THE END OF AN ERA 1976-84

The legendary Zohrab Kaprielian — Football game at the Rose Bowl — Creating
a top department at USC — How Harvard grants tenure — The first book on con-
current programming — Doctor technices — Surviving the executive vice president
— Designing the Edison multiprocessor for Mostek — United Technologies kills the
project — Let no man complain to me — Brush fire and mud slides in Altadena —
Magical simplicity — What we achieved.

In the fall of 1975, I started looking for a permanent job as a tenured pro-
fessor. I was encouraged to apply for a new professorship in datalogy at the
Technical University of Denmark, but the deadline was too short for Milena
and me to decide to fold our tent and return to Europe.

I visited universities in Washington, Utah, California, Colorado, Wiscon-
sin, North Carolina, New York and Ontario. At each university, I stayed for
two days, gave a talk and spent the rest of the time meeting individually
with local faculty members and joining them for lunch and dinner. These
were interesting, but exhausting trips since I was constantly being evaluated
by my peers.

At the beginning of 1976, these universities received letters of recom-
mendation from Edsger Dijkstra, Don Knuth, Butler Lampson, Bill Lynch,
Harlan Mills, Peter Naur, John Reynolds, and Niklaus Wirth. Of the five
offers I received, I chose the University of Southern California (USC) in
downtown Los Angeles.

After living in rented houses for five years, Milena and I had finally
bought an idyllic ranch house in Altadena. My decision to join USC was
heavily influenced by our desire to stay in Altadena and create a home of
our own where our children could grow up.

At the time, computer science at USC was just a program in electrical
engineering. The tenured faculty consisted of Seymour Ginsburg, an early

Copyright (© 2004 by Per Brinch Hansen.

131

132 A Programmer’s Story

pioneer in formal languages, and Ellis Horowitz, who was becoming a prolific
writer of textbooks. In addition, there were a few assistant professors. With
such a small faculty, USC had a unique opportunity to develop a first-rate
department from scratch. But, to do that, they would need new leadership.
The program was headed by Jack Munushian, one of the nicest people I ever
met. However, as a professor of material science, he was not an effective
leader of computer science.

Before accepting an offer from USC, I met with the legendary Zohrab
Kaprielian, who had turned USC into a major research institution. Ka-
prielian joined electrical engineering in 1958. After four years, he became
chairman of electrical engineering. By 1970, he was dean of engineering,
and, two years later, promoted to senior vice president. Shortly thereafter,
he became executive vice president of the university.

Every time Kaprielian was promoted to higher office, he kept all his pre-
vious positions. When I first met him, he was in his early fifties and was
clearly in charge of the university. Solomon Golomb, professor of electrical
engineering at USC, commented on the five levels of administration between
himself and the president of the university: “All of them were Zohrab Ka-
prielian. We operated on the principle of one man, one vote, and Kaprielian
was the one man who had the one vote.”

Kaprielian’s visionary leadership showed what Regnecentralen’s Niels
Ivar Bech might have achieved if he had lived in the United States. But, in
contrast to Bech, Kaprielian was a ruthless politician who made many en-
imies, which didn’t seem to bother him (as they say in Washington, “If you
want a friend in this town, get a dog!”). I remember an instance, where a
delegation of university administrators and senior faculty from USC visited
China. One of the participants was the head of the university’s news bureau.
For some reason, this small office was not controlled by Kaprielian. As soon
as the plane left Los Angeles International Airport, Kaprielian announced
that he had “reorganized” the news bureau. From now on, it would work
directly under his office. When the plane landed in Beijing many hours later,
the announcement had already appeared in the Los Angeles Times, and it
was too late for the former head to do anything about it.

In 1968, Kaprielian pioneered distance-education by establishing an in-
structional television network under Jack Munushian’s leadership. The broad-
casting of lectures via television made it possible for engineers to complete
graduate class work at the corporate offices of Hughes Aircraft and other
companies. Today, USC broadcasts over one hundred engineering courses

7. The End of an Era 1976-84 133

by satellite and internet webcast to 1,000 graduate students.

Kaprielian had an uncanny talent for recognizing opportunity and mak-
ing fast decisions. In 1972, he was approached by Keith Uncapher, who was
director of the computer science division at RAND Corporation in Santa
Monica. His research on packet-switching led to the military’s Arpanet and
then the Internet. He was now trying to create a university-based research
institute in Southern California. The University of California at Los Ange-
les (UCLA) told him it would take 18 months to work out a deal. However,
Kaprielian jumped at the chance, and, within a week, Uncapher was able to
start the Information Sciences Institute (ISI) at USC.

My meeting with Kaprielian took place in his large office, which was
kept in semi-darkness by heavy drapes. He was a short man who looked
supremely confident, with a smile that was both friendly and slightly devious.
He spoke so softly that you had to be very quiet to hear what he said. He
asked what it would take to make me join USC. He immediately offered me
a tenured position as full professor of computer science and agreed to fund a
minicomputer lab with a PDP 11/55 computer, so I could continue my work
with Concurrent Pascal without interruption.

He would have preferred to let computer science continue for a while as
a program headed by his friend Munushian. However, under that scenario,
I could not see USC becoming a national leader. He then agreed to let my
appointment coincide with the establishment of a computer science depart-
ment chaired by me. The department would be housed in a new building
financed by Henry Salvatori, a prominent Southern California industrialist.
At the end of my fifteen minute meeting with Kaprielian, I came away with
a promise of two endowed chairs and fifteen professorships for computer
science.

On September 1, 1976, I started working at USC. Walking around cam-
pus with my son during the Christmas break, we met Kaprielian, who gave
us two tickets to the New Year’s college football game at the Rose Bowl
Stadium in Pasadena, which seated 100,000 spectators. At that time, these
tickets were selling for $100 each on the street. My ten-year old son, Thomas,
who had grown up with American football, loved every minute of the game,
as we watched the USC “Trojans” defeat the Michigan “Wolverines” 14—
7. As a young man in Denmark, I enjoyed watching soccer and tennis on
TV. But I didn’t have a clue about the rules of American football. To me it
looked like each team first stuck their heads together and shouted something.
Then the two teams proceeded to tackle each other and fall. The cycle of

134 A Programmer’s Story

shouting and stumbling then started all over. Having an inquisitive nature,
I asked my son what was going on. Thomas, who was embarrassed by his
ignorant immigrant father, studiously ignored me. Twenty years later, he
gave me “The Complete Idiot’s Guide to Understanding Football.” T strug-
gled bravely with it before giving up. You have to grow up with a sport to
appreciate the subtleties of the game.

It was now up to Ginsburg, Horowitz, and me to create a top department.
Although we were hardly Caltech, I decided to act as if we were. I am sure
my colleagues thought I was nuts when I said that “North America is too
small a continent for our recruiting!”

We started systematic recruiting of new faculty by asking leading depart-
ments in the United States and Europe to name their best PhD students.
Based on letters of recommendation from their advisors, we invited perhaps
five out of twenty candidates to visit USC and give seminars about their
research and be interviewed by the faculty. We then asked the dean (who,
of course, was Kaprielian) to send offers to one or two candidates.

By talking to colleagues at other universities, we got a clear idea that all
of us were competing for the same top candidates. The department spent
years selecting faculty candidates in this time-consuming fashion. Most of
them, of course, accepted offers from universities like Stanford, MIT, and
Berkeley. Nevertheless, there were limits to how many positions these few
universities had to offer. As long as USC tried a little harder than other
departments, we would usually hire one person per year.

I remember calling Tony Hoare at Queen’s University in Belfast, who
recommended one of his research associates, Nissim Francez. With Hoare
and others, he had done research on the semantics of concurrency. He would
eventually publish a book about the tricky question of fair scheduling of
concurrent processes. In 1977, Nissim became an assistant professor at USC.
He is now a professor at the Technion in Israel.

In 1980, we were fortunate to attract Len Adleman, who was an assistant
professor at MIT. In 2002, Rivest, Shamir, and Adleman received the Turing
Award for their invention of the RSA cryptosystem.

At one point, we offered one of our endowed chairs to Zohar Manna,
who was being considered for tenure at Stanford. My senior colleagues felt
that we had no chance of attracting him to USC. My response was that that
was for him to tell us! So, we wined and dined Zohar, who turned us down
when Stanford offered him tenure. I believe I was correct in assuming that
Zohar would add to our reputation by telling his colleagues to watch these

7. The End of an Era 1976-84 135

ambitious guys at USC.

Now, hiring first-rate people is difficult enough. But evaluating them
for tenure is even harder. If you start promoting weak researchers, you will
some day find that most of your faculty belong to this category. Once that
happens, a department has no future. Unproductive researchers naturally
judge other researchers by their own standards and often see outstanding
researchers as a threat to their own local reputation and influence. So average
researchers have a tendency to hire and promote other researchers of the
same kind.

To avoid falling into that trap, we did not consider anybody for tenure
unless they had letters of recommendation from the top ten people in the
world in their field. During the first seven years, we only promoted one
assistant professor. In the same period, we probably hired ten others who
left the department without tenure.

One of our assistant professors—I will call him Joe—was a difficult pro-
motion case. His PhD thesis had attracted international attention. However,
at the end of his term as assistant professor, his thesis still remained his best
work. Since we had hired him based on his PhD work, I did not think we
should also grant him tenure for the same ideas. My decision to deny Joe
tenure upset Ginsburg and Horowitz, who felt that he met the standards of
tenure at USC and did not want to vote against a friend they had known
for several years. The human conflict between friendship and professional
standards often prevents faculty from reaching tenure decisions that are in
the best interest of the university.

Towards the end of my years at USC, I learned how Harvard deals with
this dilemma. Sometime in 1983, I received a letter from Henry Rosovsky,
the renowned dean of Arts and Sciences at Harvard University, inviting me to
serve on an ad hoc committee to advise president Derek Bok on a proposed
tenure appointment in Computer Science. The department had already ob-
tained letters from leading computer scientists ranking the candidate as one
of the top specialists in the world. As an experienced dean, Rosovsky (1990)
knew “all too well that departments frequently present a somewhat mis-
leading impression of enthusiasm and unanimity. ..Private and confidential
letters [from each member of the departmental committee] provide a superb
check on the extravagances of official case statements.”

The ad hoc committee, chaired by president Bok, included dean Rosovsky
and two faculty members from other departments at Harvard. I was invited
as one of three computer scientists from other universities. At the ad hoc

136 A Programmer’s Story

meeting, members of Harvard’s computer science department faced the com-
mittee, one at a time, for about half an hour each. Prior to the meeting, the
identities of the panel members had been kept confidential.

According to dean Rosovsky, “It is not at all unusual for positive wit-
nesses to turn slighly negative under the stress of interrogation.” When I
was there, Derek Bok asked each witness the same question: “Is the candi-
date, in your opinion, a major intellect?” The witnesses were obviously well
prepared to answer questions about the significance of the candidate’s work.
However, when asked this embarrassing question by Harvard’s president, ev-
ery one of them admitted that he was not a major intellect. During lunch,
Derek Bok asked each of us to offer his or her personal advice. The final
decision was his. In this case, he denied the department’s recommendation
of tenure.

Dean Rosovsky makes it clear why Harvard succeeds where lesser uni-
versities fail: “Few, if any university presidents play as great a role in the
appointment process. Harvard’s Derek Bok considers this role to be the most
important and interesting part of his work. It is the most direct way for him
to control the quality of the faculty...We seek the best scholar-teachers, and
if they happen to have abominable personalities, why then we claim joyfully
to suffer in the name of learning.”

Five years before my visit to Harvard, I had already reached the same
conclusion as the bestselling author Nevil Shute, who started a small airplane
manufacturing company, named Airspeed, in the 1930s. In his fascinating
“Autobiography of an Engineer” (1954), he writes:

I would divide the senior executives of the engineering world
into two categories, the starters and the runners, the men with
a creative instinct who can start a new venture and the men
who can run it to make it show a profit. They are very seldom
combined in the same person...I was a starter and useless as a
runner.

When it became evident that we were on the right track towards becoming
first-rate, I discovered that I did not much like the administrative aspects of
my job. I wanted to do research instead of meeting the mother of a promising
high-school senior from Pasadena. And my strong desire to chart the future
course of the department undoubtedly made me insensitive to the personal
agendas of some of my colleagues.

7. The End of an Era 1976-84 137

In 1978 T stepped down as department head. Two years later, a survey
conducted by the National Research Council in 1980 ranked computer sci-
ence at USC as one of the top ten departments in the country in terms of
reputation and faculty publications. Our reputation was based on the opin-
ions of 5,000 faculty members at 228 universities (Computerworld 1983).

Seymour Ginsburg said that the main effect of my tenure as the first chair
had been to raise the standards of the department and make bold decisions.
As long as I was in charge, he was a strong supporter of my relentless drive
for success. He was then in his early fifties and had been at USC for ten years.
He had the highest possible standards in his research. In private, he would
make surprisingly sharp observations about his colleagues. I remember him
saying: “Professor X can’t tell the difference between the great and near-
great.” Ginsburg was not interested in succeeding me as department chair.
He was content to influence the department as a gray eminence behind the
scenes. When I stepped down, he supported a succession of acting chairs of
less and less academic stature and vision.

Over the years, USC dropped to a still respectable position in the second
rank of computer science departments.

* * *

Before joining USC, I had developed the programming language Concurrent
Pascal at Caltech. I knew the time was now ripe for a book on the principles
of abstract parallel programming. My second book, The Architecture of
Concurrent Programs, included the complete text of the model operating
systems I had written in Concurrent Pascal (Brinch Hansen 1977). Thanks to
my editor, Karl Karlstrom, it was also translated and published in Japanese
(1980) and German (1981).

The mathematician Harlan Mills, who was well-known for his efforts to
introduce structured programming at IBM, and his associate Roy Maddux
studied my book carefully. In a review they wrote (Maddux 1979):

This is, as far as we know, the first book published on concur-
rent programming. Previously, this topic has been included in
books on operating systems, a closely related but different sub-
ject. Books on operating systems usually consist of a survey of
such topics as processor allocation, memory management, inter-
rupts, I/0, file systems, process synchronization, batch and mul-
tiprogramming systems, scheduling, deadlock, and protection.

138 A Programmer’s Story

Even after reading several books of this nature, the reader is
left feeling that he has been exposed to a number of complex
problems yet has learned very little about designing and imple-
menting even a modest operating system. If you have shared
these feelings with us, you will welcome Brinch Hansen’s most
recent book.

I agree with this criticism of operating system texts. Over the years they
have often been reduced to the level of “Popular Mechanics.” By making
such superficial courses “required,” universities have a convenient excuse
to lower their standards and attract marginal students. I finally stopped
teaching the subject ten years ago.

Maddux and Mills were particularly pleased with the Solo system:

Here, an entire operating system is visible, with every line of
program open to scrutiny. There is no hidden mystery, and after
studying such extensive examples, the reader feels that he could
tackle similar jobs and that he could change the system at will.
Never before have we seen an operating system shown in such
detail and in a manner so amenable to modification.

In conclusion, they wrote:

The book cannot be called a textbook; it is, rather, a thorough
technical monograph that requires sustained concentration. The
importance of Concurrent Pascal as the first language for con-
current programming makes the effort worthwhile.

While the book was still in production, I submitted the manuscript to my
alma mater, the Technical University of Denmark, as a thesis for the Doctor
Technices degree. This Danish degree (which requires no course work) is
awarded about once a year to a researcher who has moved engineering and
applied science a significant step forward.

After twenty years in civil engineering, my father, Jorgen Brinch Hansen,
earned the Dr. techn. degree in 1953. He was then chief engineer at the
internationally known engineering firm, Christiani & Nielsen. His doctoral
thesis, Earth Pressure Calculation, developed the first generally applicable
method for the solution of most earth pressure problems in practice.

Now, a quarter of a century later, it was my turn. In September 1976,
the Technical University appointed a committee to read my thesis. The com-
mittee consisted of three distinguished Scandinavian professors of computer

7. The End of an Era 1976-84 139

science: Ole-Johan Dahl (University of Oslo), Christian Gram (Technical
University of Denmark), and Peter Naur (University of Copenhagen). Seven
months later, they submitted a five-page evaluation to the university recom-
mending that it be accepted for the defense of the technical doctoral degree.

In January 1977, I satisfied one of the official requirements for the degree
by asking Prentice Hall to ship 200 copies of the thesis to the Technical
University, for general distribution to various places (I have no idea where
they went).

The leading Danish newspapers, Berlingske Tidende and Politiken, in-
terviewed me about the practical significance of my work and announced
the time and place of the official defense of my thesis. This event took place
on January 23, 1978, in the largest auditorium at the Technical University
of Denmark. It began at 2 p.m. and lasted about four hours. The Swedish
computer magazine Data wrote (February 1, 1978):

All [three opponents, Dahl, Gram, and Naur| gave the doctoral
candidate an extremely positive reception. In the auditorium,
where no less than 400 people were present, the spirit of Niels
Ivar Bech seemed to be present, while his associates engaged in
discussion at a higher level. (English translation by me.)

Each opponent gave a summary and evaluation of my thesis. In his
remarks, Peter Naur said:

The text is characterized by great clarity and convincing argu-
ments. In my opinion, it culminates in the description of the
Solo operating system, the job stream problem, and the real-
time scheduler. In these chapters, the description proceeds flu-
ently with an apparent ease that is quite overwhelming. Here,
above all, Per Brinch Hansen demonstrates his mastery. Every-
thing looks so easy, as it always does in the hands of the master.
For those who will attempt to do the same, it will probably turn
out to be fraught with problems and traps, but as a source of in-
spiration, these sections will be of enormous value. For the work
as a whole, the significance of these sections is that they demon-
strate the value of the new programming language concepts they
are based on. The discussion of these new concepts [monitor and
process types] must also be praised for its convincing clarity.

140 A Programmer’s Story

So far, so good. However, as an opponent, Naur was also expected to
point out weaknesses of my thesis. It was not by chance that he focussed on
the definition of the programming language Concurrent Pascal. He said:

I see that on page 245 you define a process type as a form of data
type, while on page 236 you define a data type as a set of values.
Can you tell me in what sense a process is a set of values?

I was well aware that my first language report was the weakest part of
my work. Since I have always made it a rule never to defend the indefensible,
I turned to Peter and said:

The English computer scientist Tony Hoare once said that the Al-
gol 60 report, which you wrote, was a considerable improvement
over its successors. Well, my report is one of the successors.

Everybody laughed and Peter smiled saying: “You got it!”

It would be another seven years before Tony Hoare (1985) introduced a
mathematical model which identifies a process with all the possible sequences
of actions (known as “traces”) in which it can participate. In 1974, Roy
Campbell and Nico Habermann had introduced an early notation, called
“path expressions,” for this idea.

If I had to single out an event that marked the peak of my research career,
it would be that day in 1978 when I became the first computer scientist to
receive the Dr. techn. degree. I was then 39 years old and had worked at
the cutting edge of operating systems and concurrent programming for ten
years. Never again would I have a similar streak of luck.

In most instances, scientific creativity peaks around age forty. Nobody
knows why it should be so. In his study of Genius, Creativity, and Leader-
ship, Simonton (1984) suggests that “True creativity demands the right com-
bination of enthusiasm and experience. ..Enthusiasm tends to peak rather
early in life and then steadily decline, whereas experience gradually increases
with age. .. Thus the age-40 floruit is a consequence of this uniquely balanced
juxtaposition of youth’s rapture and maturity’s sagacity.”

Speaking of honors: When I joined USC, Kaprielian offered me an en-
dowed chair. I didn’t think that my first act as department head should
be to accept an honor for myself. So I suggested that he offer it to Sey-
mour Ginsburg. In the spring of 1978, Ginsburg became the first Fletcher
Jones Professor of Computer Science. Kaprielian, who was not used to being
turned down, never offered me another endowed chair.

7. The End of an Era 197684 141

Three years later, the new president of USC, James Zumberge, removed
Kaprielian from his position as executive vice president. Driving home from
a New Year’s party, Kaprielian suffered a fatal heart attack and crashed
through the living room of a house in Beverly Hills. The following year,
on September 15, 1982, I was named the first Henry Salvatori Professor of
Computer Science at USC.

My last act as chair of computer science was to nominate Tony Hoare for
an honorary doctorate at USC. My colleagues would have preferred to honor
an American computer scientist, but, since I was the chair, they went along
with my nomination. In 1979, Hoare became the first computer scientist to
be awarded the degree of Doctor of Sciences Honoris Causa by an American
University.

* * *

In 1978, L. J. Sevin, chairman of Mostek Corporation in Dallas, and one
of his young engineers, Steve Goings, paid me a visit at USC. Mostek was
then the world’s largest manufacturer of semiconductor memories. Goings,
who had read my book, “The Architecture of Concurrent Programs,” had
suggested to L.J. that they should meet with me to discuss what Mostek
should be doing in computing.

Mostek predicted that VLSI technology soon would make it possible to
put an IBM /360 mainframe computer on a single chip! So L.J. wanted to
know if I thought it would be a good idea for Mostek to develop such a
powerful chip. As far as I could see, the problem was not the chip, but the
notoriously unreliable IBM software that would run on it. Once they had
sold a large number of System /360 microprocessors, I feared their customers
would expect them to correct errors in OS/360—a task that taxed even the
expertise of IBM itself.

At the 1969 Nato Conference on Software Engineering, Martin Hopkins,
IBM, admitted that, “We face a fantastic problem in big systems. For in-
stance, in OS/360 we have about 1000 errors in each release and this number
seems to be reasonably constant.”

In a letter to me, thirty years later, Dijkstra wrote:

I always felt that IBM’s inability to make a decent operating sys-
tem for its own hardware played a significant role in the recogni-
tion of the “software crisis” in 1968. In that sense, OS/360 has
been significant.

142 A Programmer’s Story

Before our meeting, Steve Goings had already told L. J. Sevin that he
did not think there was much future in designing chips that emulate obsolete
computer architectures:

I urged that we abandon the IBM emulator, and create a micro-
processor that could work effectively in a multiprocessor archi-
tecture, and provide for more direct support of high level pro-
gramming languages. Further, we needed the help of top level
software engineers in the field, He asked me if I had anyone in
mind. My reponse was, “I do not know him personally, but I
have a high regard for the publications of Per Brinch Hansen.”
(Letter from Steve Goings, July 19, 2004.)

That is when they decided to see me. During our conversation, I said, “While
you are here, I would like to tell you about an inexpensive multiprocessor I
have proposed.”

A multiprocessor consists of identical processors that run in parallel and
communicate through common memory. The challenge is to make sure that
the common memory does not become a serious bottleneck for the proces-
sors. When Bill Wulf and Gordon Bell (1972) developed their pioneering
C.mmp multiprocessor at Carnegie-Mellon, they made the bold decision of
making every memory location accessible to every processor. They did this
by connecting sixteen PDP 11 minicomputers to sixteen independent mem-
ory modules via a crossbar switch. Since a switch that connects n processors
to n memory modules has a hardware complexity of order n?, this is a rather
expensive solution.

What I outlined was a simpler multiprocessor with two to ten micro-
processors. The processors would have their own local memories and would
share a single common memory (Brinch Hansen 1978b). This architecture
was intended for dedicated real-time applications programmed in a language
with concurrent processes and monitors. Each processor and its local mem-
ory would be dedicated to the execution of a single process. The processes
would communicate by means of monitors stored in the common memory.

Since a monitor only performs one operation at a time, it is per definition
a bottleneck in a concurrent program. To make a concurrent program as fast
as possible, a wise programmer will make sure that each process spends most
of its time accessing its own code and local variables and uses as little time
as possible inside monitors. If that assumption was correct, it would make
sense to replace the crossbar switch with a single common memory module.

7. The End of an Era 197684 143

This would make the complexity of the multiprocessor proportional to the
number of processors.

While I was explaining all of that, L. J. Sevin looked immensely bored.
When I was finished, he turned to Goings and said: “I think we ought to
build his machine!”

In the fall of 1978, Mostek started a research project managed by Steve
Goings. As project consultant, I would be responsible for designing a con-
current programming language and a multiprocessor architecture tailored to
the language. A team of Mostek engineers, headed by Nick Matelan, would
be responsible for the hardware implementation. Several times a year, Go-
ings, Matelan, and I would spend a weekend at the Pasadena Hilton Hotel
discussing technical details.

My first task was to develop a concurrent programming language, named
Edison, which included concurrent statements and conditional critical re-
gions. It was as powerful as the combination of Pascal and Concurrent
Pascal, but much simpler (Brinch Hansen 1981). At my suggestion, Mostek
signed a consulting agreement with Peter Naur to review my definition of
Edison. Naur made almost no comments about my choice and design of
language features. His main concern was the clarity of the language report.
I would write a complete draft of the report and Naur would then point out
what the weaknesses were and suggest broadly how they might be removed
in my next draft. Between January 1979 and September 1980, I wrote four
versions of the Edison report from scratch. About the second version, Naur
wrote (Brinch Hansen 1981):

The report is a vast improvement over the previous version in
clarity, consistency, and completeness. The remaining weak-
nesses, described below in detail, are to a large extent concerned
merely with finer matters of conceptual clarity.

After this pleasant introduction, he went on to enumerate 79 conceptual
problems. The writing of the Edison report was far more difficult and time
consuming than the selection of language features and the design of the first
compiler.

A key element in the development of the Edison multiprocessor was our
decision from the beginning to define the function of every piece of hardware
by an equivalent Edison program. Such a description was far more precise
than a mixture of circuit diagrams, timing examples and prose. Not only
could an Edison algorithm be subject to compile-time checking of consis-
tency, but it could also be tested on an existing computer. More importantly,

144 A Programmer’s Story

Edison would serve as a formal specification language that was understood
by both hardware and software engineers.

In the spring and summer of 1979, I wrote a report (revised after dis-
cussions with Nick Matelan) that defined the multiprocessor architecture by
Edison algorithms. These algorithms closely mirrored the exchange of data
and signals that took place in interactions between processors, memories,
busses, peripheral devices, and arbiters. We also specified how to build a
distributed system as a cluster of multiprocessors.

The specification of hardware by means of algorithms was not yet widely
used in the computer industry and certainly not for something as complex
as a multiprocessor with a hierarchy of bus lines. Our Edison algorithms en-
abled the hardware engineers to discover several logical errors in my original
proposals of buslines before the circuits were implemented. In at least one
case, they also made a hardware designer realize that an intermittent error
in a circuit design was caused by his deviation from my Edison specification
of what the circuit was supposed to do.

In a letter to me, Matelan wrote: “We got a 4-node Edison multiproces-
sor working, Monday morning, May 12 [1980].” During the summer, I wrote
the first Edison compiler in Edison and tested it on a PDP 11/55 com-
puter at USC. When I demonstrated this compiler for Mostek in November,
L. J. Sevin agreed buy it for $100,000. However, before I had a chance to see
the multiprocessor or sell my compiler, United Technologies bought Mostek
and cancelled the multiprocessor project. Many years later, Steve Goings
told me that the technical documents for the Edison project disappeared on
that unfortunate occasion.

A few years ago, I discovered that Nick Matelan had started his own
company, Flexible Computer Corporation, which developed a multiproces-
sor called the Flex/32. Since Matelan (1985) neither acknowledged Mostek
nor me, it is difficult to say how much this machine owed to the Edison
multiprocessor. At one point, Purdue had a 7-processor Flex configuration,
while a 20-processor machine was installed at the NASA Langley Research
Center in Virginia. Matelan’s company no longer exists.

At the beginning of the Edison multiprocessor project, L. J. Sevin told
me that Mostek was funding a dozen research projects that gambled on
future computer technology. He expected most of them to fail. Even though
nothing came of our project, I am glad I met L.J. who always thought big.
During a dinner at a Dallas restaurant, he asked if I would be interested in
starting a software research center for Mostek. “Can I do it anywhere in the

7. The End of an Era 197684 145

world?” T asked. “We hope you will do it in Texas,” he said, “but, if you
prefer, you can also build it in Denmark.” I said I would need to think about
it before I gave up my tenured university position. L.J. responded with the
immortal words, “Let no man complain to me about the size of his balls!”

In the end, L.J. did all right. When United Technologies bought Mostek,
he joined a venture capital partnership and invested his money in a little-
known manufacturer of PCs named Compaq. Steve Goings did some con-
sulting work for L.J. The first day he walked into this new business, L.J. in-
troduced him around and said, “Steve is a pioneer. You can always tell who
the pioneers are. They are the ones with all the arrows in their backs.”

* * *

Our one-story house on 1351 Pleasant Ridge, Altadena, was located at the
top of a steep street in the foothills of the Sierra Madre mountains, at the
entrance to a steep, narrow canyon covered with oak trees and brush. The
house was built in Spanish style with hardwood floors and beam ceilings. The
living room was dominated by a large fireplace embedded in a brick wall.
It had full-length floor-to-ceiling windows facing south. On the opposite
wall, sliding doors led to a covered patio facing the canyon. After we had
furnished it with pine furniture and rya rugs, our home looked like a cozy
hunting cabin. On a clear night, we had a panoramic view of the endless
carpet of lights in Pasadena and beyond. On a smoggy day, it looked as if
we lived above the clouds.

Our patio was like a zoo with frogs, lizards, rabbits, hummingbirds, and
a small pond with Japanese koi fish. Sometimes a deer would come all the
way down from the canyon, and at night packs of coyotes would howl nearby
in the mountains. One evening, Milena went to bed without closing the
screen door to the patio. I found her sleeping while a tarantula the size of
a child’s hand was crawling on the floor. Although they look dangerous,
tarantulas are fairly harmless and won’t bite if you leave them alone. Their
painful bite is apparently no worse than a bee sting.

We were much more concerned about the rattlesnakes that occasionally
found their way into our garden looking for water and mice. The previous
owner was a doctor who kept snake serum in his refrigerator. He said, “Don’t
worry about snakes—the kids always spot them first!” And he was right,
they did. Before getting into my car in the garage, I always knelt down
to see if a rattler was hiding under the car. I killed several small ones by
cutting their heads off with a shovel. However, when I found a big rattler,

146 A Programmer’s Story

as thick as my arm, on the driveway, I called the fire department. The fire
fighters drove up to our house in a huge fire engine with flashing lights and
sirens on, killed the snake and cut the rattle off as a present to my son.

Although we learned to live with the snakes, I could never get used to
the black widows—the poisonous spiders that were found throughout the
house, in our potted plants, behind book shelves, and underneath our beds.
Fortunately, none of us was ever bitten by one.

The most dramatic event we experienced in Southern California was a
natural catastrophy that nearly ruined us and almost killed me. (However,
as the Danes say, “nearly” and “almost” never threw anybody off his horse.)

Sometime in September 1979, children set fire to a trash can several miles
from our home. This started the largest brush fire in the area in forty years.
The mountains were covered with dry vegetation that burns like torches.
When it starts burning, there isn’t much anyone can do other than waiting
until it burns itself out.

Our house was completely surrounded by brush that grew right down to
the edge of the patio. On the first day of the fire, we saw smoke rising above
the mountains east of our house. During the night, the flames reached the
top of the mountains and started creeping down towards the homes of our
neighbors. Soon the whole mountain side was burning with a faint crackle
lighting the terrain with a deep red color. It was both beautiful and cozy
unless you lived right next to it.

The next day, the fire slowly burned away from us and moved up into
a large canyon that was separated from our small canyon by a mountain
ridge. In the middle of the night I woke up and saw, for the first time, the
sun rising in the north with a shiny glow high up in our canyon.

On the morning of the third day, the fire was burning through our canyon
towards our house. For several days, the air above Los Angeles had been
stagnant making the air pollution worse and worse. However, since the
fire burned downhill in the still air, it moved relatively slowly. Late in
the afternoon, the fire reached our property. On this quiet day, it was no
problem for the firefighters to prevent it from spreading to our house. Two
fire fighters spent the night in lawn chairs in our driveway, guarding a tree
that, if it were to catch fire, would explode and burn like a torch.

When it was finally contained, the brush fire had destroyed 30,000 acres
and had occupied 3,000 fire fighters for a week. Where our house had been
surrounded by green hillsides we saw only scorched ridges covered with soil
and gravel.

7. The End of an Era 197684 147

In California, it often rains for days in December and January, as storms
move in from the Pacific. Where we lived, most of the runoff water from
the hills had been stopped by brush and tree roots before it reached the
bottom of our canyon. However, when it rained heavily, some water would
flow through a small storm drain under our house. This storm drain was
owned by the county who was responsible for maintaining it.

However, since the mountains were now stripped of vegetation and cov-
ered with debris, it was a virtual certainty that our house would be destroyed
by mudslides during heavy rain. The only hope of saving the house was to
build a deflector wall that would direct the debris flow across the patio con-
tinuing past the garage and through the driveway onto the street (Fig. 7.1).
But we were unable to find an engineering firm that would help us calculate
the dimensions of such a wall. The consulting firm of Alderman, Swift &
Lewis described their main concern:

/

Figure 7.1 Debris flow in Altadena.

Because of the location of your house, patio and garage, it would
be necessary for a diversion wall to alter the direction of flow
nearly 90 degrees in a very short distance. Unlike clear flow, de-
bris flow cannot be diverted this quick. As a result, the diversion
wall may be topped.

Two professors of civil engineering at USC volunteered to help us for free

148 A Programmer’s Story

without any guarantees. In the meantime I started calling local building
contractors and discovered again that none of them were willing to take the
risk of being sued. I finally found a Danish bricklayer, Knud Balling, who
put me in contact with an American builder, Ed Sylvis. With no contract
other than a handshake I agreed to pay this man and his Mexican crew on
an hourly basis, without knowing in advance what it would end up costing.

Since there was no time left to worry about minor details, such as a
building permit, we decided to call our wall a “timber and pipe fence.”
When it was finished in late November, it was 150 feet long and 6 feet tall.
It was built of 2x6-inch lumber bolted to fifty 12 foot steel posts with a
diameter of 6 inches, embedded in six feet of reinforced concrete. After I
gave it several coats of dark red paint, it didn’t look all that bad. However,
we were still listed by the police as one of a dozen families who would need
to be evacuated to save our lives during a big storm. In the last forty years,
such storms had typically occurred twice a year.

Nothing happened in December. But in January 1980 it started raining
for days. Early one morning, Milena was driving home after taking the
children to school, when the house suddenly started shaking, as if a large
helicopter was hovering right above it. From the bedroom window, I saw
that our red wall suddenly had turned grey on the side facing the house. I
ran outside in the rain. On the other side of the wall, an avalanche of mud
and boulders from the canyon had piled up close to the top of the wall and
was flowing through our driveway and down the steep Rubio Vista Drive
into the gardens of a dozen other homes. Milena called from the local police
station and told me that she was unable to drive up the street.

Although the Flood Control District had no funds to build our wall, they
were still technically responsible for keeping their tiny (useless) storm drain
open. They used this as an official excuse to send one of their bulldozers and
an army of dump trucks to prepare us for the next storm. For twenty four
hours, the bulldozer and the trucks worked continuously to remove debris
behind the wall.

The storm had dumped two inches of rain. While this went on, an
even bigger storm (which occurs about once every three years) was moving
towards Southern California from the Pacific. Students and faculty from
USC came to our house and piled hundreds of sandbags around the house
inside the wall, while three carpenters covered all doors and windows with
plywood. At lunch time, I went to the drive-in entrance of Burger King and
casually ordered “20 whoppers, please.”

7. The End of an Era 197684 149

The next morning, January 11, the headline on the frontpage of the
Pasadena Star-News read “Altadenans may evacuate.” The article included
two photos showing how “Altadenan Per Brinch Hansen readies for rain”
while “Storm clouds hang over L.A. as seen from Pleasantridge Drive in
Altadena.” According to Bill Hardy of the Flood Control District, “If any
house in Altadena is in danger, it is 1351 Pleasant Ridge, which is directly
in the mouth of a gorge.”

We now got four inches of rain, and again the wall held up. This hap-
pened several times over the next four months. When a big storm was fore-
cast, we spent the night in a motel, while flood control workers protected
our property against looters. When spring finally came, we had survived the
worst rainy season in ten years. In May, we were able to remove the plywood
and half-rotten sandbags and let the daylight into our rooms. After some
minor repair, the house looked as good as new.

Had we not built the wall, I would almost certainly have been killed in
the ruins of our house during the first mudslide and my family would have
been ruined. When the wall was finished, Milena and I cooked steaks on
the patio for Ed Sylvis and his crew. Over a beer, I said to Ed: “You knew
I was completely at your mercy—how come you didn’t take advantage of
me?” He answered: “I can always make more money, but I can only lose my
reputation once!”

* * *

While these natural catastrophies threatened our home, the pioneering era
of concurrent programming was coming to an end. It is time to look at what
we had achieved.

In the first survey paper on concurrent programming I had cited 11 pa-
pers only, written by four researchers. None of them described a concur-
rent programming language (Brinch Hansen 1973b). The development of
monitors and Concurrent Pascal started a wave of research in concurrent
programming languages. Fifteen years later, there were close to 20 moni-
tor languages and 100 languages for distributed computing (Brinch Hansen
1993, Bal 1989).

Two of my former Ph.D. students recalled their experience of working
with Concurrent Pascal at USC (Brinch Hansen 1993):

Jon Fellows: The beauty of the structures you created using
Concurrent Pascal created an aura of magical simplicity. While

150 A Programmer’s Story

working with my own programs and those of other graduate stu-
dents, I soon learned that ordinary, even ugly, programs could
also be written in Concurrent Pascal... My current feeling is
that the level of intellectual effort required to create a beautiful
program structure cannot be reduced by programming language
features, but that these features can more easily reveal a pro-
gram’s beauty to others who need to understand it.

Charles Hayden: 1 think the significance of the system was ...
that one could provide a protected environment for concurrent
programming—a high-level language environment which could
maintain the illusion that there was no “machine” level. It was
remarkable that through compile time restrictions and virtual
machine error checking ... you could understand the program
behavior by looking at the Pascal, not at the machine’s registers
and memory. It was remarkable that the machine could retain its
integrity while programs were being developed, without hardware
memory protection.

In the fall of 1981, when Microsoft had just implemented DOS in assem-
bly language for the first IBM Personal Computer, my students and I had
already used high-level languages for seven years to write portable single-
user operating systems for minis and micros, and had published the complete
program text of some of these systems. Charles Hayden wrote no less than
three operating systems on his own: a single-user system, a multiuser system,
and another one with a Unix-style I/O system.

During the summer of 1981, I tested a single-user operating system for
a PDP 11/23 microcomputer, written in the programming language Edison.
The Edison system was able to compile itself and its compiler in 56K bytes
of memory using two 8-inch floppy diskettes of 250K bytes each as the only
form of backing store.

In the fall of 1982, I moved the Edison system to the IBM PC by rewriting
a kernel of 4K bytes in assembly language. The Edison-PC system compiled
itself in a 64K byte memory using dual 5i—inch floppy diskettes.

In 1983, I published a book about the Edison system, entitled Program-
ming a Personal Computer. According to Peter Naur (1984):

In this book the author carries through an entirely fresh attack
on the problem of programming language and operating system

7. The End of an Era 197684 151

design, the incentive being the availability of microcomputers.
Within the compass of the 388 pages of the book, the author
manages to present in every detail: Edison, a new programming
language suitable for concurrent programming; Edison system,
an operating system; Edison code, an intermediate language de-
signed to be suitable as intermediary between Edison and the
machine languages of microcomputers; Alva, an assembly lan-
guage for PDP 11 computers specially designed for supporting
Edison; the complete programs for implementing each of these
languages and systems; extensive discussions of the argument
that lie behind the designs adopted throughout. While most of
the detailed argumentation of the presentation is found similarly
in the author’s earlier work, the new development serves as a con-
vincing demonstration of the power of the principles and methods
employed in solving a problem having basically new constraints,
those of a microcomputer.

It was now obvious to any casual observer that a programming revolution
had taken place in programming languages and operating systems.

Looking back, what am I most proud of? The answer is simple: We
did something that had not been done before! We demonstrated that it
is possible to write nontrivial concurrent programs exclusively in a secure
programming language.

In retrospect, the monitor concept was the first example of object-oriented
concurrent programming (although I never used that term). However, the
particular paradigm we chose (monitors) was a detail only. The important
thing was to discover if it was possible to add a new dimension to program-
ming languages: modular concurrency.

Every revolution in programming language technology introduces ab-
stract programming concepts for a new application domain. Fortran and
Algol 60 were the first abstract languages for numerical computation. Pas-
cal was used to implement its own compiler. Simula 67 introduced the class
concept for simulation.

Before Concurrent Pascal it was not known whether operating systems
could be written in secure programming languages without machine-depen-
dent features. The discovery that this was indeed possible for small operating
systems and real-time systems was far more important (I think) than the
introduction of monitors.

Monitors made process communication abstract and secure. That was,

152 A Programmer’s Story

of course, a breakthrough in the art of concurrent programming. However,
the monitor concept was a detail in the sense that it was only one possible
solution to the problem of making communication secure. Today we have
three major communication paradigms: monitors, remote procedures, and
message passing.

The development of abstract language notation for concurrent program-
ming started in 1971. Fifteen years later Judy Bishop (1986) concluded:

It is evident that the realm of concurrency is now firmly within
the ambit of reliable languages and that future designs will pro-
vide for concurrent processing as a matter of course.

So passed an exciting era.

