

THE PROGRAMMING LANGUAGE

CONCURRENT PASCAL

PER BRINCH HANSEN

(1975)

The paper describes a new programming language for structured program-

ming of computer operating systems. It extends the sequential programming

language Pascal with concurrent programming tools called processes and moni-

tors. Part I explains these concepts informally by means of pictures illustrating

a hierarchical design of a simple spooling system. Part II uses the same exam-

ple to introduce the language notation. The main contribution of Concurrent

Pascal is to extend the monitor concept with an explicit hierarchy of access

rights to shared data structures that can be stated in the program text and

checked by a compiler.

I THE PURPOSE OF CONCURRENT PASCAL

A Background

Since 1972 I have been working on a new programming language for struc-
tured programming of computer operating systems. This language is called
Concurrent Pascal. It extends the sequential programming language Pascal
with concurrent programming tools called processes and monitors (Wirth
1971; Brinch Hansen 1973; Hoare 1974).

This is an informal description of Concurrent Pascal. It uses examples,
pictures, and words to bring out the creative aspects of new programming
concepts without getting into their finer details. I plan to define these con-
cepts precisely and introduce a notation for them in later papers. This form

P. Brinch Hansen, The programming language Concurrent Pascal, IEEE Transactions on
Software Engineering 1, 2 (June 1975), 199–207. Copyright c© 1975, Institute of Electrical
and Electronics Engineers, Inc.

1

2 PER BRINCH HANSEN

of presentation may be imprecise from a formal point of view, but is perhaps
more effective from a human point of view.

B Processes

We will study concurrent processes inside an operating system and look at
one small problem only: How can large amounts of data be transmitted from
one process to another by means of buffers stored on a disk?

Figure 1 shows this little system and its three components: A process
that produces data, a process that consumes data, and a disk buffer that
connects them.

Figure 1 Process communication

The circles are system components and the arrows are the access rights
of these components. They show that both processes can use the buffer (but
they do not show that data flows from the producer to the consumer). This
kind of picture is an access graph.

The next picture shows a process component in more detail (Fig. 2).

Figure 2 Process.

A process consists of a private data structure and a sequential program
that can operate on the data. One process cannot operate on the private

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 3

data of another process. But concurrent processes can share certain data
structures (such as a disk buffer). The access rights of a process mention the
shared data it can operate on.

C Monitors

A disk buffer is a data structure shared by two concurrent processes. The
details of how such a buffer is constructed are irrelevant to its users. All the
processes need to know is that they can send and receive data through it.
If they try to operate on the buffer in any other way it is probably either a
programming mistake or an example of tricky programming. In both cases,
one would like a compiler to detect such misuse of a shared data structure.

To make this possible, we must introduce a language construct that will
enable a programmer to tell a compiler how a shared data structure can be
used by processes. This kind of system component is called a monitor. A
monitor can synchronize concurrent processes and transmit data between
them. It can also control the order in which competing processes use shared,
physical resources. Figure 3 shows a monitor in detail.

Figure 3 Monitor.

A monitor defines a shared data structure and all the operations pro-
cesses can perform on it. These synchronizing operations are called monitor
procedures. A monitor also defines an initial operation that will be executed
when its data structure is created.

We can define a disk buffer as a monitor. Within this monitor there will
be shared variables that define the location and length of the buffer on the
disk. There will also be two monitor procedures, send and receive. The
initial operation will make sure that the buffer starts as an empty one.

Processes cannot operate directly on shared data. They can only call
monitor procedures that have access to shared data. A monitor procedure
is executed as part of a calling process (just like any other procedure).

4 PER BRINCH HANSEN

If concurrent processes simultaneously call monitor procedures that op-
erate on the same shared data these procedures will be executed strictly one
at a time. Otherwise, the results of monitor calls would be unpredictable.
This means that the machine must be able to delay processes for short pe-
riods of time until it is their turn to execute monitor procedures. We will
not be concerned with how this is done, but will just notice that a monitor
procedure has exclusive access to shared data while it is being executed.

So the (virtual) machine on which concurrent programs run will handle
short-term scheduling of simultaneous monitor calls. But the programmer
must also be able to delay processes for longer periods of time if their requests
for data and other resources cannot be satisfied immediately. If, for example,
a process tries to receive data from an empty disk buffer it must be delayed
until another process sends more data.

Concurrent Pascal includes a simple data type, called a queue, that can be
used by monitor procedures to control medium-term scheduling of processes.
A monitor can either delay a calling process in a queue or continue another
process that is waiting in a queue. It is not important here to understand
how these queues work except for the following essential rule: A process
only has exclusive access to shared data as long as it continues to execute
statements within a monitor procedure. As soon as a process is delayed
in a queue it loses its exclusive access until another process calls the same
monitor and wakes it up again. (Without this rule, it would be impossible
to enter a monitor and let waiting processes continue their execution.)

Although the disk buffer example does not show this yet, monitor proce-
dures should also be able to call procedures defined within other monitors.
Otherwise, the language will not be very useful for hierarchical design. In
the case of the disk buffer, one of these other monitors could perhaps define
simple input/output operations on the disk. So a monitor can also have
access rights to other system components (see Fig. 3).

D System Design

A process executes a sequential program—it is an active component. A
monitor is just a collection of procedures that do nothing until they are called
by processes—it is a passive component. But there are strong similarities
between a process and a monitor: both define a data structure (private or
shared) and the meaningful operations on it. The main difference between
processes and monitors is the way they are scheduled for execution.

It seems natural therefore to regard processes and monitors as abstract

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 5

data types defined in terms of the operations one can perform on them. If
a compiler can check that these operations are the only ones carried out
on data structures, then we may be able to build very reliable, concurrent
programs in which controlled access to data and physical resources is guar-
anteed before these programs are put into operation. We have then to some
extent solved the resource protection problem in the cheapest possible man-
ner (without hardware mechanisms and run time overhead).

So we will define processes and monitors as data types and make it
possible to use several instances of the same component type in a system.
We can, for example, use two disk buffers to build a spooling system with an
input process, a job process, and an output process (Fig. 4).

Figure 4 Spooling system.

I will distinguish between definitions and instances of components by
calling them system types and system components. Access graphs (such as
Fig. 4) will always show system components (not system types).

Peripheral devices are considered to be monitors implemented in hard-
ware. They can only be accessed by a single procedure io that delays the
calling process until an input/output operation is completed. Interrupts are
handled by the virtual machine on which processes run.

To make the programming language useful for stepwise system design
it should permit the division of a system type, such as a disk buffer, into
smaller system types. One of these other system types should give a disk
buffer access to the disk. We will call this system type a virtual disk. It
gives a disk buffer the illusion that it has its own private disk. A virtual
disk hides the details of disk input/output from the rest of the system and
makes the disk look like a data structure (an array of disk pages). The only
operations on this data structure are read and write a page.

Each virtual disk is only used by a single disk buffer (Fig. 5). A system
component that cannot be called simultaneously by several other compo-

6 PER BRINCH HANSEN

Figure 5 Buffer refinement.

nents will be called a class. A class defines a data structure and the possible
operations on it (just like a monitor). The exclusive access of class proce-
dures to class variables can be guaranteed completely at compile time. The
virtual machine does not have to schedule simultaneous calls of class proce-
dures at run time, because such calls cannot occur. This makes class calls
considerably faster than monitor calls.

The spooling system includes two virtual disks but only one real disk.
So we need a single disk resource monitor to control the order in which com-
peting processes use the disk (Fig. 6). This monitor defines two procedures,
request and release access, to be called by a virtual disk before and after each
disk transfer.

Figure 6 Decomposition of virtual disks.

It would seem simpler to replace the virtual disks and the disk resource
by a single monitor that has exclusive access to the disk and does the in-
put/output. This would certainly guarantee that processes use the disk one
at a time. But this would be done according to the built-in short-term
scheduling policy of monitor calls.

Now to make a virtual machine efficient, one must use a very simple

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 7

short-term scheduling rule, such as first-come, first-served (Brinch Hansen
1973). If the disk has a moving access head this is about the worst possible
algorithm one can use for disk transfers. It is vital that the language make it
possible for the programmer to write a medium-term scheduling algorithm
that will minimize disk head movement (Hoare 1974). The data type queue
mentioned earlier makes it possible to implement arbitrary scheduling rules
within a monitor.

The difficulty is that while a monitor is performing an input/output
operation it is impossible for other processes to enter the same monitor
and join the disk queue. They will automatically be delayed by the short-
term scheduler and only allowed to enter the monitor one at a time after
each disk transfer. This will, of course, make the attempt to control disk
scheduling within the monitor illusory. To give the programmer complete
control of disk scheduling, processes should be able to enter the disk queue
during disk transfers. Since arrival and service in the disk queueing system
potentially are simultaneous operations they must be handled by different
system components, as shown in Fig. 6.

If the disk fails persistently during input/output this should be reported
on an operator’s console. Figure 6 shows two instances of a class type, called
a virtual console. They give the virtual disks the illusion that they have their
own private consoles.

The virtual consoles get exclusive access to a single, real console by calling
a console resource monitor (Fig. 7). Notice that we now have a standard
technique for dealing with virtual devices.

Figure 7 Decomposition of virtual consoles.

If we put all these system components together, we get a complete picture
of a simple spooling system (Fig. 8). Classes, monitors, and processes are
marked C, M , and P .

8 PER BRINCH HANSEN

Figure 8 Hierarchical system structure.

E Scope Rules

Some years ago I was part of a team that built a multiprogramming system
in which processes can appear and disappear dynamically (Brinch Hansen
1970). In practice, this system was used mostly to set up a fixed config-
uration of processes. Dynamic process deletion will certainly complicate
the semantics and implementation of a programming language considerably.
And since it appears to be unnecessary for a large class of real-time applica-
tions, it seems wise to exclude it altogether. So an operating system written
in Concurrent Pascal will consist of a fixed number of processes, monitors,
and classes. These components and their data structures will exist forever
after system initialization. An operating system can, however, be extended
by recompilation. It remains to be seen whether this restriction will sim-
plify or complicate operating system design. But the poor quality of most
existing operating systems clearly demonstrates an urgent need for simpler
approaches.

In existing programming languages the data structures of processes, mon-
itors, and classes would be called “global data.” This term would be mis-

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 9

leading in Concurrent Pascal where each data structure can be accessed by
a single component only. It seems more appropriate to call them permanent
data structures.

I have argued elsewhere that the most dangerous aspect of concurrent
programming is the possibility of time-dependent programming errors that
are impossible to locate by testing (“lurking bugs”) (Brinch Hansen 1972,
1973, 1974b). If we are going to depend on real-time programming systems
in our daily lives, we must be able to find such obscure errors before the
systems are put into operation.

Fortunately, a compiler can detect many of these errors if processes and
monitors are represented by a structured notation in a high-level program-
ming language. In addition, we must exclude low-level machine features
(registers, addresses, and interrupts) from the language and let a virtual
machine control them. If we want real-time systems to be highly reliable, we
must stop programming them in assembly language. (The use of hardware
protection mechanisms is merely an expensive, inadequate way of making
arbitrary machine language programs behave almost as predictably as com-
piled programs.)

A Concurrent Pascal compiler will check that the private data of a process
only are accessed by that process. It will also check that the data structure
of a class or monitor only is accessed by its procedures.

Figure 8 shows that access rights within an operating system normally
are not tree structured. Instead they form a directed graph. This partly
explains why the traditional scope rules of block-structured languages are
inconvenient for concurrent programming (and for sequential programming
as well). In Concurrent Pascal one can state the access rights of components
in the program text and have them checked by a compiler.

Since the execution of a monitor procedure will delay the execution of
further calls of the same monitor, we must prevent a monitor from calling
itself recursively. Otherwise, processes can become deadlocked. So the com-
piler will check that the access rights of system components are hierarchically
ordered (or, if you like, that there are no cycles in the access graph).

The hierarchical ordering of system components has vital consequences
for system design and testing (Brinch Hansen 1974a).

A hierarchical operating system will be tested component by component,
bottom up (but could, of course, be conceived top down or by iteration).
When an incomplete operating system has been shown to work correctly (by
proof or testing), a compiler can ensure that this part of the system will con-

10 PER BRINCH HANSEN

tinue to work correctly when new untested program components are added
on top of it. Programming errors within new components cannot cause old
components to fail because old components do not call new components, and
new components only call old components through well-defined procedures
that have already been tested.

(Strictly speaking, a compiler can only check that single monitor calls
are made correctly; it cannot check sequences of monitor calls, for example
whether a resource is always reserved before it is released. So one can only
hope for compile time assurance of partial correctness.)

Several other reasons besides program correctness make a hierarchical
structure attractive:

1. A hierarchical operating system can be studied in a step-wise manner
as a sequence of abstract machines simulated by programs (Dijkstra
1971).

2. A partial ordering of process interactions permits one to use math-
ematical induction to prove certain overall properties of the system,
such as the absence of deadlocks (Brinch Hansen 1973).

3. Efficient resource utilization can be achieved by ordering the program
components according to the speed of the physical resources they con-
trol, with the fastest resources being controlled at the bottom of the
system (Dijkstra 1971).

4. A hierarchical system designed according to the previous criteria is
often nearly decomposable from an analytical point of view. This means
that one can develop stochastic models of its dynamic behavior in a
stepwise manner (Simon 1962).

F Final Remarks

It seems most natural to represent a hierarchical system structure, such
as Fig. 8, by a two-dimensional picture. But when we write a concurrent
program we must somehow represent these access rules by linear text. This
limitation of written language tends to obscure the simplicity of the original
structure. That is why I have tried to explain the purpose of Concurrent
Pascal by means of pictures instead of language notation.

The class concept is a restricted form of the class concept of Simula 67
(Dahl 1972). Dijkstra (1971) suggested the idea of monitors. The first

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 11

structured language notation for monitors was proposed in Brinch Hansen
(1973), and illustrated by examples in Hoare (1974). The queue variables
needed by monitors for process scheduling were suggested in Brinch Hansen
(1972) and modified in Hoare (1974).

The main contribution of Concurrent Pascal is to extend monitors with
explicit access rights that can be checked at compile time. Concurrent Pascal
has been implemented at Caltech for the PDP 11/45 computer. Our system
uses sequential Pascal as a job control and user programming language.

II THE USE OF CONCURRENT PASCAL

A Introduction

In Part I the concepts of Concurrent Pascal were explained informally by
means of pictures of a hierarchical spooling system. I will now use the
same example to introduce the language notation of Concurrent Pascal. The
presentation is still informal. I am neither trying to define the language
precisely nor to develop a working system. This will be done in other papers.
I am just trying to show the flavor of the language.

B Processes

We will now program the system components in Fig. 8 one at a time from
top to bottom (but we could just as well do it bottom up).

Although we only need one input process, we may as well define it as a
general system type of which several copies may exist:

type inputprocess =
process(buffer: diskbuffer);
var block: page;
cycle

readcards(block);
buffer.send(block);

end

An input process has access to a buffer of type diskbuffer (to be defined
later). The process has a private variable block of type page. The data type
page is declared elsewhere as an array of characters:

type page = array [1..512] of char

12 PER BRINCH HANSEN

A process type defines a sequential program—in this case, an endless
cycle that inputs a block from a card reader and sends it through the buffer
to another process. We will ignore the details of card reader input.

The send operation on the buffer is called as follows (using the block as
a parameter):

buffer.send(block)

The next component type we will define is a job process:

type jobprocess =
process(input, output: diskbuffer);
var block: page;
cycle

input.receive(block);
update(block);
output.send(block);

end

A job process has access to two disk buffers called input and output. It
receives blocks from one buffer, updates them, and sends them through the
other buffer. The details of updating can be ignored here.

Finally, we need an output process that can receive data from a disk
buffer and output them on a line printer:

type outputprocess =
process(buffer: diskbuffer);
var block: page;
cycle

buffer.receive(block);
printlines(block);

end

The following shows a declaration of the main system components:

var buffer1, buffer2: diskbuffer;
reader: inputprocess;
master: jobprocess;
writer: outputprocess;

There is an input process, called the reader, a job process, called the master,
and an output process, called the writer. Then there are two disk buffers,
buffer1 and buffer2, that connect them.

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 13

Later I will explain how a disk buffer is defined and initialized. If we
assume that the disk buffers already have been initialized, we can initialize
the input process as follows:

init reader(buffer1)

The init statement allocates space for the private variables of the reader
process and starts its execution as a sequential process with access to buffer1.

The access rights of a process to other system components, such as
buffer1, are also called its parameters. A process can only be initialized
once. After initalization, the parameters and private variables of a process
exist forever. They are called permanent variables.

The init statement can be used to start concurrent execution of several
processes and define their access rights. As an example, the statement

init reader(buffer1), master(buffer1, buffer2), writer(buffer2)

starts concurrent execution of the reader process (with access to buffer1), the
master process (with access to both buffers), and the writer process (with
access to buffer2).

A process can only access its own parameters and private variables. The
latter are not accessible to other system components. Compare this with the
more liberal scope rules of block-structured languages in which a program
block can access not only its own parameters and local variables, but also
those declared in outer blocks. In Concurrent Pascal, all variables accessible
to a system component are declared within its type definition. This access
rule and the init statement make it possible for a programmer to state access
rights explicitly and have them checked by a compiler. They also make it
possible to study a system type as a self-contained program unit.

Although the programming examples do not show this, one can also
define constants, data types, and procedures within a process. These objects
can only be used within the process type.

C Monitors

The disk buffer is a monitor type:

14 PER BRINCH HANSEN

type diskbuffer =
monitor(consoleaccess, diskaccess: resource;

base, limit: integer);

var disk: virtualdisk; sender, receiver: queue;
head, tail, length: integer;

procedure entry send(block: page);
begin

if length = limit then delay(sender);
disk.write(base + tail, block);
tail := (tail + 1) mod limit;
length := length + 1;
continue(receiver);

end;

procedure entry receive(var block: page);
begin

if length = 0 then delay(receiver);
disk.read(base + head, block);
head := (head + 1) mod limit;
length := length − 1;
continue(sender);

end;

begin “initial statement”
init disk(consoleaccess, diskaccess);
head := 0; tail := 0; length := 0;

end

A disk buffer has access to two other components, consoleaccess and
diskaccess, of type resource (to be defined later). It also has access to two
integer constants defining the base address and limit of the buffer on the
disk.

The monitor declares a set of shared variables: The disk is declared as
a variable of type virtualdisk. Two variables of type queue are used to
delay the sender and receiver processes until the buffer becomes nonfull and
nonempty. Three integers define the relative addresses of the head and tail
elements of the buffer and its current length.

The monitor defines two monitor procedures, send and receive. They are
marked with the word entry to distinguish them from local procedures used
within the monitor (there are none of these in this example).

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 15

Receive returns a page to the calling process. If the buffer is empty, the
calling process is delayed in the receiver queue until another process sends a
page through the buffer. The receive procedure will then read and remove
a page from the head of the disk buffer by calling a read operation defined
within the virtualdisk type:

disk.read(base + head, block)

Finally, the receive procedure will continue the execution of a sending process
(if the latter is waiting in the sender queue).

Send is similar to receive.
The queueing mechanism will be explained in detail in the next section.
The initial statement of a disk buffer initializes its virtual disk with access

to the console and disk resources. It also sets the buffer length to zero.
(Notice, that a disk buffer does not use its access rights to the console and
disk, but only passes them on to a virtual disk declared within it.)

The following shows a declaration of two system components of type
resource and two integers defining the base and limit of a disk buffer:

var consoleaccess, diskaccess: resource;
base, limit: integer;
buffer: diskbuffer;

If we assume that these variables already have been initialized, we can
initialize a disk buffer as follows:

init buffer(consoleaccess, diskaccess, base, limit)

The init statement allocates storage for the parameters and shared variables
of the disk buffer and executes its initial statement.

A monitor can only be initialized once. After initialization, the parame-
ters and shared variables of a monitor exist forever. They are called perma-
nent variables. The parameters and local variables of a monitor procedure,
however, exist only while it is being executed. They are called temporary
variables.

A monitor procedure can only access its own temporary and permanent
variables. These variables are not accessible to other system components.
Other components can, however, call procedure entries within a monitor.
While a monitor procedure is being executed, it has exclusive access to the

16 PER BRINCH HANSEN

permanent variables of the monitor. If concurrent processes try to call pro-
cedures within the same monitor simultaneously, these procedures will be
executed strictly one at a time.

Only monitors and constants can be permanent parameters of processes
and monitors. This rule ensures that processes only communicate by means
of monitors.

It is possible to define constants, data types, and local procedures within
monitors (and processes). The local procedures of a system type can only
be called within the system type. To prevent deadlock of monitor calls and
ensure that access rights are hierarchical the following rules are enforced:
A procedure must be declared before it can be called; procedure definitions
cannot be nested and cannot call themselves; a system type cannot call its
own procedure entries.

The absence of recursion makes it possible for a compiler to determine the
store requirements of all system components. This and the use of permanent
components make it possible to use fixed store allocation on a computer that
does not support paging.

Since system components are permanent they must be declared as per-
manent variables of other components.

D Queues

A monitor procedure can delay a calling process for any length of time by
executing a delay operation on a queue variable. Only one process at a
time can wait in a queue. When a calling process is delayed by a monitor
procedure it loses its exclusive access to the monitor variables until another
process calls the same monitor and executes a continue operation on the
queue in which the process is waiting.

The continue operation makes the calling process return from its monitor
call. If any process is waiting in the selected queue, it will immediately
resume the execution of the monitor procedure that delayed it. After being
resumed, the process again has exclusive access to the permanent variables
of the monitor.

Other variants of process queues (called “events” and “conditions”) are
proposed in Brinch Hansen (1972) and Hoare (1974). They are multiprocess
queues that use different (but fixed) scheduling rules. We do not yet know
from experience which kind of queue will be the most convenient one for op-
erating system design. A single-process queue is the simplest tool that gives
the programmer complete control of the scheduling of individual processes.

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 17

Later, I will show how multiprocess queues can be built from single-process
queues.

A queue must be declared as a permanent variable within a monitor type.

E Classes

Every disk buffer has its own virtual disk. A virtual disk is defined as a class
type:

type virtualdisk =
class(consoleaccess, diskaccess: resource);

var terminal: virtualconsole; peripheral: disk;

procedure entry read(pageno: integer; var block: page);
var error: boolean;
begin

repeat
diskaccess.request;
peripheral.read(pageno, block, error);
diskaccess.release;
if error then terminal.write(’disk failure’);

until not error;
end;

procedure entry write(pageno: integer; block: page);
begin “similar to read” end;

begin “initial statement”
init terminal(consoleaccess), peripheral;

end

A virtual disk has access to a console resource and a disk resource. Its
permanent variables define a virtual console and a disk. A process can access
its virtual disk by means of read and write procedures. These procedure
entries request and release exclusive access to the real disk before and after
each block transfer. If the real disk fails, the virtual disk calls its virtual
console to report the error.

The initial statement of a virtual disk initializes its virtual console and
the real disk.

Section II-C shows an example of how a virtual disk is declared and
initialized (within a disk buffer).

18 PER BRINCH HANSEN

A class can only be initialized once. After initialization, its parameters
and private variables exist forever. A class procedure can only access its
own temporary and permanent variables. These cannot be accessed by other
components.

A class is a system component that cannot be called simultaneously by
several other components. This is guaranteed by the following rule: A class
must be declared as a permanent variable within a system type; a class
can be passed as a permanent parameter to another class (but not to a
process or monitor). So a chain of nested class calls can only be started by
a single process or monitor. Consequently, it is not necessary to schedule
simultaneous class calls at run time—they cannot occur.

F Input/Output

The real disk is controlled by a class

type disk = class

with two procedure entries

read(pageno, block, error)
write(pageno, block, error)

The class uses a standard procedure

io(block, param, device)

to transfer a block to or from the disk device. The io parameter is a record

var param:
record

operation: iooperation;
result: ioresult;
pageno: integer

end

that defines an input/output operation, its result, and a page number on the
disk. The calling process is delayed until an io operation has been completed.

A virtual console is also defined as a class

type virtualconsole =
class(access: resource);
var terminal: console;

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 19

It can be accessed by read and write operations that are similar to each
other:

procedure entry read(var text: line);
begin

access.request;
terminal.read(text);
access.release;

end

The real console is controlled by a class that is similar to the disk class.

G Multiprocess Scheduling

Access to the console and disk is controlled by two monitors of type re-
source. To simplify the presentation, I will assume that competing processes
are served in first-come, first-served order. (A much better disk scheduling
algorithm is defined in Hoare (1974). It can be programmed in Concurrent
Pascal as well, but involves more details than the present one.)

We will define a multiprocess queue as an array of single-process queues

type multiqueue = array [0..qlength−1] of queue

where qlength is an upper bound on the number of concurrent processes in
the system.

A first-come, first-served scheduler is now straightforward to program:

20 PER BRINCH HANSEN

type resource =
monitor

var free: boolean; q: multiqueue;
head, tail, length: integer;

procedure entry request;
var arrival: integer;
begin

if free then free := false
else

begin
arrival := tail;
tail := (tail + 1) mod qlength;
length := length + 1;
delay(q[arrival]);

end;
end;

procedure entry release;
var departure: integer;
begin

if length = 0 then free := true
else

begin
departure := head;
head := (head + 1) mod qlength;
length := length − 1;
continue(q[departure]);

end;
end;

begin “initial statement”
free := true; length := 0;
head := 0; tail := 0;

end

H Initial Process

Finally, we will put all these components together into a concurrent pro-
gram. A Concurrent Pascal program consists of nested definitions of system
types. The outermost system type is an anonymous process, called the ini-
tial process. An instance of this process is created during system loading. It

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 21

initializes the other system components.
The initial process defines system types and instances of them. It exe-

cutes statements that initializes these system components. In our example,
the initial process can be sketched as follows (ignoring the problem of how
base addresses and limits of disk buffers are defined):

type
resource = monitor ... end;
console = class ... end;
virtualconsole = class(access: resource); ... end;
disk = class ... end;
virtualdisk = class(consoleaccess, diskaccess: resource); ... end;
diskbuffer =

monitor(consoleaccess, diskaccess: resource; base, limit: integer); ...
end;

inputprocess = process(buffer: diskbuffer); ... end;
jobprocess = process(input, output: diskbuffer); ... end;
outputprocess = process(buffer: diskbuffer); ... end;

var
consoleaccess, diskaccess: resource;
buffer1, buffer2: diskbuffer;
reader: inputprocess;
master: jobprocess;
writer: outputprocess;

begin
init consoleaccess, diskaccess,

buffer1(consoleaccess, diskaccess, base1, limit1),
buffer2(consoleaccess, diskaccess, base2, limit2),
reader(buffer1),
master(buffer1, buffer2),
writer(buffer2);

end.

When the execution of a process (such as the initial process) terminates,
its private variables continue to exist. This is necessary because these vari-
ables may have been passed as permanent parameters to other system com-
ponents.

Acknowledgements

It is a pleasure to acknowledge the immense value of a continuous exchange
of ideas with C.A.R. Hoare on structured multiprogramming. I also thank

22 PER BRINCH HANSEN

my students L. Medina and R. Varela for their helpful comments on this
paper.

References

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system. Communications of
the ACM 13, 4 (April), 238–250.

Brinch Hansen, P. 1972. Structured multiprogramming. Communications of the ACM 15,
7 (July), 574–578.

Brinch Hansen, P. 1973. Operating System Principles. Prentice-Hall, Englewood Cliffs,
NJ, (July).

Brinch Hansen, P. 1974a. A programming methodology for operating system design. Pro-
ceedings of the IFIP Congress 74, Stockholm, Sweden, (August). North-Holland,
Amsterdam, The Netherlands, 394–397.

Brinch Hansen, P. 1974b. Concurrent programming concepts. ACM Computing Surveys
5, 4 (December), 223–245.

Dahl, O.-J., and Hoare, C.A.R. 1972. Hierarchical program structures. In Structured
Programming, O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Eds. Academic Press,
New York.

Dijkstra, E.W. 1971. Hierarchical ordering of sequential processes. fotnotesizeActa Infor-
matica 1, 2, 115–138.

Hoare, C.A.R. 1974. Monitors: An operating system structuring concept. Communica-
tions of the ACM 17, 10 (October), 549–557.

Simon, H.A. 1962. The architecture of complexity. Proceedings of the American Philo-
sophical Society 106, 6, 468–482.

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 1, 35–63.

