
       

A Keynote Address

on Concurrent Programming∗

(1979)

Delivered at COMPSAC ’78, this address draws a parallel between the major

development phases of the first 20 years of concurrent programming and the

present challenge of distributed computing.

Introduction

This keynote address summarizes the highlights of the first 20 years of con-
current programming (1960–80) and takes a look at the next 20 years (1980–
2000).

A concurrent program is one that enables a computer to do many things
simultaneously. Concurrent programming is used to increase computer effi-
ciency and cope with environments in which many things need attention at
the same time. Although there are good economic and conceptual reasons
for being interested in concurrent programs there are major difficulties in
making these programs reliable.

The slightest programming mistake can make a concurrent program be-
have in an irreproducible, erratic manner that makes program testing im-
possible. The following describes how this problem was gradually solved by
software engineers and computer scientists. This development is seen as an
initial hardware challenge followed by a software crisis, a conceptual innova-
tion, and language development which in turn led to formal understanding
and hardware refinement. The paper draws a parallel between this evolution
of ideas and the present challenge of distributed computing.

∗P. Brinch Hansen, A keynote address on concurrent programming. Keynote address
for the IEEE Computer Software & Applications Conference, Chicago, IL, November 1978.
Computer 12, 5 (May 1979), 50–56. Copyright c© 1979, Institute of Electrical and Elec-
tronics Engineers, Inc.
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The Development Cycle

When you look at concurrent programming on a time-scale of decades you
will see that it went through several stages of development, each lasting
about 5 years:

Hardware challenge (1955–60)
Software crisis (1960–65)
Conceptual innovation (1965–70)
Language development (1970–75)
Formal understanding (1975– )
Hardware refinement (1980– )

At the beginning of this period new hardware developments make concur-
rent programming both possible and essential. As programmers experiment
with this new idea they are gradually led to the development of extremely
complicated systems without much of a conceptual basis to rely on. Not
too surprisingly these systems soon become so unreliable that the phrase
“software crisis” is coined by their designers. By then the importance of the
problem is recognized by computer scientists, who start a seach for abstract
concepts that will simplify the understanding of concurrent programs. Once
the essence of the problem is understood a notation is invented for the ba-
sic concepts, and it now becomes possible to define them so precisely that
they can be incorporated into new programming languages. This language
notation in turn enables theoreticians to develop a more formal understand-
ing of the problem. At the same time, the new language concepts inspire
innovative computer designers.

At this point (if not sooner) new hardware possibilities start another de-
velopment cycle. One must indeed agree with Alan Perlis that “hardware
drives the field,” but one must also add that abstractions make it manage-
able.

We will look at each of the stages that concurrent programming went
through and see what the next challenge is likely to be.

The Hardware Challenge

Around 1955 computer architecture changed drastically with the invention of
large magnetic core stores and asynchronously operating peripheral devices.
It now became possible to write large programs of 10,000–1,000,000 machine
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instructions. At the same time interrupts made it possible to write con-
current programs that could switch a fast processor among its much slower
peripheral devices and make them operate simultaneously.

The intellectual challenge of this technological revolution was formidable.
For the first time programs became too large to be understood completely by
a single programmer. In response to this challenge computer programmers
invented the first abstract programming languages, Fortran and Algol 60,
and made their compilers some of the best understood and most reliable
system programs we know. All this happened in less than 10 years—a most
impressive achievement (Wexelblat 1978).

The capabilities for simultaneous execution of several tasks on one com-
puter did, however, create a serious problem that took much longer to solve:
Programming errors could now cause a concurrent program to behave in
an erratic, time-dependent manner. These errors were extremely difficult
to find since their effect varied from one execution to the next even when
the input data remained the same. It has taken 20 years to cope with this
problem of concurrency.

If you look at computers from a programmer’s point of view the main
problem is to master the complexity of the hardware innovations that were
introduced two decades ago. By comparison mini- and microcomputers are
not revolutionary at all. Their economic impact and the numerous possibil-
ities for new applications are far reaching. But they have not, so far, posed
new programming problems of the same difficulty (thank heaven).

The Software Crisis

The slowness of peripheral devices made asynchronous operation essential
for efficient computer operation. But the pitfalls of concurrency made it
equally important to present the user with a simple, sequential interface to
the machine. The new system programs that were supposed to make a con-
current computer system simple, reliable, and efficient were called operating
systems.

Some of the early batch processing systems, such as Atlas (1961) and
Exec II (1962), were both efficient and simple. But they were not entirely
reliable. In looking back Bill Lynch (1972) observed that “several problems
remained unsolved with the Exec II operating system and had to be avoided
by one ad hoc means or another. The problem of deadlocks was not at
all understood in 1962 when the system was designed. As a result several
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annoying deadlocks were programmed into the system.”
The early timesharing systems, such as CTSS (1962) and SDC Q-32

(1964) were also of modest size.
Now, when faced with a new idea, programmers have an irresistable urge

to push it to its natural limits and then beyond. The operating systems of the
next generation were complex beyond human comprehension. The Multics
system (1965) required 200 man-years of development effort, and OS360
(1966) a staggering 5000 man-years. Because of its size OS360 became quite
unreliable. In 1969 Hopkins said this: “We face a fantastic problem in big
systems. For instance, in OS360 we have about 1000 errors in each release
and this number seems to be reasonably constant” (Naur 1969).

At this point it had become common for large operating systems to fail
daily, and it was doubtful whether they were achieving their original aim
of ensuring efficient, reliable computer operation. There was a clear feeling
at this point that it was just not possible to design these large programs
without some conceptual basis that would make them more understandable.

The importance (and failure) of operating systems had by now become
clear to computer scientists who, like all other computer users, were forced
to depend on these systems in their own computing centers. And so the
search for abstractions began.

The Conceptual Innovation

Seen in retrospect this development was clearly a search for concepts that
would make it possible to divide a concurrent program into smaller asyn-
chronous modules with time-independent behavior.

The idea of dividing a concurrent program into sequential processes that
are executed asynchronously was by far the most important innovation. This
idea and its implementation were pioneered at MIT in the CTSS project
(Saltzer 1966).

A process is a program module that consists of a data structure and a
sequence of statements that operates on it. If each process only operates
on its own data then it will behave in a completely predictable manner each
time it is executed with the same data. Hardware protection mechanisms can
prevent processes from referring to each other’s data structures by mistake.

It now became possible to perform unrelated tasks simultaneously with-
out time-dependent interference. However, if processes share computer re-
sources or cooperate on common tasks then they must also be able to share
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data in a controlled manner. During the late sixties the main focus was the
invention of safe methods for synchronizing processes which share data.

Dijkstra’s THE system (1968a, 1968b, 1971) is the milestone of this
era. It introduced most of the concepts on which our present understanding
of concurrent programming rests. Dijkstra noticed that all communication
among processes boils down to performing operations on common data. But
if several processes operate simultaneously on the same variables at unpre-
dictable speeds, the result will be unpredictable since none of the processes
have any way of knowing what the others are doing to the variables. Di-
jkstra therefore concluded that it is essential to perform the operations on
the common variables strictly one at a time. If one process is operating on
common variables then the machine must delay further operations on the
same variables until the present operation is finished. Dijkstra introduced
the name critical region for operations on common variables which take place
one at a time.

Critical regions only prevent competing processes from using common
variables simultaneously. But they do not help in transmitting data cor-
rectly from one process to another. In looking at the problem of process
communication, Dijkstra began by studying the simplest possible case in
which timing signals are sent from one process to another. For this purpose
he invented a data type, called a semaphore.

A signal operation permits a process to transmit a timing signal through
a semaphore variable to another process which receives the signal by per-
forming a wait operation. In a concurrent system, the programmer cannot
predict the relative speeds of asynchronous processes. It is therefore impos-
sible to know whether one process will try to send a signal before another
is ready to receive it (or vice versa). Dijkstra removed this problem by
defining the semaphore operations in such a way that it doesn’t matter in
which order they are initiated. If a process tries to receive a timing signal
before it is available, the wait operation will simply delay the process until
another process sends the next signal. Conversely, if signals temporarily are
being sent faster than they can be received, they will simply be stored in the
semaphore variable until they are needed.

The commutativity of semaphore operations made process synchroniza-
tion time-independent. Dijkstra then went on to show how critical regions
and message buffers can be implemented by means of semaphores.

Dijkstra’s multiprogramming system also illustrated the conceptual clar-
ity of hierarchical structure. His system consisted of several program lay-
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ers which gradually transform the physical machine into a more pleasant
abstract machine that simulates several processes which share a large, ho-
mogeneous store and several virtual devices. These program layers can be
designed and studied one at a time.

His co-worker Habermann (1967) showed that a hierarchical ordering of
resource requests and message communication also can prevent deadlocks.

Around 1970 researchers began to invent language notation for these
powerful new concepts.

Language Development

The invention of precise terminology and notation plays a major role not
only in the sciences but in all creative endeavors.

When a programming concept is understood informally it would seem
to be a trivial matter to invent a language notation for it. But in practice
this is hard to do. The main problem is to replace an intuitive, vague idea
with a precise, unambiguous definition of its meaning and restrictions. The
mathematician Polya (1957) was well aware of this difficulty:

“An important step in solving a problem is to choose the notation. It
should be done carefully. The time we spend now on choosing the notation
may well be repaid by the time we save later by avoiding hesitation and con-
fusion. Moreover, choosing the notation carefully, we have to think sharply
of the elements of the problem which must be denoted. Thus, choosing a
suitable notation may contribute essentially to understanding the problem.”

A programming language concept must represent a general idea that
is used very often. Otherwise, it will just increase the complexity of the
language at no apparent gain. The meaning and rules of a programming
language concept must be precisely defined. Otherwise, the concept is mean-
ingless to a programmer. The concept must be represented by a concise
notation that makes it easy to recognize the elements of the concept and
their relationships. Finally, it should be possible by simple techniques to ob-
tain a secure, efficient implementation of the concept. The compiler should
be able to check that the rules governing the use of the concept are satisfied,
and the programmer should be able to predict the speed and size of any
program that uses the concept by means of performance measurements of
its implementation.

As long as nobody studies your programs their readability may not seem
to be much of a problem. But as soon as you write a description for a
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wider audience the usefulness of notation that suppresses irrelevant detail
immediately becomes obvious. So, although Dijkstra’s THE system was
implemented in assembly language, he found it helpful to invent a language
notation for concurrent processes in his description (Dijkstra 1968a).

The following example of Dijkstra’s concurrent statement shows two se-
quential statements that are executed simultaneously:

var this, next: line
cobegin consume(this); input(next) coend

While one statement is consuming a line of text, called this, another state-
ment is inputting the next line. The concurrent statement terminates when
all the component statements are terminated.

Hoare (1972a) pointed out that the concurrent statement only has a
predictable effect if the statements within it operate on different variables.
In this example, the consumer and the input statements refer to different
variables (this and next). If the programmer by mistake lets both statements
refer to the same variable, the effect of the concurrent statement will be time-
dependent.

To prevent time-dependent programming errors a compiler should be able
to recognize the private variables of a process and make them inaccessible
to other processes. Unfortunately, this is difficult to do in more complicated
examples involving procedures and global variables. The solution to this
problem will be described later.

Although it is essential to make some variables accessible to one process
only, it is also necessary to enable processes to share other variables to make
cooperation and communication possible.

In 1971–72 notations were proposed for associating a shared variable with
the critical regions that operate on it (Hoare 1972a; Brinch Hansen 1972).
A shared integer used as a clock is a good example:

var clock: shared integer

Processes can either increment or read this clock by statements of the form:

tick: region clock do
clock := (clock + 1) mod max

read(x): region clock do x := clock
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The compiler checks that a shared variable is accessed only within critical
regions. The computer guarantees that these regions are executed one at a
time without overlapping.

Hoare also invented the beautiful concept of a conditional critical region
which is delayed until a shared variable satisfies some condition (defined by
a boolean expression). A good example is a message buffer consisting of a
single line slot and a boolean indicating whether or not it is full:

var buffer: shared record
slot: line
full: boolean

end

The send operation is a conditional critical region that is executed when
the buffer is empty:

send(m): region buffer when not full do
begin slot := m; full := true end

The receive operation is similar:

receive(m): region buffer when full do
begin m := slot; full := false end

At that time it did not seem possible to implement conditional critical re-
gions efficiently on a single processor. The problem was to limit the repeated
evaluation of boolean expressions until they become true. As a compro-
mise between elegance and efficiency process queues (also called “events” or
“conditions”) associated with shared variable were proposed (Brinch Hansen
1972).

At that time Dijkstra (1971) suggested that the meaning of process in-
teractions could be further clarified by combining all operations on a shared
data structure into a single program module (instead of scattering them
throughout the program text).

In 1973 a language notation for this monitor concept was proposed
(Brinch Hansen 1973). The data representation of a message buffer together
with the send and receive operations on it now looked like this:
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monitor buffer
var slot: line; full: boolean

procedure send(m: line)
when not full do
begin slot := m; full := true end

procedure receive(var m: line)
when full do
begin m := slot; full := false end

begin full := false end

The monitor includes an initial statement that makes the buffer empty to
begin with. In a later paper Hoare (1974) also described the monitor concept
and illustrated it with examples.

A central theme in this development was an attempt to replace ear-
lier hardware protection mechanisms by compilation checks. The monitor
concept enables a compiler to check that send and receive are the only op-
erations performed on a message buffer. Once the buffer monitor has been
tested systematically the compiler prevents other program modules from us-
ing it incorrectly. This tends to localize errors in new, untested modules and
prevent them from causing obscure effects in old, tested modules.

The elimination of execution checks was not done just to make compiled
programs more efficient. In program engineering, compilation and execution
checks play the same roles as preventive maintenance and flight recorders
do in aviation. The latter only tell you why a system crashed; the former
prevents it. This distinction is essential in real-time systems that control
vital functions in society. Such systems must be highly reliable before they
are put into operation.

The monitor concept solved the problem of controlled access to shared
variables. The earlier problem of controlling the access to private variables
was solved by declaring each process and its local variables as a separate
program module:

process producer
var next: line
cycle input(next); buffer.send(next) end

process consumer
var this: line
cycle buffer.receive(this); consume(this) end
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This language notation makes it obvious to the program reader and the
compiler that the variable next only can be used within the producer process.

The first programming language based on processes and monitors was
Concurrent Pascal. It was defined and implemented in 1974 (Brinch Hansen
1975). By the end of 1975 Concurrent Pascal had been used to write three
minicomputer operating systems of 600–1400 lines each. The development
and documentation effort of each system only took a few weeks (Brinch
Hansen 1976, 1977). A later language, Modula (Wirth 1977), is also based
on the process and monitor concepts.

These language concepts had a dramatic impact on the structure of con-
current programs. It now became natural to build a concurrent program out
of modules of one page each. Since each module defines all the meaningful
operations on a single data structure (private or shared), the modules can
be studied and tested one at a time. As a result these concurrent programs
became more reliable than the hardware they ran on. And their simplicity
made it possible to publish the entire text of a concurrent program of 1300
lines (Brinch Hansen 1976).

It is interesting that sequential programmers independently were led to
the discovery of program modules which combine data repesentations and
procedures into units (Hoare 1972b). But although the two developments
led to the same conclusions the motivations were different: concurrent pro-
grammers were gradually led to modularity simply by their desire to master
synchronization and prevent race conditions. These problems do not occur
in sequential programs. Sequential programmers were motivated by more
abstract concerns for clarity and the desire to make program verification
simpler.

Formal Understanding

Once you have a notation for a concept it becomes possible to refine it
further and get a more formal understanding of its properties. The impact
of notation on discovery has been expressed very well by Susanne Langer
(1967):

“There is something uncanny about the power of happily chosen ideo-
graphic language; for it often allows one to express relations which have no
names in natural language and therefore have never been noticed by anyone.
Symbolism, then, becomes an organ of discovery rather than mere notation.”
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It is no coincidence therefore that the development of language notation
for concurrent programming immediately inspired theoretical work on pro-
gram verification. Hoare’s first paper on concurrent programming (1972a)
contains axiomatic definitions of the meaning of concurrent statements and
critical regions. A later paper by Hoare (1974) defines the effect of queue
manipulation within monitors. The development of verification rules for
concurrent programs with conditional critical regions was carried further by
Owicki and Gries (1976).

It remains to be seen what effect these theories will have on language
refinement and program reliability. Most researchers would agree that our
theoretical understanding of concurrency is still in its infancy. A successful
approach in this area will almost certainly require that computer scientists go
beyond well-understood exercises and concern ourselves with model systems
of a non-trivial size.

Hardware Refinement

The trend of decreasing hardware costs and increasing software costs is likely
to continue due to better production methods and continued inflation. At the
moment the use of abstract programming languages is the only effective way
of reducing software costs. Unfortunately, present computer architectures do
not support abstract languages efficiently compared to machine language. A
real-time programmer is therefore faced with a meaningless choice among
cost, reliability, and efficiency. The solution is quite obvious: we must build
computer architectures that support our programming concepts directly.

A few years after the invention of the block and procedure concepts of
Algol 60 the first stack computers appeared. It did, however, take more than
a decade for this idea to be generally adopted by most computer manufac-
turers.

A similar development is now taking place in concurrent programming.
The microprocessor technology makes it possible to build computer architec-
tures that will support the process and monitor concepts directly. A recent
proposal envisions a computer with 10 microprocessors. Each processor has
a local store dedicated to a single process. The processors share a common
store that contains the monitors. The computer has no interrupts and does
not multiplex its processors among several processes (Brinch Hansen 1978b).

I would expect an increasing number of computer architectures to be
oriented towards the support of concurrent programming languages for real-
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time applications.
For applications that are of interest to a large number of people it will be

economical to specialize the hardware even further. In those cases it seems
very attractive to write a concurrent program in an abstract language that
hides machine detail, test it on an existing machine, and then derive the
most straightforward specialized architecture from the program itself.

Like the development of our theoretical understanding, the design of
new computer architectures for concurrent programming has started and
will probably continue for another decade.

The Next Challenge: Computer Networks

It has taken 20 years to design reliable computer systems in which concur-
rent processes share storage. And now hardware technology has provided
another challenge: microcomputer networks in which processors communi-
cate by input/output only (without any common storage). This seems a
natural approach to real-time applications in which geographically distribu-
ted functions must be coordinated.

Anyone who took the word “abstraction” to mean “machine-independent”
suddenly discovered that abstract programming languages merely hide the
irrelevant differences between similar computer architectures. The procedure
concept is still fundamentally tied to the existence of a common store for
parameter passing. And the people who developed monitors for concurrent
programming also took this assumption for granted.

Now it may seem that the solution to the distributed processing problem
is simple: message passing between processors connected by cables is all
that is needed. And message passing (one of the oldest ideas in concurrent
programming) we surely understand very well. Unfortunately, it is not that
easy.

What we do understand is deterministic message passing in which a re-
ceiving process waits until another process sends a message on a given line.
In such a system each process performs a completely predictable transfor-
mation of its input to its output. The analysis of individual processes must
be supplemented with a global analysis of termination (or absence of dead-
locks). This can be guaranteed by a hierarchical ordering of processes into
“masters” and “servants.”

A recent paper by Hoare (1978), however, makes it clear that one must
also include nondeterministic message passing—a far more complex problem.
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An obvious example is a process that functions as a buffer between two other
processes. The buffer process cannot predict whether its environment will
ask it to receive or send a message next. Consequently, it cannot commit
itself to waiting until it receives a message on the input line, for this would
make it unable to respond to a request for sending a message on the output
line. Conversely, it cannot commit itself to wait until it is asked to send a
message either, for this would make it unable to receiver further messages
in the meantime, thereby slowing down the producer process unnecessarily.

What is needed therefore is the ability of a process to delay itself until
it receives either a request for sending or receiving. It must then be able to
perform one of two actions depending on what it was asked to do.

The problem is further complicated by the finite storage capacity of a
buffer process. When the buffer is full, the process cannot accept further
input; and when it is empty, the process cannot deliver further output. Hoare
is therefore led to introducing a non-deterministic statement of the form:

when
not full(buffer) & input(x): put(x, buffer)
not empty(buffer) & output(x): get(x, buffer)

end

These communicating sequential processes seem somewhat inconvenient
for the programming of processes that schedule other processes. To handle
this problem the concept of distributed processes has been proposed (Brinch
Hansen 1978a). It combines the process and monitor concepts and enables
one process to call a procedure within another process when the latter pro-
cess is waiting for some condition to be satisfied by its own variables. The
parameter passing between processes can be done by a single input operation
before a process interaction followed by a single output operation afterwards.

The practicality of these recent proposals has not yet been established.
They have not even been implemented and are not understood formally.
Their main value is to make it clear that distributed computing will require
new concepts.

If the history of concurrent programming is about to repeat itself we
should expect the new hardware challenge to lead to a software crisis as
the technology is being used in real-time applications by means of ad hoc
programming techniques. The search for concepts, languages, and theory
will then start again. This will take longer than we may think. I would
expect distributed computing to be reasonably well understood by the year
2000.
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