

9

BACK IN AMERICA 1987–2004

Distinguished professor at Syracuse – Birthday celebration in the former Danish

West Indies – Becoming an American citizen – Parallel scientific computing – A

personal supercomputer – Parallel cryptography – History of programming lan-

guages – The Computer Pioneer Award – Final words.

After the first year in Denmark, Milena and I knew that our family now
belonged in the United States. Our children did not feel at home in Den-
mark. In May 1986, our daughter Mette announced that she was going
back, no matter what! From then on, things happened quickly. The Ameri-
can Embassy in Copenhagen informed me that our residence permits (known
as “green cards”) had expired. We would only be allowed to return if we
obtained new immigrant visas by the end of the year and returned to the
United States no later than April 1987.

I immediately called Syracuse University (SU), in Central New York,
where I knew the computer scientist John Reynolds, and asked if it would
be possible to appoint me as full professor within two months—a process
that normally takes six months. In September, Milena and I flew to Syracuse
where I gave a talk. While Milena looked at houses, I met with the academic
vice chancellor, Gershon Vincow, and the faculty of the School of Computer
and Information Science. Two weeks later, the interim dean, Ernie Sibert,
offered me an appointment as distinguished professor, an honorary title that
had only been bestowed on two other professors at the university.

By February 1987, all four of us had returned to America. Milena and I
moved into a white colonial on 5070 Pine Valley Drive in the small village
of Fayetteville, a short drive from the university. In our backyard we have
a large swimming pool (27 by 60 feet). The house lies in a beautiful valley
surrounded by tree-topped hills. The unfenced lawns with trees make the
neighborhood look like a park.

Copyright c© 2004 by Per Brinch Hansen.

163

164 A Programmer’s Story

Syracuse is a city of about 160,000 people in the center of New York
state, a five-hour drive from New York City. Until the 1920s the 363-mile
long Erie Canal, extending from the Hudson river at Albany to Lake Erie at
Buffalo, passed through downtown Syracuse. The climate is similar to the
Danish one with tons of snow during the winter and plenty of rain during
the spring and summer. The story goes that a Syracuse professor missed the
summer one year—it fell on a Tuesday, and he was out of town.

After moving to the East Coast, we spent many vacations in the Car-
ibbean. In November 1988, Milena and I celebrated our 50th birthdays
in the U.S. Virgin Islands. We stayed a week at the Morningstar Beach
Club on St Thomas. From 1666 to 1917, these islands were known as the
Danish West Indies until the United States bought them from Denmark for
25 million dollars. Since the US is not supposed to have colonies, the islands
now have the status of “unincorporated territory.” In Charlotte Amalie
you can still see Jørgen Iversen’s Red Fort (1680), built by the first Danish
settlers near King’s Wharf, the Governor’s House (1747) on Kongens Gade,
and the Lutheran Church (1820) on Nørregade. Every day, cruise ships
arrive at the West Indian Company Dock, and the tourists all head for the
duty-free shops on Dronningens Gade.

One day we took the ferry from Redhook Bay to Cruz Bay, the only town
on St. John, and hired a tour guide to drive us along Kongevejen through
the tropical forest to Coral Bay, where King June and his last followers killed
themselves after killing 76 whites and destroying 48 plantations during the
slave rebellion in 1733. At Annaberg Plantation, the ruins of a Danish sugar
mill, built in the 1780s, have been partially restored. On the north shore are
some of the most beautiful beaches in the Caribbean.

We flew by seaplane to St. Croix. On the way from Christiansted to Fred-
eriksted we walked through St. George Village, a tropical garden, landscaped
around the ruins of a plantation, built by Governor General Peter Oxhold
around 1815. The Whim Greathouse is another plantation, from 1803, com-
pletely restored with mahogany furniture and crystal chandeliers. Near the
pier in Frederiksted lies Fort Frederik, completed in 1776. Here Governor von
Scholten liberated the slaves on July 3, 1848. In Christiansted, we saw the
Governor’s Residence, Fort Christian, and the Danish Scale House. These
yellow-and-white buildings reminded me of the old houses in Frederiksberg,
Denmark.

Four years later, on May 19, 1992, I took the oath of citizenship of the
United States at the Onondaga County Courthouse in Syracuse.

9. Back in America 1987–2004 165

? ? ?

In the 1980s, the early programming problems of operating systems surfaced
again in parallel scientific computing (also known as computational science):
there was a serious need for machine-independent programming languages
and algorithms. To understand this challenge, I spent five years writing
portable parallel programs for typical programs in science and engineering.

As a first step, my student Anand Rangachari and I moved the parallel
programming language Joyce from an IBM PC to an Encore Multimax 320, a
multiprocessor with 18 processors and 128 Mbytes of shared memory (Brinch
Hansen 1989). This machine was designed a few years before I joined SU.
It was owned and operated by the Northeast Parallel Architectures Center
(NPAC) at Syracuse University.

The only valid reason for using parallel programming in scientific com-
puting is to tackle problems that require more computing power than you
can get from a single processor. From that point of view, our experiments
with the Multimax were somewhat academic. The Joyce compiler generated
portable code which was interpreted by a kernel of 2,300 lines written in as-
sembly language. In theory, the multiprocessor had the potential of making
programs eighteen times faster. However, most of the potential speedup was
wasted by the portable code, which was an order of magnitude slower than
machine code.

Nevertheless, I learned a great deal from this first experiment about the
problems of implementing a parallel programming language on a multipro-
cessor. The main decision issues were: (1) load balancing—the number of
process scheduling queues required to balance the computational load evenly
among the processors, (2) synchronous communication—the implementation
details of processes exchanging messages through unbuffered channels, and
(3) mutual exclusion—the number of software locks needed to prevent mul-
tiple processors from accessing the same queue or channel at the same time
(without slowing the processors unnecessarily down). We settled these issues
by performance measurements (Brinch Hansen 1988).

The Achilles heel of the multiprocessor concept was the empirical obser-
vation by Intel cofounder Gordon Moore (1979) that the density of integrated
circuits had doubled every year since 1958. Moore’s law predicted that by
1992 you would be able to buy 1,000 processors for the same price as 10 pro-
cessors in 1985. And, since nobody believed that a shared memory machine
could support that many processors efficiently, multiprocessor architectures
appeared to have no future. The catch phrase at the time was that “multi-

166 A Programmer’s Story

processors do not scale up.”
One way out of this dilemma was to give up the simple idea of a multi-

processor with shared memory in favor of a multicomputer with distributed
memory. Such a parallel architecture consists of a bunch of microcomputers,
each with its own local memory. The processor nodes communicate by send-
ing messages to their nearest neighbors only through communication links.
Each link is a “point-to-point” connection between exactly two nodes. The
removal of the bottleneck created by shared memory greatly increased the
performance of parallel computers. However, the occasional need to route
some messages though a sequence of intermediate nodes made multicomput-
ers far more difficult to program than multiprocessors. So simplicity was
sacrificed for performance—what else is new in computing? This compro-
mise has, I believe, doomed computational science to remain an extremely
difficult form of programming for experts only.

While we were experimenting with multiprocessing, the possibility of
multicomputing had already been explored by a Caltech group headed by
physicist Geoffrey Fox and computer scientist Charles Seitz. Together, they
pioneered a new parallel architecture known as the hypercube (Seitz 1985).

Let me explain what a hypercube is: In each corner of a cube, you place
a microcomputer with its own memory. Then you turn each edge of the
cube into a communication link that connects two processor nodes. This
gives you a cube architecture in which each of the eight nodes can exchange
messages with its three nearest neighbors only.

If you link each node in a cube with the corresponding node in another
cube, you obtain a hypercube architecture with sixteen processors. And, if
you link two of these hypercubes in the same manner, you get a hypercube
with 32 nodes, and so on. The key insight is that whenever you double the
number of processors, the increase in the number of communication links is
only proportional to the previous number of processors. So, as microproces-
sors become cheaper, a hypercube scales nicely without letting the number
of links grow out of bounds.

By October 1983 Chuck Seitz had constructed a 64-processor hypercube
at Caltech. The message communication was handled by a slow software
kernel, known somewhat grandiosely as the Crystaline Operating System,
“although,” as Geoffrey Fox pointed out, “it was never really an operating
system.” This parallel machine was no academic toy. From the beginning,
Fox (1988) used the Cosmic Cube (as it was called) to solve substantial
computational problems in science and engineering.

9. Back in America 1987–2004 167

In 1985, before leaving Denmark, I was instrumental in obtaining fund-
ing for DIKU’s first parallel computer, an Intel iPSC hypercube with 32
microcomputers. At the time, this machine was only the third of its kind
acquired by European research institutions.

Although I recognized the invention of inexpensive supercomputers as a
major breakthrough, I was never enamored of hypercube architectures. I felt
that hypercube algorithms would be dominated by the problem of mapping
problem-oriented process configurations onto a hypercube. That prediction
turned out to be true, I think.

Parallel programs were often written in traditional programming lan-
guages, such as Fortran or C, extended with subroutines for parallelism.
To my taste these programs were difficult to read and lacked the beauty
that scientists expect of their own research. I was convinced that the most
important task in computational science was to make the programming of
parallel computers easier. This was, in my opinion, even more important
than increasing computational power, and I felt that we should be prepared
to sacrifice some performance to solve the programming problem.

At a Supercomputing Conference in Boston in May 1988, I looked (in
vain) for the ideal parallel architecture of the future. Such a machine should,
in my opinion, (1) use general-purpose microcomputers, (2) be expandable
from tens to thousands of processors, (3) support different processor con-
figurations (pipelines, trees, matrices, and so on) in a transparent manner,
(4) handle process creation, communication, and termination by machine
instructions that are only an order of magnitude slower than memory ref-
erences, and (5) automatically balance the computational load among and
route messages between the processors.

The first requirement ruled out NPAC’s Connection Machine, in which
64,000 synchronous processors executed identical processes in lock step (Hillis
1985). The second one excluded multiprocessors. The third condition made
hypercubes unsuitable. The only architecture that satisfied the first four
requirements was a multicomputer known as the Meiko Computing Surface.
No parallel computer satisfied the fifth condition.

In the summer of 1988, I traveled to Bristol, England, to visit Inmos and
Meiko. At the Inmos research center, I met David May, the architect of the
T800 transputer chip, a 32 bit VLSI microprocessor with 64 bit floating-
point arithmetic. Four on-chip links enabled the transputer to exchange
messages with four other transputers.

All programming of the transputer was done in the parallel programming

168 A Programmer’s Story

language occam, which David May had based on Hoare’s Communicating Se-
quential Processes (CSP). This language made it possible to define parallel
processes that communicate by messages. Direct communication between
two connected transputers was very fast (a few microseconds). Process cre-
ation and termination were also hardware operation. The transputer could
switch from one occam process to another in 1 microsecond. There was no
other processor like it in the world!

A group of Inmos employees had formed a small company, named Meiko,
to build a multicomputer with transputer nodes. On my last day in Bristol,
July 8, 1988, I had dinner with the chairman of Meiko, Miles Chesney. My
appointment letter at SU specified that the university “will further purchase
computer equipment as needed for your work in an amount not greater than
$100,000.” For that amount of money, Miles was prepared to sell me a Com-
puting Surface with 20 transputers and 40 Mbytes of distributed memory. I
told him that 20 transputers would not add anything new to my research in
computational science, since I had already used a multiprocessor at NPAC

with 18 processors. I would need at least 40 transputers to make multicom-
puter programming interesting. On the other hand, I had no problem with
reducing the memory of each transputer to 1 Mbyte only. I also offered to
make a Computing Surface at SU available to Meiko for demonstrations to
potential American customers.

Being a risk taker, I asked Miles Chesney to leave a message at my
hotel the next morning informing me if he was be willing to offer me a 40-
node system for my money. If that was unacceptable, I would fly home
empty-handed and look for another machine (although I could not think of
any worthy alternative). When I woke up the next morning, there was a
message from Miles accepting my request.

Back in Syracuse the university hosted an inaugural symposium in March
1989 to celebrate the opening of its new Center for Science and Technology.
The themes of the symposium were parallel computers, neural networks, and
intelligent systems. It was organized by Alan Robinson and me from Syra-
cuse University together with Michael Arbib from the University of Southern
California. On that occasion, the three of us were awarded the Chancellor’s
Medal for Outstanding Achievement. The nine invited speakers included
Ralph Gomery from IBM, who reviewed the evolution of computing, David
May from Inmos, who discussed the possibility of designing general-purpose
parallel computers, and Geoffrey Fox from Caltech, who described major
applications of parallel supercomputers. As the first speaker, I described

9. Back in America 1987–2004 169

“The nature of parallel programming” without going into technical details
(Brinch Hansen 1990).

In July, a Computing Surface was installed at SU right next to my office.
It had 48 transputers, each with 1 Mbyte of memory. The transputers were
linked by a switching network that could be reconfigured before program
execution. After two months of initial problems with hardware, software,
and documentation, I was able to run a trivial occam program that sorted
65,536 integers on 31 transputers. I was now ready to experiment with
parallel scientific programs (Brinch Hansen 1995).

Although I knew nothing about numerical analysis, I thought that par-
allel solution of linear equations would be a useful programming exercise for
a beginner. I chose the problem for the following reason: When a pipeline
with p processors solves n linear equations, the parallel computer time for
the numerical computation is of the order of n3/p. A computer scientist
would say that the numeral computation requires O(n3/p) time, while the
input/output of the equations takes O(n2) time. If the problem size n is large
compared to the machine size p, the relative overhead of processor communi-
cation is negligible. The high ratio of computation to communication makes
the problem ideal for efficient parallel computing.

A colleague recommended Householder reduction as an attractive method
for solving linear equations on a parallel computer. The main strength of
the method is its unconditional numerical stability (Householder 1958). The
more familiar Gaussian elimination is faster but requires a dynamic rear-
rangement of the equations, known as pivoting, which complicates a parallel
program somewhat.

Unfortunately, I could not find a well-written, understandable explana-
tion of Householder’s method. Most textbooks on numerical analysis pro-
duced the so-called “Householder matrix” like a rabbit from a magician’s
top hat without explaining why it is defined the way it is. At that point,
I stopped writing parallel programs and concentrated on sequential House-
holder reduction. After several frustrating weeks I was able to write a tutorial
on Householder reduction. Two pages were sufficient to explain the purpose
and derive the equation for Householder’s matrix. I then explained the com-
putational rules for Householder reduction and illustrated the method by a
numerical example and a Pascal program.

I was beginning to think that others might have the same difficulty un-
derstanding this fundamental computation. So I submitted the tutorial to a
journal that published it (Brinch Hansen 1992). One reviewer wrote that he

170 A Programmer’s Story

“found the presentation far superior to the several descriptions I have seen
in numerical analysis books.” I quote this review not just because I like it,
but because it was my first lesson about computational science: In order
to understand a computation, I must first explain it to myself by writing a
tutorial that includes a complete sequential program.

After studying parallel programming for 25 years it was not difficult for
me to program a Householder pipeline in occam for the Computing Surface.
To achieve approximate load-balancing, the pipeline was folded three times
across an array of transputers, so that each transputer executed four pipeline
processes. The folded pipeline solved 1000 equations on 45 transputers in
87 sec. The Computing Surface made the computation 32 times faster than
it would have been on a single transputer. I was able to derive an elegant
formula that predicted the parallel run time accurately as a function of the
number of equations solved, the number of transputers used, and the number
of times the pipeline was folded.

My next exercise was to compute the trajectories of n particles that inter-
act by gravitation only. I considered the n-body problem to be particularly
challenging on a parallel computer since it involves interactions among all
the particles in each computational step. This means that every processor
must communicate, directly or indirectly, with every other processor. My
description of an n-body pipeline included a brief summary of Newton’s laws
of gravitation and a Pascal program for sequential n-body simulation.

It was a complete surprise for me to discover that the sequential Pascal
programs for Householder reduction and n-body simulation had practically
identical control structures. I suddenly understood that both of them are
instances of the same programming paradigm: Each algorithm solves an all-
pairs problem—a computation on every possible subset consisting of two ele-
ments chosen from a set of n elements. I did not find this insight mentioned
in any textbook on numerical analysis or computational physics.

I now discarded both parallel algorithms and started all over. This time
I programmed a general pipeline algorithm for all-pairs computations. This
program was a parallel implementation of the common control structure. It
provided a mechanism for performing the same operation on every pair of
elements chosen from an array of n elements without specifying what the
elements represent and how they “interact” pairwise.

I then turned the all-pairs pipeline into a Householder pipeline by using
a few data types and procedures from the sequential Householder program.
This transformation of the parallel program was completely mechanical and

9. Back in America 1987–2004 171

required no understanding of Householder’s method. A similar transforma-
tion turned the all-pairs pipeline into an n-body pipeline.

On August 24, 1984, I made the following entry in the computer log
book: “At midnight, I used 31 transputers to simulate 10,000 gravitational
bodies in 47 sec/step!”

I had now found my research theme: I would explore the use of pro-
gramming paradigms in parallel programming. In programming, the word
“paradigm” is often used with a general (but vague) connotation, such as
“the high level methodologies that we recognize as common to many of our
effective algorithms.” I used the term in a more narrow (but precise) sense:
A programming paradigm is a class of algorithms that solve different prob-
lems but have the same control structure.

This was the beginning of my studies in computational science from the
point of view of a computer scientist. I followed the advice of Geoffrey
Fox to “use real hardware to solve real problems with real software.” But,
where the Caltech group concentrated on scientific applications for their own
sake, I used them as realistic case studies to illustrate the use of structured
programming in computational science.

In addition to all-pairs computations, I developed paradigms for tu-
ple multiplication, divide-and-conquer, Monte Carlo trials and cellular au-
tomata. For each paradigm I wrote a general program that defined the com-
mon control structure. Such a program is sometimes called an algorithmic
skeleton, a generic program, or a program template.

From a general parallel program I derived two or more model programs
that illustrated the use of the paradigm to solve specific problems. A general
program includes a few unspecified data types and procedures that vary
from one application to another. A model program is obtained by replacing
these data types and procedures with the corresponding data types and
procedures from a sequential program that solves a specific problem. The
essence of the programming methodology is that a model program has a
parallel component that implements a paradigm and a sequential component
for a specific application. The clear separation of the issues of parallelism
and the details of application is essential for writing model programs that
are easy to understand.

My own model programs solved typical problems in science and engi-
neering: linear equations, n-body simulation, matrix multiplication, short-
est paths in graphs, sorting, fast Fourier transforms, simulated annealing,
primality testing, Laplace’s equation, and forest fire simulation.

172 A Programmer’s Story

I ran these parallel programs on a Computing Surface configured as a
pipeline, a tree, a cube, or a matrix of transputers.

? ? ?

I now turned my attention to the RSA cryptosystem,where large primes play
an essential role in the encoding and decoding of messages (Rivest 1978). A
user chooses two large random primes. These primes are used to compute
a public encoding key and a secret decoding key. Both keys include the
product of the primes. The user can receive encoded messages from anyone
who knows the public key. But only the user (who knows the secret key)
can decode the messages.

The crucial assumption is that it is feasible to generate large primes using
a computer, but there is no known algorithm for finding the prime factors of
large composite numbers in reasonable amounts of computer time. If that
ever becomes possible, you will be able to break the code by factoring the
public product of the secret primes.

At the time, the RSA cryptosystem was believed to be secure for keys of
150 decimal digits. The simplest way to find a 150-digit prime is to generate
150 random digits at a time, until you discover a prime. The probability that
a 150-digit number is a prime is about 1 in 150 ln10. You must therefore
expect to test about 350 numbers for primality before you find a prime.
(Half of these tests can be skipped if you only examine odd numbers.)

So, the generation of primes is reduced to the problem of testing the
primality of random numbers. Unfortunately, it is not feasible to determine
whether or not a 150-digit integer is a prime by examining all the 1075

possible divisors (a truly astronomic number). The Miller–Rabin algorithm
tests the same integer many times using different random numbers (Rabin
1980). If any one of the trials shows that a number is composite, then this
is the correct answer. However, if all trials fail to prove that a number
is composite, then it is almost certainly prime. The probability that the
algorithm gives the wrong answer after, say, 40 trials is less than 10−24.

This is far less than the probability of a computer error. A computer
that performs one million operations per second, with the same probability
of failure per operation, will fail once in thirty billion years. That is roughly
the age of the universe since the Big Bang.

The advantage of using a multicomputer for primality testing is obvious.
When the same random number has been broadcast to every processor, the
trials can be performed simultaneously without any communication between

9. Back in America 1987–2004 173

the processors. Consequently, the processor efficiency is very close to 1 for
non-trivial problems.

I programmed the Miller–Rabin algorithm in occam and used the Com-
puting Surface to perform 40 tests of a 160-digit random number simultane-
ously on 40 transputers.

For the primality testing, I had to program multiple-length arithmetic.
Most computers limit integer arithmetic to 32–64 bits, corresponding to
8–17 decimal digits. A larger integer must be represented by an array of
digits, each occupying a single machine word. The arithmetic operations on
multiple-length integers are serial operations that imitate paper-and-pencil
operations.

I thought it would be easy to find a textbook that includes a simple algo-
rithm for multiple-length division with a complete explanation. Much to my
surprise, I was unable to find such a book. I ended up spending weeks on this
“well-known” problem and finally wrote a tutorial that includes a complete
Pascal algorithm (Brinch Hansen 1994). I mention this unexpected difficulty
to illustrate what happens when a standard algorithm is not published as a
well-structured program in an executable language.

Inspired by my use of a programming paradigm for primality testing,
my student, Jonathan Greenfield, explored the development of distributed
generic algorithms for RSA cryptography. He defined abstract algorithms
in a variant of the parallel programming language Joyce. These algorithms
were rewritten in the implementation language occam and tested on the
Meiko Computing Surface. His PhD thesis was an appealing combination
of the theory and practice of parallel computing. From the point of view
of a computer scientist, it was an amazing feat to recognize five different
aspects of the same application as instances of two simple paradigms for
parallel computing. In addition, Jonathan’s thesis was well-written and
easy to understand. It was published as a volume in the Springer-Verlag
Lecture Notes in Computer Science (Greenfield 1993)—a rare honor for a
PhD student.

It had been fun to enter an interdisciplinary field, refresh my memory
of mathematics and physics I learned as an undergraduate, study numerical
analysis, and teach myself the art of multicomputer programming.

My one serious criticism of computational science was that it largely
ignored the issue of precision and clarity in parallel programming that is
essential for the education of future scientists. A written explanation is not
an algorithm. A graph of computational steps is not an algorithm. A picture

174 A Programmer’s Story

of a systolic array is not an algorithm. A mathematical formula is not an
algorithm. A program outline written in non-executable “pseudocode” is
not an algorithm. And, a complicated “code” that is difficult to understand
will not do either.

Subtle algorithms must be presented in their entirety as well-structured
programs written in readable, executable programming languages. This was
my main reason for publishing model programs for computational science.
I felt that the study of programming paradigms provides an architectural
vision of parallel scientific computing.

My fifth book, Studies in Computational Science: Parallel Programming
Paradigms was published in 1995. I wish I could say that this work influenced
the way people program parallel computers, but—with the possible exception
of my students—I don’t think it did.

A graduate student, Anil Menon (1995), left this impression of my course
on multicomputer programming:

Over the last ten years, I’ve studied under many teachers and
taken many courses. Dr. Brinch Hansen’s course was unlike no
other. He was interested in solving problems in parallel. I had
no idea, even after five earlier courses, that it was so difficult. He
took seven to eight different problems and showed by means of a
series of beautiful and elegant programs, how one would go about
writing parallel programs. His insights were often remarkable, for
example, his deep idea that process structures were the correct
way to reason and work with parallel processing, just as data
structures are the key to sequential processing. Or the time he
told us about the importance of constraints in the design process.

Perhaps the conviction always evident in his presentation
came from the fact that these programs were his own, and not
copied off some standard book. Even now it mystifies me to some
extent how he could reduce a really complex program to a series
of subprograms each no more than a dozen lines, the whole piece
elegantly connected.

The course was especially enjoyable because Dr. Brinch Han-
sen is a character. He’s passionate, outspoken, opinionated and
intolerant of anything less than perfection. What a relief it was
to find a professor who wasn’t afraid to voice what he really felt
about issues in computer science. None of that cowardly “on
the one hand. . .on the other hand” balance with which the meek

9. Back in America 1987–2004 175

evade making choices. He was as opinionated about the state of
NPAC, as he was about his language SuperPascal. I could go on
and on: His rare sense of history, the remarkable perceptiveness
with which he’d transform one problem into another etc. But
perhaps the great physicist, Feynman put it best (though in a
different context): “To do physics,” he said, “you gotta have
style”. I believe it’s true of computer science as well. Dr. Brinch
Hansen does parallel programming in style, and for one great
semester it was my privilege to learn by example.

? ? ?

I have always felt that professionals should study the history of their own
field for the enjoyment and insight it gives. In 1978 and 1993, I attended two
ACM conferences, which became milestones in the History of Programming
Languages. The first conference (HOPL-I) covered the major languages
of the 1960s (Wexelblat 1981). The program committee selected thirteen
languages that had been in use for at least ten years, had significant influence,
and were still in use. Each paper was presented by a pioneer who had played
a key role in the development of the language. The following presentations
were of special interest to me:

APL (Ken Iverson)
Algol (Alan Perlis and Peter Naur)
Basic (Tom Kurtz)
Cobol (Jean Sammet)
Fortran (John Backus)
LISP (John McCarthy)
PL/I (George Radin)
Simula (Ole-Johan Dahl and Kristen Nygaard)

On this occasion, Ole-Johan Dahl, Peter Naur, Alan Perlis and his wife
Sydelle visited us in Altadena.

The second conference (HOPL-II) focussed on programming languages
of the 1970s which “had significant influence on the theory or practice of
computing” (Bergin 1996). This time the languages and speakers included:

Ada (Bill Whitaker)
C (Dennis Ritchie)
C++ (Bjarne Stroustrup)

176 A Programmer’s Story

CLU (Barbara Liskov)
Concurrent Pascal (Per Brinch Hansen)
Pascal (Niklaus Wirth)
Prolog (Alain Colmerauer and Philippe Roussel)
Smalltalk (Alan Kay)

The organizers set high technical and editorial standards. Historian Mike
Mahony reviewed all the papers. Each author also worked with a technical
expert who reviewed the various drafts. My own paper on “Monitors and
Concurrent Pascal: A personal history” went through six drafts over a period
of fifteen months.

In a “no holds barred” panel discussion, the following exchange took
place (Bergin 1997):

Per Brinch Hansen: I’m going to sit down, since you have
already answered my question which is, “Is there a future for
insecure, low-level languages like C, and huge, incomprehensible
languages like Ada?” But, I wish to make a less loaded comment,
which is that there may be differences of style between program-
ming languages, but there ought to be some common idea of the
minimal requirements, so we can all agree that we are looking at
a programming language. And I think that’s part of the problem.

If you look at physics, for example, I would say that a the-
ory ought to satisfy at least three requirements and so should a
programming language. First, a notation, which is what a pro-
gramming language is, is supposed to enable you to express a
theory of computation, not necessarily a mathematical theory
(although that would be ideal), but theories can also be helpful
if they are informal, as in geology. In any programming lan-
guage, you will recognize a set of abstractions that are machine-
independent, but at a certain point those concepts break down.
If you have overflowing arithmetic, your results become meaning-
less; and that goes for every one of them, that they only apply
under certain conditions, which should be stated in the language
manual. The requirement that a language should be secure is the
simple requirement that a compiler and a computer should tell
you, when the programming concepts break down. If we can’t
agree on that being a minimum requirement for all programming
languages, then I think we are just using the same word for con-

9. Back in America 1987–2004 177

venience to denote things that have very little in common. By
that definition, C is not a programming language.

The second requirement is that a theory in physics must be
simple. If a Niels Bohr can’t comprehend it, or a [Richard] Feyn-
man, then a committee of physicists won’t be able to master it
either. That boils down to the simple requirement that language
manuals must be short, concise, and so must their compilers. By
that definition, Ada is not a programming language. [laughter]

The third requirement was illustrated by the German physi-
cist, [Wolfgang] Pauli, who once said to Bohr, ”I have a crazy
theory, you are going to like it!” To which Bohr responded: “It
is not crazy enough!”

When I look at this conference, I do see a certain sameness
in what we have done. Apart from these obvious violations of
what programming languages should be, there is precious little
difference between Fortran and Concurrent Pascal. They are
mostly the same thing: x becomes x+1. To me, it is not terribly
interesting which languages will win, because that appears to be
a study for sociologists, rather than computer scientists. What I
like are the crazy paradigms we have seen, and there are two of
those: Prolog and Smalltalk.

So I leave you with this question: Can we agree that a pro-
gramming language must represent a theory of computation, that
compilers and computers must check if the assumptions behind
the abstractions apply when we run our programs, that the man-
uals must be short, and that the ideas must be crazy?

Dennis Ritchie: Could you please repeat the question? [laugh-
ter] I know what the question is. Is there a place for, in particu-
lar, C? Well, my guess is that there will not be any more signifi-
cant low level languages—in other words, the niche is occupied—
maybe that’s just hoping. I guess the other response is that you
have even stricter criteria than Jean [Sammet], whose criteria for
considering what a language is, I think, are already too strict.

Niklaus Wirth: Is there any agreement among the four of
you on the minimum requirements for us to call something a
programming language other than the fact that it can change
bits in a computer?

178 A Programmer’s Story

Dennis Ritchie: Are you kidding? [laughter] No, of course,
there is no agreement. That is the point. [laughter]

Bill Whitaker: In particular, we didn’t agree with YOU!
[laughter]

Alan Kay: I don’t know, I think he hit it right on the head—I
like the crazy part.

To understand what was going on here, I will quote what the biologist
Francis Crick (1988) wrote about another “soft” science:

[The work] tended to fall into a number of somewhat separate
schools, each of which was rather reluctant to quote the work of
the others. This is usually characteristic of a subject that is not
producing any definite conclusions. (Philosophy and theology
might be good examples.)

? ? ?

On May 8, 2002, I was awarded the IEEE Computer Pioneer medal “For
pioneering development in operating systems and concurrent programming
exemplified by work on the RC 4000 multiprogramming system, monitors,
and Concurrent Pascal.” In my acceptance speech (borrowing liberally from
my own writing), I said (Brinch Hansen 2002):

It is an unexpected pleasure for me to receive the first major
award for the work I did from 1965 to 1975. I must confess, I
was beginning to feel like Duke Ellington, who once said, “Fate
doesn’t want me to be famous too young.” So, I thank the IEEE

Computer Society for honoring me and making this speech neces-
sary. And, I thank my friend, Jonathan Greenfield, for his tireless
efforts in nominating me for the Computer Pioneer Award.

Now, you should not for a minute imagine that I knew what I
was doing as a young programmer. On two occasions, the work,
you are honoring me for, almost came to nothing.

In 1963, I graduated from the Technical University of Den-
mark without any programming experience (it was not yet being
taught). There were (as far as I remember) no textbooks avail-
able on programming languages, compilers or operating systems.

9. Back in America 1987–2004 179

With this background, I began my career as a systems pro-
grammer with Regnecentralen in Copenhagen. At age 29, I be-
came head of software development for the RC 4000 computer.
The senior manager of Regnecentralen, Niels Ivar Bech, gave
me only one directive: “I need something new in multiprogram-
ming!”

After a while, Jørn Jensen, Søren Lauesen, and I realized
that we had no original ideas about multiprogramming. So, I
told Bech: “We aren’t getting anywhere. Is it all right with
you if Jørn, Søren, and I spend a weekend at a country inn?” I
wanted to give us one last chance. We had already agreed that
we would either return with new ideas or give up and copy the
best ideas we could find elsewhere. Bech immediately agreed (he
had done the same thing when Regnecentralen’s Cobol compiler
project had come to a standstill).

It worked! The thought of returning to Regnecentralen with-
out new ideas was simply unacceptable to us. Out of that week-
end came the first ideas for the RC 4000 multiprogramming sys-
tem, which introduced the now-standard concept of an operating
system kernel.

Since 1970, I have been a computer scientist in the United
States. While writing my textbook on operating system prin-
ciples, I invented the monitor notation, which combines process
synchronization with object-oriented programming.

At California Institute of Technology my goal was to develop
a concurrent programming language with monitors. You would
think it would be easy for me to extend Pascal with monitors.
But I had no idea of how to do this. I remember sitting in my
garden in Altadena, day after day, staring at a blank piece of
paper and feeling like a complete failure. It took me two years
to find reasonable solutions to most of the problems and make
compromises which enabled me to ignore the most thorny issues.

In 1974, I distributed a description of the programming lan-
guage Concurrent Pascal. I now understood what I was doing.
One day the Caltech president, Harold Brown, came to my office
and asked me to explain my research. After listening for half an
hour, he said, “That sounds easy.” I agreed because that was
how I felt at the time. So, in the end, things turned out all right.

180 A Programmer’s Story

Let me conclude by quoting the biologist Francis Crick: “It’s
true that by blundering about we stumbled on gold, but the fact
remains that we were looking for gold.”

Thank you for your attention.

? ? ?

I am now sixty-six years old and close to retirement. My adult children
left home many years ago after graduating from Syracuse University. My
wife, Milena, received her second master’s degree from SU and started a new
career as a public librarian in Onondaga County.

I have been fortunate to live the creative life I dreamt of as a young man.
It would have been easier for my family and colleagues, if I had been a more
patient man, but you don’t get to chose your temperament (or gifts for that
matter).

I will end this programmer’s story on a philosophical note by quoting
Albert Einstein:

In the light of knowledge attained, the happy achievement seems
almost a matter of course, and any intelligent student can grasp
it without too much trouble. But the years of anxious search-
ing in the dark, with their intense longing, their alternations
of confidence and exhaustion, and the final emergence into the
light—only those who have experienced it can understand it.

Life has been good.

