
        

Monitors and Concurrent Pascal:
A Personal History∗

(1993)

This is a personal history of the early development of the monitor concept

and its implementation in the programming language Concurrent Pascal. The

paper explains how monitors evolved from the ideas of Dahl, Dijkstra, Hoare,

and the author (1971–73). At Caltech the author and his students developed

and implemented Concurrent Pascal and used it to write several model op-

erating systems (1974–75). A portable implementation of Concurrent Pascal

was widely distributed and used for system design (1976–90). The monitor

paradigm was also disseminated in survey papers and text books. The au-

thor ends the story by expressing his own mixed feelings about monitors and

Concurrent Pascal.

1 A Programming Revolution

In the 1970s new programming languages were developed to express asyn-
chronous, concurrent processes. These languages support the now familiar
paradigms for process communication known as monitors, remote procedure
calls, and synchronous communication. The most influential early idea was
the monitor concept and its implementation in the programming language
Concurrent Pascal.

This is a personal history of how monitors and Concurrent Pascal were
invented. I have tried to write the history of an idea—how it arose and
spread through the scientific community. I have also described the struggles
of the creative process, how you grope your way through obscurities and
blind alleys until you find an elegant way of expressing an idea.

∗P. Brinch Hansen, Monitors and Concurrent Pascal: A personal history. 2nd ACM
Conference on the History of Programming Languages, Cambridge, MA, April 1993. In
SIGPLAN Notices 28, 3 (March 1993), 1–35. Copyright c© 1993, Association for Comput-
ing Machinery, Inc.
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The story of Concurrent Pascal frequently refers to my own work. How-
ever, I have let other researchers assess the merits and flaws of the language
through quotations from the published literature. At the end of the paper
I express my own reservations about the monitor concept and Concurrent
Pascal. The appendix includes the personal comments of computer scientists
who reviewed earlier drafts of this paper.

As someone who participated in these discoveries, I cannot claim to have
written a complete and unbiased history of these events. In many cases my
knowledge of related work is derived solely from the literature. I hope that
historians will take care of these flaws by comparing my story with other
sources.

From my perspective there are three distinct phases in the early history
of monitors:

1971–73. Monitors evolved from the ideas of Ole-Johan Dahl, Edsger
Dijkstra, Tony Hoare, and me. In 1973 Hoare and I independently published
programming notations for monitors.

1974–75. Working with a few students and a professional programmer
at Caltech, I developed and implemented the first programming language
with monitors. My ambition was to do for operating systems what Pascal
(and other programming languages) had done for compilers: to reduce the
programming effort by an order of magnitude compared to assembly lan-
guage. This was indeed achieved for small operating systems (but not for
larger ones).

1976–90. A portable implementation of Concurrent Pascal was widely
distributed and used for system design. The monitor paradigm was now dis-
seminated throughout the computer science community in survey papers and
textbooks on operating systems, concurrent programming, and programming
languages.

Each phase will be described in a separate section of the paper.
After 1975 the monitor concept inspired other researchers to develop veri-

fication rules, monitor variants, and more programming languages (Andrews
1983). Originally I intended to include a broad review of these later develop-
ments, which I know only from the literature. However, after writing several
earlier drafts of this paper, I realized that I can only provide meaningful his-
torical remarks on ideas and events that I have first-hand knowledge about.
The reviewers’ comments confirmed this impression.
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I will therefore limit the scope of this personal history to the discovery
of the monitor concept and the development and use of the first monitor
language Concurrent Pascal. Since I can only speak for myself, I have not
imposed the same restriction on the reviewers’ comments quoted in the ap-
pendix.

2 Monitors

On the road toward monitors several alternatives were considered. It may
be easier to appreciate the piecemeal discovery if I briefly summarize the
final idea. Monitors enable concurrent processes to share data and resources
in an orderly manner. A monitor is a combination of shared variables and
procedures. Processes must call these procedures to operate on the shared
variables. The monitor procedures, which are executed one at a time, may
delay the calling processes until resources or data become available.

Beginner’s luck

I started out in industry as a systems programmer for the Danish computer
manufacturer Regnecentralen in Copenhagen. In 1967 I became responsible
for the development of the RC 4000 multiprogramming system.

In the 1960s most operating systems were huge, unreliable programs that
were extremely difficult to understand and modify. The RC 4000 system was
a radical departure from this state of affairs. It was not a complete oper-
ating system, but a small kernel upon which operating systems for different
purposes could be built in an orderly manner. The kernel provided the basic
mechanisms for creating a hierarchy of parallel processes that communicated
by messages. The idea of designing a general kernel for operating system de-
sign was due to Jørn Jensen, Søren Lauesen, and me (Brinch Hansen 1969).

I consider myself lucky to have started in industry. The RC 4000 project
convinced me that a fundamental understanding of operating systems would
change computer programming radically. I was so certain of this that I
decided to leave industry and become a researcher.

In November 1970 I became a Research Associate in the Department of
Computer Science at Carnegie-Mellon University. My goal was to write the
first comprehensive textbook on operating system principles (Brinch Hansen
1973b).

As soon as I started writing, it became clear that I needed an algorithmic
language to express operating system functions concisely without unneces-
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sary trivia. In an outline of the book I explained my choice of description
language (Brinch Hansen 1971a):

So far nearly all operating systems have been written partly
or completely in machine language. This makes them unneces-
sarily difficult to understand, test and modify. I believe it is
desirable and possible to write efficient operating systems almost
entirely in a high-level language. This language must permit hier-
archal structuring of data and program, extensive error checking
at compile time, and production of efficient machine code.

To support this belief, I have used the programming language
Pascal throughout the text to define operating system concepts
concisely by algorithms. Pascal combines the clarity needed for
teaching with the efficiency required for design. It is easily un-
derstood by programmers familiar with Algol 60 or Fortran, but
is a far more natural tool than these for the description of oper-
ating systems because of the presence of data structures of type
record . . . and pointer.

At the moment, Pascal is designed for sequential program-
ming only, but I extend it with a suitable notation for multipro-
gramming and resource sharing.

Bold words indeed from a programmer who had never designed a pro-
gramming language before, who did not have access to a Pascal compiler,
and who had no way of knowing whether Pascal would ever be used for
teaching! Niklaus Wirth (1971) had just published the first paper on Pascal,
and there were, of course, no textbooks based on this new language.

A beautiful idea

The key problem in concurrent programming was to invent language concepts
for asynchronous processes that share data in a common memory.

Dijkstra (1965) had argued that it is essential to treat operations on
shared variables as critical regions that must be performed strictly one at a
time in arbitrary order. He had also shown how to implement critical regions
using semaphores. But he had not suggested a notation for this idea.

Hoare (1971b) proposed a notation that identifies a variable as a resource
shared by concurrent processes. A good example is a ring buffer represented
by an array with input/output indices and a message counter:
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B: record inpointer, outpointer, count: integer;
buffer: array 0..N−1 of T end;

{resource B; Producer//Consumer}

The buffer is shared by two concurrent processes which produce and consume
messages, respectively. (In most examples, including this one, I have used
the programming notation of the original papers.)

In his paper Hoare also introduced the elegant concept of a conditional
critical region that is delayed until a resource satisfies a particular condition
(defined by a Boolean expression).

The send operation on the ring buffer is a conditional critical region that
is executed when the buffer is not full:

with B when count < N do
begin buffer[inpointer] := next value;

inpointer := (inpointer + 1) mod N;
count := count + 1

end

The receive operation is similar:

with B when count > 0 do
begin this value := buffer[outpointer];

outpointer := (outpointer + 1) mod N;
count := count − 1

end

A compiler must check that the resource is accessed only within critical
regions. A computer must guarantee that these regions are executed one at
a time without overlapping.

In retrospect, the limitations of conditional critical regions are perhaps
obvious:

• The resource concept is unreliable.

The same variable may be treated as a scheduled resource in some con-
texts and as an ordinary variable in other contexts. This may enable one
process to refer directly to a variable while another process is within a “crit-
ical” region on the same variable.

• The scheduling mechanism is too restrictive.
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When a process is delayed by a Boolean expression without side effects,
it cannot indicate the urgency of its request to other processes. This com-
plicates the programming of priority scheduling.

• The context switching is inefficient.

It did not seem possible to implement conditional critical regions ef-
ficiently. The problem was to limit the repeated reevaluation of Boolean
expressions until they became true.

• There is no precise idea of data abstraction.

The declaration of a resource and the operations associated with it are
not combined into a single, syntactical form, but are distributed throughout
the program text.

Attempts to remove these problems eventually led to the discovery of
monitors.

Readers and writers

During the International Summer School in Marktoberdorf, Germany, July
1971, I removed the first two limitations of conditional critical regions by
solving an interesting problem (Brinch Hansen 1972a).

Two kinds of processes, called readers and writers, share a single resource.
Readers can use it simultaneously, but a writer can use the resource only
when nobody else is using it. When a writer is ready to use the resource, it
should be enabled to do so as soon as possible (Courtois 1971). This is, of
course, a priority scheduling problem.

First, I solved a slightly simpler problem which permits several writers
to use the resource simultaneously. A shared variable was now introduced
by a single declaration:

var v: shared record readers, writers: integer end

This notation makes it clear that a shared variable may be accessed only
within critical regions.

A reader waits until writers are neither using the resource nor waiting
for it:
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region v when writers = 0 do
readers := readers + 1;

read;
region v do readers := readers − 1

A writer immediately announces itself and waits until no readers are
using the resource:

region v do writers := writers + 1
await readers = 0;

write;
region v do writers := writers − 1

The scheduling condition may appear at the beginning or at the end
of a critical region. The latter permits scheduling with side effects. It was
an obvious extension to permit a scheduling condition to appear anywhere
within a critical region (Brinch Hansen 1972b).

Courtois (1972) and others had strong reservations about conditional
critical regions and my solution to the readers and writers problem (Brinch
Hansen 1973a).

A new paradigm

The idea of monitors evolved through discussions and communications be-
tween E.W. Dijkstra, C.A.R. Hoare, and me during the summer and fall of
1971. My own ideas were particularly influenced by our discussions at the
International Summer School in Marktoberdorf, Germany, July 19–30, 1971.
Hoare and I continued the exchange of ideas at the Symposium on Operating
Systems Techniques in Belfast, August 30–September 3, 1971.

At Marktoberdorf, Dijkstra (1971) briefly outlined a paradigm of secre-
taries and directors:

Instead of N sequential processes cooperating in critical sec-
tions via common variables, we take out the critical sections and
combine them into a N + 1st process, called a “secretary”; the
remaining N processes are called “directors.”

A secretary presents itself primarily as a bunch of non-reen-
trant routines with a common state space.

When a director calls a secretary . . . the secretary may de-
cide to keep him asleep, a decision that implies that she should
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wake him up in one of her later activities. As a result the identity
of the calling program cannot remain anonymous as in the case
of the normal subroutine. The secretaries must have variables of
type “process identity.” Whenever she is called the identity of
the calling process is handed over in an implicit input parame-
ter; when she signals a release—analogous to the return of the
normal subroutine—she will supply the identity of the process to
be woken up.

In Belfast I presented an outline of a course on operating system princi-
ples which included the following remarks (Brinch Hansen 1971a):

The conceptual simplicity of simple and conditional critical
regions is achieved by ignoring the sequence in which waiting
processes enter these regions. This abstraction is unrealistic for
heavily used resources. In such cases, the operating system must
be able to identify competing processes and control the schedul-
ing of resources among them. This can be done by means of a
monitor—a set of shared procedures which can delay and activate
individual processes and perform operations on shared data.

During a discussion on monitors I added (Discussion 1971):

You can imagine the (monitor) calls as a queue of messages
being served one at a time. The monitor will receive a message
and try to carry out the request as defined by the procedure and
its input parameters. If the request can immediately be granted
the monitor will return parameters . . . and allow the calling pro-
cess to continue. However, if the request cannot be granted, the
monitor will prevent the calling process from continuing, and en-
ter a reference to this transaction in a queue local to itself. This
enables the monitor, at a later time when it is called by another
process, to inspect the queue and decide which interaction should
be completed now. From the point of view of a process a mon-
itor call will look like a procedure call. The calling process will
be delayed until the monitor consults its request. The monitor
then has a set of scheduling queues which are completely local
to it, and therefore protected against user processes. The latter
can only access the shared variables maintained by the monitor
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through a set of well defined operations . . . the monitor proce-
dures.

At the Belfast Symposium, Hoare expressed his own reservations about
conditional critical regions (Discussion 1971):

As a result of discussions with Brinch Hansen and Dijkstra,
I feel that this proposal is not suitable for operating system im-
plementation.

My proposed method encourages the programmer to ignore
the question of which of several outstanding requests for a re-
source should be granted.

The scheduling decision cannot always be expressed by means
of a single Boolean expression without side effects. You some-
times need the power of a general procedural program with stor-
age in order to make scheduling decisions. So it seems reasonable
to take all these protected critical regions out, and put them to-
gether and call it a secretary or monitor.

In the 1960s the resident part of an operating system was often known as
a monitor. The kernel of the RC 4000 multiprogramming system was called
the monitor and was defined as a program that “can execute a sequence of
instructions as an indivisible entity” (Brinch Hansen 1969).

At Belfast we discussed the disadvantages of the classical monitor written
in assembly language (Discussion 1971):

Brinch Hansen: The difficulty with the classical “monolithic”
monitor is not the fact that while you are performing an opera-
tion of type A you cannot perform another operation of type A,
but that if you implement them by a single critical section which
inhibits further monitor calls then the fact that you are executing
an operation A on one data set prevents all other operations on
completely unrelated data sets. That is why I think the ability
to have several monitors, each in charge of a single set of shared
data, is quite important.

Hoare: A monitor is a high-level language construction which
has two properties which are not possessed by most monitors
as actually implemented in machine code. Firstly, like all good
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programming ideas it can be called in at several levels: monitors
can call other monitors declared in outer blocks. Secondly, the
use of the high-level language feature enables you to associate
with each monitor the particular variables and tables which are
relevant for that monitor in controlling the relative progress of
the processes under its care. The protection, which prevents
processes from corrupting this information and prevents monitors
from gaining access to information which has no relevance, is
established by Algol-like scope rules.

These quotations show that Dijkstra, Hoare, and I had reached an in-
formal understanding of monitors. But it was still no more than a verbal
outline of the idea. The discovery of a queueing mechanism, a notation, and
an implementation was left as an exercise for the reader.

Abandoned attempts

When a programming concept is understood informally, it would seem to be
a trivial matter to invent a language notation for it. But in practice this is
hard to do. The main problem is to replace an intuitive, vague idea with a
precise, unambigious definition of its meaning and restrictions.

In the search for a suitable monitor notation many ideas were considered
and rejected. I will describe two proposals that were abandoned. You may
find them hard to understand. In retrospect, so do I!

At the Belfast Symposium, Hoare (1971a) distributed an unpublished
draft of a monitor proposal which included a single-buffer characterized as
follows:

status = −1 buffer empty (consumer waiting)
status = 0 buffer empty (consumer not waiting)
status = 1 buffer full (producer not waiting)
status = 2 buffer full (producer waiting)

The send operation is defined by a monitor entry named p:

p(prod) entry
begin

if status ≤ 0 then input (prod)p(buffer);
if status = −1 then output (cons)c(buffer);
status := status + 1

end
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This entry is not a procedure in the usual sense; p is the name of a
communication between a producer and the buffer. The entry defines the
protocol for this communication.

A producer outputs a message e to the buffer by executing the statement

output p(e)

The following takes place:

1. The producer is automatically delayed and its identity is assigned to
a variable named prod.

2. If the buffer is empty, it immediately inputs the message from the
producer and assigns it to a variable named buffer by executing the
statement

input (prod)p(buffer)

The input automatically enables the producer to continue its execution.

3. If a consumer is waiting to input a message, the buffer immediately
outputs the last message by executing the statement

output (cons)c(buffer)

The details of this statement will be explained shortly.

4. If the buffer is full it cannot input the message yet. In that case, the
producer will remain delayed until a consumer empties the buffer as
explained below.

5. Finally the buffer status is updated.

The receive operation is defined by a similar monitor entry named c:

c(cons) entry
begin

if status ≥ 1 then output (cons)c(buffer);
if status = 2 then input (prod)p(buffer);
status := status − 1

end
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A consumer inputs a message and assigns it to a variable x by executing
the statement

input c(x)

This has the following effect:

1. The consumer is automatically delayed and its identity is assigned to
a variable named cons.

2. If the buffer is full, it immediately outputs the last message to the
consumer by executing the statement

output (cons)c(buffer)

3. If a producer is waiting to output a message to the buffer, the buffer
now accepts that message by executing the statement

input (prod)p(buffer)

4. If the buffer is empty, it cannot output a message yet. In that case,
the consumer will remain delayed until a producer fills the buffer as
explained earlier.

5. Finally the buffer status is updated.

The proposal offers an efficient mechanism for process scheduling. The
basic idea is that one monitor entry can complete a communication that was
postponed by another monitor entry. This is the programming style one
naturally adopts in a monolithic monitor written in assembly language.

The description of parameter transfers as unbuffered input/output later
became the basis for the concept of communicating sequential processes
(Hoare 1978).

This early monitor proposal did not combine monitor entries and shared
variables into a modular unit and did not specify parameter types. In an
attempt to remedy these problems, I sent Hoare an unpublished draft of
“a monitor concept which closely mirrors the way in which the RC 4000
monitor was programmed” (Brinch Hansen 1971c). Algorithm 1 illustrates
the use of this notation to implement a single-buffer.
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monitor
var send2: ref send; receive2: ref receive;

ready: Boolean;

entry send(const x: message)
call send1;
begin

if ready then
complete send1, receive2 do
begin y := x; ready := false end

else
begin send2 := send1; ready := true end

end

entry receive(var y: message)
call receive1;
begin

if ready then
complete receive1, send2 do
begin y := x; ready := false end

else
begin receive2 := receive1; ready := true end

end

begin ready := false end

Algorithm 1 An abandoned proposal.

A monitor is now a module that combines shared variables, procedures
and an initial statement. The latter must be executed before the monitor
can be called.

When the producer calls the send procedure, the following happens:

1. A reference to the call is stored in a local variable named send1. This
is called a send reference.

2. If the consumer has called the receive procedure and is ready to receive
a message, the monitor completes the send and receive calls simultane-
ously by assigning the value parameter x in the send call to the variable
parameter y in the receive call. The completion statement extends the
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scope of the send entry with the parameters of the corresponding re-
ceive entry. It also has the side effect of resuming the two processes
associated with the procedure calls.

3. If the consumer is not ready, the monitor stores the identity of the send
call in a global variable named send2 and indicates that the producer
is ready to communicate.

The receive procedure is similar.
The use of call references enables a compiler to check parameter decla-

rations in completion statements.
The most serious flaw of both proposals is the unreliable nature of process

scheduling. As Hoare put it: “It would be a grave error for a monitor
to specify an interaction with a process which was not waiting for that
interaction to take place.” I concluded that it is generally “impossible . . .
to check the validity of process references.”

In a collection of papers by Hoare (1989), C.B. Jones introduces Hoare’s
1974 paper on monitor and writes: “The first draft of this paper was distri-
buted to the participants of the 1971 Belfast Symposium.”

However, there is very little resemblance between these two papers. The
reason is quite simple. In 1971 we had some understanding of abstract data
types. But a key ingredient of monitors was still missing: a secure, efficient
method of context switching. We now turn to this problem.

The waiting game

On February 16, 1972, I presented a completely different solution to the prob-
lem of process scheduling at the California Institute of Technology (Brinch
Hansen 1972b).

I will illustrate the idea by an exercise from Brinch Hansen (1973b).
Processes P1, P2, . . . , Pn share a single resource. A process requests exclusive
access to the resource before using it and releases it afterwards. If the
resource is free, a process may use it immediately; otherwise the process
waits until another process releases the resource. If several processes are
waiting for the resource, it is granted to the waiting process Pi with the
lowest index i.

Algorithm 2 shows a priority scheduler for this problem. The resource
is represented by a shared record r. The key idea is to associate scheduling
queues with the shared variable. The queues are declared as variables of
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var r: shared record
free: Boolean;
waiting: array [1..n] of Boolean;
grant: array [1..n] of event r

end

procedure request(i: 1..n);
region r do
begin

if free then free := false
else

begin
waiting[i] := true;
await(grant[i]);
waiting[i] := false

end
end

procedure release;
var i, m: 1..n;
region r do
begin

i := 1; m := n;
while i < m do

if waiting[i] then m := i
else i := i + 1;

if waiting[i] then cause(grant[i])
else free := true

end

Algorithm 2 Context switching queues.
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type event r. The resource scheduler can delay processes in these queues
and resume them later by means of two standard procedures named await
and cause.

If a process Pi calls the request procedure when the resource is not free,
the Boolean waiting[i] is set to true and the process is entered in the event
queue grant[i]. The await operation makes the process leave its critical region
temporarily.

When a process Pj calls the release procedure while other processes are
waiting, the most urgent process Pi is selected and enabled to resume as
soon as Pj leaves its own region. At that moment Pi reenters its previous
region and continues execution after the await statement.

Instead of letting one critical region complete the execution of another
region, we simply switch back to the context of the previous region. Con-
sequently, a scheduling decision can be viewed merely as a delay during the
execution of a critical region.

This queueing mechanism enables the programmer to ignore the identity
of a process and think of it only as “the calling process” or “the process
waiting in this queue.” There is no need for variables of type process refer-
ence.

The only possible operations on a queue are cause and await, performed
within critical regions. The problem of dangling process references is solved
by making the queues empty to begin with and preventing assignments to
them.

My proposal included a feature that was never used. Suppose several
processes are waiting in the same queue until a Boolean expression B is true.
In that case, a cause operation on the queue enables all of them to resume
their critical regions one at a time. Mutual exclusion is still maintained,
and processes waiting to resume critical regions have priority over processes
that are waiting to enter the beginning of critical regions. In this situation,
a resumed process may find that another process has made the scheduling
condition B false again. Consequently, processes must use waiting loops of
the form

while not B do await(q)

My 1972 paper, which introduced scheduling queues, was an invited pa-
per written under great time pressure. When someone later mentioned that
multiple resumption might be inconvenient, I looked at the paper again and
saw that it presented one example only of the use of scheduling queues. And
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that example used a separate queue for each process! The programming ex-
amples in my operating systems book (Brinch Hansen 1973b) did the same.
In Concurrent Pascal I turned this programming style into a programming
language rule (Brinch Hansen 1974d).

In spite of the unintended generality, my 1972 process queues were not
the same as the classical event queues of the 1960s, which caused the pro-
grammer to lose control over scheduling. The crucial difference was that the
new queues were associated with a shared variable, so that all scheduling op-
erations were mutually exclusive operations. The programmer could control
the scheduling of processes to any degree desired by associating each queue
with a group of processes or an individual process.

The idea of associating scheduling queues with a shared variable to enable
processes to resume critical regions was the basis of all subsequent monitor
proposals. Context switching queues have been called events (Brinch Hansen
1972b), queues (Brinch Hansen 1973b), and conditions (Hoare 1973a). Some
are single-process queues; others are multiprocess queues. The details vary,
but they all combine process scheduling with context switching and mutual
exclusion.

We now had all the pieces of the monitor puzzle. And I had adopted a
programming style which combined shared variables, queues, critical regions,
and procedures in a manner that closely resembled monitors (Algorithm 2).

A moment of truth

In the spring of 1972 I read two papers by Dahl (1972b) and Hoare (1972b)
on the class concept of the programming language Simula 67. Although
Simula is not a concurrent programming language, it inspired me in the
following way: So far I had thought of a monitor as a program module that
defines all operations on a single instance of a data structure. From Simula
I learned to regard a program module as the definition of a class of data
structures accessed by the same procedures.

This was a moment of truth for me. Within a few days I wrote a chapter
on resource protection for my operating systems book. I proposed to rep-
resent monitors by shared classes and pointed out that resource protection
and type checking are part of the same problem: to verify automatically
that all operations on data structures maintain certain properties (called
invariants).

My book includes the buffer monitor defined by Algorithm 3. The shared
class defines a data structure of type B, two procedures which can operate
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on the data structure, and a statement that defines its initial state.

shared class B =
buffer: array 0..max−1 of T;
p, c: 0..max−1;
full: 0..max;

procedure send(m: T);
begin

await full < max;
buffer[p] := m;
p := (p + 1) mod max;
full := full + 1;

end

procedure receive(var m: T);
begin

await full > 0;
m := buffer[c];
c := (c + 1) mod max;
full := full − 1;

end

begin p := 0; c := 0; full := 0 end

Algorithm 3 A monitor with conditional waiting.

The class notation permits multiple instances of the same monitor type.
A buffer variable b is declared as follows:

var b: B

Upon entry to the block in which the buffer variable is declared, storage is
allocated for its data components, and the buffer is initialized by executing
the statement at the end of the class definition.

Send and receive operations on the buffer b are denoted

b.send(x) b.receive(y)

A shared class is a notation that explicitly restricts the operations on a
data type and enables a compiler to check that these restrictions are obeyed.
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It also indicates that all operations on a particular instance must be executed
as critical regions.

In May 1972 I submitted the manuscript of my book to Prentice-Hall and
sent copies to Dijkstra and Hoare. On November 3, 1972, I gave a seminar
on shared classes at the University of California at Santa Barbara.

In July 1973 Operating System Principles was published with my monitor
proposal based on Simula classes (Brinch Hansen 1973b). My decision to use
conditional waiting in this proposal was a matter of taste. I might just as
well have used queues, which I had introduced in another chapter.

I also included the monitor notation in the first draft of a survey paper
on concurrent programming (Brinch Hansen 1973d). A referee, who felt that
it was inappropriate to include a recent idea in a survey paper, suggested
that I remove it, which I did.

I discussed monitors with queues in the first report on Concurrent Pascal,
April 1974, and at the IFIP Congress in Stockholm, August 1974 (Brinch
Hansen 1974a, 1974c).

Parallel discovery

Two influential papers concluded the early development of monitors. In the
first paper Hoare (1973b) used a monitor in the design of a paging system.
He begins the paper by acknowledging that “The notations used . . . are
based on those of Pascal . . . and Simula 67.” In the second paper Hoare
(1974a) illustrated the monitor concept by several examples, including a ring
buffer (Algorithm 4). Communicating processes are delayed and resumed
by means of wait and signal operations on first-in, first-out queues called
condition variables.

In an unpublished draft of his condition proposal Hoare (1973a) correctly
pointed out that

The synchronization primitives proposed here are very similar
to Brinch Hansen’s “await” and “cause”, but they involve less
retesting inside waiting operations, and may be slightly more
efficient to implement.

According to Hoare (1989), his first monitor paper was submitted in
October 1972; his second paper was submitted in February 1973 and the
material presented at IRIA, Paris, France, on May 11, 1973. I received
them shortly before they were published in August 1973 and October 1974,
respectively.
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bounded buffer: monitor
begin buffer: array 0..N−1 of portion;

lastpointer: 0..N−1;
count: 0..N;
nonempty, nonfull: condition;
procedure append(x: portion);

begin if count = N then nonfull.wait;
note 0 ≤ count < N;
buffer[lastpointer] := x;
lastpointer := lastpointer ⊕ 1;
count := count + 1;
nonempty.signal

end append;
procedure remove(result x: portion);

begin if count = 0 then nonempty.wait;
note 0 < count ≤ N;
x := buffer[lastpoint ª count];
count := count − 1;
nonfull.signal

end remove;
count := 0; lastpointer := 0

end bounded buffer;

Algorithm 4 A monitor with queues.

While writing this history I discovered a working paper by McKeag
(1973) submitted to an ACM meeting in Savannah, Georgia, April 9–12,
1973. This early paper includes a single example of Hoare’s monitor nota-
tion.

Milestones

The classical monitor of the 1960s was not a precisely defined programming
concept based on rules enforced by a compiler. It was just a vague term for
the resident part of an operating system, which was programmed in assembly
language. The monitor concept that emerged in the 1970s should not be
regarded as a refinement of an operating systems technique. It was a new
programming language concept for concurrent programs running on shared-
memory computers. Operating systems were just a challenging application
area for this synchronization concept.
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This brings us to the end of the phase where the monitor concept was
discovered. The milestones were:

1971 Conditional critical regions
Scheduling with side effects
Monitor idea

1972 Context switching queues
Class concept papers
Monitor notation

1973 Operating System Principles
Monitor papers

The next task was to develop a programming language with monitors.

3 Concurrent Pascal

Concurrent Pascal extended the sequential programming language Pascal
with concurrent processes, monitors, and classes. The polished presentations
of the language in professional journals and text books fail to show the long
arduous road we had to travel to understand what undergraduates now take
for granted.

A matter of philosophy

In designing Concurrent Pascal I followed a consistent set of principles for
programming languages. These principles carried structured programming
into the new realm of modular, concurrent programming. Let me summarize
these principles and show when and how I first expressed them in writing.

• Concurrent programs can be written exclusively in high-level languages.

In the fall of 1971 I expressed this belief, which seems commonplace
today, but was novel at the time (see the earlier quotation in “Beginner’s
luck”). Later I will explain why I did not consider Burroughs Algol and
PL/I as high-level programming languages for operating system design.

In Brinch Hansen (1974c) I repeated the same idea:

I am convinced that in most cases operating system design-
ers do not need to control low-level machine features (such as
registers, addresses, and interrupts) directly, but can leave these
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problems to a compiler and its run-time environment. A consis-
tent use of abstract programming concepts in operating system
design should enable a compiler to check the access rights of con-
current processes and make enforcement of resource protection
rules at run time largely unnecessary.

Hoare (1971b) and Brinch Hansen (1971b) introduced a fundamental
requirement of any concurrent programming language:

• Time-dependent programming errors must be detected during compi-
lation.

In the spring of 1972 I explained this requirement as follows (Brinch
Hansen 1973b):

The main dificulty of multiprogramming is that concurrent
activities can interact in a time-dependent manner which makes
it practically impossible to locate programming errors by system-
atic testing. Perhaps, more than anything else, this explains the
difficulty of making operating systems reliable.

If we wish to succeed in designing large, reliable multipro-
gramming systems, we must use programming tools which are so
well-structured that most time-dependent errors can be caught at
compile time. It seems hopeless to try to solve this problem at
the machine level of programming, nor can we expect to improve
the situation by means of so-called “implementation languages,”
which retain the traditional “right” of systems programmers to
manipulate addresses freely.

In 1976 I put it this way (Brinch Hansen 1977b):

One of the primary goals of Concurrent Pascal is to push
the role of compilation checks to the limit and reduce the use of
execution checks as much as possible. This is not done just to
make compiled programs more efficient by reducing the overhead
of execution checks. In program engineering, compilation and
execution checks play the same role as preventive maintenance
and flight recorders do in aviation. The latter only tell you why
a system crashed; the former prevents it. This distinction seems
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essential to me in the design of real-time systems that will control
vital functions in society. Such systems must be highly reliable
before they are put into operation.

Time-dependent errors occur when processes refer to the same variables
without proper synchronization. The key to preventing these race conditions
turned out to be the requirement that

• A concurrent programming language should support a programming
discipline that combines data and procedures into modules.

I realized this even before discovering a monitor notation. The following
quotation refers to my earlier proposal of associating shared variables with
critical regions and scheduling queues (Brinch Hansen 1972b):

The basic idea is to associate data shared by concurrent pro-
cesses explicitly with operations defined on them. This clari-
fies the meaning of programs and permits a large class of time-
dependent errors to be caught at compile-time.

In the spring of 1972 I described my own monitor notation as a natural
extension of the module concept of Simula 67 (Brinch Hansen 1973b):

In Simula 67, the definition of a structured data type and the
meaningful operations on it form a single syntactical unit called
a class.

An obvious idea is to represent critical regions by the concept
shared class, implying that the operations . . . on a given variable
v of type T exclude one another in time.

My main purpose here is to show a notation which explic-
itly restricts operations on data and enables a compiler to check
that these restrictions are obeyed. Although such restrictions are
not enforced by Simula 67, this would seem to be essential for
effective protection.

Concurrent Pascal was the first realization of modular, concurrent pro-
gramming. During the 1970s researchers also introduced modularity in se-
quential programming languages. However, these languages were completed
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and implemented after Concurrent Pascal (Popek 1977; Liskov 1981; Shaw
1981).

In the spring of 1975, after implementing Concurrent Pascal and writing
the first operating system in the language, I wrote the following (Brinch
Hansen 1975c):

The combination of a data structure and the operations used
to access it is called an abstract data type. It is abstract because
the rest of the system only needs to know what operations one can
perform on it but can ignore the details of how they are carried
out. A Concurrent Pascal program is constructed from three
kinds of abstract data types: processes, monitors, and classes.

Race conditions are prevented by a simple scope rule that permits a
process, monitor, or class to access its own variables only. In a suitably
restricted language this rule can easily be checked by a compiler. However,
in a language with pointers and address arithmetic, no such guarantee can
be offered.

The principles discussed so far were largely derived from my perception of
concurrent programming in 1972. Intuitively I also followed a more general
principle of language design, which I only formulated four years later:

• A programming language should be abstract and secure.

In the spring of 1976 I explained this requirement as follows (Brinch
Hansen 1977b):

The main contribution of a good programming language to
simplicity is to provide an abstract readable notation that makes
the parts and structures of programs obvious to a reader. An ab-
stract programming language suppresses machine detail (such as
addresses, registers, bit patterns, interrupts, and sometimes even
the number of processors available). Instead the language relies
on abstract concepts (such as variables, data types, synchroniz-
ing operations, and concurrent processes). As a result, program
texts written in abstract languages are often an order of mag-
nitude shorter than those written in machine language. This
textual reduction simplifies program engineering considerably.
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We shall also follow the crucial principle of language design
suggested by Hoare: The behavior of a program written in an
abstract language should always be explainable in terms of the
concepts of that language and should never require insight into
the details of compilers and computers. Otherwise, an abstract
notation has no significant value in reducing complexity.

A programming language that satisfies this requirement is said to be
secure (Hoare 1974b).

A programming language that permits unrestricted use of assembly lan-
guage features, such as jumps, typeless machine words, and addresses is
insecure. A program written in such a language may have unpredictable
effects that force the programmer to go beyond the abstract concepts, which
the programming language pretends to support. In order to locate obscure
programming errors, the programmer may now have to consider machine-
dependent details, which vary from one computer to another (or even from
one execution to another on the same computer).

The Burroughs B6700 and Multics operating systems were written in
programming languages that permit unrestricted address manipulation (ex-
tended Algol 60 and PL/I). These insecure programming languages and op-
erating systems had no influence on Concurrent Pascal and the model op-
erating systems written in the language. The Unix system, written in the
insecure language C, had not yet been described when Concurrent Pascal
was being developed.

The controversy over whether a programming language should give you
unrestricted access to hardware features or impose restrictions that simplify
programs and facilitate error detection has continued to this day.

Facing complexity

On July 1, 1972, I became Associate Professor of Computer Science at the
California Institute of Technology. During my first academic year I prepared
three new courses and introduced Pascal on campus. These tasks kept me
busy for a while.

I also started thinking about designing a programming language with
concurrent processes and monitors. To reduce the effort, I decided to include
these concepts in an existing sequential language. Pascal was an obvious
choice for me, since I had used the language in my operating systems book. I
liked Pascal because of its similarity to Algol 60, which I had used extensively
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at Regnecentralen. I named the new language Concurrent Pascal and did
not consider any other base language. Apart from that, nothing else was
obvious.

With a notation for monitors now in hand, you would think it would be
easy to include it in Pascal. I had no idea of how to do this. I remember
sitting in my garden in Pasadena, day after day, staring at a blank piece of
paper and feeling like a complete failure.

Let me just mention some of the complicated issues I faced for the first
time:

How can a programming language support

• The different scope rules of Pascal blocks and Simula classes?

• Hierarchical composition of processes and monitors?

• Multiple instances of the same process or monitor type?

• Dynamic activation and termination of processes and monitors?

• Elementary input/output from arbitrary peripherals?

How can a compiler check that

• Processes communicate by monitor procedures only?

• Monitors do not deadlock by calling themselves recursively (either di-
rectly or indirectly)?

How can a minicomputer with inadequate facilities for dynamic memory
allocation

• Execute concurrent programs efficiently?

It took me almost two years to find reasonable solutions to most of these
problems and make compromises which enabled me to ignore the most thorny
issues.
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A new language

In September 1973 and April 1974 I distributed the first descriptions of
Concurrent Pascal. A final paper and a language report were both published
in June 1975 (Brinch Hansen 1973c, 1974a, 1974d, 1975a).

I now understood what I was doing. One day the Caltech president,
Harold Brown, came to my office and asked me to explain my research. After
listening for half an hour, he said, “That sounds easy.” I agreed because that
was how I felt at the time.

A Concurrent Pascal program defines a fixed number of concurrent pro-
cesses which communicate by monitors only. One of the first programs I
wrote in Concurrent Pascal implements a pipeline that reads and prints an
endless sequence of punched cards. Figure 1 shows the hierarchical structure
of the pipeline. It consists of three processes connected by two line buffer
monitors. An arrow from a process to a monitor indicates that the process
can call that monitor. I named this kind of representation an access graph.
It became our main tool for “programming in the large.”

CARD READER LINE BUFFERS LINE PRINTER

CARD PROCESS COPY PROCESS PRINTER PROCESS

m m m m
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Figure 1 An access graph.

I will use the pipeline in Fig. 1 to illustrate the syntax and semantics of
Concurrent Pascal.

Both line buffers in this pipeline are defined by the same monitor type
(Algorithm 5). Each buffer can hold a single line at a time. A Boolean
variable defines whether or not a buffer is full. Two variables of type queue
are used to delay and continue the sender and receiver, respectively.

The pipeline program uses two line buffers, which are declared and ini-
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type linebuffer =
monitor
var contents: line; full: Boolean;

sender, receiver: queue;

procedure entry receive(var text: line);
begin

if not full then delay(receiver);
text := contents; full := false;
continue(sender)

end;

procedure entry send(text: line);
begin

if full then delay(sender);
contents := text; full := true;
continue(receiver)

end;

begin full := false end

Algorithm 5 A monitor type.

tialized as follows:

var inbuffer, outbuffer: linebuffer;

init inbuffer, outbuffer

For each buffer, the init statement allocates memory space for fresh in-
stances of the shared variables declared at the beginning of the monitor type.
The initialization also causes the statement at the end of the monitor to be
executed, which makes a buffer empty to begin with. Each buffer is now
ready to be shared by a sender and a receiver as shown in Fig. 1.

The Concurrent Pascal compiler checks that processes only access a line
buffer by calling the monitor procedures send and receive. This restriction
is guaranteed by a scope rule that makes the shared variables inaccessible
from outside the monitor.

A sender outputs a line of text through a particular buffer by calling the
send procedure as follows:
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var text: line;

outbuffer.send(text)

If the buffer is full, the send procedure delays the calling process in
the sender queue. The delay lasts until another process calls the receive
procedure, which performs a continue operation on the sender queue. In any
case, the sender cannot complete the if statement until the buffer is empty.
At that point, the sender puts a message in the queue, performs a continue
operation on the receiver queue and returns from the send procedure.

The receive procedure is similar.
While a process executes a monitor procedure, it has exclusive access to

the shared variables. If another process attempts to call the same monitor
while a process has exclusive access to that monitor, the latter call will
automatically be delayed until the former process has released its exclusive
access.

A process releases its exclusive access to a monitor in one of three ways:

1. By reaching the end of a monitor procedure.

2. By delaying itself temporarily in a queue declared within the monitor.
The process regains its exclusive access when another process performs
a continue operation on the same queue.

3. By performing a continue operation on a queue. The process per-
forming the continue operation automatically returns from its monitor
procedure. If another process is waiting in the queue, that process will
immediately resume the execution of the monitor procedure in which
it was delayed.

A monitor queue is either empty or holds a single process. A multiprocess
queue can be implemented as an array of single-process queues.

In October 1973 Ole-Johan Dahl suggested to Tony Hoare that a continue
operation should terminate a monitor call (Hoare 1974a; McKeag 1991).
Hoare may have told me about this idea during his visit to Caltech in January
1974.

In the pipeline example a printer process is defined by a process type
(Algorithm 6). A process parameter defines the only monitor (a line buffer)
that is accessible to the process.

The pipeline program initializes a printer process as follows:



    

30 PER BRINCH HANSEN

type printerprocess =
process(buffer: linebuffer);
var param: ioparam; text: line;
begin

param.operation := output;
cycle

buffer.receive(text);
repeat io(text, param, printdevice)
until param.status = complete

end
end

Algorithm 6 A process type.

var outbuffer: linebuffer; writer: printerprocess;

init writer(outbuffer)

The init statement allocates memory for fresh instances of the local vari-
ables declared at the beginning of the process type and starts execution of
the process.

The Concurrent Pascal compiler ensures that the local variables of a
process are inaccessible to other processes (and monitors). It also checks
that a printer process uses its own line buffer only.

A printer process repeats the same cycle of operations endlessly. In each
cycle the process receives a line from the buffer and prints it. The standard
procedure io delays the process until the line has been output (or the printing
has failed). In this simple example, the printing is repeated until it has been
successfully completed.

All input/output are indivisible operations that hide peripheral inter-
rupts. Consequently a process and a peripheral device cannot access the
same variable simultaneously.

The complete pipeline program defines a parameterless process known as
the initial process. This process includes definitions of all the monitor and
process types used by the pipeline (Algorithm 7).

The execution of the program activates a single initial process, which
then initializes two buffer monitors and activates three concurrent processes
(by means of an init statement).

In addition to processes and monitors, Concurrent Pascal also includes
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type linebuffer =
monitor
· · ·

end;

type cardprocess =
process(buffer: linebuffer);
· · ·

end;

type copyprocess =
process(inbuffer, outbuffer: linebuffer);
· · ·

end;

type printerprocess =
process(buffer: linebuffer);
· · ·

end;

var inbuffer, outbuffer: linebuffer;
reader: cardprocess;
copier: copyprocess;
writer: printerprocess;

begin
init inbuffer, outbuffer,

reader(inbuffer),
copier(inbuffer, outbuffer),
writer(outbuffer)

end.

Algorithm 7 A program.
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classes. A class is a module that cannot be called simultaneously by pro-
cesses. It must be local to a single process, monitor or class.

Algorithm 8 shows a class type. A module of this type has access to a
single line buffer. The class procedure extends a line with a left margin of
26 spaces and terminates it with a newline character before sending the line
through the buffer.

type linemaker =
class(buffer: linebuffer);
var image: line; charno: integer;

procedure entry write(text: line);
begin

for charno := 27 to 106 do
image[charno] := text[charno−26];

buffer.send(image)
end;

begin
for charno := 1 to 26 do

image[charno] := space;
image[107] := newline

end

Algorithm 8 A class type.

A Simula program can bypass the procedures of a class and change the
class variables in ways that are incompatible with the function of the class.
This loophole was removed in Concurrent Pascal. A variable declared within
a class can be read (but not changed) outside the class, provided the vari-
able is prefixed with the word entry. Entry variables are not permitted in
monitors.

Table 1 shows how Concurrent Pascal differs from Pascal. It lists the
features that were added to Pascal as well as those that were excluded.

I have already illustrated the major concepts of Concurrent Pascal: pro-
cesses, monitors, classes, and queues, as well as init and cycle statements
(Algorithms 5–8).

The programming of terminal and printer drivers is supported by a no-
tation for control characters. The following example
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Table 1 Concurrent Pascal versus Pascal.

Added features Excluded features
process types file types
monitor types pointer types
class types packed arrays
queues variant records
init statements goto statements
cycle statements recursion
control characters
universal parameters
program declarations

const formfeed = ‘(:12:)’

defines form feed as ASCII character number 12.
When you program a procedure that reads a disk page, you cannot an-

ticipate all the possible data types that users will assign to this page in the
future. This is one of the few cases in which one cannot hide machine detail.

Concurrent Pascal uses universal parameters to relax type checking in
device procedures. In the following procedure declaration

type diskpage = array [1..256] of integer;

procedure readdisk(pageno: integer;
var page: univ diskpage);

begin . . . end

the key word univ indicates that the procedure may be called with any
argument that has the same length as an array of 256 integers. The type
checking is relaxed only at the point where the procedure is called. No
variable is treated as a typeless bit pattern throughout a program (Brinch
Hansen 1975d).

A program declaration enables a Concurrent Pascal program to call a
sequential user (or system) program written in a subset of Pascal. The pro-
gram declaration includes a list of procedures that the Pascal program may
call. The details of this ad hoc mechanism are described in the Concurrent
Pascal report (Brinch Hansen 1975a).

Since an operating system written in Concurrent Pascal must implement
its own filing system, file types cannot be built into the language.



  

34 PER BRINCH HANSEN

Pointer types were excluded to prevent a process from obtaining unsyn-
chronized access to a variable of another process through a pointer trans-
mitted through a monitor. In the absence of pointers, processes can access
shared variables through monitor procedures only.

Packed arrays, variant records, and goto statements were eliminated to
simplify the language.

Later I will explain my reasons for eliminating recursive procedures and
functions.

The complete syntax and semantics of Concurrent Pascal are defined in
the language report (Brinch Hansen 1975a).

Concurrent Pascal was designed according to the principles discussed
earlier. It is a programming language that supports modular programming
with processes, monitors, and classes. The syntax clearly shows that each
module consists of a set of variables, a set of procedures, and an initial
statement. Each module defines the representation and possible transforma-
tions of a data structure. A module cannot access the variables of another
module. This simple scope rule enables a compiler to detect race conditions
before a program is executed. The automatic synchronization of monitor
calls prevents other race conditions at run time.

The programming tricks of assembly language are impossible in Concur-
rent Pascal: there are no typeless memory words, registers, and addresses in
the language. The programmer is not even aware of the existence of phys-
ical processors and interrupts. The language is so secure that concurrent
processes run without any form of memory protection!

My working habits unfortunately make it impossible for me to remember
the alternative forms of syntax, scope, and type rules that I must have
considered while designing the language. I evaluate language concepts by
using them for program design. I develop a program by writing numerous
drafts of the program text. A draft is immediately rejected if it is not in
some way simpler and more elegant than the previous one. An improved
draft immediately replaces the previous one, which is thrown in the waste
basket. Otherwise I would drown in paper and half-baked ideas. As I jump
from one draft to another without slowing myself down, a beautiful design
eventually emerges. When that happens, I write a simple description of the
program and rewrite it one more time using the same terminology as in the
description. By then I have already forgotten most of the alternatives. And,
twenty years later, I don’t remember any of them.



   

MONITORS AND CONCURRENT PASCAL 35

The translation problem

An early six-pass compiler was never released. Although it worked perfectly,
I found it too complicated. Each pass was written by a different student
who had difficulty understanding the rest of the compiler.

From June through September 1974 my student, Al Hartmann, wrote
another Concurrent Pascal compiler. His goal was to be able to compile
small operating systems on a PDP 11/45 minicomputer with at least 32 k
bytes of memory and a slow, removable disk. The compiler was divided into
seven passes to fit into a small memory. It consisted of 8300 lines written
in Pascal and could be completely understood by one person. Systematic
testing of the compiler took three months, from October through December
1974.

The Concurrent Pascal compiler was used from January 1975 without
problems. It was described in the Ph.D. thesis (Hartmann 1975), later pub-
lished as a monograph.

In another month Al Hartmann derived a compiler for a Pascal subset
known as Sequential Pascal (Brinch Hansen 1975b). It compiled the largest
pass of the Concurrent Pascal compiler in 3 min. The compilation speed was
limited mostly by the disk.

When we say that a program is concurrent, we are really talking about
its behavior at run time. During compilation a program written in any
language is just a piece of text, which is checked for correct syntax, scope
of declarations, and types of operands. Consequently, the compilation of
processes, monitors, and classes in Concurrent Pascal is very similar to the
compilation of data types and procedures in Sequential Pascal.

The art of compromise

The Concurrent Pascal compiler generated code for a simple machine tailored
to the language. I borrowed this idea from a portable Pascal compiler (Nori
1974). My main concern was to simplify code generation. The portability
of Concurrent Pascal was just a useful by-product of this decision.

The Concurrent Pascal machine was simulated by a kernel of 8 k bytes
written in assembly language. The kernel multiplexed a PDP 11/45 proces-
sor among concurrent processes and executed them using a technique known
as threaded code (Bell 1973). It also performed basic input/output from a
fixed set of peripherals (terminal, disk, magnetic tape, line printer, and card
reader).
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I wrote the kernel in Pascal extended with classes. Robert Deverill and
Tom Zepko translated the kernel into assembly language. It was completed
in January 1975 and described in a report (Brinch Hansen 1975e).

I made major compromises to make program execution as efficient as
possible:

• All procedures must be non-recursive. This rule imposes a strict hi-
erarchical structure on processes and monitors that prevents monitor
deadlocks.

• All processes, monitors, and classes exist forever. This is acceptable in
operating systems and real-time systems that perform a fixed number
of tasks forever.

• All processes and monitors must be activated by the initial process.

These compromises made memory allocation trivivial. The first rule
enabled the compiler to determine the memory requirements of each module.
The first two rules made static memory allocation possible. The third rule
made it possible to combine the kernel, the program code, and all monitor
variables into a single memory segment that was included in the address
space of every process. This prevented fragmentation of a limited address
space and made monitor calls almost as fast as simple procedure calls.

By putting simplicity and efficiency first we undoubtedly lost generality.
But the psychological effect of these compromises was phenomenal. Suddenly
an overwhelming task seemed manageable.

Fifteen years later, I realized that the severe restrictions of Concurrent
Pascal had made it impossible for me to discover and appreciate the powerful
concept of recursive processes (Brinch Hansen 1989a, 1989b).

Learning to program again

After defining Concurrent Pascal, I wrote a series of model operating sys-
tems to evaluate the language. The new language had a dramatic (and
unexpected) impact on my style of programming.

It was the first time I had programmed in a language that enabled me
to divide programs into modules that could be programmed and tested sep-
arately. The creative part was clearly the initial selection of modules and
the combination of modules into hierarchical structures. The programming
of each module was often trivial. I soon adopted the rule that each module
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should consist of no more than one page of text. This discipline made pro-
grams far more readable and reliable than traditional programs that operate
on global data structures.

The first operating system written in Concurrent Pascal (called Deamy)
was used only to evaluate the expressive power of the language and was
never built (Brinch Hansen 1974b). The second one (called Pilot) was used
for several months but was too slow.

In May 1975 I finished the Solo system, a single-user operating system
for the development of Concurrent and Sequential Pascal programs on a
PDP 11/45. The operating system was written in Concurrent Pascal. All
other programs, including the Concurrent and Sequential Pascal compilers,
were written in Sequential Pascal. The heart of Solo was a job process
that compiled and ran programs stored on a disk. Two additional processes
performed input and output simultaneously. System commands enabled
the user to replace Solo with any other Concurrent Pascal program stored
on disk, or to restart Solo again. Al Hartmann had already written the
compilers. I wrote the operating system and its utility programs in three
months. Wolfgang Franzen measured and improved the performance of the
disk allocation algorithm.

Solo was the first major example of a concurrent program consisting of
processes, monitors, and classes (Brinch Hansen 1975c).

At Regnecentralen I had been involved in the design of process control
programs for a chemical plant, a power plant, and a weather bureau. These
real-time applications had one thing in common: each was unique in its soft-
ware requirements. Consequently the programs were expensive to develop.

When the cost of a large program cannot be shared by many users, the
only practical way of reducing cost is to give process control engineers a
high-level language for concurrent programming. I illustrated this point by
means of a real-time scheduler, which had been programmed in assembly
language at Regnecentralen. I now reprogrammed the same scheduler in
Concurrent Pascal.

The real-time scheduler executed a fixed number of task processes with
frequencies chosen by an operator. I wrote it in three days. It took 3 hours
of machine time to test it systematically. Writing a description took another
couple of days. So the whole program was developed in less than a week
(Brinch Hansen 1975f).

At the end of 1975 I wrote a job-stream system that compiled and ex-
ecuted short Pascal programs input from a card reader and output on a
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line printer. Input, execution, and output took place simultaneously using
buffers stored on a disk. A user job was preempted if its compilation and
execution time exceeded 1 minute. I designed, programmed, and tested the
system in 10 days. When the system was finished, it ran short jobs contin-
uously at the speed of the line printer (Brinch Hansen 1976a).

It was a pleasant surprise to discover that 14 modules from Solo could
be used unchanged in the job stream system. This is the earliest example I
know of different operating systems using the same modules.

Each model operating system was a Concurrent Pascal program of about
1000 lines of text divided into 15–25 modules. A module was roughly one
page of text (50–60 lines) with about 5 procedures of 10–15 lines each (Ta-
ble 2).

Table 2 Model operating systems.

Solo Job Real
stream time

Lines 1300 1400 600
Modules 23 24 13
Lines/module 57 58 46
Procedures/module 5 4 4
Lines/procedure 11 15 12

These examples showed that it was possible to build nontrivial concurrent
programs from very simple modules that could be studied page by page
(Brinch Hansen 1977a).

Compared to assembly language, Concurrent Pascal reduced my pro-
gramming effort by an order of magnitude and made concurrent programs
so simple that a journal could publish the entire text of a 1300 line program
(Brinch Hansen 1975c).

The modules of a concurrent program were tested one at a time starting
with those that did not depend on other modules. In each test run, the initial
process was replaced by a short test process that called the top module and
made it execute all its statements at least once. When a module worked,
another one was tested on top of it. Detailed examples of how this was done
are described in Brinch Hansen (1977b, 1978d).

Dijkstra (1967) had used a similar procedure to test the T.H.E. multi-
programming system, which was written in assembly language. Concurrent
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Pascal made bottom-up testing secure. The compilation checks of access
rights ensured that new (untested) modules did not make old (tested) mod-
ules fail. My experience was that a well-designed concurrent program of one
thousand lines required a couple of compilations followed by one test run
per module. And then it worked (Brinch Hansen 1977a).

The end of the beginning

In July 1976 I joined the University of Southern California as Professor and
Chairman of Computer Science. I also finished a book on the new pro-
gramming methodology entitled The Architecture of Concurrent Programs
(Brinch Hansen 1977b).

My research on Concurrent Pascal was now entering its final phase. I
wrote my last Concurrent Pascal program: a message router for a ring net-
work of PDP 11/45 computers. I proved that it was deadlock-free and would
deliver all messages within a finite time. The ideas of this program were de-
veloped in discussions with B. Heidebrecht, D. Heimbigner, F. Stepczyk, and
R. Vossler at TRW Systems (Brinch Hansen 1977c).

My Ph.D. student, Jørgen Staunstrup, and I introduced transition
commands—a formal notation for specifying process synchronization as state
transitions (Brinch Hansen 1978a). In his Ph.D. thesis, Staunstrup (1978)
used this tool to specify major parts of the Solo system.

Another of my Ph.D. students, Jon Fellows, wrote one more operating
system in Concurrent Pascal: the Trio system, which enabled users to si-
multaneously develop and execute programs on a PDP 11/55 minicomputer
with three terminals and a memory of 160 k bytes. Jon Fellows was assisted
in a few cases by Habib Maghami (Brinch Hansen 1980; Fellows 1980).

I now moved into another area that was little understood at the time:
the programming of processes on a multicomputer without shared memory.
I introduced the idea of a synchronized procedure that can be called by
one process and executed by another process (Brinch Hansen 1978b). This
proposal combined processes and monitors into a single concept, called dis-
tributed processes.

This communication paradigm is also known as remote procedure calls. I
recently discovered that it was first proposed by Jim White (1976). However,
White did not explain how to prevent race conditions between unsynchro-
nized remote calls and local processes, which are being executed by the same
processor. This flaw potentially made remote procedure calls as unsafe as
interrupts that cannot be disabled! Disaster was avoided by a programming
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convention: a process that handled a remote call immediately made a sim-
ilar call to a local monitor (Lynch 1991). In other words, insecure remote
procedure calls were used only as an implementation technique for secure
remote monitor calls.

My Ph.D. student, Charles Hayden (1979), implemented an experimental
language with distributed processes on an LSI 11 and evaluated the new
paradigm by writing small simulation programs.

According to Roubine (1980), my proposal was “a source of inspiration
in the design of the Ada tasking facilities.” The Ada rendezvous combines
the remote procedure call of distributed processes with the selection of al-
ternative interactions in communicating sequential processes (Hoare 1978).

My keynote address on concurrent programming at the IEEE Computer
Software and Applications Conference in Chicago, November 1978, con-
cluded five years of experience with the first abstract programming language
for operating system development (Brinch Hansen 1978c).

The milestones of the project were:

1974 Concurrent Pascal defined
Concurrent Pascal implemented

1975 Concurrent Pascal paper
Solo operating system
Real-time scheduler
Job-stream system

1976 Solo papers
System distribution

1977 The Architecture of Concurrent Programs
Ring network

1978 Trio operating system
Distributed processes

In Brinch Hansen (1980), Jon Fellows and I concluded that

The underlying concepts of processes, monitors and classes
can now be regarded as proven tools for software engineering. So
it is time to do something else.

Feedback

Concurrent Pascal and Solo have been assessed by a number of computer
scientists.
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In a paper on programming languages for real-time control, C.A.R. Hoare
(1976) summarized Concurrent Pascal:

This is one of the few successful extensions of Pascal, and
includes well structured capabilities for parallel processing, for
exclusion and for synchronization. It was tested before publi-
cation in the construction of a small operating system, which
promises well for its suitability for real-time programming. Al-
though it does not claim to offer a final solution of the problem
it tackles, it is an outstanding example of the best of academic
research in this area.

In a detailed assessment of Concurrent Pascal, D. Coleman (1980) wrote:

The process, monitor and class concepts work equally well
for application and system programs. Therefore in that respect
the language works admirably. However, because the language is
meant for operating systems, all programs run on the bare Pascal
machine and every application program must contain modules to
provide facilities normally provided by the operating system, e.g.
to access the file store.

P.W. Abrahams (1978) found that the modularity of the model operating
systems definitely contributed to their readability. However,

Since the programs are always referring to entities defined
earlier, and since these entities are often quite similar, I found
that a good deal of page flipping was in fact necessary.

In a review of The Architecture of Concurrent Programs, R.A. Maddux
and H. Mills (1979) wrote: “This is, as far as we know, the first book pub-
lished on concurrent programming.” They were particularly pleased with
the Solo system:

Here, an entire operating system is visible, with every line of
program open to scrutiny. There is no hidden mystery, and after
studying such extensive examples, the reader feels that he could
tackle similar jobs and that he could change the system at will.
Never before have we seen an operating system shown in such
detail and in a manner so amenable to modification.
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In a survey paper on Concurrent Programming, R.E. Bryant and J.B.
Dennis (1979) found that

The ability to write an operating system in a high level lan-
guage, including the communication and synchronization between
processes, is an important advance in concurrent programming.

A final remark by D. Coleman (1980):

Concurrent Pascal’s main achievement is that it shows how
much can be achieved by a simple language that utilises compile
time checking to the maximum. It will be a great pity if future
language designers do not adhere to these same two principles.

The limitations of the language will be discussed below.

4 Further Development

Since 1975 many other researchers have explored the use of Concurrent Pas-
cal on a variety of computers.

Moving a language

At Caltech we prepared a distribution tape with the source text and portable
code of the Solo system, including the Concurrent and Sequential Pascal
compilers. The system reports were supplemented by implementation notes
(Brinch Hansen 1976b).

By the spring of 1976 we had distributed the system to 75 companies
and 100 universities in 21 countries: Australia, Austria, Belgium, Canada,
Denmark, Finland, France, Germany, Great Britain, Holland, India, Ire-
land, Italy, Japan, Norway, South Africa, the Soviet Union, Spain, Sweden,
Switzerland, and the United States.

D. Neal and V. Wallentine (1978) moved Concurrent Pascal and Solo
to an Interdata 8/32 minicomputer in four months and to an NCR 8250
in another two months. The biggest stumbling block was the addressing
scheme of the PDP 11. They wrote:

It is clear that a system requiring so little effort to be moved
between vastly differing architectures must have been well de-
signed from the outset. In addition, with a single exception (sets
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and variants), all of the problem points were mentioned by the
implementation notes accompanying the distributed system.

M.S. Powell (1979) and two students moved Concurrent Pascal to a Mod-
ular 1 in six months. Architectural differences between the source and target
computers caused some portability problems. According to Powell,

Brinch Hansen makes no claims about the portability of Solo,
yet our experience shows that a system designed and documented
this way can be moved fairly easily even when the target machine
has a totally different architecture to that of the source machine.

Since the system has been in use we have found it easy to use
and simple to modify at both high and low levels.

S.E. Mattson (1980) moved Concurrent Pascal (without Solo) to an LSI
11 in four months. He found four errors in the compiler. He felt that

The kernel is a rather complex program and although the as-
sembly code was commented in a language that resembles Con-
current Pascal it was hard to understand in detail.

The implementation is a tool of significant value for teaching,
research, and engineering. It has been used with success in an
undergraduate course.

J.M. Kerridge (1982) moved Concurrent Pascal to an IBM 370/145 in
nine months part-time by rewriting the kernel in Fortran. He then moved it
to a Honeywell system in one day! In his view

The original software was extremely well documented and
commented but there was still a large amount of ‘hacking’ which
had to be undertaken before the system could be transported.

Concurrent Pascal was moved to many other computers (Löhr 1977;
Bochmann 1979; Dunman 1982; Ravn 1982).
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The limits of design

Several researchers described the experience of using Concurrent Pascal for
system design.

A research group at TRW Systems used Concurrent Pascal for signal and
image processing on a network of PDP 11/70s. Initially, the group had to
extend the kernel with complicated device drivers written in assembly lan-
guage. Later, D. Heimbigner (1978) redefined the io procedure and was able
to program arbitrary device drivers in Concurrent Pascal (without extending
the kernel).

N. Graef (1979) and others designed a small time-sharing system based
on Solo with swapping of job processes. They described the performance as
unsatisfactory compared to Unix.

After designing a multiterminal version of Solo, D. Coleman (1979) and
others concluded that

writing minicomputer operating systems by using Concurrent Pas-
cal to provide the framework of concurrency for Sequential Pascal
utilities is only really suited to single user systems.

G.V. Bochmann and T. Joachim (1979) implemented the X.25 commu-
nication protocol in Concurrent Pascal on a Xerox Sigma 6.

H.S.M. Kruijer (1982b) described a multiterminal system for transaction
processing implemented by a Concurrent Pascal program of 2200 lines for a
PDP 11/34. He wrote:

The work described in this paper shows that Concurrent Pas-
cal is suitable for the construction of medium-sized multi-user
systems. It has been found that the application of techniques
which aim at enhancing portability, namely the exclusion of low-
level features from the language and their implementation in the
form of a kernel simulating a virtual machine, does not prevent
systems written in Concurrent Pascal from being efficient. More-
over, both the properties of the language (its simplicity, high
level, dependence on syntax rules) and its facilities (especially
those for modularization) greatly contribute to obtaining reli-
able and adaptable system software. To illustrate this point it is
relevant to mention that for the Multi operating system, a num-
ber of modules of Solo have been used which together amount to
about 700 lines of Concurrent Pascal. The use of these modules
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in a different context was accomplished without interfacing prob-
lems and revealed only one error in one of the modules. These
observations are in sharp contrast to our experience with com-
mercially available operating systems.

Kruijer (1982a) also discovered a single (but subtle) error in the Concurrent
Pascal kernel.

P. Møller-Nielsen and J. Staunstrup (1984) summarized four years of ex-
perience with a multiprocessor programmed in Concurrent Pascal. They dis-
cussed parallel algorithms for quicksort, mergesort, root finding, and branch-
and-bound optimization.

The static memory allocation of the Concurrent Pascal implementation
made the language impractical for the design of larger operating systems. In
Brinch Hansen (1977b) I pointed out that the language was never intended
for that purpose:

This book describes a range of small operating systems. Each
of them provides a special service in the most efficient and simple
manner. They show that Concurrent Pascal is a useful program-
ming language for minicomputer operating systems and dedi-
cated real-time applications. I expect that the language will be
useful (but not sufficient) for writing large, general-purpose op-
erating systems. But that still remains to be seen. I have tried
to make a programming tool that is very convenient for many
applications rather than one which is tolerable for all purposes.

Evolution of an idea

Concurrent Pascal was followed by more than a dozen monitor languages
(Table 3). Some were inspired by Concurrent Pascal; others were developed
independently, inspired by the monitor concept.

I will not attempt to discuss monitor languages that were developed after
Concurrent Pascal. I hope that the designers of these languages will write
personal histories of their own contributions. However, since I have not
programmed in their languages, I cannot evaluate them or compare them
with Concurrent Pascal.
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Table 3 Monitor languages.

Language Reference
Concurrent Pascal Brinch Hansen (1974d)
Simone Kaubisch (1976)
Modula Wirth (1977)
CSP/k Holt (1978)
CCNPascal Narayana (1979)
PLY Nehmer (1979)
Pascal Plus Welsh (1979)
Mesa Lampson (1980)
SB-Mod Bernstein (1981)
Concurrent Euclid Holt (1982)
Pascalc Whiddett (1983)
Concurrent C Tsujino (1984)
Emerald Black (1986)
Real-time Euclid Kligerman (1986)
Pascal-FC Burns (1988)
Turing Plus Holt (1988)
Predula Ringström (1990)

Spreading the word

Monitors and monitor languages have been discussed in many survey pa-
pers and textbooks. The following list of publication dates gives an idea
of how rapidly the monitor paradigm spread through the computer science
community.

• Survey papers

Brinch Hansen (1973d), Andrews (1977), Bryant (1979), Stotts (1982),
Andrews (1983), Appelbe (1985), Bal (1989).

• Operating systems texts

Brinch Hansen (1973b), Tsichritzis (1974), Peterson (1983), Deitel
(1984), Janson (1985), Krakowiak (1988), Pinkert (1989), Nutt (1992),
Tanenbaum (1992).

• Concurrent programming texts

Brinch Hansen (1977b), Holt (1978), Welsh (1980), Ben-Ari (1982),
Holt (1983), Andre (1985), Boyle (1987), Perrott (1987), Whiddett
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(1987), Bustard (1988), Gehani (1988), Krishnamurthy (1989), Raynal
(1990), Williams (1990), Andrews (1991).

• Programming language texts

Turski (1978), Tennent (1981), Ghezzi (1982), Young (1982), Horowitz
(1983a), Schneider (1984), Bishop (1986), Wilson (1988), Sebesta
(1989).

• Annotated bibliography

Bell (1983).

5 In Retrospect

It seems natural to end the story by expressing my own mixed feelings about
monitors and Concurrent Pascal.

The neglected problems

Today I have strong reservations about the monitor concept. It is a very
clever combination of shared variables, procedures, process scheduling, and
modularity. It enabled us to solve problems that we would not have under-
taken without a commitment to this paradigm. But, like most of our pro-
gramming tools, it is somewhat baroque and lacks the elegance that comes
from utter simplicity only.

The monitor concept has often been criticized on two grounds: the com-
plex details of process scheduling and the issue of nested monitor calls.

As a language designer, I have always felt that one should experiment
with the simplest possible ideas before adopting more complicated ones.
This led me to use single-process queues and combine process continuation
with monitor exit. I felt that the merits of a signaling scheme could be
established only by designing real operating systems (but not by looking
at small programming exercises). Since Concurrent Pascal was the first
monitor language, I was unable to benefit from the practical experience of
others. After designing small operating systems, I concluded that first-in,
first-out queues are indeed more convenient to use.

In 1974, when I designed the language, the papers by Howard (1976a,
1976b) and Kessels (1977) on monitor signaling had not yet been published.
In any case, the virtues of different signaling mechanisms still strike me as
being only mildly interesting. In most cases, any one of them will do, and
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all of them (including my own) are somewhat complicated. Fortunately,
monitors have the marvelous property of hiding the details of scheduling
from concurrent processes.

In my first monitor paper (Brinch Hansen 1974c) I characterized nested
monitor calls as a natural and desirable programming feature:

A monitor can call shared procedures implemented within
other monitors. This makes it possible to build an operating
system as a hierarchy of processes and monitors.

If a process delays itself within a nested sequence of monitor calls, it
releases access to the last monitor only, but leaves the previous monitors
temporarily inaccessible to other processes. Lister (1977) felt that this situ-
ation might degrade performance or cause deadlock:

The only implementation known to the author in which the
nested call problem is tackled head-on, rather than being merely
avoided, is that by Brinch Hansen (1975e). In this [Concurrent
Pascal] implementation a local exclusion mechanism is used for
each monitor, and a [delay] operation causes release of exclusion
on only the most recently called monitor. It is not clear what
measures, if any, are taken to avoid the degradation of perfor-
mance and potential for deadlock mentioned earlier.

Lister (1977) offered no performance figures or program examples to
prove the existence of such a problem. The hypothetical “problem” of
nested monitor calls was discussed further by Haddon (1977), Keedy (1978),
Wettstein (1978), and Kotulski (1987)—still without experimental evidence.
In a paper on “The non-problem of nested monitor calls” Parnas (1978)
finally declared that the problem was too vaguely formulated to be solvable.

Two years before this discussion started I had written three model oper-
ating systems in Concurrent Pascal. I used nested monitor calls in every one
of them without any problems. These calls were a natural and inevitable
consequence of the hierarchical program structures.

The discomfort of complexity

The monitor was undoubtedly a paradigm that for a time provided model
problems and solutions to the computer science community. It may be ar-
gued that its proper role is to define a useful programming style, and that it
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is a mistake to include it in a programming language. To an engineer, this
viewpoint has merits. To a scientist, it is less convincing.

When an idea is seen just as a programming style, programmers seldom
define it precisely. They constantly bend the (unstated) rules of the game
and mix it with other imprecise paradigms. This lack of rigor makes it rather
difficult to explore the limits of a new idea.

I never considered Concurrent Pascal to be a final solution to anything.
It was an experimental tool that imposed an intellectual discipline on me.
By embedding monitors in a programming language I committed myself to
defining the concept and its relationship to processes concisely. I deliberately
made monitors the only communication mechanism in the language to ensure
that we would discover the limitations of the concept.

Concurrent Pascal was the first programming language I designed. From
my present perspective, it has all the flaws that are inevitable in a first
venture.

In a later essay on language description (Brinch Hansen 1981), I wrote:

The task of writing a language report that explains a pro-
gramming language with complete clarity to its implementors
and users may look deceptively easy to someone who hasn’t done
it before. But in reality it is one the most difficult intellectual
tasks in the field of programming.

Well, I was someone who hadn’t done it before, and the Concurrent Pascal
report suffered from all the problems I mentioned in the essay.

I am particularly uncomfortable with the many ad hoc restrictions in the
language. For example,

• Module types cannot be defined within procedures.

• Procedures cannot be defined within procedures.

• Module instances cannot be declared within procedures.

• Queues can only be declared as global variables of monitor types.

• Queues cannot be parameters of procedure entries.

• Process instances can only be declared in the initial process.

• A module type cannot refer to the variables of another module type.
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• A module type cannot call its own procedure entries.

• A procedure cannot call itself.

• A continue operation can only be performed within a monitor proce-
dure entry.

• Assignments cannot be performed on variables of type module or queue.

These rules were carefully chosen to make the language secure and enforce
the compromises discussed earlier. But they all restrict the generality of the
language concepts and the ways in which they may be combined.

There are about twenty rules of this kind in Concurrent Pascal (Brinch
Hansen 1975a). I will spare you the rest. They are an unmistakable symptom
of complexity.

After Concurrent Pascal I developed two smaller languages. Each of them
was again designed to explore a single programming concept: conditional
critical regions in Edison, and synchronous communication in Joyce (Brinch
Hansen 1981, 1989a).

There are exactly three ad hoc restrictions in Joyce:

• A process cannot access global variables.

• A message cannot include a channel reference.

• Two processes cannot communicate by polling the same channel(s).

I think only the first one is really necessary.

Inventing the future

What am I most proud of? The answer is simple: We did something that had
not been done before! We demonstrated that it is possible to write nontrivial
concurrent programs exclusively in a secure programming language.

The particular paradigm we chose (monitors) was a detail only. The
important thing was to discover if it was possible to add a new dimension
to programming languages: modular concurrency.

Every revolution in programming language technology introduces ab-
stract programming concepts for a new application domain. Fortran and
Algol 60 were the first abstract languages for numerical computation. Pas-
cal was used to implement its own compiler. Simula 67 introduced the class
concept for simulation.
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Before Concurrent Pascal it was not known whether operating systems
could be written in secure programming languages without machine-depen-
dent features. The discovery that this was indeed possible for small operating
systems and real-time systems was far more important (I think) than the
introduction of monitors.

Monitors made process communication abstract and secure. That was,
of course, a breakthrough in the art of concurrent programming. However,
the monitor concept was a detail in the sense that it was only one possible
solution to the problem of making communication secure. Today we have
three major communication paradigms: monitors, remote procedures, and
message passing.

The development of secure language concepts for concurrent program-
ming started in 1971. Fifteen years later Judy Bishop (1986) concluded:

It is evident that the realm of concurrency is now firmly
within the ambit of reliable languages and that future designs
will provide for concurrent processing as a matter of course.

In the first survey paper on concurrent programming I cited 11 papers
only, written by four researchers. None of them described a concurrent pro-
gramming language (Brinch Hansen 1973d). The development of monitors
and Concurrent Pascal started a wave of research in concurrent program-
ming languages that still continues. A recent survey of the field lists over
200 references to nearly 100 languages (Bal 1989).

I don’t think we have found the right programming concepts for parallel
computers yet. When we do, they will almost certainly be very different
from anything we know today.
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Appendix: Reviewers’ Comments

In 1991 I sent earlier drafts of this paper to a number of computer scien-
tists with a letter asking for their comments “with the understanding that
I may quote your letter in the final paper.” Many of their suggestions are
incorporated in the revised paper. Here are some of their remaining remarks.

G. Andrews:

You claim that the particular paradigm you chose (monitors) was a . . . detail.
The most important aspect of monitors is their role as a data encapsulation
mechanism.
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· · ·
The contribution of Concurrent Pascal was indeed that it added a new

dimension to programming languages: modular concurrency. Monitors (and
classes) were essential to this contribution. And the modularization they
introduced has greatly influenced most subsequent concurrent language pro-
posals.

What is debateable about monitors are the details of synchronization,
especially the signaling discipline.
· · ·
I have not seen any radical new programming ideas emerge for several

years now. Thus, I suspect that in the future the programming concepts
we use for parallel computers will merely be refinements of things we know
today.

D.W. Bustard:

The statement . . . “Today I have strong reservations about the monitor
concept” tends to suggest that the concept is flawed. I don’t agree. The basic
concept of a data structure allowing processes exclusive access to its data still
seems very important. What has never been handled satisfactorily, however,
is the explicit queuing mechanism for process suspension and activation. I
tinkered with several possibilities over a period of years but now (like Parnas)
I feel that it would be better to give access to lower level facilities that allow
users to implement a policy of their own liking. It is a mistake for language
designers to treat potential users like children!

O.-J. Dahl:

I am grateful for your recognition of the role of the Simula 67 class concept;
however, in the reference to it the name of my colleague Kristen Nygaard
should occur along with mine . . . [Our] own historic paper, given at the
ACM Conference on the “History of Programming Languages” . . . shows
the extent to which either of us was dependent on the other in the discovery
of the class concept.
· · ·
I take issue with some of your reservations about Concurrent Pascal. Of

course a language built around a small number of mechanisms used orthog-
onally is an ideal worth striving for. Still, when I read your 1977 book my
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reaction was that the art of imposing the right restrictions may be as impor-
tant from an engineering point of view. So, here for once was a language,
beautiful by its orthogonal design, which at the same time was the product
of a competent engineer by the restrictions imposed in order to achieve im-
plementation and execution efficiency. The adequacy of the language as a
practical tool has been amply demonstrated.

P.J. Denning:

I had a love-hate relationship with monitors since first meeting them as
“critical regions” in your 1973 book and then in Hoare’s 1974 paper in the
ACM Communications. What I loved about them was the way they brought
together data abstraction (as we now call it) and synchronization. Suddenly
we had a simple notation that allowed the expression of correct programs for
the hard problems we faced constantly in operating systems design. What
I hated about them was the need to understand the details of the queuing
mechanism in order to understand how to use them. My students had to
study carefully Hoare’s notes on using semaphores to do the queueing. In
this sense monitors had not broken away from the fine-grain mechanisms of
semaphores.

I was therefore much interested in the next stages that you and Hoare
reached, expressed in your 1978 papers in the ACM Communications. You
had continued the line of development of monitors into distributed processes;
Hoare had proposed communicating sequential processes, an approach mo-
tivated by the constraints of microprocessor design. I was more attracted to
Hoare’s proposal because of my own biases in thinking about how operat-
ing systems and parallel computers are actually built and how they manage
work.
· · ·
Even though in the end I found the monitor concept less to my liking

than communicating processes, I still think that the monitor is a good idea,
and that the observer it makes one of how operating systems work is a worthy
observer to learn to be.

J.A. Feldman:

I was not personally involved with the [Concurrent Pascal] effort, but ad-
mired it and now find somewhat to my surprise that my current parallel
Sather project relies on a version of monitors.
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· · ·
[It is] now clear that any large, scalable parallel machine will have phys-

ically distributed memory. There is a great deal of current research on
hardware and software for uniform memory abstractions, but this seems to
me unlikely to work. The structure of the programming language and code
can provide crucial information on locality requirements so that the system
doesn’t need to do it all mindlessly. And that is where monitors come in.

Sather is an object-oriented language . . . The parallel constructs . . . are
based on a primitive monitor type . . . [It] is remarkable that 20 years later
the monitor concept is central to language developments well beyond the
original conception.

J. Fellows:

Looking back at my studies at USC from 1978 to 1981, I can separate my
thoughts into three areas: the concepts that underly monitors and classes,
the language constructs that implement these concepts, and the quality of
the demonstration programs that you (PBH) wrote. You have already ad-
dressed the first two in your paper. As for the third, I believe that the
beauty of the structures you created using Concurrent Pascal created an
aura of magical simplicity. While working with my own programs and those
of other graduate students, I soon learned that ordinary, even ugly, pro-
grams could also be written in Concurrent Pascal . . . My current feeling is
that the level of intellectual effort required to create a beautiful program
structure cannot be reduced by programming language features, but that
these features can more easily reveal a program’s beauty to others who need
to understand it.
· · ·
The topic I chose to explore [in the Trio system] was the use of Concur-

rent Pascal’s access restrictions to explicitly create a program access graph
(or “uses” hierarchy between type instances) that achieved least privilege
visibility between program components, meaning that no component has
access to another component unless it is needed. For this purpose, I still
believe that Concurrent Pascal’s initialization-time binding of components
is an improvement over the scope-based facilities of Modula, Edison, and
Ada.
· · ·
It is interesting to note that one of the most common complaints I heard

(and made myself) was that classes should have been left in [Sequential
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Pascal]. This would have extended many of the benefits available to system
programmers to application programmers.
· · ·
As I discovered when moving the compilers from Solo to Trio, there

was a point at which the Operating System/Sequential Pascal interface was
unsafe. As I recall, there was no type checking across the program invocation
interface, which depended on correct hand-tailoring and consistent usage of
the prefix for Sequential Pascal programs. In general, program invocation
was the one operating system area that was not made transparently simple
in Solo and Trio.

A.C. Hartmann:

There are really two histories interwoven in this paper—the history of the
development of concurrent modular programming, and the history of one
man’s ruthless quest for simplicity in design and programming. The former
topic is indifferent to whether one chooses to develop concurrency mecha-
nisms for greater expressive power and more complex functionality, or, as
you have chosen, to radically shorten and simplify the design of common
concurrent systems. The Solo operating system is downright primitive in
the sparseness of its features, representing a counter-cultural current against
ever-increasing operating system complexity. Your style and taste in pro-
gramming run almost counter to the second law of thermodynamics, that all
closed systems tend towards increasing entropy and disorder.

In a world of Brinch Hansens (which may exist in some parallel dimension
to ours), all systems tend towards reduced entropy over time and toward
a blissful state of ultimate simplicity. Each new release of the operating
system for one’s personal workstation is smaller than the previous release,
consumes fewer system resources, runs faster on simpler hardware, provides
a reduced set of easier to use features than the last release, and carries a
lower price tag. Hardware designers espousing the same philosophy produce
successive single-chip microprocessors with exponentially declining transistor
counts from generation to generation, dramatically shrinking die sizes, and
reducing process steps by resorting to fewer, simpler device types. No one
would need to “invent” RISC computing in this world, since reduced feature
sets would be an inexorable law of nature.
· · ·
Ironically the Concurrent Pascal compiler that I wrote was written in the

language of its sister Sequential Pascal compiler, which had neither classes
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nor monitors. It was fifteen years later when I finally had access to a C++
system on a personal computer that I wrote my first modular program using
abstract typing. To this day I have not written a concurrent program.

C.C. Hayden:

What was remarkable about [Concurrent Pascal] is that one could write ex-
perimental operating systems on a virtual machine without having to resort
to machine registers, assembly language, etc. The development environment
provided a way to do operating systems in a controlled way, on the “bare
hardware” of a much nicer machine than any real computer. . .

I think the significance of the system was . . . that one could provide a
protected environment for concurrent programming—a high-level language
environment which could maintain the illusion that there was no “machine”
level. It was remarkable that through compile time restrictions and virtual
machine error checking, that you could understand the program behavior by
looking at the Pascal, not at the machine’s registers and memory. It was
remarkable that the machine could retain its integrity while programs were
being developed, without hardware memory protection.
· · ·
How has the monitor concept evolved? From my perspective, the concept

of message passing between processes in disjoint address spaces was around
before monitors, and has continued to dominate the monitor concept. The
operating systems in most common use today have message passing para-
digms. The Macintosh, Microsoft Windows, Unix running X windows: all
force applications to be organized around an event loop, which receives an
event message, unpacks it and dispatches to a handler, and carries out an
action. These are just the “real time” system architecture of the 1960s. The
monitor concept was an advance over the earlier message passing systems
because it eliminated the event loop, message packing and unpacking, dis-
patching, etc. Concurrent Pascal hid all that mess, and made it possible to
do it more efficiently by absorbing it into machine code or microcode, and
eliminated the possibility of making errors. Why did it not become better
accepted?
· · ·
Maybe the problem monitors were meant to solve (concurrency in shared

memory systems) was never really that important after all. The conventional
wisdom is that concurrent systems cannot scale up if they share memory.
· · ·
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I have a deep respect for the monitor concept: in my opinion it is better
than message passing, which is what we are stuck with. It is particularly
powerful if used in the form of conditional critical regions. And I think
the language Concurrent Pascal made a real advance in permitting easy
experimentation with operating systems concepts and implementations. It
allowed me to further my own education by building programs that I would
not otherwise have been able to build. This taught me valuable lessons
about programming styles and paradigms, about how important it is to be
able to reason about programs when they cannot be reliably tested. Concur-
rent Pascal had to deal with such restrictive and peculiar hardware, almost
unthinkably limiting by today’s standards.

As your thinking evolved, the systems you built seemed to get smaller and
more elegant, trying to achieve more generality and less complexity. This is
a laudable goal for research languages, but I could never come to believe in
it as applied to programming tools such as editors, formatters, etc. I know
of few people who would want to adopt simpler tools . . . Perhaps there is no
longer any call for this kind of programming . . . I am glad that I was able to
educate myself before it was too late. The Concurrent Pascal system made
that possible.

D. Heimbigner:

Concurrent Pascal is one of those languages that is very much under-ap-
preciated. It was one of the first widely available languages to introduce
both object-oriented concepts and concurrency (in the form of processes
and monitors).

Concurrent Pascal is perhaps best known as one of the first languages
to provide monitors as a synchronization device. Initially, I was a very
strong believer in the monitor construct. After using the construct for a
while, I recognized its flaws and was rather disenchanted with them. Since
then, I have had some experience with Ada and its tasking model, and I am
beginning to think that perhaps monitors were not such a bad concept after
all.

I should also note that I am continually surprised at how long it is taking
for concurrency constructs to become a standard part of every programmer’s
toolkit. The C and C++ communities, for example, are still arguing over a
standard threads package. Most Unix kernels (except Mach) have no special
provisions for handling threads, most Unix libraries are still not capable of
working correctly in a parallel environment, and most Unix machines are
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still single processor. This seems to me to be a disgrace.
The concurrency elements of Concurrent Pascal were important, but I

would also like to comment on its object-orientation. It was my first in-
troduction to an object-oriented language. At the same time, (1976–1978),
Smalltalk was mostly a rumor; it would be several years before it became
available. Simula-67 was not widely available on any machine to which I had
access.

So, when I encountered Concurrent Pascal, I spent a fair amount of time
experimenting with its object-oriented constructs. As a result, I became a
firm believer in that approach for programming and have continued to use
the paradigm to this day.

It is interesting to compare Concurrent Pascal with, for example, Modula-
2 and Ada. At one time, there was a discussion in the language community
about the merits of objects (as represented in Smalltalk and Concurrent Pas-
cal and Euclid) versus the merits of packages (as represented in Modula-2
and Ada). In retrospect, it seems amusing that these two concepts were
considered comparable, rather than complementary. It also clear that the
object point of view has prevailed (witness Modula-3 and Ada 9x).

J. Hennessy:

I had one interesting insight that I wanted to communicate to you. We have
been experimenting with an object-oriented language (called Cool and based
on C++) for programming parallel machines. The idea is to use the object
structure as a basis for synchronization, dealing with data locality, and for
implementing load balancing. Initially, we anticipated using a variety of
synchronization primitives, including things such as futures, in addition to
monitor-based constructs. Surprisingly, we found that the synchronization
mechanisms based on monitors were adequate for most cases, and were much
easier to implement (more efficient), and easier to understand. My advice is
not to undersell monitors. I suspect that we will find that there are many
more instances where this basic concept is useful!

C.A.R. Hoare:

I read your personal history with great enjoyment: it brings back with sharp
clarity the excitement of our discussions at Marktoberdorf and Belfast in
1971. Even more valuably, it describes the whole history of a remarkably
successful research engineering project, conducted with utmost regard for
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scientific integrity, and principles, which has enlarged the understanding of
a whole generation of computing scientists and software engineers. That
a subsequent generation has lost the understanding could be explained in
another, much sadder, paper.

My only serious debate with your account is with the very last sentence.
I do not believe that there is any “right” collection of programming concepts
for parallel (or even sequential) computers. The design of a language is al-
ways a compromise, in which the good designer must take into account the
desired level of abstraction, the target machine architecture, and the pro-
posed range of applications. I therefore believe that the monitor concept will
continue to be highly appropriate for implementation of operating systems
on shared-store multi-processors. Of course, it will improve and adapt; its
successful evolution is now the responsibility of those who follow your foot-
steps. Your full account of the original voyage of exploration will continue
to inform, guide, and inspire them.

G. Ingargiola:

Your paper is faithful to what I remember.
You had this tremendous clarity about what you were doing in concur-

rency and languages; you made restrictive choices usually on the basis of
efficiency (you list a number of such choices in your paper). You stated
something like “start with as few and simple mechanisms as possible; add
later only if it becomes necessary.”

At least in your discussions and lectures, you built programs from english
statements, making explicit the invariants and refining these statements,
usually not modifying them, until the program was done.

I was amazed at how slowly you developed code when lecturing, and, by
contrast, how fast you got debugged running code for the Concurrent Pascal
compiler, and for various concurrent programs and the Solo OS.

You had very little interest in computer science topics outside of the area
in which you were doing research. You made polite noises, you indicated
interest, but your span of attention was minimal . . .

The personnel involved in the Concurrent Pascal implementation is as
small as you say . . . Deverill contributed with his knowledge of the PDP 11
architecture and of its assembly language. Hartmann and you did the work.
· · ·
I remember your excitement with the notion of “threaded code;” if I

remember correctly, you thought it was your own invention and found out
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only later that others found it before.
In 1977, on the phone, you told me that you were working on a model of

distributed computing where processes could make synchronous calls across
processors. When later I heard about remote procedure calls, I assumed it
was a variation on what you had said.

M. Joseph:

[Your paper] made very interesting reading and it took me back to the excit-
ing days of early 1975 when you lectured on Concurrent Pascal in Bombay!

We spent quite a lot of 1975 studying Concurrent Pascal and deciding
whether and how it could be used for our multiprocessor operating system
project . . .

Our version of the language (which we called CCNPascal, both because
of its antecedents in Concurrent Pascal and because it was the language for
the Close-Coupled Network project) . . . was implemented on a DEC-10 and
generated code for the DEC-10, PDP-11 and TDC-16 (and later a group
produced a code generator for the Intel 8086). So perhaps it is fair to say
that Concurrent Pascal had close ‘cousins’ on all of these machines!

I think there has been some general confusion about the role of Concur-
rent Pascal. On the one hand, it was used very successfully in the version
that you supplied, by many people and for a variety of applications. On
the other hand, the design of Concurrent Pascal also provided the spring-
board for people (like us) to make use of its concepts for designing larger
languages which were applied to fairly ambitious tasks. So the monitor con-
cept was fairly rugged and stood up well to the test of being used for large
applications, and this is something that is not widely known.

Moreover, it was a language for which high quality code could be gener-
ated (something that implementors of Ada still aspire to). We had multi-pass
cross-compiling versions of our compiler which generated extremely tight
code and I later produced a one-pass version of the compiler which did a lot
of on-the-fly optimization and produced PDP-11 code . . .

With interest returning to shared memory multiprocessors, it seems quite
appropriate that people should be reminded of the achievements of Concur-
rent Pascal.
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J.M. Kerridge:

One of the reasons that I acquired Concurrent Pascal was to enable access to
a Pascal system which at the time (1978) was the only way it could be made
accessible on our IBM 370. It had the added benefit of introducing me to
concurrent programming. This has lead me to continue working in the area
of parallel systems allowing me to build highly parallel database machines
based around the transputer and occam.

In this respect I find your comments . . . concerning the compromises that
were made to effect efficient processing surprising. In the transputer/occam
combination the same limitations have, to a large extent, also been imposed.
This enables compile time checking of memory allocation and process inter-
action, which is vital for real-time embedded control systems. It is inter-
esting that this too was the application environment from which you came
originally.

If we consider the use of Ada for such safety-critical real-time systems
then we have to use Safe Ada, which has exactly the same limitations. The
full capability of Ada is only available with a large run-time support system
about which it is impossible to reason!

Given the above points I believe that you have been somewhat hard
in criticising Concurrent Pascal . . . Hindsight is a valuable tool especially
after nearly 20 years! Many of the restrictions were reasonable given that
you were experimenting with concurrency and not constructing a sequential
language. Keeping things simple is a good axiom and though it is useful to
have nested procedure declarations, as an example, it was not fundamental
to the needs of concurrency experimentation. If many of these restrictions
had been relaxed then Concurrent Pascal may never have seen the light of
day.

H.S.M. Kruijer:

I (continue to) regard the specification and implementation of Concurrent
Pascal as an impressive piece of work, combining the best results of Com-
puter Science and making them available in the area of Software Engineering.
More specifically, I regard this work and the publications on it as large-
scale examples of the application of sound (computer) science resulting into
high-quality “real-life” (software) engineering products, which still serve as
a yardstick and a source of inspiration not only for (computer) scientists but
also (more importantly) for practicising (software) engineers . . .
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The use of Concurrent Pascal has played a major organising and pro-
fessionalising role in the Computer science & Software engineering section
of our Mathematics and Systems Engineering department. My paper in
“Software—Practice and Experience” (1982) described a project carried out
in the period 1976–1980, but other work has been done that has not been
published:

—We have extended, during 1981–1983, the prototype application sys-
tem referred to in my paper (namely a multi-user system for order taking
and stock updating suited to Shell’s Marketing (Sales) business) so as to run
on a number of PDP 11 computers coupled via one common, shared com-
munication channel (eventually an Ethernet). Therefore the Multi operating
system described was transformed systematically into a distributed version,
using remote procedure calls and client-server mechanisms and using Con-
current Pascal for the implementation of the data communication software
needed.
· · ·
—A prototype data acquisition system (for Shell’s process control system

in refineries and chemical plants) has been developed during 1981–1985,
using Concurrent Pascal as implementation language.

—A data acquisition system for our Materials Research department has
been developed during 1986–1989, using Concurrent Pascal for specification
and design and using DEC hardware and software for implementation.

E.L. Lusk:

Our group’s adoption of monitors as a central theme in our parallel pro-
gramming work did not arise from an interest in elegant operating systems;
it was absolutely forced on us by the task of writing application programs
for real parallel processors. In 1983 Los Alamos obtained a Denelcor HEP,
in many respects the first commercially available multiprocessor. Several
different groups at Argonne tried it out, in 1984 Argonne got one too, and
that facility evolved into Argonne’s Advanced Computing Research Facility.

The HEP was programmed in a dialect of Fortran that allowed direct ac-
cess to the full/empty bits in memory as a way of allowing ordinary program
variables to be used for a kind of dataflow synchronization. The mechanism
was efficient but dangerous. Ross Overbeek and I chose as our first project
the parallel implementation of the unification algorithm from theorem prov-
ing. We found this a humbling experience, to say the least. While our
colleagues proceeded smoothly with parallel versions of regular numerical al-
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gorithms, we suffered every type of bug associated with parallel algorithms.
Finally we realized that we would have to retreat to intellectually higher
ground. For the shared-memory computational model, monitors represented
an abstraction that could be understood, reasoned about, and efficiently
implemented. We used the HEP constructs to implement locks, used the
locks to construct the basic monitor-building primitives, used these to build
(portable, now, at this level) a library of useful monitors, and our problems
disappeared for good. The macro package for the HEP has evolved through
several generations, and its descendants are widely used for programming
nearly all current shared-memory machines in C and Fortran.
· · ·
I believe that the simple domain-composition algorithms that pay the

freight for the current generation of massively-parallel machines are distract-
ing many current users from realizing the long-term validity of the shared-
memory model. Fast communication speeds do not make the shared mem-
ory irrelevant; it is the programming model that is important. Although the
programming model for message passing is now relatively stable . . ., no such
consensus has arisen for the shared memory model . . . In the long run mon-
itors will be seen as the most useful paradigm for expressing algorithms for
the shared-memory model. The shared-memory model, in turn, will return
to greater prominence as more complex algorithms are moved to parallel
computers.

Monitors shall arise again!

W.C. Lynch:

I think that monitors may have achieved more contemporary success than
you might believe. In one sense I think of your description as one of the
birth pains of an idea that has matured and stood the test of time.
· · ·
In 1977 Xerox PARC/SDD [had] to construct a real time . . . operating

system (subsequently called “Pilot”). A large part of the problem was the
specification of facilities for concurrent operation. The input experiences
were . . . 1) my experience in the design and implementation 1970–71 of Chios
utilizing light-weight processes and Dijkstra PV operators . . ., 2) Butler
Lampson’s proposal to incorporate Monitors and Condition variables, as
described by Hoare, into Mesa and hence into Pilot . . ., 3) the pre-disposition
of management to leverage their experience with message passing paradyms
in the SDS-XDS operating systems.
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I was the convenor of this task force. Among others, Butler Lampson,
Dave Redell, and Hugh Lauer were participants. Roger Needham was an
occasional consultant.

Inputs 1) and 2) quickly converged, supported by the reality of your pre-
vious experience with Concurrent Pascal, but 3) led to a contentious stale-
mate, with each party claiming some inherent superiority over the other.
This was finally resolved by the arguement presented in (Lauer 1978) which
demonstrated that the views were equivalent in the sense that each could
be executed in terms of the other. Since the intention was to combine sup-
port for concurrent processing with the benefits of Mesa, it was clear that
the procedural view of Monitors was most compatible with the procedural
language Mesa.

The design that resulted, smoothly incorporating threads (nee light
weight processes), monitors, and condition variables into Mesa as built-in
types, was eventually described in (Lampson 1980).

Lampson, Redell, and others moved on to DEC SRC and continued their
work there. With the work on and introduction of the object oriented
Modula-3, it was realized that a class structure allows the above threads
related types to be implemented as a library without being implemented in
the language . . .

Today threads libraries, a direct linear descendent of monitors, are de
rigeur in the Unix world. I would say that the ideas created in the process
that you describe are still a major force today.
· · ·
I don’t know what more one could ask in the way of ultimate triumph

for an idea.

R.A. Overbeek:

In the early 1980’s, E. Lusk and I were offered the opportunity of developing
applications for a new parallel processor, the Denelcor HEP. Our application
area was automated deduction, and our background in parallel computation
was quite limited. In our first experiments, we worked with the programming
constructs offered by Denelcor Fortran, which were low-level synchroniza-
tion constructs. It became immediately apparent that we needed to develop
higher-level, portable constructs. Our central source of both ideas and im-
plementation guidelines during that period was Concurrent Pascal and your
work that gave detailed implementation information. We developed a rather
primitive set of tools and began work on several applications.
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A year later, we were faced with moving our applications to several other
machines. To our delight, we were able to port a 50,000 line implementa-
tion of a parallel logic programming engine from the HEP to a new Sequent
Balance in just 4 hours. We went on to port the code to a variety of other
shared-memory multiprocessors, and the benefits of portable constructs were
quite apparent. Indeed, the ability to develop programs on machines in
which the environment was relatively stable and for which adequate perfor-
mance monitoring and debugging tools existed (most notably, the Sequent
machines) and then move them to a number of “production” environments
was extremely useful.

Later, we shifted our programming paradigm to include message-passing
constructs. It is a tenable position that there are relatively few applications
that benefit substantially from parallel processing, and that a majority of
these can be formulated in ways that allow effective use of parallelism with
message-passing constructs; that is, they do not require the capabilities we
built into our earlier tools based on monitors. Furthermore, the ability to
port applications based on message-passing to platforms like multicomputers
or clusters of workstations is really quite attractive. I consider this a far from
settled issue, but I have tentatively adopted this position.

Our work based on developing portable tools for exploring the potential
exploitation of parallelism on the wide variety of machines that appeared in
the 1980s benefited directly from the pioneering work on monitors. While
we were never fortunate enough to be directly involved with the individuals
that drove that effort, we did gradually come to grasp some of the issues
that they had clarified.

N. Holm Pedersen:

It is with a feeling of nostalgia that we, at Brüel & Kjœr, read about the
emerging of the ideas on which we have based most of the programming
of our instruments for the last decade. We are still using the Concurrent
Pascal (CP) language in full scale i.e. just finishing 2 instruments, each with
programs of more than 1 Mbyte code written in Concurrent Pascal.

It is remarkable that the ideas of Concurrent Pascal is having a major ef-
fect on modern blockstructured languages such as Ada and C++. Excluding
the monitor concept, Ada has inherited the structures of CP, and C++ has
reinvented the Class-type. It caused some confusion in our company to hear
C++ being named “the invention of the century” as we have created objects
since 1980 in the form of Monitors and Classes. We are in the process of
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discovering that the freedom (nonhierarchical nature) of C++ is very nice
but dangerous . . .

M.S. Powell:

I read the first draft of your paper “Monitors and Concurrent Pascal: A Per-
sonal History” with great interest. The work I did with Concurrent Pascal
and the Solo system took place near the beginning of my academic career
and much of my subsequent work has been strongly influenced by it. Your
paper fills in many gaps in my knowledge of the history of the development of
the underlying ideas. A number of things I did with Concurrent Pascal and
Solo which may be of interest, but have never been published, are described
below.

The characteristics of Solo which made it easy to port to a machine with
a very different architecture to the PDP-11, also made it very easy to change
and extend for practical and experimental purposes. The final configuration
supported on Modular 1 hardware at UMIST ran across three processors
with the file store distributed across two 28M byte exchangeable disk drives
shared between the three processors. In this form the system supported
many final year project students and research projects. Many compiler and
language extensions were introduced, e.g. the Concurrent Pascal compiler
was modified to support generic classes and the compiler and virtual machine
were modified to support message passing through inter-process channels. A
system which ran up to two passes of the compiler pipelined concurrently
by two processors was also implemented.
· · ·
After the Modular 1 system (around 1982) we moved onto a network

of DEC LSI-11s connected together by a Cambridge ring. A distributed
Concurrent Pascal implementation was constructed for this environment.
During execution of the initial process, extensions to the virtual machine
allowed processes and monitors to be assigned interactively to selected pro-
cessors on the network. Monitor entry routine calls were implemented by
remote procedure calls, and distribution was transparent to the concurrent
program, i.e. we were able to run programs produced on the Modular 1
without recompilation.
· · ·
A spin-off of my research work has been a system called Paradox which

has been used to support teaching in the Computation Department for the
last four years.
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· · ·
Inside the implementation of Paradox, unseen by most, Concurrent Pas-

cal is alive and well at UMIST, and helping to support nearly 250 users every
year.

A.P. Ravn:

I really enjoyed reading your paper on the history of Monitors and Con-
current Pascal. I shall refrain from commenting on who got the ideas for
the monitor first; but I am sure that Concurrent Pascal was central for the
dissemination of these ideas in software enginering.
· · ·
The Concurrent Pascal system and its literature made it possible to

combine theoretical concepts with experimental work. Probably the only
way engineering can be taught.

It was a pleasure teaching courses based on Concurrent Pascal, and the
students, who are now software developers, received a thorough knowledge
of good system programming concepts. In some ways too good; when I meet
them now, they find it hard to break away from these paradigms, even in
distributed systems.

C.W. Reynolds:

There seem to me to be two central issues treated during the early period
1971–1973. First was the issue of medium term scheduling. How does a
process wait for some condition to be true? . . .

It seems to me that the critical insight occurred in realizing that the re-
sponsibility for determining an awaited event has occurred must lie with the
application programmer and not with the underlying run-time support. The
awakening of processes awaiting events is part of the application algorithm
and must be indicated by explicit announcement of the events by means of
“signal” or “cause” commands present in the application algorithm.

This idea is clearly present as early as Brinch Hansen (1972b). Of less
importance, but necessary to mention, is that there and in Concurrent Pas-
cal, at most one process can be suspended in a single queue. Although this
can be efficiently implemented and although it is possible to use it to sim-
ulate a queue containing multiple processes, the history of the last twenty
years has shown the multiple process condition queue of Hoare (1974a) to
be more popular.
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The second central issue in this early period is the class notion from
Simula. And there are two aspects to this. First is the encapsulation of
procedures together with their shared variables and the prohibition of access
to these shared variables by any procedures other than those encapsulated
procedures. This notion of encapsulation appears in the unpublished draft
Brinch Hansen (1971c) and it definitely appears in the textbook Brinch
Hansen (1973b).

The second important aspect of the class concept is that a class is a
mechanism for type definition so that multiple distinct variables of a class
can be declared . . . But, in the context of monitors, there is an important
difference that appears in short-term scheduling of exclusive access to the
monitor. Is this exclusion enforced for each class instance or is it enforced
for the whole class at once? . . . Mutual exclusion on individual instances of
a class is possible in languages such as Concurrent Pascal and Mesa which
adopted the Simula class style, whereas it is not possible in languages such
as Pascal Plus, SP/k, Concurrent Euclid, Modula-2 and Ada which did not.

The treatment of monitors as Simula classes appears in the textbook
Brinch Hansen (1973b) and is notably absent in Hoare (1974a).

I believe that another central issue treated but never resolved in this
early period was the relationship between short-term scheduling in monitor
access and medium term scheduling for awaited events. Evidence of this
issue is found in the variety of signaling semantics proposed during this
period. These included the Signal/Return semantics of Concurrent Pascal,
the Signal/Unconditional-Wait semantics of Hoare (1974a) and the more
prevalent Signal/Wait semantics of languages like SP/k and others. Multiple
not-quite-satisfactory solutions to the problem indicate that it has not been
resolved.

V. Wallentine:

Your comments on our experience porting Concurrent Pascal were com-
pletely accurate.

However, many things cannot be included in journal articles. The thrill
of porting a useful language with such a small investment of time made
it possible to use Concurrent Pascal in the academic environment. Many,
many students were able to learn the concepts of concurrent programming
and encapsulation using Concurrent Pascal. Having a concrete language to
experiment with is essential to understanding the monitor concept. Using the
concept of monitors as implemented in Concurrent C as a concrete example,
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they were able to better understand additional scheduling (and signaling)
techniques.

I remember spending many hours with my research group discussing
different signaling paradigms and hierarchical monitors. We also spent a
significant amount of time implementing a distributed operating system (on
top of Unix). This was a good test for the strength of the monitor concept.

T. Zepko:

Part of the history you describe is an important part of my own history.
At the time I was involved with Concurrent Pascal, I was an under-

graduate and not so much concerned with the conceptual significance of the
language as with learning how to build a language system from the ground
up. I got the practical experience I wanted by working on the Concurrent
Pascal compiler, the threaded code interpreter, and the operating system
kernel. I have continued to do this same kind of work for the last fifteen
years.

The concepts behind the Concurrent Pascal, the evolution of the ideas
as you describe them, are clearer to me now than they were as a student.
The needs you were addressing do require some years of experience to ap-
preciate. But even as a student, some things left a lasting impression. What
I learned from you, beyond specific programming techniques, is what I can
only describe as a passion for clear thinking. This was obvious in the way you
approached program design, and it was obviously the driving force behind
the design of the Concurrent Pascal language.
· · ·
Some of the ideas embodied in Concurrent Pascal were radical at the

time. That they seem less so now is a tribute to the trailblazing nature of
your work. Your approach to programming and to language design now has
many advocates. Structured programming, modular design, strong typing,
data encapsulation, and so on, are all considered essential elements of modern
programming and have found their way into a wide variety of languages. I’m
thankful to have played a part in this work.
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Graef, N., Kretschmer, H., Löhr, K.-P., and Morawetz, B. 1979. How to design and
implement small time-sharing systems using Concurrent Pascal. Software—Practice
and Experience 9, 1 (January), 17–24.

Gries, D., Ed. 1978. Programming Methodology—A Collection of Articles by Members of
IFIP WG2.3. Springer-Verlag, New York.



   

MONITORS AND CONCURRENT PASCAL 75

Haddon, B.K. 1977. Nested monitor calls. Operating Systems Review 11, (October), 18–23.

Hartmann, A.C. 1975. A Concurrent Pascal compiler for minicomputers. Ph.D. thesis,
Information Science, California Institute of Technology, Pasadena, CA, (September).
Also published as Lecture Notes in Computer Science 50, (1977), Springer-Verlag, New
York.

Hayden, C. 1979. Distributed processes: experience and architectures. Ph.D. thesis,
Computer Science Department, University of Southern California, Los Angeles, CA.

Heimbigner, D. 1978. Writing device drivers in Concurrent Pascal. Operating Systems
Review 12, 4 (April), 16–33.

Hoare, C.A.R. 1971a. Towards a theory of parallel programming. Queen’s University,
Belfast, Northern Ireland, (August). Privately circulated. Not to be confused with
Hoare (1971b) of the same title.

Hoare, C.A.R. 1971b. Towards a theory of parallel programming. Seminar on Operating
Systems Techniques, Belfast, Northern Ireland, (August). In Hoare (1972a), 61–71.
Also in Gries (1978), 202–214. Not to be confused with Hoare (1971a) of the same
title.

Hoare, C.A.R., and Perrott, R.H., Eds. 1972a. Operating Systems Techniques, Proceedings
of a seminar at Queen’s University, Belfast, August 30–September 3, 1971. Academic
Press, New York.

Hoare, C.A.R. 1972b. Proof of correctness of data representations. Acta Informatica 1,
271–281. Submitted February 1972. Also in Bauer (1976), 183–193; Gries (1978),
269–281; Hoare (1989), 103–115.

Hoare, C.A.R. 1973a. A pair of synchronising primitives. On January 11, 1973, Hoare
gave Jim Horning a copy of this undated, unpublished draft (Horning 1991).

Hoare, C.A.R. 1973b. A structured paging system. Computer Journal 16, (August),
209–214. Submitted October 1972. Also in Hoare (1989), 133–151.

Hoare, C.A.R. 1974a. Monitors: an operating system structuring concept. Communica-
tions of the ACM 17, (October), 549–557. Submitted February 1973, revised April
1974. Also in Gries (1978), 224–243; Wasserman (1980), 156–164; Gehani (1988),
256–277; Hoare (1989), 171–191.

Hoare, C.A.R. 1974b. Hints on programming language design. In Computer Systems
Reliability, C. Bunyan, Ed., Infotech International, Berkshire, England, 505–534. Also
in Wasserman (1980), 43–52; Hoare (1989), 193–216.

Hoare, C.A.R. 1976. Hints on the design of a programming language for real-time com-
mand and control. In Real-time Software: International State of the Art Report, J.P.
Spencer, Ed., Infotech International, Berkshire, England, 685–699.

Hoare, C.A.R. 1978. Communicating sequential processes. Communications of the ACM
21, (August), 666–677. Submitted March 1977, revised August 1977. Also in Wasser-
man (1980), 170–181; Bergland (1981), 277–288; Kuhn (1981), 323–334; Communi-
cations of the ACM 26, (January 1983), 100–106; Horowitz (1983b), 306–317; Saib
(1983), 508–519; Gehani (1988), 278–308; Hoare (1989), 259–288.

Hoare, C.A.R., and Jones, C.B., Ed., 1989. Essays in Computing Science. Prentice-Hall,
Englewood Cliffs, NJ.

Holt, R.C., Graham, G.S., Lazowska, E.D., and Scott, M.A. 1978. Structured Concurrent
Programming with Operating Systems Applications. Addison-Wesley, Reading, MA.

Holt, R.C. 1982. A short introduction to Concurrent Euclid. SIGPLAN Notices 17, (May),
60–79.



   

76 PER BRINCH HANSEN

Holt, R.C. 1983. Concurrent Euclid, the Unix System and Tunis. Addison-Wesley, Read-
ing, MA.

Holt, R.C. 1988. Device management in Turing Plus. Operating System Review 22, 1
(January), 33–41.

Horning, J.J. 1991. Personal communication, (May).

Horowitz, E. 1983a. Fundamentals of Programming Languages. Computer Science Press,
Rockville, MD.

Horowitz, E., Ed. 1983b. Programming Languages: A Grand Tour. Computer Science
Press, Rockville, MD.

Howard, J.H. 1976a. Proving monitors. Communications of the ACM 19, 5 (May), 273–
279.

Howard, J.H. 1976b. Signalling in monitors. IEEE Conference on Software Engineering,
San Francisco, CA, (October), 47–52.

Janson, P.A. 1985. Operating Systems: Structures and Mechanisms. Academic Press, New
York.

Kaubisch, W.H., Perrott, R.H., and Hoare, C.A.R. 1976. Quasiparallel programming.
Software—Practice and Experience 6, (July–September), 341–356.

Keedy, J.L. 1978. On structuring operating systems with monitors. Australian Computer
Journal 10, 1 (February), 23–27.

Kerridge, J.M. 1982. A Fortran implementation of Concurrent Pascal. Software—Practice
and Experience 12, 1 (January), 45–56.

Kessels, J.L.W. 1977. An alternative to event queues for synchronization in monitors.
Communications of the ACM 20, 7 (July), 500–503.

Kligerman, E., and Stoyenko, A.D. 1986. Real time Euclid: a language for reliable real
time systems. IEEE Transactions on Software Engineering 12, 9 (September), 941–
949.

Kotulski, L. 1987. About the semantic nested monitor calls. SIGPLAN Notices 22, 4
(April), 80–82.

Krakowiak, S. 1988. Principles of Operating Systems. MIT Press, Cambridge, MA.

Krishnamurthy, E.V. 1989. Parallel Processing: Principles and Practice. Addison-Wesley,
Reading, MA.

Kruijer, H.S.M. 1982a. Processor management in a Concurrent Pascal kernel. Operating
Systems Review 16, (April), 7–17.

Kruijer, H.S.M. 1982b. A multi-user operating system for transaction processing written
in Concurrent Pascal. Software—Practice and Experience 12, 5 (May), 445–454.

Kuhn, R.H., and Padua, D.A., Eds. 1981. Parallel Processing. IEEE Computer Society,
Los Angeles, CA, (August).

Lampson, B.W., and Redell, D.D. 1980. Experience with processes and monitors in Mesa.
Communications of the ACM 23, 2 (February), 105–117. Also in Gehani (1988), 392–
418.

Lauer, H.C., and Needham, R.M. 1978. On the duality of operating system structures.
International Symposium on Operating Systems, IRIA, France (October). Also in
Operating Systems Review 13, 2 (April 1979), 3–19.



   

MONITORS AND CONCURRENT PASCAL 77

Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J.C., Scheifler, R., and Snyder,
A. 1981. CLU reference manual. Lecture Notes in Computer Science 114. Quote:
“By the summer of 1975, the first version of the language had been completed. Over
the next two years, the entire language design was reviewed and two implementations
were produced . . . A preliminary version of this manual appeared in July 1978” (p.
III).

Lister, A.M. 1977. The problem of nested monitor calls. Operating Systems Review 11,
(July), 5–7.
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