This paper describes highly original ideas:

1. Synchronous communication. Hoare introduces this idea, which was
well-known in computer architectures but novel in programming languages:

Communication occurs when one process names another as destination
for output and the second process names the first as source for input.
In this case, the value to be output is copied from the first process to
the second. There is no automatic buffering: In general, an input or
output command is delayed until the other process is ready with the
corresponding output or input. Such delay is invisible to the delayed
process.

2. Input guards. CSP incorporates Dijkstra’s (1975a) concept of nonde-
terministic process interactions controlled by guarded commands:
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A guarded command with an input guard is selected for execution only
if and when the source named in the input command is ready to execute
the corresponding output command. If several input guards of a set of
alternatives have ready destinations, only one is selected and the others
have no effect; but the choice between them is arbitrary.

3. Coincidence of events. In 1965, Dijkstra demonstrated that mutual
exclusion of events is a fundamental programming concept. In 1975, he
showed that the opposite idea, the coincidence of events, is just as important!
This strikes me as the most profound idea incorporated in CSP.

4. Programming examples. The CSP paper includes solutions to a wide
variety of interesting problems.

However, the CSP proposal also has some awkward details:

1. Direct process naming. One of the major advantages of monitors is
their ability to communicate with processes and schedule them without be-
ing aware of process identities. In CSP, an input/output command must
name the source or destination process directly. The text of a process must
therefore be modified when it is used in different contexts. This complicates
the examples in Hoare’s paper: the user of a process array S(1..n) is itself
named S(0). And the prime sieve is composed of three different kinds of
processes to satisfy the naming rules.

2. Pattern matching. The CSP notation does not include type declara-
tions of communication channels, but depends (conceptually) on dynamic
checking to recognize matching input and output commands in parallel pro-
cesses.

3. Conditional input. Hoare mentions that:

conditions can be used to delay acceptance of inputs which would vio-
late scheduling constraints—postponing them until some later occasion
when some other process has brought the monitor into a state in which
the input can validly be accepted. This technique is similar to a condi-
tional critical region (Hoare 1971) and it obviates the need for special
synchronizing variables such as events, queues, or conditions. However,
the absence of these special facilities certainly makes it more difficult
or less efficient to solve problems involving priorities.16

16Notice, however, that a monitor with await statements on Boolean conditions does not
require queueing variables either (Brinch Hansen 1973c).
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4. No output guards. This restriction forces Hoare to publish a CSP
version of the bounded buffer with asymmetric input/output operations. For
aesthetic reasons, I find this lack of elegance regrettable.

5. Process termination. CSP uses Dijkstra’s (1975a) termination rule:

A repetitive command may have input guards. If all the sources named
by them have terminated, then the repetitive command also termi-
nates.

Hoare maintains that:

The automatic termination of a repetitive command on termination
of the sources of all its input guards is an extremely powerful and
convenient feature but it also involves some subtlety of specification to
ensure that it is implementable; and it is certainly not primitive, since
the required effect can be achieved (with considerable inconvenience)
by explicit exchange of “end()” signals.

Seven years later, Hoare (1985) realizes that:

The trouble with this convention is that it is complicated to define
and implement; and methods of proving program correctness seem no
simpler with it than without.

6. No recursion. The most obvious weakness of CSP is the omission
of Dijkstra’s beautiful concept of recursive nondeterministic processes. A
CSP process cannot activate itself recursively. It is, however, possible to
activate fixed-length process arrays, which can imitate the behavior (but not
the elegance) of recursive processes.17

CSP was a major achievement and the inspiration for a new generation
of concurrent programming languages, including the nonrecursive language
occam for the transputer (Inmos 1989a, 1989b) and the recursive language
Joyce (Brinch Hansen 1987a).

Seven years later Hoare (1985) published a mathematical theory of com-
municating sequential processes using a recursive variant of CSP. This nota-
tion has played a significant role in research on the mathematical foundations
of concurrency. Hoare (1981) is an early example of this theoretical work
(which is beyond the scope of this essay).

17My alternative programming model, Distributed Processes, is also nonrecursive (Brinch
Hansen 1978c).
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16 Distributed Processes

For microcomputer networks with distributed memory I introduced the idea
of a synchronized procedure that can be called by one process and executed
by another process. This proposal combines processes and monitors into a
single concept, called distributed processes. In distributed operating systems,
this communication paradigm is known as remote procedure calls.

P. Brinch Hansen, Distributed Processes: A Concurrent Programming Concept

(1978)

Distributed Processes have the following properties:

• A real-time program consists of a fixed number of concurrent processes that
are started simultaneously and exist forever. Each process can access its own
variables only. There are no common variables.

• A process can call common procedures defined within other processes. These
procedures are executed when the other processes are waiting for some condi-
tions to become true. A procedure call from one process to another is called
an external request. This is the only form of process communication.

• Processes are synchronized by means of nondeterministic guarded regions
(Hoare 1971, Dijkstra 1975b, Brinch Hansen 1978c).

The bounded buffer, shown here, is a process that stores a sequence of
characters transmitted between processes by means of send and receive pro-
cedures.

process buffer
s: seq[n]char
proc send(c: char) when not s.full: s.put(c) end
proc rec(#v: char) when not s.empty: s.get(v) end
s := [ ]

The Bounded Buffer with Distributed Processes

The initial statement makes the buffer empty and terminates. The buffer
process, however, continues to exist and can now be called by other processes:

call buffer.send(e) call buffer.rec(v)
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After initialization, the buffer process is idle between external calls. This
process is similar to a monitor (Brinch Hansen 1973c) with conditional crit-
ical regions (Hoare 1971).

In general, an external call of a procedure R, declared in a process Q,
may include both value and result parameters:

call Q.R(expressions, variables)

The parameter passing between two distributed processes requires a single
input operation when an external procedure is activated, followed by a single
output operation when it terminates.

The relationship between two communicating processes is asymmetrical
and requires only that the caller of a procedure name the process that per-
forms it. This asymmetry is useful in hierarchical systems, in which server
processes should be unaware of the identities of client processes.

Every process is quasiparallel in the following sense:

• A process begins by executing its initial statement. This continues until the
statement either terminates or waits for a condition to become true. Then
another operation is started (as the result of an external request). When
this operation in turn terminates or waits the process will either begin yet
another operation (requested by another process) or it will resume an earlier
operation (as the result of a condition becoming true). This interleaving
of the initial statement and the external requests continues forever. If the
initial statement terminates, the process continues to exist and will still accept
external statements.

• In a microprocessor network where each processor is dedicated to a single
process it is an attractive possibility to let a process carry out computa-
tions between external calls of its procedures. The shortest job next scheduler
(shown in the paper) takes advantage of this capability by selecting the next
user while the resource is being used by the present user.

The major weaknesses of distributed processes are (1) the implicit waiting
loops on Boolean conditions and (2) the absence of parallel recursion.

It was Jim White (1976) who first proposed remote procedure calls, as an
informal programming style. However, White did not explain how to prevent
race conditions between unsynchronized remote calls and local processes that
are being executed by the same processor. This flaw potentially made remote
procedure calls as unsafe as interrupts that cannot be disabled! Nevertheless,
the original idea was his.
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My Ph.D. student Charles Hayden (1979) implemented an experimen-
tal language with distributed processes on an LSI-11 microcomputer and
evaluated the new paradigm by writing small simulation programs.

Greg Andrews (1991) acknowledged that:

Per Brinch Hansen (1978) developed the first programming language
based on [remote procedure calls] RPC. His language is called Dis-
tributed Processes (DP).18

According to Olivier Roubine (1980), my proposal was “a source of inspi-
ration in the design of the Ada tasking facilities.” The rendezvous concept
in the language Ada combines the remote procedure calls of distributed pro-
cesses with the selection of alternative interactions in CSP.

Since then, operating system designers have turned remote procedure
calls into an unreliable mechanism of surprising complexity. In their present
form, remote procedure calls are an attempt to use unreliable message pass-
ing to invoke procedures through local area networks.

Tay (1990) admits that “Currently, there are no agreed definition on
the semantics of RPC.” Leach (1983) goes one step further and advocates
that “each remote operation implements a protocol tailored to its need.”
Since it can be both system-dependent and application-dependent, a remote
procedure call is no longer an abstract concept.

After implementing a remote procedure call mechanism for the distributed
operating system Unix United, Santosh Shrivastava and Fabio Panzieri (1982)
concluded:

At a superficial level it would seem that to design a program that
provides a remote procedure call abstraction would be a straightforward
exercise. Surprisingly, this is not so. We have found the problem of the
design of the RPC to be rather intricate.

18Rarely does anyone replace single words, like “Pascal,” “Monitor,” “Solo” or “Joyce,”
by baffling acronyms—P, M, S or J. But carefully chosen longer names, like “Condi-
tional Critical Region,” “Concurrent Pascal,” “Communicating Sequential Processes,”
“Distributed Processes” and “Remote Procedure Call,” are doomed to be abbreviated
as CCR, CP, CSP, DP and RPC. If you believe that papers should be easy to read (but
not necessarily easy to write), the lesson is clear: Always use single words to name your
concepts!
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17 Joyce

The most surprising idea in Dijkstra’s “Emerging Synthesis” (1975a) was his
introduction of recursive nondeterministic processes. This idea was clearly
ahead of its time. Some ten years would pass before Hoare (1985) published
a theoretical recursive variant of CSP.

Two years later, I published the first recursive CSP language imple-
mented on a computer:

P. Brinch Hansen, Joyce—A Programming Language for Distributed Systems

(1987)

Joyce is a secure CSP language based on a minimal subset of Pascal. A Joyce
program activates recursive processes, known as agents. These agents com-
municate through synchronous channels. A channel can transfer messages of
different (but fixed) types between two or more agents. The compiler checks
message types and ensures that agents use disjoint variables only.

type stream = [int(integer)];

agent buffer(inp, out: stream);
const n = 10;
type contents = array [1..n] of integer;
var head, tail, length: integer;

ring: contents;
begin

head := 1; tail := 1; length := 0;
while true do

poll
inp?int(ring[tail]) & length < n −>

tail := tail mod n + 1;
length := length + 1|

out!int(ring[head]) & length > 0 −>
head := head mod n + 1;
length := length − 1

end
end;

The Bounded Buffer in Joyce

The bounded buffer, shown here, is defined by an agent procedure. A
buffer agent uses two channels of type stream. Every communication through
a stream channel transmits a single symbol, named int, from one agent to
another. The symbol carries a message of type integer.
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A buffer agent transmits an endless stream of symbols from one channel
to another in response to input/output commands from other agents. In
each cycle, a buffer agent executes a polling statement that delays it until a
conditional communication takes place through one of its channels.

In general:

A Joyce program consists of nested procedures which define commu-
nicating agents. Joyce permits unbounded (recursive) activation of
agents. The execution of a program activates an initial agent. Agents
may dynamically activate subagents which run concurrently with their
creators. The variables of an agent are inaccessible to other agents.

Agents communicate by means of symbols transmitted through
channels. Every channel has an alphabet—a fixed set of symbols that
can be transmitted through the channel. A symbol has a name and
may carry a message of a fixed type.

Two agents match when one of them is ready to output a symbol
to a channel and the other is ready to input the same symbol from
the same channel. When this happens, a communication takes place
in which a message from the sending agent is assigned to a variable of
the receiving agent.

The communications on a channel take place one at a time. A
channel can transfer symbols in both directions between two agents.

A channel may be used by two or more agents. If more than two
agents are ready to communicate on the same channel, it may be pos-
sible to match them in several different ways. The channel arbitrarily
selects two matching agents at a time and lets them communicate.

A polling statement enables an agent to examine one or more chan-
nels until it finds a matching agent. Both sending and receiving agents
may be polled.

Agents create channels dynamically and access them through local
port variables. When an agent creates a channel, a channel pointer
is assigned to a port variable. The agent may pass the pointer as a
parameter to subagents.

When an agent reaches the end of its defining procedure, it waits
until all its subagents have terminated before terminating itself. At
this point, the local variables and any channels created by the agent
cease to exist.

Hoare (1978) emphasized that CSP should not be regarded as suitable
for use as a programming language but only as a partial solution to the
problems tackled.

Joyce removed unnecessary limitations of CSP by introducing:
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• Recursive agent procedures.

• Simple agent termination.

• Typed channel alphabets.

• Typed port variables.

• Bidirectional synchronous channels.

• Nondeterministic shared channels.

• Symmetric input/output polling.

To be able to experiment with parallel recursion, I developed portable im-
plementations of Joyce for a personal computer and a multiprocessor (Brinch
Hansen 1987b, 1989b).

I still marvel at the beauty of recursive agents, such as the bounded
buffer, the sorting array, the prime sieve, the integer set, and the Fibonacci
tree (shown in the paper).

How can I explain the joy of being able, for the first time, to explore this
new class of algorithms in a concise, executable language? The experience
reminds me of the wise observation by the logician Susanne K. Langer (1967):

There is something uncanny about the power of a happily chosen ideo-
graphic language; for it often allows one to express relations which have
no names in natural language and therefore have never been noticed by
anyone. Symbolism, then, becomes an organ of discovery rather than
mere notation.

PART VI IMPLEMENTATION ISSUES

I promised to omit “Implementation details (except in outline).” Parallel
programming languages do, however, pose special implementation problems
that deserve your attention:

• Interference control during compilation.

• Memory allocation of parallel recursion.
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18 SuperPascal

When Hoare (1971) published his paper on conditional critical regions, we
did not fully appreciate the complexity of checking interference in a block-
structured parallel language. You see, the subsequent invention of modular
parallelism made interference checking so simple that we hardly noticed how
hard it could have been!

Out of curiosity I asked myself twenty-three years later, Is it feasible to
detect process interference in a block-structured language with nonmodular
parallelism?

P. Brinch Hansen, SuperPascal—A Publication Language for Parallel Scientific

Computing (1994)

The parallel features of SuperPascal are a subset of occam 2 with the added
generality of dynamic process arrays and recursive parallel processes (Inmos
1988b, Cok 1991). SuperPascal omits ambiguous and insecure features of
Pascal. Restrictions on the use of variables enable a single-pass compiler to
check that parallel processes are disjoint, even if the processes use procedures
with global variables.19

When you have read this paper, you can judge for yourself how com-
plicated concurrent programming would have been without some form of
modularity, such as the process and monitor types of Concurrent Pascal.

After reading the paper, Dave Parnas (1993) felt that “Some might sug-
gest that nobody would be able to build practical programs in a language
with so many restrictions.” I answered (Brinch Hansen 1993d):

I too was surprised at the restrictions required to make parallelism se-
cure in a block-structured language. However, I think that the exercise
merely forced me explicitly to recognize the complexity of the procedure
concept in our programming languages (such as Pascal). SuperPascal
forced me to use a more restricted procedure concept. So far, I have
found that the rules enforced by the compiler contribute to program
clarity.

After developing a portable implementation of SuperPascal on a Sun
workstation:

19Since the language does not support conditional communication, a bounded buffer
cannot be programmed in SuperPascal.



          

THE INVENTION OF CONCURRENT PROGRAMMING 49

[I used] the SuperPascal notation to write portable programs for regu-
lar problems in computational science (Brinch Hansen 1995). I found
it easy to express these programs in three different programming lan-
guages (SuperPascal, Joyce,20 and occam 2) and run them on three
different architectures (a Unix workstation, an Encore Multimax, and
a Meiko Computing Surface).21

19 Efficient Parallel Recursion

In CSP and Distributed Processes, Hoare and I shied away from paral-
lel recursion because of the difficulty of implementing an unbounded tree-
structured stack without using garbage collection.

Dijkstra (1975a) was well aware of this stumbling block:

the storage requirements for a sequence are very simple, viz. a stack.
(In our rejected example of the binary tree, although lifetimes are, in
a fashion, nested, life is not so simple.)

After using static memory allocation in Concurrent Pascal, it took me
twenty years to discover a simple method for efficient parallel recursion
(which I used to implement SuperPascal):

P. Brinch Hansen, Efficient Parallel Recursion (1995)

I now believe that we should have used parallel recursion from the beginning,
even though we didn’t know how to implement it.22 This kind of intellectual
courage paid off handsomely when Peter Naur (1960) included sequential
recursion in his famous Algol 60 report, before Dijkstra (1960) had shown
how to implement it efficiently using a run-time stack.

THE END OF AN ERA

The development of abstract language notation for concurrent programming
started in 1965. Twenty years later Judy Bishop (1986) concluded:

20Brinch Hansen (1988).
21The Encore Multimax was a multiprocessor with 18 processors sharing a memory of

128 MB (Trew 1991). The Computing Surface was a multicomputer with 48 transputers,
each with 1 MB of local memory (Inmos 1988a, Trew 1991).

22As you can tell, I am now a middle-aged idealist.
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It is evident that the realm of concurrency is now firmly within the

ambit of reliable languages and that future designs will provide for

concurrent processing as a matter of course.

So passed an exciting era.
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