

EFFICIENT PARALLEL RECURSION

PER BRINCH HANSEN

(1995)

A simple mechanism is proposed for dynamic memory allocation of a parallel

recursive program with Algol-like scope rules. The method is about as fast as

the traditional stack discipline for sequential languages. It has been used to

implement the parallel programming language SuperPascal.

1 Introduction

I will describe a memory allocation scheme for block structured program-
ming languages that support unbounded activation of parallel processes and
recursive procedures. This technique has been used to implement the parallel
programming language SuperPascal (Brinch Hansen 1994).

Three decades ago, Dijkstra (1960) proposed the standard method of
dynamic memory allocation for recursive procedures in block structured,
sequential languages, such as Algol 60 (Naur 1963), Pascal (Wirth 1971)
and C (Kernighan 1978).

The scope rules of Algol-like languages support stack allocation of mem-
ory for sequential programs. All variables are kept in a single stack. When
a block is activated, an activation record (a data segment of fixed length)
is pushed on the stack. The activation record holds a fresh instance of ev-
ery local variable of the block. At the end of the activation, the activation
record is popped from the stack. Since each activation creates a new instance
of the local variables, stack allocation works for both recursive and nonre-
cursive procedures. The crucial assumption behind stack allocation is that
dynamically nested block activations always terminate in last-in, first-out
order.

After two decades of research in parallel programming languages, there is
still no efficient standard method for dynamic memory allocation of parallel

P. Brinch Hansen, Efficient parallel recursion, SIGPLAN Notices 30, 12 (December 1995),
9–16. Copyright c© 1995, Per Brinch Hansen.

1

2 PER BRINCH HANSEN

recursion. When you add parallelism to a block structured language, the
variable instances form a tree structured stack with branches that grow and
shrink simultaneously. If dynamic parallelism is combined with unbounded
recursion, the number and extent of the stack branches are unpredictable.

In a parallel recursive program, there is no simple relationship between
the order in which blocks are entered and exited. So, you cannot use the
traditional last-in, first-out allocation. This makes it more difficult to reclaim
and reuse the memory space of activation records efficiently.

With few exceptions, language designers have ignored the thorny prob-
lems of parallel memory allocation by outlawing recursion and restricting
parallelism to the point where it is possible to use static memory allocation.

In many languages, it is impossible to reclaim the memory space of par-
allel processes. These include Concurrent Pascal (Brinch Hansen 1975), Si-
mone (Kaubisch 1976), Modula (Wirth 1977), Distributed Processes (Brinch
Hansen 1978), Pascal Plus (Welsh 1979), StarMod (Cook 1980), SR (An-
drews 1981), Concurrent Euclid (Holt 1983), Planet (Crookes 1984) and
Pascal-FC (Davies 1990).

CSP (Hoare 1978), Edison (Brinch Hansen 1981), and occam (Inmos
1988) support process activation and termination, but only of a fixed number
of parallel nonrecursive processes determined during compilation.

Static memory allocation is adequate for many parallel computations
(Fox 1988). However, parallel recursion is the natural programming tool
for parallel versions of divide-and-conquer algorithms, such as quicksort, the
fast Fourier transform and the Barnes-Hut algorithm for n-body simulation
(Fox 1994).

Parallel recursion requires dynamic allocation and release of activation
records in a tree structured stack. B6700 Algol (Organick 1973) and Mesa
(Lampson, 1980) demonstrate that it is possible to support both parallelism
and recursion in systems programming languages. The substantial overhead
of parallel processes in these languages is acceptable in operating systems,
which support slowly changing configurations of user processes. It is, how-
ever, too inefficient for highly parallel computations.

Is there a memory allocation method that makes parallel recursion as
efficient as sequential recursion for all systems and user programs? I don’t
know any. Parallel recursion can probably only be implemented efficiently
at the expense of some generality.

As a reasonable compromise, I will confine myself to the problem of
allocating activation records of different lengths for a single parallel program

EFFICIENT PARALLEL RECURSION 3

in a memory of fixed size. The proposed technique is more ambitious than
previous methods in the following sense: it succeeds in making the activation
and termination of parallel processes and recursive procedures equally fast!

Joyce (Brinch Hansen 1989) was my first attempt to simplify memory
allocation for parallel recursion. The multiprocessor implementation of Joyce
uses a stack-like scheme for parallel block activation in a single memory heap.
On entry to a block, an activation record is allocated at the top of the heap.
On exit from the block, the activation record is marked as free. Free space
is reclaimed only when it is at the top of the heap. This method works
well for many parallel recursive programs. However, it fails if a program
continues to demand space for parallel block activations before previously
released space can be reclaimed. In that situation, the heap grows until it
runs out of memory.

The occasional failure of the Joyce heap made me look for a more robust
memory allocation for SuperPascal. After solving this problem, I found that
I had reinvented a simplified version of the Quick Fit allocator, which was
used for heap management in the sequential programming language Bliss
(Weinstock 1988).

The main contribution of this paper is the discovery that Quick Fit is
an efficient memory allocator for a parallel recursive language that requires
an unbounded, tree structured stack of activation records. The consistent
omission of efficient parallel recursion in previous block structured languages
shows that this insight only seems obvious once you know the solution.

2 Assumptions

I will state the assumptions behind the method in general terms. How-
ever, I will use the implementation of block structured parallel languages to
motivate the assumptions.

The general problem is to allocate and release segments of different
lengths in a memory of fixed size under the following assumptions:

• Each segment occupies a contiguous memory area of fixed length.

In a block structured program, the unit of memory allocation is an activation
record of fixed length that holds the local variable instances of a single
activation of a block.

• A segment is never relocated in memory.

4 PER BRINCH HANSEN

During program execution, the activation records in use are linked by point-
ers representing variable parameters, nested blocks, and activation sequen-
ces. Dynamic relocation of linked activation records would be complicated
and time-consuming.

• A segment is released only when no other segment in use points to it.

The scope rules enable a compiler to check that the local variable instances
of a block activation are accessed only during the activation. Consequently,
the corresponding activation record can safely be released on exit from the
block.

• Segments are generally allocated and released in unpredictable order.

The nondeterministic nature of parallel recursion complicates the dynamic
memory allocation considerably.

• There is a fixed number of segment lengths.

A block structured program consists of a fixed number of blocks. (In Super-
Pascal, a block is either a process statement or a procedure.) Each activation
of the same block allocates an activation record of the same fixed length.

• A program tends to use segments of the same lengths repeatedly.

This is a plausible hypothesis about any program that uses the same proce-
dures numerous times to transform different parts of large data structures
sequentially or in parallel. The measurements in Section 4 strongly support
this assumption.

The above assumptions are satisfied by a single block structured program
that runs in a fixed memory area. However, they are not realistic for an
operating system, which allocates an unbounded number of segments, most
of which are unique to particular user jobs.

3 Implementation

Algorithm 1 defines the allocation of activation records for a parallel program
that runs on a single processor in a memory area of fixed size. On a mul-
ticomputer with distributed memory, each processor must manage its own

EFFICIENT PARALLEL RECURSION 5

var pool: array [1..limit] of integer;
memory: array [min..max] of integer;
top: integer;

procedure initialize;
var index: integer;
begin

for index := 1 to limit do
pool[index] := empty;

top := min − 1
end;

procedure allocate(index, length: integer;
var address: integer);

begin
address := pool[index];
if address <> empty then

pool[index] := memory[address]
else

begin
address := top + 1;
top := top + length;
assume top <= max

end
end;

procedure release(index, address: integer);
begin

memory[address] := pool[index];
pool[index] := address

end;

Algorithm 1 Memory allocation.

6 PER BRINCH HANSEN

memory for local processes. On a multiprocessor with shared memory, the
allocation and release of activation records must be indivisible operations.

I assume that an operating system allocates a fixed amount of memory
for the execution of a parallel program. The allocation method used by the
operating system is beyond the scope of this discussion. My only concern
is the algorithms used by a running program to allocate activation records
within its own memory.

A dynamic boundary divides the program memory into two contiguous
parts. One part is the heap, which holds all past and present activation
records. The rest is free space. During program execution, the heap can
only grow, and the free space can only shrink. A register holds the current
top address of the heap.

The blocks in a program have consecutive indices and fixed activation
record lengths determined by a compiler. For each block, a running program
maintains a pool consisting of all free activation records reclaimed after pre-
vious activations of the block. Each pool is represented by an address, which
either denotes an empty pool or is the first link in a list of free activation
records of the same length.

Initially, the entire memory is free and every pool is empty.
On entry to a block with a given index and length, an attempt is made

to allocate a free activation record from the corresponding pool. If the pool
is empty, a new activation record of the given length is allocated in the free
space, which is reduced accordingly.

On exit from the block, the activation record is released and added to
the corresponding pool.

The algorithms for allocating and releasing an activation record are not
intended to be implemented as separate procedures. They are part of the
machine code executed at the beginning and end of every process statement
and procedure. An activation record is allocated or released in constant
time. Most processors can perform these simple operations by executing
three or four machine instructions.

When the execution of a program ends, its memory area is still divided
into pools of free activation records and the remaining free space. However,
that does not matter, since the operating system will reclaim the entire
memory area as a single unit.

EFFICIENT PARALLEL RECURSION 7

4 Performance

The heap allocation method described here has been used to implement the
block structured parallel language SuperPascal. So far, I have written par-
allel SuperPascal programs for a dozen standard problems in computational
science (Brinch Hansen 1995).

Table 1 shows the ability of the heap allocator to recycle previous acti-
vation records during the execution of three parallel programs on a single
processor.

Table 1 Measurements.

Parallel program Quicksort N-body Laplace
tree pipeline matrix

Number of blocks 16 24 28
Process activations 11 300 25,609
Procedure activations 18,120 513,553 67,156
New activation records 51 27 64
Reused activation records 18,080 513,826 92,701

The quicksort tree uses both parallel recursion (to create a binary tree of
processes) and sequential recursion (to quicksort in parallel). The program
consists of 16 blocks which are activated a total of 18,131 times (eleven pro-
cess activations plus 18,120 procedure activations). These block activations
create 51 new activation records, which are reused 18,080 times.

The n-body pipeline is a parallel nonrecursive program that repeatedly
recreates a pipeline to perform force calculation for n gravitational bod-
ies. During an n-body simulation the program activates parallel processes
300 times and procedures 513,553 times. These activations are handled by
reusing the same 27 activation records over and over again.

The Laplace matrix is a highly parallel nonrecursive program. It creates
parallel processes 25,609 times and calls procedures 67,156 times. These
92,765 block activations require only 64 activation records.

When these parallel program solve larger problems, the two nonrecursive
programs run longer, but do not require more activation records. The num-
ber of activation records used by the quicksort tree increases slightly when
the depth of the sequential recursion increases.

If no procedure is activated recursively or in parallel, the heap allocation
uses the same amount of memory as static allocation (one activation record
per block). In general, each block requires separate activation records for

8 PER BRINCH HANSEN

all activations of the block that may be in progress simultaneously (due to
recursion or parallelism, or both).

5 Conclusions

I have described a simple heap mechanism for dynamic memory allocation
of a parallel recursive program with Algol-like scope rules.

The mechanism has the following advantages:

• The heap allocation supports unbounded dynamic activation and ter-
mination of parallel processes and recursive procedures.

• The activation and termination of parallel processes and recursive pro-
cedures are equally fast.

• The heap allocation for parallel recursion is as efficient in reusing mem-
ory as the traditional stack discipline for sequential recursion.

• On a multicomputer with distributed memory, heap allocation is about
as fast as stack allocation.

In its simplest form (presented here), the method has only two limita-
tions:

• An activation record used to activate a block can only be reused by
activating the same block again. This compromise makes it easy to
release and reallocate the memory space of block activations.

• On a multiprocessor with shared memory, the need to lock and un-
lock the heap twice during a block activation makes the method less
attractive.

Both limitations can probably be removed by more complicated variants
of the basic idea. I leave that as an exercise for the reader.

Acknowledgements

It is a pleasure to acknowledge the comments of Art Bernstein, Ole-Johan
Dahl, Ric Holt, Butler Lampson, Peter O’Hearn, Ron Perrott, and Jørgen
Staunstrup.

EFFICIENT PARALLEL RECURSION 9

References

Andrews, G.R. 1981. Synchronizing resources. ACM Transactions on Programming Lan-
guages and Systems 3, 4 (October), 405–430.

Brinch Hansen, P. 1975. The programming language Concurrent Pascal. IEEE Transac-
tions on Software Enginering 1, 2 (June), 199–207.

Brinch Hansen, P. 1978. Distributed processes: A concurrent programming concept. Com-
munications of the ACM 21, 11 (November), 934–941.

Brinch Hansen, P. 1981. Edison—a multiprocessor language. Software—Practice and
Experience 11, 4 (April), 325–361.

Brinch Hansen, P. 1989. A multiprocessor implementation of Joyce. Software—Practice
and Experience 9, 6 (June), 579–592.

Brinch Hansen, P. 1994. The programming language SuperPascal. Software—Practice and
Experience 24, 5 (May), 467–483.

Brinch Hansen, P. 1995. Studies in Computational Science: Parallel Programming Para-
digms. Prentice Hall, Englewood Cliffs, NJ, (March).

Cook, R. 1980. ∗Mod—a language for distributed programming. IEEE Transactions on
Software Engineering 6, 6 (November), 563–571.

Crookes, D. and Elder, J.W.G. 1984. An experiment in language design for distributed
systems. Software—Practice and Experience 14, 10 (October), 957–971.

Davies G.L. and Burns, A. 1990. The teaching language Pascal-FC. Computer Journal 33,
147–154.

Dijkstra, E.W. 1960. Recursive programming. Numerische Mathematik 2, 312–318.

Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K. and Walker, D.W.
1988. Solving Problems on Concurrent Processors, Vol. I. Prentice Hall, Englewood
Cliffs, NJ.

Fox, G.C., Messina, P.C. and Williams, R.D. 1994. Parallel Computing Works! Morgan
Kaufman, San Francisco, CA.

Hoare, C.A.R. 1978. Communicating sequential processes. Communications of the ACM
21, 8 (August), 666–677.

Holt, R.C. 1983. Concurrent Euclid, the Unix Operating System and Tunis. Addison-
Wesley, Reading, MA.

Inmos Ltd. 1988. occam 2 Reference Manual. Prentice Hall, Englewood Cliffs, NJ.

Kaubisch, W.H., Perrott, R.H. and Hoare, C.A.R. 1976. Quasiparallel programming.
Software—Practice and Experience 6, 3 (July–September), 341–356.

Kernighan, B.W. and Ritchie, D.M. 1978. The C Programming Language. Prentice Hall,
Englewood Cliffs, NJ.

Lampson, B.W. and Redell, D.D. 1980. Experience with processes and monitors in Mesa.
Communications of the ACM 23, 2 (February), 105–117.

Naur, P. 1963. Revised report on the algorithmic language Algol 60. Communications of
the ACM 6, 1 (January), 1–17.

Organick, E.I. 1973. Computer System Organization: The B5700/B6700 Series. Academic
Press, New York.

Weinstock, C.B., and Wulf, W.A. 1988. Quick Fit: an efficient algorithm for heap storage
management. SIGPLAN Notices 23, 10 (October), 141–148.

Welsh, J. and Bustard, D.W. 1979. Pascal-Plus—another language for modular multipro-
gramming. Software—Practice and Experience 9, 11 (November), 947–957.

10 PER BRINCH HANSEN

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 1, 35–63.

Wirth, N. 1977. Modula: a programming language for modular multiprogramming.
Software—Practice and Experience 7, 1 (January–February), 3–35.

