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Parallel computers will not become widely used until scientists and engineers

adopt a common programming language for publication of parallel scientific

algorithms. This paper describes the publication language SuperPascal by ex-

amples. SuperPascal extends Pascal with deterministic statements for parallel

processes and synchronous message communication. The language permits

unrestricted combinations of recursive procedures and parallel statements.

SuperPascal omits ambiguous and insecure features of Pascal. Restrictions

on the use of variables enable a single-pass compiler to check that parallel

processes are disjoint, even if the processes use procedures with global vari-

ables. A portable implementation of SuperPascal has been developed on a Sun

workstation under Unix.

1 INTRODUCTION

One of the major challenges in computer science today is to develop effective
programming tools for the next generation of parallel computers. It is equally
important to design educational programming tools for the future users of
parallel computers. Since the 1960s, computer scientists have recognized the
distinction between publication languages that emphasize clarity of concepts,
and implementation languages that reflect pragmatic concerns and historical
traditions (Forsythe 1966; Perlis 1966). I believe that parallel computers
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will not become widely used until scientists and engineers adopt a common
programming language for publication of parallel scientific algorithms.

It is instructive to consider the historical role of Pascal as a publication
language for sequential computing. The first paper on Pascal appeared in
1971 (Wirth 1971). At that time, there were not very many textbooks
on computer science. A few years later, universities began to use Pascal
as the standard programming language for computer science courses. The
spreading of Pascal motivated authors to use the language in textbooks for a
wide variety of computer science courses: introductory programming (Wirth
1973), operating systems (Brinch Hansen 1973), program verification (Alagić
1978), compilers (Welsh 1980), programming languages (Tennent 1981), and
algorithms (Aho 1983). In 1983, IEEE acknowledged the status of Pascal as
the lingua franca of computer science by publishing a Pascal standard (IEEE
1983). Pascal was no longer just another programming tool for computer
users. It had become a thinking tool for researchers exploring new fields in
computer science.

We now face a similar need for a common programming language for
students and researchers in computational science. To understand the re-
quirements of such a language, I spent three years developing a collection of
model programs that illustrate the use of structured programming in parallel
scientific computing (Brinch Hansen 1993a). These programs solve regular
problems in science and engineering: linear equations, n-body simulation,
matrix multiplication, shortest paths in graphs, sorting, fast Fourier trans-
forms, simulated annealing, primality testing, Laplace’s equation, and forest
fire simulation. I wrote these programs in occam and tested their perfor-
mance on a Computing Surface configured as a pipeline, a tree, a cube, or a
matrix of transputers (Inmos 1988; McDonald 1991).

This practical experience led me to the following conclusions about the
future of parallel scientific computing (Forsythe 1966; Dunham 1982; May
1989; Brinch Hansen 1993a):

1. A general-purpose parallel computer of the near future will probably
be a multicomputer with tens to thousands of processors with local
memories only. The computer will support automatic routing of mes-
sages between any pair of processors. The hardware architecture will
be transparent to programmers, who will be able to connect processors
arbitrarily by virtual communication channels. Such a parallel com-
puter will enable programmers to think in terms of problem-oriented
process configurations. There will be no need to map these configura-
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tions onto a fixed architecture, such as a hypercube.

2. The regular problems in computational science can be solved efficiently
by deterministic parallel computations. I have not found it necessary to
use a statement that enables a parallel process to poll several channels
until a communication takes place on one of them. Nondeterministic
communication is necessary at the hardware level in a routing net-
work, but appears to be of minor importance in parallel programs for
computational science.

3. Parallel scientific algorithms can be developed in an elegant publica-
tion language and tested on a sequential computer. When an algo-
rithm works, it can easily be moved to a particular multicomputer by
rewriting the algorithm in another programming language chosen for
pragmatic rather than intellectual reasons. Subtle parallel algorithms
should be published in their entirety as executable programs written in
a publication language. Such programs may serve as models for other
scientists, who wish to study them with the assurance that every detail
has been considered, explained, and tested.

A publication language for computational science should, in my opinion,
have the following properties:

1. The language should extend a widely used standard language with
deterministic parallelism and message communication. The extensions
should be defined in the spirit of the standard language.

2. The language should make it possible to program arbitrary config-
urations of parallel processes connected by communication channels.
These configurations may be defined iteratively or recursively and cre-
ated dynamically.

3. The language should enable a single-pass compiler to check that paral-
lel processes do not interfere in a time-dependent manner. This check
is known as syntactic interference control.

The following describes SuperPascal—a publication language for par-
allel scientific computing. SuperPascal extends Pascal with deterministic
statements for parallel processes and synchronous communication. The lan-
guage permits unrestricted combinations of recursive procedures and parallel
statements. SuperPascal omits ambiguous and insecure features of Pascal.
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Restrictions on the use of variables permit a single-pass compiler to check
that parallel processes are disjoint, even if the processes use procedures with
global variables.

Since the model programs cover a broad spectrum of algorithms for scien-
tific computing, I have used them as a guideline for language design. Super-
Pascal is based on well-known language features (Dijkstra 1968; Hoare 1971,
1972, 1985; Ambler 1977; Lampson 1977; IEEE 1983; Brinch Hansen 1987;
Inmos 1988). My only contribution has been to select the smallest number of
concepts that enable me to express the model programs elegantly. This paper
illustrates the parallel features of SuperPascal by examples. The SuperPas-
cal language report defines the syntax and semantics concisely and explains
the differences between SuperPascal and Pascal (Brinch Hansen 1994a). The
interference control is further discussed in (Brinch Hansen 1994b).

A portable implementation of SuperPascal has been developed on a Sun
workstation under Unix. It consists of a compiler and an interpreter writ-
ten in Pascal. The SuperPascal compiler is based on the Pascal compiler
described and listed in (Brinch Hansen 1985). The compiler and interpreter
are in the public domain. You can obtain the SuperPascal software by us-
ing anonymous FTP from the directory pbh at top.cis.syr.edu. The software
has been used to rewrite the model programs for computational science in
SuperPascal.

2 A PROGRAMMING EXAMPLE

I will use pieces of a model program to illustrate the features of SuperPascal.
The Miller-Rabin algorithm is used for primality testing of a large integer
(Rabin 1980). The model program performs p probabilistic tests of the
same integer simultaneously on p processors. Each test either proves that
the integer is composite, or it fails to prove anything. However, if, say, 40
trials of a 160-digit decimal number all fail, the number is prime with virtual
certainty (Brinch Hansen 1992a, 1992b).

The program performs multiple-length arithmetic on natural numbers
represented by arrays of w digits (plus an overflow digit):

type number = array [0..w] of integer;

A single trial is defined by a procedure with the heading

procedure test(a: number; seed: real;
var composite: boolean)
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Each trial initializes a random number generator with a distinct seed.
The parallel computation is organized as a ring network consisting of

a master process and a pipeline connected by two communication channels
(Fig. 1).

Figure 1 A ring network.

The pipeline consists of p identical, parallel nodes connected by p + 1
communication channels (Fig. 2).

Figure 2 A pipeline.

The master sends a number through the pipeline and receives p boolean
values from the pipeline. The booleans are the results of p independent trials
performed in parallel by the nodes.

3 MESSAGE COMMUNICATION

3.1 Communication channels

The communication channels of SuperPascal are deterministic synchronous
channels:

1. A channel can transmit one message at a time in either direction be-
tween two parallel processes.
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2. Before a communication, a process makes a deterministic selection of
a communication channel, a communication direction, and a message
type.

3. A communication takes place when one process is ready to send a
message of some type through a channel, and another process is ready
to receive a message of the same type through the same channel.

3.2 Channel and message types

A channel is not a variable, but a communication medium shared by two
parallel processes. Each channel is created dynamically and identified by a
distinct value, known as a channel reference. A variable that holds a channel
reference is called a channel variable. An expression that denotes a channel
reference is called a channel expression. These concepts are borrowed from
Joyce (Brinch Hansen 1987).

As an example, the declarations

type channel = ∗(boolean, number);
var left: channel;

define a new type, named channel, and a variable of this type, named left.
The value of the variable is a reference to a channel that can transmit mes-
sages of types boolean and number only.

In general, a type definition of the form

type T = ∗(T1, T2, . . . , Tn);

introduces a new channel type T. The values of type T are an unordered set
of channel references created dynamically. Each channel reference of type T
denotes a distinct channel that can transmit messages of types T1, T2, . . . , Tn
only (the message types).

3.3 Channel creation

The effect of an open statement

open(v)

is to create a new channel and assign the corresponding channel reference
to a channel variable v. The channel reference is of the same type as the
channel variable.

The abbreviation
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open(v1, v2, . . . , vn)

is equivalent to

begin open(v1); open(v2, . . . , vn) end

As an example, two channels, left and right, can be opened as follows

open(left, right)

or as shown below

begin open(left); open(right) end

A channel exists until the program execution ends.

3.4 Communication procedures

Consider a process that receives a number a through a channel, left, and
sends it through another channel, right:

var left, right: channel; a: number;
receive(left, a); send(right, a)

The message communication is handled by two required procedures, send
and receive.

In general, a send statement

send(b, e)

denotes output of the value of an expression e through the channel denoted
by an expression b. The expression b must be of a channel type T , and the
type of the expression e must be a message type of T .

A receive statement

receive(c, v)

denotes input of the value of a variable v through the channel denoted by an
expression c. The expression c must be of a channel type T , and the type of
the variable v must be a message type of T .

The send and receive operations defined by the above statements are said
to match if they satisfy the following conditions:
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1. The channel expressions b and c are of the same type T and denote
the same channel.

2. The output expression e and the input variable v are of the same type,
which is a message type of T .

The execution of a send operation delays a process until another process
is ready to execute a matching receive operation (and vice versa). If and
when this happens, a communication takes place as follows:

1. The sending process obtains a value by evaluating the output expres-
sion e.

2. The receiving process assigns the value to the input variable v.

After the communication, the sending and receiving processes proceed
independently.

The abbrevation

send(b, e1, e2, . . . , en)

is equivalent to

begin send(b, e1); send(b, e2, . . . , en) end

Similarly,

receive(c, v1, v2, . . . , vn)

is equivalent to

begin receive(c, v1); receive(c, v2, . . . , vn) end

The following communication errors are detected at run-time:

1. Undefined channel reference: A channel expression does not denote a
channel.

2. Channel contention: Two parallel processes both attempt to send (or
receive) through the same channel at the same time.
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3. Message type error: Two parallel processes attempt to communicate
through the same channel, but the output expression and the input
variable are of different message types.

Message communication is illustrated by two procedures in the primality
testing program. The master process, shown in Fig. 1, sends a number a
through its left channel, and receives p booleans through its right channel.
If at least one of the booleans is true, the number is composite; otherwise,
it is considered to be prime (Algorithm 1).

procedure master(
a: number; var prime: boolean;
left, right: channel);

var i: integer; composite: boolean;
begin

send(left, a); prime := true;
for i := 1 to p do

begin
receive(right, composite);
if composite then

prime := false
end

end;

Algorithm 1 Master.

The pipeline nodes, shown in Fig. 2, are numbered 1 through p. Each
node receives a number a through its left channel, and sends a through its
right channel (unless the node is the last one in the pipeline). The node
then tests the number for primality using the node index i as the seed of
its random number generator. Finally, the node outputs the boolean result
of its own trial, and copies the results obtained by its i− 1 predecessors (if
any) in the pipeline (Algorithm 2).

3.5 Channel arrays

Since channel references are typed values, it is possible to define an array of
channel references. A variable of such a type represents an array of channels.

The pipeline nodes in Fig. 2 are connected by a row of channels created
as follows:
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procedure node(i: integer;
left, right: channel);

var a: number; j: integer;
composite: boolean;

begin
receive(left, a);
if i < p then send(right, a);
test(a, i, composite);
send(right, composite);
for j := 1 to i − 1 do

begin
receive(left, composite);
send(right, composite)

end
end;

Algorithm 2 Node.

type channel = ∗(boolean, number);
row = array [0..p] of channel;

var c: row; i: integer;
for i := 0 to p do open(c[i])

Later, I will program a matrix of processes connected by a horizontal and
a vertical matrix of channels. The channel matrices, h and v, are defined
and initialized as follows:

type
row = array [0..q] of channel;
net = array [0..q] of row;

var h, v: net; i, j: integer;
for i := 0 to q do

for j := 0 to q do
open(h[i,j], v[i,j])

3.6 Channel variables

The value of a channel variable v of a type T is undefined, unless a channel
reference of type T has been assigned to v by executing an open statement

open(v)

or an assignment statement
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v := e

If the value of the expression e is a channel reference of type T , the effect of
the assignment statement is to make the values of v and e denote the same
channel.

If e and f are channel expressions of the same type, the boolean expres-
sion

e = f

is true, if e and f denote the same channel, and is false otherwise. The
boolean expression

e <> f

is equivalent to

not (e = f)

In the following example, the references to two channels, left and right,
are assigned to the first and last elements of a channel array c:

c[0] := left; c[p] := right

After the first assignment, the value of the boolean expression

c[0] = left

is true.

4 PARALLEL PROCESSES

4.1 Parallel statements

The effect of a parallel statement

parallel S1|S2| . . . |Sn end
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procedure ring(a: number;
var prime: boolean);

var left, right: channel;
begin

open(left, right);
parallel

pipeline(left, right)|
master(a, prime, left, right)

end
end;

Algorithm 3 Ring.

is to execute the process statements S1, S2, . . . , Sn as parallel processes until
all of them have terminated.

Algorithm 3 defines a ring net that determines if a given integer a is
prime. The ring, shown in Fig. 1, consists of two parallel processes, a master
and a pipeline, which share two channels. The master and the pipeline run
in parallel until both of them have terminated.

A parallel statement enables you to run different kinds of algorithms
in parallel. This idea is useful only for a small number of processes. It
is impractical to write thousands of process statements, even if they are
identical.

4.2 Forall statements

To exploit parallel computing with many processors, we need the ability to
run multiple instances of the same algorithm in parallel.

As an example, consider the pipeline for primality testing. From the
abstract point of view, shown in Fig. 1, the pipeline is a single process with
two external channels. At the more detailed level, shown in Fig. 2, the
pipeline consists of an array of identical, parallel nodes connected by a row
of channels.

Algorithm 4 defines the pipeline.
The first and last elements of the channel array c

c[0] = left c[p] = right

refer to the external channels of the pipeline. The remaining elements
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procedure pipeline(left, right: channel);
type row = array [0..p] of channel;
var c: row; i: integer;
begin

c[0] := left; c[p] := right;
for i := 1 to p − 1 do

open(c[i]);
forall i := 1 to p do

node(i, c[i−1], c[i])
end;

Algorithm 4 Iterative pipeline.

c[1], c[2], . . . , c[p–1]

denote the internal channels.
For p ≥ 1, the statement

forall i := 1 to p do
node(i, c[i–1], c[i])

is equivalent to the following statement (which is too tedious to write out in
full for a pipeline with more than, say, ten nodes):

parallel
node(1, c[0], c[1])|
node(2, c[1], c[2])|

. . .
node(p, c[p–1], c[p])

end

The variable i used in the forall statement is not the same variable as
the variable i declared at the beginning of the pipeline procedure.

In the forall statement, the clause

i := 1 to p

is a declaration of an index variable i that is local to the procedure statement

node(i, c[i–1], c[i])
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Each node process has its own instance of this variable, which holds a distinct
index in the range from 1 to p.

It is a coincidence that the control variable of the for statement and
the index variable of the forall statement have the same identifier in this
example. However, the scopes of these variables are different.

In general, a forall statement

forall i := e1 to e2 do S

denotes a (possibly empty) array of parallel processes, called element pro-
cesses, and a corresponding range of values, called process indices. The lower
and upper bounds of the index range are denoted by two expressions, e1 and
e2, of the same simple type. Every index value corresponds to a separate
element process defined by an index variable i and an element statement S.

The index variable declaration

i := e1 to e2

introduces the variable i that is local to S.
A forall statement is executed as follows:

1. The expressions, e1 and e2, are evaluated. If e1 > e2, the execution of
the forall statement terminates; otherwise, step 2 takes place.

2. e2− e1 + 1 element processes run in parallel until all of them have ter-
minated. Every element process creates a local instance of the index
variable i, assigns the corresponding process index to the variable, and
executes the element statement S. When an element process termi-
nates, its local instance of the index variable ceases to exist.

A model program for solving Laplace’s equation uses a process matrix
(Brinch Hansen 1993b). Figure 3 shows a q×q matrix of parallel nodes
connected by two channel matrices, h and v.

Each node process is defined by a procedure with the heading:

procedure node(i, j: integer;
up, down, left, right: channel)

A node has a pair of indices (i, j) and is connected to its four nearest neigh-
bors by channels, up, down, left, and right.

The process matrix is defined by nested forall statements:
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Figure 3 A process matrix.

forall i := 1 to q do
forall j := 1 to q do

node(i, j, v[i–1,j], v[i,j], h[i,j–1], h[i,j])

4.3 Recursive parallel processes

SuperPascal supports the beautiful concept of recursive parallel processes.
Figure 4 illustrates a recursive definition of a pipeline with p nodes:

Figure 4 A recursive pipeline.
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1. If p > 1, the pipeline consists of a single node followed by a shorter
pipeline of p− 1 nodes (Fig. 4a).

2. If p = 1, the pipeline consists of a single node only (Fig. 4b).

The pipeline is defined by combining a recursive procedure with a parallel
statement (Algorithm 5).

procedure pipeline(min, max: integer;
left, right: channel);

var middle: channel;
begin

if min < max then
begin

open(middle);
parallel

node(min, left, middle)|
pipeline(min + 1, max,

middle, right)
end

end
else node(min, left, right)

end;

Algorithm 5 Recursive pipeline.

The pipeline consists of nodes with indices in the range from min to max
(where min ≤ max). The pipeline has a left and a right channel. If min <
max, the pipeline opens a middle channel, and splits into a single node and
a smaller pipeline running in parallel; otherwise, the pipeline behaves as a
single node.

The effect of the procedure statement

pipeline(1, p, left, right)

is to activate a pipeline that is equivalent to the one shown in Fig. 2.
The recursive pipeline has a dynamic length defined by parameters. The

nodes and channels are created by recursive parallel activations of the pipeline
procedure. The iterative pipeline programmed earlier has a fixed length be-
cause it uses a channel array of fixed length (Algorithm 4).
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A model program for divide and conquer algorithms uses a binary process
tree (Brinch Hansen 1991a). Figure 5 shows a tree of seven parallel processes
connected by seven channels.

Figure 5 A specific process tree.

The bottom process of the tree inputs data from the bottom channel,
and sends half of the data to its left child process, and the other half to its
right child process. The splitting of data continues in parallel higher up in
the tree, until the data are evenly distributed among the leaf processes at
the top. Each leaf transforms its own portion of the data, and outputs the
results to its parent process. Each parent combines the partial results of its
children, and outputs them to its own parent. The parallel combination of
results continues at lower levels in the tree, until the final results are output
through the bottom channel.

A process tree can be defined recursively as illustrated by Fig. 6.

Figure 6 A recursive tree.
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A binary tree is connected to its environment by a single bottom channel.
A closer look reveals that the tree takes one of two forms:

1. A tree with more than one node consists of a root process and two
smaller trees running in parallel (Fig. 6a).

2. A tree with one node only is a leaf process (Fig. 6b).

The process tree is defined by a recursive procedure (Algorithm 6). The
depth of the tree is the number of process layers above the bottom process.
Figure 5 shows a tree of depth 2.

procedure tree(depth: integer;
bottom: channel);

var left, right: channel;
begin

if depth > 0 then
begin

open(left, right);
parallel

tree(depth − 1, left)|
tree(depth − 1, right)|
root(bottom, left, right)

end
end

else leaf(bottom)
end;

Algorithm 6 Recursive tree.

The behavior of roots and leaves is defined by two procedures of the form:

procedure root(bottom, left, right: channel)

procedure leaf(bottom: channel)

These procedures vary from one application of the tree to another.
The effect of the procedure statement

tree(2, bottom)
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is to activate a binary tree of depth 2.
A notation for recursive processes is essential in a parallel programming

language. The reason is simple. It is impractical to formulate thousands of
processes with different behaviors. We must instead rely on repeated use
of a small number of behaviors. The simplest problems that satisfy this
requirement are those that can be reduced to smaller problems of the same
kind and solved by combining the partial results. Recursion is the natural
programming tool for these divide and conquer algorithms.

5 INTERFERENCE CONTROL

5.1 Disjoint processes

The relative speeds of asynchronous, parallel processes are generally un-
known. If parallel processes update the same variables at unpredictable
times, the combined effect of the processes is time-dependent. Similarly, if
two parallel processes both attempt to send (or receive) messages through
the same channel at unpredictable times, the net effect is time-dependent.
Processes with time-dependent errors are said to interfere with one another
due to variable or channel conflicts.

When a program with a time-dependent error is executed repeatedly with
the same input, the output usually varies in an unpredictable manner from
one run to another. The irreproducible behavior makes it difficult to locate
interference by systematic program testing. The most effective remedy is
to introduce additional restrictions, which make process interference impos-
sible. These restrictions must be checked by a compiler before a parallel
program is executed.

In the following, I concentrate on syntactic detection of variable conflicts.
The basic requirement is simple: Parallel processes can only update disjoint
sets of variables. A variable that is updated by a process may only be used
by that process. Parallel processes may, however, share variables that are
not updated by any of them. Parallel processes that satisfy this requirement
are called disjoint processes.

5.2 Variable contexts

I will illustrate the issues of interference control by small examples only. The
problem is discussed concisely in (Brinch Hansen 1994b).

In theory, syntactic detection of variable conflicts is a straightforward
process. A single-pass compiler scans a program text once. For every state-
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ment S, the compiler determines the set of variables that may be updated
and the set of variables that may be used as expression operands during the
execution of S. These sets are called the target and expression variables of
S. Together they define the variable context of S. If we know the variable
context of every statement, it is easy to check if parallel statements define
disjoint processes.

As an example, the open statement

open(h[i,j])

denotes creation of a component hi,j of a channel array h. Since the index
values i and j are known during execution only, a compiler is unable to
distinguish between different elements of the same array. Consequently, the
entire array h is regarded as a target variable (the only one) of the open
statement. The expression variables of the statement are i and j.

An entire variable is a variable denoted by an identifier only, such as
h, i, or j above. During compilation, any operation on a component of a
structured variable is regarded as an operation on the entire variable. The
target and expression variables of a statement are therefore sets of entire
variables.

A compiler cannot predict if a component of a conditional statement will
be executed or skipped. To be on the safe side, the variable context of a
structured statement is defined as the union of the variable contexts of its
components.

Consider the conditional statement

if i < p then send(right, a)

It has no target variables, but uses three expression variables, i, right and a
(assuming that p is a constant).

5.3 Parallel statements

The choice of a notation for parallel processes is profoundly influenced by
the requirement that a compiler must be able to detect process interference.
The syntax of a parallel statement

parallel S1|S2| . . . |Sn end
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clearly shows that the process statements S1, S2, . . . , Sn are executed in par-
allel.

The following restriction ensures that a parallel statement denotes dis-
joint processes: A target variable of one process statement cannot be a target
or an expression variable of another process statement. This rule is enforced
by a compiler.

Let me illustrate this restriction with three examples. The parallel state-
ment

parallel open(h[i,j])|open(v[i,j]) end

defines two open statements executed simultaneously. The target variable h
of the first process statement does not occur in the second process statement.
Similarly, the target variable v of the second process statement is not used
in the first process statement. Consequently, the parallel statement defines
disjoint processes.

However, the parallel statement

parallel
receive(left, a)|
if i < p then send(right, a)

end

is incorrect, because the target variable a of the first process statement is
also an expression variable of the second process statement.

Finally, the parallel statement

parallel c[0] := left|c[p] := right end

is incorrect, since the process statements use the same target variable c.
Occasionally, a programmer may wish to override the interference control

of parallel statements. This is useful when it is obvious that parallel processes
update distinct elements of the same array. The previous restriction does not
apply to a parallel statement prefixed by the clause [sic]. This is called an
unrestricted statement. The programmer must prove that such a statement
denotes disjoint processes.

The following example is taken from a model program that uses the
process matrix shown in Fig. 3:
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[sic] { 1 <= k <= m }
parallel

receive(up, u[0,k])|
send(down, u[m,k])|
receive(left, u[k,0])|
send(right, u[k,m])

end

This statement enables a node process to simultaneously exchange four el-
ements of a local array u with its nearest neighbors. The initial comment
implies that the two input elements are distinct and are not used as output
elements.

The programmer should realize that the slightest mistake in an unre-
stricted statement may introduce a subtle time-dependent error. The incor-
rect statement

[sic] { 1 <= k <= m }
parallel

receive(up, u[1,k])|
send(down, u[m,k])|
receive(left, u[k,1])|
send(right, u[k,m])

end

is time-dependent, but only if k = 1.

5.4 Forall statements

The following restriction ensures that the statement

forall i := e1 to e2 do S

denotes disjoint processes: In a forall statement, the element statement S
cannot use target variables. This is checked by a compiler.

This restriction implies that a process array must output its final results
to another process or a file. Otherwise, the results will be lost when the
element processes terminate and their local variables disappear. For tech-
nological reasons, the same restriction is necessary if the element processes
run on separate processors in a parallel computer with distributed memory.

In the primality testing program, a pipeline is defined by the statement

forall i := 1 to p do node(i, c[i–1], c[i])
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Since the node procedure has value parameters only, the procedure statement

node(i, c[i–1], c[i])

uses expression variables only (i and c).
The incorrect statement

forall i := 1 to p – 1 do open(c[i])

denotes element processes that attempt to update the same variable c in
parallel.

If it is desirable to use the above statement, it must be turned into an
unrestricted statement:

[sic] { distinct elements c[i] }
forall i := 1 to p – 1 do open(c[i])

The initial comment shows that the node processes are disjoint, since they
update distinct elements of the channel array c.

Again, it needs to be said that a programming error in an unrestricted
statement may cause time-dependent behavior. The incorrect statement

[sic] forall i := 1 to p – 1 do open(c[1])

denotes parallel assignments of channel references to the same array element
c1.

Needless to say, syntactic interference control is of limited value if it is
frequently overridden. A programmer should make a conscientious effort to
limit the use of unrestricted statements as much as possible. The thirteen
model programs, that I wrote, include five unrestricted statements only; all
of them denote operations on distinct array elements.

5.5 Variable parameters

To enable a compiler to recognize distinct variables, a language should have
the property that distinct variable identifiers occurring in the same state-
ment denote distinct entire variables. Due to the scope rules of Pascal, this
assumption is satisfied by all entire variables except variable parameters.

The following procedure denotes parallel creation of a pair of channels:
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procedure pair(var c, d: channel);
begin

parallel open(c)|open(d) end
end;

The parallel processes are disjoint only if the formal parameters, c and d,
denote distinct actual parameters.

The procedure statement

pair(h[i,j], v[i,j])

is valid, since the actual parameters are elements of different arrays, h and
v.

However, the procedure statement

pair(left, left)

is incorrect, because it makes the identifiers, c and d, aliases of the same
variable, left.

Aliasing of variable parameters is prevented by the following restriction:
The actual variable parameters of a procedure statement must be distinct
entire variables (or components of such variables).

An unrestricted statement is not subject to this restriction. A model
program for n-body simulation computes the gravitational forces between a
pair of bodies, pi and pj , and adds each force to the total force acting on
the corresponding body (Brinch Hansen 1991b). This operation is denoted
by a procedure statement

{ i <> j } [sic] addforces(p[j], p[i])

with two actual variable parameters. The initial comment shows that the
parameters, pi and pj , are distinct elements of the same array variable p.

5.6 Global variables

Global variables used in procedures are another source of aliasing. Con-
sider a procedure that updates a global seed and returns a random number
(Algorithm 7).

The procedure statement

random(x)
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var seed: real;

procedure random(var number: real);
var temp: real;
begin

temp := a∗seed;
seed := temp − m∗trunc(temp/m);
number := seed/m

end;

Algorithm 7 Random number generator.

denotes an operation that updates two distinct variables, x and seed.
On the other hand, the procedure statement

random(seed)

turns the identifier number into an alias for seed.
To prevent aliasing, it is necessary to regard the global variable as an

implicit parameter of both procedure statements. Since the procedure uses
the global variable as a target and an expression variable, it is both an
implicit variable parameter and an implicit value parameter of the procedure
statements.

The rule that actual variable parameters cannot be aliases applies to
all variable parameters of a procedure statement, explicit as well as implicit
parameters. However, since implicit value parameters can also cause trouble,
we need a stronger restriction defined as follows (Brinch Hansen 1994b):
The restricted actual parameters of a procedure statement are the explicit
variable parameters that occur in the statement and the implicit parameters
of the corresponding procedure block. The restricted actual parameters of a
procedure statement must be distinct entire variables (or components of such
variables).

In the primality testing program, the pipeline nodes use a random num-
ber generator. If the seed variable is global to the node procedure, then the
seed is also an implicit variable parameter of the procedure statement

node(i, c[i–1], c[i])

Consequently, the statement
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forall i := 1 to p do node(i, c[i–1], c[i])

denotes parallel processes that (indirectly) update the same global variable
at unpredictable times. The concept of implicit parameters enables a com-
piler to detect this variable conflict. The problem is avoided by making the
procedure, random, and its global variable, seed, local to the node procedure.
The node processes will then be updating different instances of this variable.

The parallel statement

parallel write(x)|writeln end

is invalid because the required textfile output is an implicit variable param-
eter of both write statements.

Similarly, the parallel statement

parallel
read(x)|
if eof then writeln

end

is incorrect because the required textfile input is an implicit variable parame-
ter of the read statement and an implicit value parameter of the eof function
designator.

5.7 Functions

Functions may use global variables as implicit value parameters only. The
following rules ensure that functions have no side-effects:

1. Functions cannot use implicit or explicit variable parameters.

2. Procedure statements cannot occur in the statement part of a function
block.

The latter restriction implies that functions cannot use the required pro-
cedures for message communication and file input/output. This rule may
seem startling at first. I introduced it after noticing that my model programs
include over 40 functions, none of which violate this restriction.

Since functions have no side-effects, expressions cannot cause process
interference.
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5.8 Further restrictions

Syntactic detection of variable conflicts during single-pass compilation re-
quires additional language restrictions:

1. Pointer types are omitted.

2. Goto statements and labels are omitted.

3. Procedural and functional parameters are omitted.

4. Forward declarations are omitted.

5. Recursive functions and procedures cannot use implicit parameters.

These design decisions are discussed in (Brinch Hansen 1994b).

5.9 Channel conflicts

Due to the use of channel references, a compiler is unable to detect process
interference caused by channel conflicts. From a theoretical point of view,
I have serious misgivings about this flaw. In practice, I have found it to be
a minor problem only. Some channel conflicts are detected by the run-time
checking of communication errors mentioned earlier. For regular process
configurations, such as pipelines, trees, and matrices, the remaining channel
conflicts are easy to locate by proofreading the few procedures that define
how parallel processes are connected by channels.

6 SUPERPASCAL VERSUS OCCAM

occam2 is an admirable implementation language for transputer systems (In-
mos 1988). It achieves high efficiency by relying on static allocation of
processors and memory. The occam notation is somewhat bulky and not
sufficiently general for a publication language:

1. Key words are capitalized.

2. A real constant requires eight additional characters to define the length
of its binary representation.

3. Simple statements must be written on separate lines.

4. An if statement requires two additional lines to describe an empty else
statement.
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5. Array types cannot be named.

6. Record types cannot be used.

7. Process arrays must have constant lengths.

8. Functions and procedures cannot be recursive.

occam3 includes type definitions, but is considerably more complicated
than occam2 (Kerridge 1993).

occam was an invaluable source of inspiration for SuperPascal. Years
ahead of its time, occam set a standard of simplicity and security against
which future parallel languages will be measured. The parallel features of
SuperPascal are a subset of occam2 with the added generality of dynamic
process arrays and recursive parallel processes. This generality enables you
to write parallel algorithms that cannot be expressed in occam.

7 FINAL REMARKS

Present multicomputers are quite difficult to program. To achieve high per-
formance, each program must be tailored to the configuration of a particular
computer. Scientific users, who are primarily interested in getting numeri-
cal results, constantly have to reprogram new parallel architectures and are
getting increasingly frustrated at having to do this (Sanz 1989).

As educators, we should ignore this short-term problem and teach our
students to write programs for the next generation of parallel computers.
These will probably be general-purpose multicomputers that can run portable
scientific programs written in parallel programming languages.

In this paper, I have suggested that universities should adopt a common
programming language for publication of papers and textbooks on paral-
lel scientific algorithms. The language Pascal has played a major role as a
publication language for sequential computing. Building on that tradition,
I have developed SuperPascal as a publication language for computational
science. SuperPascal extends Pascal with deterministic statements for par-
allel processes and message communication. The language enables you to
define arbitrary configurations of parallel processes, both iteratively and re-
cursively. The number of processes may vary dynamically.

I have used the SuperPascal notation to write portable programs for
regular problems in computational science. I found it easy to express these
programs in three different programming languages (SuperPascal, Joyce, and
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occam2) and run them on three different architectures (a Unix workstation,
an Encore Multimax, and a Meiko Computing Surface).
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