Reproducible Testing of Monitors*
(1978)

This paper describes a systematic method for testing monitor modules which
control process interactions in concurrent programs. A monitor is tested by
executing a concurrent program in which the processes are synchronized by a
clock to make the sequence of interactions reproducible. The method separates
the construction and implementation of test cases and makes the analysis of
a concurrent experiment similar to the analysis of a sequential program. The
implementation of a test program is almost mechanical. The method, which is
illustrated by an example, has been used successfully to test a multicomputer

network program written in Concurrent Pascal.

1 Introduction

Some computer scientists feel that testing is a futile effort since it can never
convince one that a program is absolutely correct. My experience has been
that systematic testing can be remarkably successful in practice for both
sequential and concurrent programs (Naur 1963; Brinch Hansen 1973, 1977).
I am sure that there are good theoretical reasons for this which could be
uncovered if researchers would take a fresh look at the problem.

The purpose of this paper is to describe a method for testing monitor
modules which control the interactions of processes in concurrent programs.
The testing of a monitor involves several steps:

1. For each monitor operation the programmer identifies a set of precon-
ditions that will cause each branch of the operation to be executed at
least once.

2. The programmer then constructs a sequence of monitor calls that will
try each operation under each of its preconditions.

*P. Brinch Hansen, Reproducible testing of monitors, Software—Practice and Ezperi-
ence 8, 6 (November—December), 721-729. Copyright © 1978, John Wiley & Sons, Ltd.

2 PER BRINCH HANSEN

3. The programmer now constructs a set of test processes that will inter-
act exactly as defined above. These processes are scheduled by means
of a clock monitor used for testing only.

4. Finally, the test program is executed and its output is compared with
the predicted output.

This method makes it possible to test a monitor module by means of
a reproducible sequence of operations without changing the monitor. The
method has been used successfully to test a network program for a multi-
computer system (Brinch Hansen 1978). The test example described in this
paper was carried out successfully on a PDP 11/55 computer.

2 An Example: The Asymmetric Buffer

Figure 1 shows an example of two processes that communicate by means of
a buffer monitor.

buffer monitor

producer process consumer process

Figure 1 A concurrent program.

The arrows indicate that these processes have access to that monitor. A
producer process inputs one line at a time from a card reader and sends it
through a buffer. A consumer process receives one character at a time from
the buffer. The buffer has a capacity of one line. When the buffer is full,
80 receive operations must be performed before another send operation can
take place. The characters in each line must be received in their natural
order (from left to right).

In the programming language Concurrent Pascal (Brinch Hansen 1977)
this buffer can be programmed as follows:

REPRODUCIBLE TESTING OF MONITORS 3

type buffer=

monitor

var contents: line; length: integer;
sender, receiver: queue;

procedure entry send(x: line);
begin
if length > 0 then delay(sender);
contents := x; length := 80;
if not empty(receiver) then
continue(receiver)
end;

procedure entry receive(var y: char);
begin
if length = 0 then delay(receiver);
y := contents[length]; length := length — 1;
if not empty(sender) & (length = 0) then
continue(sender)
end;

begin length := 0 end

The monitor defines a data structure representing the buffer and two opera-
tions, send and receive, on the buffer. An initial statement at the end of the
monitor makes it empty to begin with.

The data structure represents the buffer contents (a single line) and its
current length in characters (0 < length < 80). Two queue variables are used
to delay the sender and the receiver processes (if necessary).

The send operation delays the producer process until the buffer is empty.
It then puts a new line into the buffer. If the consumer process is waiting in
the receiver queue its execution is continued.

The receive operation delays the consumer process until the buffer is
nonempty. It then gets the next character from the buffer. If the buffer
becomes empty and the producer process is waiting in the sender queue its
execution is continued.

In Concurrent Pascal a continue operation has no effect if a queue is
empty. It is therefore unnecessary to examine whether a queue is empty
before performing a continue operation on it. The continue operations are
nevertheless made conditional in this monitor to make it clear that they
should be tested in two cases: when the queues are empty and also when
they are not empty.

4 PER BRINCH HANSEN

Processes can perform the send and receive operation on the buffer but
cannot access the data structure representing it directly. This is guaranteed
by the compiler.

The operations on a monitor take place strictly one at a time. When a
process performs a monitor operation the computer will automatically delay
further operations on the same monitor until the current operation is either
finished or delayed explicitly in a queue variable. In the latter case, the
delayed operation is resumed when another monitor operation performs a
continue operation on the same queue.

(When I first wrote this paper the buffer monitor was programmed ex-
actly as shown here. The test described in the following revealed a program-
ming error. I found this very appropriate in a paper on systematic testing
and decided to postpone the correction of the error until the end of the

paper.)

3 Planning a Test Sequence

When a monitor has been programmed it must be tested systematically. The
first step is to identify the test cases that must be tried experimentally.

In the buffer example both procedures may or may not delay the calling
process and may or may not continue the other process. These are the only
choices. So the following are the necessary preconditions that will ensure that
all statements within the monitor procedures are executed at least once:

test cases (send) preconditions

sender is delayed S1: length > 0

sender is not delayed So: length = 0

receiver is continued S3: not empty(receiver)

receiver not continued S4: empty(receiver)

test cases (receive) preconditions

receiver is delayed Ri: length =0

receiver is not delayed Rs: length > 0

sender is continued R3: not empty(sender) & length = 1

sender is not continued R4: empty(sender) or
Rs: length > 1

These preconditions must hold upon entry to the send and receive proce-
dures.

It may be helpful to outline briefly how these test cases were identified.
The aim of the testing is to try each branch of the monitor procedures at

REPRODUCIBLE TESTING OF MONITORS 5

least once. Take, for example, the receive procedure. Its first if statement
must be tried both when the condition (length = 0) is true and when it is
false. This observation immediately defines the preconditions R; and Rs.

The next two statements are assignments. Since they are executed uncon-
ditionally, it is not necessary to plan special test cases for these statements.
They will always be executed.

The final if statement should be tried both when the compound condition
is true and when each of its terms is false. This defines test cases R3—R5.

The test cases for the send procedure were found by similar reasoning.

One may ask if it is sufficient to test each branch once instead of testing
all combinations of all branches. The answer is that exhaustive testing of all
the possible paths through a program normally is impractical. As usual, one
must depend on insight into the program structure to reduce the number of
test cases drastically.

Now, after the first if statement in the receive procedure it turns out to
be irrelevant whether or not the calling process was delayed. In both cases
the buffer will eventually end up in the same state (length > 0). So, at
this point, the state of the monitor variables is independent of the actual
path of program execution. This “memoryless” property is characteristic of
well-structured programs. If it is carried far enough it is indeed sufficient to
consider the two conditional statements as separate (unrelated) test cases.

The path independence of structured programs applies not only to state-
ments (including loops), but also to procedures, monitors, and entire pro-
grams. It is not necessary to test all possible sequences of monitor operations.
All that is needed is one representative sequence of operations that covers
the relevant state transitions.

The study of the programming principles that make systematic testing
possible is a fascinating research area that has barely been touched yet. It is
not the purpose of this paper to discuss these issues. We will merely point
out that whenever it is difficult to identify relevant test cases in a system
program one can safely assume that this is due to poor structuring. The
planning of test cases can therefore serve as an indication of unnecessary
complexity. '

In the following we will take it for granted that one can identify a small
number of relevant test cases for a monitor. Our main concern then is to
plan an experiment that will cover all the test cases once they have been

fIn designing and testing a total of 5000 lines of Concurrent Pascal programs I have
not yet found it necessary to write a monitor that exceeds one page of text.

6 PER BRINCH HANSEN

identified.

We will therefore try to construct a set of processes that will test the
buffer monitor systematically. To begin with we will, however, ignore these
processes and focus our attention on what should happen within the monitor
when it is being tested.

Since monitor operations are carried out strictly one at a time one can
plan a sequence of operations that will force the monitor to go through
all the test cases. One can then take the operations of this test sequence
and distribute them among a set of test processes and make these processes
perform the monitor operations in exactly the same order. Such a test will
be both systematic and reproducible.

In practice, it is fairly easy to construct a test sequence by trial and
error. The following shows one of the possible test sequences for the asym-
metric buffer. The line length has been reduced to two characters for testing
purposes. The producer process sends two lines consisting of the strings ‘ab’
and ‘cd’. The state of the monitor variables before and after each operation
are defined by test assertions. The assertions are labeled S1, S5 and so forth,
to indicate which test cases they imply. The test sequence covers all the nine
test cases described earlier.

{R1, R4: contents = [], empty(receiver), empty(sender)}
receive()

{Ss, S5: contents = [], not empty(receiver), empty(sender)}
send(‘ab’)

{contents = ‘ab’, empty(receiver), empty(sender)}
receive() continued

{S1, S4: contents = ‘b’, empty(receiver), empty(sender)}
send(‘cd’)

{R2, R3: contents = ‘b’, empty(receiver), not empty(sender)}
receive()

{contents = [], empty(receiver), empty(sender)}
send(‘cd’) continued

{R32, Rs: contents = ‘cd’, empty(receiver), empty(sender)}
receive()

{R4: contents = ‘d’, empty(receiver), empty(sender)}
receive()

{contents = [|, empty(receiver), empty(sender)}

REPRODUCIBLE TESTING OF MONITORS 7

4 Implementing a Test Sequence

Although the approach taken here is informal one could use verification tech-
niques to show that the test sequence has the effect defined by the assertions.
In the present example, the result of the test seems fairly obvious. But, even
if formal techniques are used, typing mistakes can still be made when the
program text is entered into the computer. So one must still execute the
test sequence.

In a concurrent program the relative progress of processes will normally
be influenced by numerous unpredictable and irreproducible events, such as
the exact timing of interrupts, the presence of other (perhaps unrelated) pro-
cesses, the occurrence of transient input/output errors, and the speed with
which operators interact with the program. The exact timing of operations
will therefore, in general, vary somewhat from one execution of the program
to another of a concurrent program even though the input remains the same!

During testing, however, we must be able to control precisely the se-
quence in which two or more processes interact with a monitor. Otherwise,
we cannot be sure that all the test cases have been tried.

We will therefore assume that the processes synchronize themselves by
means of an abstract clock during testing. This test clock is incremented
by one after each operation (or partial operation) in the test sequence. The
partial operations are the ones that are split into pieces by means of delay
operations.

With this idea in mind we now rewrite the test sequence and attach a
unique time value t1, to and so on to each operation:

t1: receive()
to: send(‘ab’)
t3: receive() continued
ty: send(‘cd’)
ts: receive()
te: send(‘cd’) continued
t7: receive()
tg: receive()

The test clock is a standard monitor that implements an operation
clock.await(t)

which delays a test process until the time is t.
The test processes that implement the previous sequence of operations
can now be programmed as follows:

8 PER BRINCH HANSEN

producer:
process(buf: buffer; clock: testclock);
begin
with buf, clock do
begin

await(2); send(‘ab’);
await(4); send(‘cd’);
await(6)
end
end

consumer:
process(buf: buffer; clock: testclock;
terminal: display);
var c: char;

begin
with buf, clock, terminal do
begin
await(1); receive(c);
await(3); print(c);
await(5); receive(c); print(c);
await(7); receive(c); print(c);
await(8); receive(c); print(c)
end
end

The consumer process uses another standard monitor to print the charac-
ters it receives on a display. Notice that the construction of the test processes
on the basis of the previous time sequence is an almost clerical task.

5 The Test Clock

The test clock is a monitor that implements two operations. An await op-
eration delays the calling process until the clock reaches a certain value. A
tick operation increments the clock by one and wakes up the process (if any)
that is waiting for the new time value.

The current time is represented by an integer. Each instant of time is the
starting time of a single monitor operation performed by a single process.
Consequently, each time value in the test sequence can be represented by
a queue variable that permits one (and only one) process to wait for that
moment. The whole test sequence can therefore be represented by an array
of queues.

REPRODUCIBLE TESTING OF MONITORS 9

type testclock =
monitor
var time: integer;
sequence: array [1..steplimit] of queue;

procedure entry await(when: integer);
begin delay(sequence[when]) end;

procedure entry tick;
begin
time := time + 1;
continue(sequenceltime]);
end;

begin time := 0 end;

How does one control the passage of time? The simplest idea is to let
the test processes make the clock tick after each monitor operation. But this
would not work since a process can be delayed by a test operation before it
gets a chance to call tick. Since our purpose is to test the buffer monitor
as it is we rule out the possibility of putting additional clock statements
within it. (This idea would not have worked either since the language does
not make it possible to combine a delay and a tick into a single indivisible
operation.)

The progression of time must therefore be controlled by a separate pro-
cess that makes the test clock tick at regular intervals. A clock interval of
3 seconds is used. This is an order of magnitude longer than the slowest
operation in the test program (in this case, the printing of a single character
on the display). Consequently, one test operation will always be completed
before the next one begins.

timer:
process(clock: testclock);
var step, sec: integer;
begin
for step := 1 to steplimit do
begin
for sec := 1 to 3 do
wait “one second”;
clock.tick
end
end

10 PER BRINCH HANSEN

Since a test process only waits for times that are in the future and since
the clock continues to increase (thanks to the timer), the test clock will
eventually terminate the waiting of any test process and enable it to perform
its next operation. The whole test sequence will therefore be carried out as
planned.

6 A Complete Test Program

The buffer monitor is tested by means of the concurrent program shown in
Fig. 2. The program consists of three processes (the producer, the consumer
and the timer) and three monitors (the buffer, the test clock and the display
controller). The arrows show how the modules call one another.

buffer

producer consumer

display

testclock

timer

Figure 2 Test program.

The modules are initialized and linked to one another by an initial state-
ment in the program:

var buf: buffer; clock: testclock; terminal: display;
begin
init buf, clock, terminal, timer(clock),
producer(buf, clock),
consumer (buf, clock, terminal)
end

When the test program was executed on the PDP 11/55 computer it

REPRODUCIBLE TESTING OF MONITORS 11

printed the output ‘badc’ instead of the expected ‘abed’. An examination of
the receive operation on the buffer made it clear that the statement

y := contents[length]
should have been
y := contents[linelength — length + 1]

After this correction the test gave the correct output.

7 Final Remarks

Since the operations on a monitor can only take place one at a time, one
can construct a sequence of monitor operations that will make the monitor
variables go through all the states which the programmer wishes to test.

One can then assign consecutive time values to these operations and
construct a set of processes that will perform the operations in the speci-
fied order. These processes are synchronized by a clock that is very slow
compared to the monitor operations being tested.

This method separates the construction and implementation of test cases
and makes the analysis of a concurrent experiment similar to the analysis
of a sequential program. The implementation of a test program is almost
mechanical in nature.

If an experiment tests all possible process interactions that can occur
within a monitor then that monitor will continue to behave correctly when
it is used in a concurrent program in which the precise timing of events is
not controlled by a central clock.

The task of constructing a separate test program for each module in a
concurrent program is much simpler than one might imagine. The resulting
reliability of programs makes it an essential and worthwhile effort. A detailed
example of the test programs for a real-time scheduler is included in Brinch
Hansen (1977). The network program described in Brinch Hansen (1978)
also worked immediately after being tested by this method.

Systematic testing deserves to be studied more carefully by computer sci-
entists. Such an effort could lead to a theory that would point out precisely
under which circumstances program testing can be successful. It seems plau-
sible that the program structures which simplify formal verification will also

12 PER BRINCH HANSEN

simplify testing. Verification and testing would then emerge as complemen-
tary methods for obtaining program correctness. This important point was
also made in Goodenough (1977).

Acknowledgements

I wish to thank Roger Vossler of TRW Systems, Redondo Beach, California,
for providing the opportunity to develop the testing method described here.
The Network program was originally tested at TRW’s Signal Processing
Facility. I also thank Nissim Francez, Charles Hayden and Jgrgen Staunstrup
for their constructive criticism of this paper.

References

Brinch Hansen, P. 1973. Testing a multiprogramming system. Software—Practice and
Experience 3, 2 (April-June), 145-150. Article 5.

Brinch Hansen, P. 1977. The Architecture of Concurrent Programs, Prentice Hall, Engle-
wood Cliffs, NJ, (July).

Brinch Hansen, P. 1978. Network: a multiprocessor program. IEEE Transactions on
Software Engineering 4, 3 (May), 194-199. Article 13.

Goodenough, J.B., and Gerhart, S.L. 1977. Toward a theory of testing: data selection
criteria. In Current Trends in Programming Methodology II, R.T. Yeh, Ed., Prentice
Hall, Englewood Cliffs, NJ.

Naur, P. 1963. The design of the Gier Algol compiler. BIT 8, 2-3, 124—143 and 145-166.

