

4

YOUNG MAN IN A HURRY 1966–70

Naur’s vision of datalogy – Architect of the RC 4000 computer – Programming

a real-time system – Working with Henning Isaksson, Peter Kraft, and Charles

Simonyi – Edsger Dijkstra’s influence – Head of software development – Risking my

future at Hotel Marina – The RC 4000 multiprogramming system – I meet Edsger

Dijkstra, Niklaus Wirth, and Tony Hoare – The genius of Niels Ivar Bech.

I was fortunate to start my programming career at Regnecentralen. For
almost three years, I had participated in the design, programming, testing,
and documentation of a large compiler. I knew it was time to leave the
compiler group and try something else. Niels Ivar Bech had something in
mind—but I had other ideas.

In a brilliant paper, Peter Naur (1966a) viewed compilation as a gen-
eral data processing problem that involves more fundamental programming
methods, which he felt should be taught as part of a core of computer science.
At a time, when compiler contruction was still regarded as a fundamental
subject in its own right, Naur’s insight was ahead of its time.

In 1966, Bech invited me to join a working group consisting of Peter
Naur, Christian Gram, Henning Bernhard Hansen, Jens Hald, and Alan
Wessel. Their goal was to develop a systematic text on datalogy (as Naur
called it). This was an exciting idea—but it was not mine. My answer to
Bech was honest: “Thank you, but I prefer to wait until I am writing my
own book.”

Naur (1968) proceeded to outline a complete core course on computer
science based on fundamental principles. His vision of computer science was
published in the same year as Donald Knuth’s famous Volume 1 of The Art
of Computer Programming (1968).

For various reasons, the working group never finished its ambitious project
(although parts of it was published in Danish). A short English version of
the complete text was published in 1974, with Peter Naur as the only author.

Copyright c© 2004 by Per Brinch Hansen.

59

60 A Programmer’s Story

? ? ?

After my three-year apprenticeship at Regnecentralen, Milena and I were
talking about living abroad for a while. After my graduation, IBM had
encouraged me to keep in touch, in case I would be interested, after some
years, in working at one of their labs in Sweden, England, or the United
States. That sounded promising after my enjoyable experience at the IBM

Hursley Laboratory in the summer of 1961.
Henning Isaksson had asked Niels Ivar Bech for a systems programmer

for quite some time. Since I was thinking of leaving anyhow, Bech suggested
that I might join Isaksson’s hardware group in Valby.

In the Polish city of Pulawy, the Danish engineering company, Haldor
Topsøe, was designing the largest fertilizer plant in Europe. The company
signed a contract with Regnecentralen to deliver a small computer with
data logging software. The system was supposed to demonstrate that the
plant satisfied the specifications guaranteed by Topsøe, and would also help
management with maintenance of the plant.

From the beginning, Henning and I viewed the Pulawy-project as an
opportunity to develop Regnecentralen’s third computer. However, Bech
did not see it that way. He strongly encouraged Henning to use the recent
CDC 1700 computer. Bech was not known for cautious decisions. On this
occasion, he may have been influenced by Regnecentralen’s reorganization
in 1964 as a limited company with shareholders.

Henning finally said: “Look, if we use CDC software in our process con-
trol programs, our customers will expect us to help them with the problems
of software, that we have not developed.” This argument persuaded Bech
that we would be better off developing our own process control computer.
He remembered only too well how Regnecentralen had been forced to use
Fortran on its large CDC 1604 computer, because the Algol compiler from
Control Data turned out to be unreliable (Isaksson 1976). In 1978, I gave
the same answer, when the chairman of Mostek Corporation asked me, if I
thought it would be a good idea to put an IBM mainframe computer on a
chip.

Now, if something has a name, it obviously must exist. My favorite
example is the medical term “essential hypertension.” With a name like
that, who could doubt that medical doctors know, what they are talking
about. On the contrary, if doctors don’t have a clue about the cause of
hypertension, they call it “essential.” So, although Gier’s successor was
still on the drawing board, we needed a name for it. The natural choice

4. Young Man in a Hurry 1966–70 61

would have been calling it the RC 3. However, Regnecentralen was already
marketing the RC 3000, a special-purpose device for data conversion. So I
suggested calling the new computer the RC 4000, since “who would buy an
RC 3 for a million kroner, when you can buy an RC 3000 for a lot less?” So
RC 4000 it was.

? ? ?

Henning was an efficient manager and very pleasant to work for. At my
request, he persuaded Bech to let Peter Kraft join us from the compiler
group. Peter was an experienced programmer who had learned his craft
during the Gier Algol project. Of average height, with a receding hairline
and large, dark-rimmed glasses, his face was usually lit up by a brilliant smile.
We worked well together, perhaps because he provided a calming influence
on my own forceful personality. The hardware engineer, Villy Toft, wrote
this portrait of Peter:

Cheerful, humourous and positive, he had a constructive ap-
proach to problem solving, unhampered by potential problems.
A gifted problem solver with an analytical talent, who showed
no signs of stress, he worked quietly and calmly with other mem-
bers of the group as a catalyst and inspirator. His modesty gave
him a tendency to downplay his own achievements, even though
others valued them highly.

Most of us should be so lucky to be remembered like that!
When it became obvious that Peter and I would need another program-

mer, Bech sent us a Hungarian teenager! At age 14, Charles Simonyi wrote
his first program for a huge Russian Ural II computer in Budapest, where
his father was professor of electrical engineering. He desperately wanted to
leave his communist country and emigrate to the United States. During a
demonstration of the Gier in Budapest, Charles met Bech, who offered him
a one-year job in Denmark. After completing high school, he left Hungary
in the summer of 1966 and came to Denmark without an education. He
was 17 years old, had a Beatles haircut and spoke limited English with a
Hungarian accent. When he heard a Caravelle jet outside, he would open
the window, stick his head out, and shout: “Vonderful Caravelle.” At the
end of the Pulawy project, Charles had saved enough money to go to Cal-
ifornia. At Berkeley, he paid for tuition by working as a programmer in

62 A Programmer’s Story

the university computing center. After graduating in 1972, he joined Xerox
Palo Alto Research Center, where his former professor, Butler Lampson, and
others were pioneering personal computing on Alto personal computers with
graphic interfaces, mice, laser printers, and ethernets. For the Alto, Butler
and Charles designed Bravo, the first graphic text editor. When Simonyi
joined Microsoft in 1981, he brought his knowledge of Bravo and turned
it into Microsoft Word. Today, Charles is a member of the U.S. National
Academy of Engineering. He is also very rich.

? ? ?

Before Simonyi joined us, Peter Kraft and I had already defined the archi-
tecture of the RC 4000, and the prototype for Pulawy was being assembled
in a small lab right below our office.

With 1K words of memory only (about 5K bytes), the Gier computer had
been designed for clever handcoding of compact machine code. Experienced
programmers had been known to stare for days at small fragments of the
Gier Algol compiler, trying to figure out what Jørn Jensen’s code was doing.

However, by 1965, it seemed safe to predict that, by the end of the decade,
most programs would be written in high-level languages for computers with
large memories. Most machine code would then be generated by compilers
(and not by programmers).

When programmers write compact code, they take advantage of all kinds
of programming tricks. It is not so easy to write a compiler that does the
same kind of optimization. From a compiler writer’s point of view, the
ideal computer should have a systematic instruction set that makes code
generation straightforward (but not necessarily optimal). Faster processors
and larger memories would soon make this approach practical.

In defining the instruction set of the RC 4000, our goal was to simplify
program compilation (instead of hand-coding). Whereas most computers
had several instruction formats, the RC 4000 would have only one. This
meant that any instruction could use the full set of addressing modes.

Every instruction defined an operation between a memory location and
a register. However, by addressing the registers as the first four words of
memory, you could operate on any pair of registers. It was even possible to
jump to a register and execute its value as an instruction. This feature was
used to autoload an initial program into an empty memory.

The basic addressing modes were extended by an instruction, called Mod-
ify Next Address, which used its own address to increment the address part

4. Young Man in a Hurry 1966–70 63

of the next instruction. (The operation changed only the effective address
of the next instruction but left its displacement field unchanged.) This in-
struction made it possible to use any memory location as an index register.
A sequence of these instructions could modify an instruction with the sum
of several registers or perform multiple-levels of indirect adressing.

Since the hardware and software engineers lived in different worlds, I
faced the problem of describing the architecture in a formal language that
made sense to both groups. Although pictures with informal explanations
were helpful, they could not always convey the finer details accurately.

I settled the issue by using Algol 60 as a hardware definition language.
Before the computer was built, I wrote a reference manual that defined the
instruction set completely by an Algol program. This program simulated the
execution of RC 4000 machine code using simple and indexed variables to
represent hardware registers and memory locations. It defined how operands
were addressed in memory, and how arithmetic results were computed, bit
by bit, with overflow detection. It also defined the instruction fetch cycle,
the memory protection system, the interrupt system, and the function of the
power-on and reset keys.

Peter Kraft still remembers that if we discussed some aspect of the ar-
chitecture, which at first looked like a detail only, I would often go home
and work throughout the night, revising and rewriting the description of the
architecture one more time.

Inspired by my use of Algol 60 as a hardware definition language, one
of Isaksson’s engineers, Allan Giese, extended Algol and used it to describe
the internal structure of the RC 4000 (the microprogram).

At some point, Niels Ivar Bech called a meeting with Christian Gram,
Jørn Jensen, Peter Naur, Bjarner Svejgaard, Henning Isaksson and me to
discuss the proposed RC 4000 architecture. This was a valuable opportunity
to benefit from the comments of Regnecentralen’s senior people. It was also
a “final exam” I had to pass, before Isaksson would get the green light to
build the machine.

In preparation for the meeting, I distributed a detailed draft of the
RC 4000 reference manual. At the meeting, the architecture was accepted
without much discussion. I may have learned something from Naur’s per-
formance in the Algol 60 committee. It may also have helped that I had
seventeen years of experience in writing essays.

This was a group of people who (quite correctly) insisted on concise
writing. I still chuckle when I remember what Christian Gram said at that

64 A Programmer’s Story

meeting, almost forty years ago. In my draft, I wrote, ”A special autoload
instruction is used for initial program loading.” Christian’s response was:
”All instructions are special.” Bingo!

In April 1967, Regnecentralen published the first official edition of my
RC 4000 Computer Reference Manual. Two years later, Christian Gram
extended the manual with complete definitions of floating-point arithmetic
(Brinch Hansen 1969b). At that point, it was no doubt the only reference
manual in the world that made it possible for programmers to predict the
result, bit by bit, of dividing two non-normalized floating-point numbers!

? ? ?

I don’t mean to drag you through the details of fertilizer production and
real-time programming. But I would like you to understand the gist of what
we did, since this was my first encounter with a major revolution in computer
programming that became the focus of my professional work for thirty years:
concurrent or parallel programming—the art of making a computer execute
several programs at the same time.

The three units of the Pulawy plant produced ammonia, nitric acid, and
ammonium nitrate. The plant was operated manually under supervision of
the RC 4000 prototype, which had a core memory of 4K words (about 12K
bytes), but no drum or disk.

John Saietz, a chemical engineer from Haldor Topsøe, worked with Peter
Kraft to specify the process control tasks:

The RC 4000 would count the production of fertilizer and the consump-
tion of electricity by sampling digital signals from bag-filling devices and
kilowatt-hour meters every second. Every five minutes, the computer would
input about 350 analog measurements of pressures, temperatures, and ma-
terial flow rates, checking that they remained within certain alarm limits.
Every hour, two snapshots of the plant operation would be printed, listing
some 550 analog measurements. When one shift of workers was replaced by
another, the machine would print a report of material balances showing the
production and energy consumption over the past eight hours.

Topsøe also wanted the operators to be able to make the computer per-
form some tasks more frequently, when units of the plant were being restarted
after repair.

It was now up to us to translate the chemical engineer’s specification into
real-time control software.

4. Young Man in a Hurry 1966–70 65

Ignoring for the moment the engineering details of fertilizer production, a
programmer might summarize the project as follows: a small computer has to
perform a fixed number of cyclical tasks with frequencies determined by plant
operators. These tasks must be able to share data tables and input/output
devices (including an analog/digital converter and various printing devices).

It seemed natural to write a separate program for each control task.
However, we could not expect to fulfill the real-time requirements by exe-
cuting one task program at a time: two task programs might need to be
started at the same time, and the time required for a single execution of a
task program might also be longer than the time interval between successive
executions of other task programs.

Ideally, we would have liked to be able to run task programs in paral-
lel. However, since the computer could only execute one instruction at a
time, we had to settle for a pseudo-parallel mode of execution, known as
multiprogramming.

Four hundred times a second, an electronic timer interrupted the running
task program and transfered control to a scheduling program, known as the
monitor. The monitor then resumed the execution of another task program
for 2.5 msec, and so on. In this way, the computer was shared cyclically
among the active tasks.

The use of clock interrupts to simulate concurrent execution of programs
was pionered on the Atlas computer by Tom Kilburn and David Howarth
(1961). Multiprogramming is still the principle behind time-sharing operat-
ing systems (such as Unix or Windows).

Switching a single computer among multiple tasks is similar to a waiter
(the computer) serving several tables (the tasks). As long as the waiter only
spends a fraction of his time at each table, most of the customers will be
able to eat at the same time.

In the Pulawy system, each task used only a few percent of the computer
time. The rest of the time, the tasks would wait for slow peripheral devices.
As soon as a task started waiting for the completion of input/output, the
monitor switched to another task. So although the tasks never executed
instructions simultaneously, the typewriters would nevertheless print at the
same time.

In our real-time system, we needed some form of synchronization to pre-
vent several tasks from using the same printer (or data table) at the same
time. But what kind of synchronization?

The early multiprogramming systems were programmed in assembly lan-

66 A Programmer’s Story

guage without any conceptual foundation. The slightest programming mis-
take could make these systems behave in a completely erratic manner that
made program testing nearly impossible.

A common synchronization technique at the time was to suspend a task
in a queue until it was resumed by another task. The trouble was that
resumption had no effect if the queue was empty. This happened if resump-
tion was attempted before a task was suspended. (This pitfall reminds me
of a mailman who throws away your letters if you are not at home when he
attempts to deliver them!)

This mechanism was unreliable because it made a seemingly innocent
assumption about the relative timing of parallel events: A task must never
attempt to resume another task that is not suspended.

Since the Pulawy operators could change the frequencies of individual
tasks (and even stop some of them indefinitely), we could not make any
assumptions about the relative (or absolute) speeds of the tasks. Time-
dependent event queues would have been a disastrous choice for our real-
time system. Around 1965 IBM’s PL/I language included event queues of
this kind. Surprisingly, the suspend and resume primitives are also included
in the recent Java language.

Regnecentralen had no experience with multiprogramming. Fortunately,
Edsger Dijkstra was kind enough to send me a copy of his 1965 monograph
Cooperating Sequential Processes, with a personal dedication: “Especially
made for graceful reading!” (I still have it.) One of the great works in
computer programming, this masterpiece laid the conceptual foundation for
concurrent programming.

It began by making the crucial assumption about speed independence:

We have stipulated that processes should be connected loosely;
by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to
be regarded as completely independent of each other. In particu-
lar, we disallow any assumption about the relative speeds of the
different processes. [In Dijkstra’s terminology, individual tasks
were known as processes.]

Dijkstra proceeded to illustrate how concurrent processes can synchronize
themselves correctly by sending timing signals through semaphore variables
(as he called them).

4. Young Man in a Hurry 1966–70 67

Using semaphores, I was able to program the RC 4000 real-time monitor
in only 400 words of memory, leaving 3,700 words for the data logging tasks
that would be implemented by Peter Kraft and Charles Simonyi.

To reduce the size of the task programs, Peter and Charles defined a
special-purpose computer that made it easy to write compact code for the
complicated engineering computations. The code for this computer was
executed by a small interpreter written in RC 4000 machine code. Such
a machine, implemented in software (rather than hardware), is known as an
“abstract machine.” (In the 1980s, interpreted code would also be used in the
first versions of the Microsoft Word and Excel programs for the Macintosh
computers.)

Interpreted code has also been a marvelous tool for language implemen-
tation. The idea of letting a compiler generate code for an abstract machine
tailored to a programming language goes back (at least) to LISP in the early
1960s. A major advantage of interpreted code is that it is “portable”— it
can run on any computer, if you reprogram the interpreter in the machine
code of the target machine. In the 1970s, abstract machines would be used
to implement portable compilers for Pascal and Concurrent Pascal. Twenty
years later, the same technique would be used to make the Java language
“platform-independent.”

Now back to the RC 4000 real-time system. The final system occupied
98 percent of the 4K word memory. How was it possible to predict the size
of the software that precisely? Well, John Saietz simply gave us a list of
desirable features that could be omitted, if necessary. We just kept adding
more of these until the memory was full.

At the NordSAM conference in Oslo, Norway, on June 13, 1967, Peter
Kraft presented two papers, written by me, on the RC 4000 computer and
its real-time control system (Brinch Hansen 1967a, 1967b). According to
Electronic News:

Some 400 representatives from the Scandinavian countries par-
ticipated in NordSAM 67. . .The RC 4000 system developed by
A/S Regnecentralen of Copenhagen, a general-purpose computer
especially suited for real-time control, was held up as perhaps the
most promising development for international markets. (July 10,
1967)

In the same month, Regnecentralen began installing the RC 4000 proto-
type and its real-time system in Poland. The communist government was

68 A Programmer’s Story

responsible for construction of the plant. Unfortunately, under Wladislaw
Gomulka’s regime, efficiency was not a top priority. When Villy Toft and
Peter Kraft arrived in Pulawy, the computer room still left something to
be desired: it had neither doors nor electricity. It required patience and
diplomacy to get the room finished. However, a week later, these problems
had been fixed, and the installation could begin. The final operational tests
of the plant and its real-time datalogging system took place in the spring of
1968.

Later, I heard that the Polish government had not built enough railroad
capacity in Pulaway, and was unable to ship the fertilizer as fast as it was
being produced to prevent it from piling up. While I cannot confirm this
story, I do know Villy had to deal with mice and rats, who ate the backplane
wiring and relieved themselves on the circuit boards.

Strangely enough, I never visited the chemical plant in Poland, probably
because I didn’t like flying. I did travel once by train from Copenhagen
to a meeting in Warsaw, enjoying warm tea from a samovar in the rear of
the train. Returning through East Germany, I saw armed border guards
using huge mirrors to look under the train for refugees trying to escape the
communist regime.

? ? ?

In June 1967, I returned from Regnecentralen’s hardware group in Valby to
the Rialto Center as head of RC 4000 software development. From Aage
Melbye’s group, Peter Kraft and I were joined by Christian Gram, who
would define floating-point arithmetic and numerical procedures, and by
Søren Lauesen, who would be responsible for developing an Algol compiler.

I was now officially in charge of more projects than I could hope to par-
ticipate in. However, it still seemed important to me to continue doing, what
I enjoyed most—designing and documenting systems programs. I therefore
decided to head an operating system group consisting of Jørn Jensen, Peter
Kraft, Søren, and me.

In Pulawy, we had tailored a small real-time system to the specific needs
of a single customer. We were now hoping to develop a more general monitor
program for the RC 4000. It remained to be seen what kind of generality we
were looking for.

First we proposed a system with fixed memory partitions for simulta-
neous execution of three programs, with runtimes of the order of seconds,

4. Young Man in a Hurry 1966–70 69

minutes, and hours, respectively. But, we soon realized that this ad hoc
system was not a “general” solution to anything.

Finally, I went to Bech and said: “Look, we aren’t getting anywhere. Is
it all right with you if Jørn, Søren, Peter, and I stay at a country inn for
a weekend?” Bech immediately agreed (he had done the same thing when
Regnecentralen’s Cobol project had come to a standstill).

I wanted us to discuss the software issues in depth in cozy surroundings
to give ourselves one last chance. We had already agreed that we would
either return with new ideas or give up and settle for copying the best ideas
we could find elsewhere.

How on earth did I have the nerve, at age 29, to gamble my career on
a single weekend? Never underestimate the power of the dreams of youth
(and its blissful ignorance of “the real world”)!

Anyhow, on October 28, 1967, we checked in at Hotel Marina by the
seashore, north of Copenhagen. We talked for two days, drank coffee with
French cognac, and enjoyed fine dinners. One evening, Jørn and I saw a
black-and-white western at a local movie theater—just what we needed to
relax after intense discussions.

And it worked! The thought of returning to Regnecentralen without new
ideas was simply unacceptable to us. Out of that weekend came the first
seminal ideas for the RC 4000 multiprogramming system.

Over the next four months, our discussions moved beyond known con-
cepts to the cutting edge of operating system design. I will not attempt
to describe how our ideas slowly emerged in daily discussions (I remember
some, but not all, of it). Instead I will explain how one thing led to another
until everything fit together nicely. Just keep in mind that our conclusions
did not emerge nearly as orderly as I present them here.

Regnecentralen was already using computers for software development
and business data processing. The Pulawy project added real-time appli-
cations to this mix. Unfortunately, real-time software is often unique for
each application. And, Regnecentralen simply did not have enough system
programmers to develop a different operating system for each RC 4000 in-
stallation.

To avoid that trap, we had to look at operating systems in a new way.
Computer manufacturers were still developing different operating systems
for batch processing, time-sharing, and real-time scheduling. Our hope was
to develop a monitor program that would provide the necessary mechanisms
to implement all forms of multiprogramming.

70 A Programmer’s Story

Regnecentralen’s main service center updated large files on magnetic
tapes. Early on, we decided to simplify the operator’s task in such an in-
stallation. Instead of using device numbers, programs would refer to tapes
by device-independent names. This convention would allow an operator to
mount a tape on any available unit and give it a temporary name.

From Dijkstra, we had learned to regard the execution of a program
as a sequential process. Now, when you think about it, a sequence of in-
put/output operations on a magnetic tape is also a sequential process. This
insight led us to regard program execution and input/output as different
kinds of processes—we called them internal and external processes.

Since we had already decided to assign names to peripheral devices, it
was more or less inevitable that we would also end up giving names to
internal processes. The beauty of this idea was that programs could refer
to processes by their names without knowing where in memory they were
located.

We still had to deal with the problem of process synchronization. Sema-
phores were not robust enough for our purposes. If a program used
semaphores incorrectly, it could crash any operating system. Instead, the
monitor would implement a reliable form of message passing. When one pro-
cess sent a message to another process, the message was copied inside the
monitor and linked to a message queue associated with the receiver. The
memory protection guaranteed that the message would remain intact until
it had been safely delivered to the receiver.

So we now had named processes communicating by messages. You didn’t
have to be a genius to suggest that it would be a neat idea to let internal
processes request input/output by sending messages to external processes.
The monitor would, of course, have to maintain a message queue for each
device.

However, since an input/output operation could fail, it would be neces-
sary to return an acknowledgment to the process that sent a command to a
device. The way we handled this problem was elegant (but not so obvious).
In the end, every communication with a peripheral device consisted of an
exchange of a message and an answer between an internal process and an
external process. Devices received input/output commands as messages and
returned acknowledgments as answers. Needless to say, we soon decided to
let internal processes communicate the same way.

Every communication could now be viewed as a procedure call from one
process to another: a message identified the procedure and supplied its input

4. Young Man in a Hurry 1966–70 71

parameters; the corresponding answer returned the results of the procedure
call. In distributed systems, this form of communication is now known as
remote procedure calls.

Our final idea was to let internal processes form a tree structure in mem-
ory. In this tree, every process would function as the operating system for
its children, who, in turn, would control their own children, and so forth.
The leaves of the tree would be user processes. The idea of running several
operating systems at the same time is, of course, beautiful, but who needs
it? Over the years, I have learned not to worry about such questions. If
an idea is elegant, you will, sooner or later, find an (unexpected) use for
it. The generality of a process tree does, for example, provide an orderly
way of switching between different operating systems. It also enables you to
test a new operating system on top of an old one, which is a lot easier than
developing it on an empty machine.

In February 1968, before programming the system, I described our design
philosophy, which drastically generalized the concept of an operating system:

The system has no built-in assumptions about program schedul-
ing and resource allocation; it allows any program to initiate
other programs in a hierarchal manner. Thus, the system pro-
vides a general frame[work] for different scheduling strategies,
such as batch processing, multiple console conversation, real-time
scheduling, etc. [Here I obviously meant “processes” rather than
“programs.”]

The RC 4000 multiprogramming system was not a complete operating
system, but a small kernel upon which operating systems for different pur-
poses could be built in an orderly manner The kernel provided the basic
mechanisms for creating a tree of parallel processes that communicated by
messages.

This radical idea was probably the most important contribution of the
RC 4000 system to operating system technology. If the kernel concept seems
obvious today, it is only because it has passed into the general stock of
knowledge about system design. According to the IEEE Computer Society
(2002):

The RC 4000 multiprogramming system introduced the now-
standard concept of an operating system kernel and the sepa-
ration of policy and mechanism in operating system design. The

72 A Programmer’s Story

microkernels and remote procedure calls used in modern operat-
ing systems can trace their roots back to the RC 4000 system.

A well-documented reliable version of the RC 4000 multiprogramming
system was running in the spring of 1969. At that point, I described it in a
5-page journal paper.1 I then used this paper as an outline of the 160-page
system manual by expanding each section of the paper.2

? ? ?

Regnecentralen built several operating systems on top of the RC 4000 kernel.
Some of them used dynamic swapping of processes between main memory
and backing storage. As usual, the kernel only provided a mechanism for
doing this, but left the policy of how and when it was used to an operating
system. The latter would ask the kernel to stop a running process and
its descendants temporarily. The operating system would then output the
memory image of the process to a backing store, and use the same memory
segment to reload the image of another process, that had been stopped
earlier. The operating system would then ask the kernel to restart that
process and its descendants.

In the early 1970s, Regnecentralen developed RC 4000 software for two
Danish power plants, Vestkraft and Nordkraft. Villy Toft was again the
system installation manager. Working with Niels Nedergaard from Vestkraft,
Peter Kraft and Otto Vinter designed a process control system that combined
real-time tasks with swapping of Algol programs running as background jobs.
Later Regnecentralen’s Einar Mossin joined forces with Peter and Niels in
designing and programming a real-time system for Nordkraft. One of the
challenges here was to record the avalance of alarms, that occurs when the
plant is close to a breakdown.

I hired a student, Leif Svalgaard, who became so absorbed in program-
ming the RC 4000 for a Danish Weather Bureau, that he forgot to take his
final exam. Leif wrote an operating system that received data and plotted
weather maps in real-time. This operating system coexisted with another
one that used swapping to perform scientific computations in parallel. Ac-
cording to Leif: “The RC 4000 kernel made all this safe, efficient, and easy,

1P. Brinch Hansen, The nucleus of a multiprogramming system, Communications of
the ACM 13, April 1970.

2P. Brinch Hansen, RC 4000 Computer Software: Multiprogramming System, Regne-
centralen, Copenhagen, Denmark, April 1969.

4. Young Man in a Hurry 1966–70 73

allowing us to concentrate on meteorological problems instead of fighting the
operating system.”

Søren Lauesen (1975) described an ambitious operating system designed
to handle batch processing, remote job entry, time sharing, jobs generated
internally by other jobs, as well as process control simultaneously. It used
over a hundred parallel activities, one for every peripheral device and job
process. Since the RC 4000 multiprogramming system was limited to 23 con-
current processes, the “Boss 2” system (as it was called) simulated another
level of multiprogramming inside a single RC 4000 process. The additional
processes were known as “coroutines” (a programming concept that goes
back to the early 1960s). Using induction, Søren proved that his system was
deadlock-free and guaranteed to complete any request for service. It was
implemented and tested by four to six people over a period of two years:

When we started the Boss 2 design, we knew that the RC 4000
software was extremely reliable. In a university environment,
the system typically ran under the simple [manual] operating
system for three months without crashes. . .The crashes present
were possibly due to transient hardware errors . . .During the first
year of operation, the [Boss 2] system typically ran for weeks
without crashes. Today it seems to be error free.

? ? ?

My descriptions of the RC 4000 multiprogramming system caught the at-
tention of leading computer scientists in Europe and America.

The accolade was a letter from Edsger Dijkstra, professor at the Tech-
nological University of Eindhoven in the Netherlands:

I would like to express my gratitude and admiration for the man-
ual of the multiprogramming system for the RC 4000. It is ad-
mirable! You wrote “We present our system as a systematic and
practical solution. . .” and I have the feeling that you are fully
right in doing so: it strikes me as a convincing demonstration
that it is worthwhile to do a clean job and that it pays to be
elegant. My appreciation is equally divided between what the
manual describes and the way in which you have described it: it
was a pleasure to read it! (Letter from Edsger Dijkstra, August
1, 1969).

74 A Programmer’s Story

After receiving a copy of the RC 4000 multiprogramming system manual,
the Swiss computer scientist, Niklaus Wirth, wrote:

I am much impressed by the clarity of the multiple process con-
cept, and even more so by the fact that a computer manufacturer
adopts it as the basis of one of its products. I have come to the
same conclusion with regard to semaphores, namely that they
are not suitable for higher level languages. Instead, the natural
synchronization events are exchanges of message. (Letter from
Niklaus Wirth, July 14, 1969)

For almost forty years, Wirth developed innovative programming lan-
guages, such as Euler, Algol W, PL 360, Pascal, Modula, Modula-2, and
Oberon. When I first met him, he had returned from Stanford, after ten
years in Canada and the United States, and was now an assistant professor
at the ETH (The Federal Institute of Technology) in Zurich, Switzerland.

At a meeting at the ETH, two years before “Algol” became synonymous
with Algol 60, European and American computer scientists had outlined an
earlier version, called Algol 58. In May 1968, when the ETH celebrated the
Tenth Anniversary of Algol 58, I was invited to participate in a panel discus-
sion on operating systems. The panel, chaired by Niklaus Wirth, consisted of
Alfred Schai (Switzerland), Michael Griffith (France), Brian Randell (Eng-
land), Edsger Dijkstra (The Netherlands), Hans Rudolf Wiehle (Germany),
and me (Denmark). About 50 computer scientists attended the discussion in
an auditorium with terrible acoustics that made it difficult to hear anything.
I don’t remember much about the meeting, except that I met Niklaus Wirth
for the first time.

In August 1968, Peter Naur, Paul Lindgreen, Søren Lauesen and I at-
tended the IFIP Congress in Edinburgh. Tony Hoare, the inventor of the
famous Quicksort algorithm, presented a paper on data structures in a two-
level store. In the lobby of his hotel, he listened patiently, while I explained
the concepts behind our multiprogramming system.

The small group of Danes at IFIP 68 soon became regulars at the con-
ference bar. If I showed up early, the bartender would say: “Your friends
are not here yet.” Here I met David Howarth, the designer of the Atlas
supervisor that pioneered multiprogramming and demand paging. After ex-
plaining that the Scots drink their best whisky and export the rest, David
introduced me to Crawford’s Five Star whisky. Sure enough, when I asked
for this de luxe whisky in a liquor store in London, the owner explained that
he, unfortunately, only carried Crawford’s Three Star.

4. Young Man in a Hurry 1966–70 75

1968 was also the year in which the first Nato Conference on Software
Engineering was held in Garmisch, Germany. Dijkstra (1999) viewed this as
a turning point in the history of computer programming:

It was there and then that the so-called “Software Crisis” was
admitted and the condition was created under which program-
ming as such could become a topic of academic interest. The
latter, not surprisingly, turned programming from an intuitive
activity into a formal one.

In October 1969 I attended the 2nd Nato Conference on Software En-
gineering in Rome, Italy (Naur 1969). About sixty people from eleven
countries attended. Looking like a Who’s Who in Programming, the list
of participants included: Fritz Bauer, Bob Barton, Edsger Dijkstra, Tony
Hoare, Butler Lampson, Roger Needham, Alan Perlis, Brian Randell, John
Reynolds, Doug Ross, Jules Schwartz, Christopher Strachey, Niklaus Wirth,
and Mike Woodger.

Niklaus Wirth’s working paper on “The programming language Pascal
and its design criteria” was my introduction to the first secure programming
language that was powerful enough to implement its own compiler.

Edsger Dijkstra talked about “Structured Programming.” This method
of stepwise programming boils down to breaking a program into small ab-
stract programs that can be divided further, until you reach a level of detail
supported by the programming language. At that point, you turn around
and combine the small, final pieces into a complete program. The method is
similar to the mathematician’s way of dividing a theorem into lemmas that
can be verified separately and then used to prove the theorem.

What I remember most clearly is Butler Lampson from the Berkeley
Computer Corporation. Butler talked like a machine gun. For those who
don’t know Butler: The rate of human speech is measured in “millilamp-
sons.” Butler is the only one who has reached the absolute limit of “1
lampson.”

? ? ?

Years ago, I wrote an autobiographical sketch, entitled “The programmer
as a young dog” (Brinch Hansen 1976d), about my time at Regnecentralen.
The title was inspired by James Joyce’s “A portrait of the artist as a young
man” and Dylan Thomas’s “Portrait of the artist as a young dog.” When

76 A Programmer’s Story

I showed it to my colleague, Skip Mattson, at Syracuse University, he said:
“I would like to know more about your Danish boss.” All right then, I will
tell you what I know about him.

Niels Bech was born in 1920 in Lemvig, a small Danish town in Northern
Jutland. As a child and youth, he would stutter helplessly when he tried to
pronounce the combination of an “s” and a “b” in his name. He invented
the middle name, Ivar, to be able to say his own name. Growing up in a
small, provincial city, he must have been at the receiving end of many cruel
jokes.

Bech was a tall guy. At a movie theater in his hometown, a man be-
hind him repeatedly asked him to sit down. Finally, Bech had enough—he
stood up and turned around to show how tall he really was. At that point,
somebody shouted: “My God, now he is standing on the seat!”

After the completion of Dask in 1957, Niels Ivar Bech became managing
director of Regnecentralen. When I first met him, he was 43 years old. A
man of many contradictions, he did not hesitate to make bold decisions that
put his tiny company at financial risk. Yet, because he was afraid of taking
exams at the university, he never completed a higher education.

He trusted his coworkers implicitly and let them pursue their own ideas
with minimal intervention. He even tolerated that his hardware development
groups, headed by Bent Scharøe Petersen and Henning Isaksson, used dif-
ferent standards of documentation. However, to achieve his goals, he would
sometimes bypass his group managers. Bech’s underground style of man-
aging through unofficial channels was known as “moling.” On his fiftieth
birthday, his staff gave him a stuffed mole in a glass cage.

Sometimes, Bech’s moling worked brilliantly. One of Scharøe Petersen’s
electronic engineers, Kurt Henning Andersen, wanted to develop the world’s
fastest tape reader, using an electronic buffer to stop the paper tape gradu-
ally without breaking it. Scharøe did not support the idea, correctly pointing
out that Regnecentralen had no expertise in the development of electrome-
chanical devices. However, when Bech heard about the idea, he gave Kurt
enough money to develop the paper tape reader in his own kitchen. When
the RC 2000 paper tape reader was presented in the fall of 1963, it read
paper tape at the unbelievable rate of 2,000 char/sec. With a speed of 15
feet/sec, the tape emerged from the reader like exhaust from a jet plane dur-
ing take-off, and landed in a waste basket eight feet away. Over a ten-year
period, Regnecentralen sold about 1,200 RC 2000s.

But Bech’s interference could also be frustrating. At a meeting with a

4. Young Man in a Hurry 1966–70 77

potential customer, he once asked me how long it would take to finish the
Algol compiler for the RC 4000. My realistic estimate was twelve months.
That was not the answer Bech wanted to hear. So he turned to Jørn Jensen
and asked him: “Don’t you think we can do it in six months?” Taking the
hint, Jørn said “Sure, we can.” It made me angry that Bech undermined my
credibility as software manager in front of a customer. As it turned out, it
took eighteen months to finish the compiler.

In the end, I believe that Bech’s unorthodox management style limited
Regnecentralen’s potential for future growth. His moling worked when Reg-
necentralen was small. But, eventually, he would have needed a growing
staff of professional managers, who would not have tolerated his habit of
bypassing them, whenever he found it convenient to do so.

However, in all other aspects, Bech was an inspiring leader. His directive
for the RC 4000 software development was rather amazing. His only request
to me was: “I need something new in multiprogramming!”

In my opinion Niels Ivar Bech was somewhat of a gambler and show-
man. He could rarely resist the temptation to do the unexpected. I once
participated in a negotiation between Bech and a customer about the sale
of an RC 4000 in the middle of a noisy discotheque. Perhaps it is true that
unconventional acts rarely succeed in business (we did not sell a machine
that evening), but they almost always work in research.

Research is gambling at the highest level. A cautious effort only leads
to uninteresting results. A research director must have a sense of which
problem to attack next and the courage to give his collaborators the freedom
to solve it without imposing narrow constraints. The talent for inspiring his
associates to create new things of world-wide renown was one that Bech
possessed in the highest degree. Once you have known a leader with this
intellectual courage, it is quite depressing to realize how extremely rare this
quality is.

Niels Ivar Bech was a dreamer in the most creative sense of the word.
His time scale was longer than the one I adopted as a young, impatient
engineer. I found it unreasonable that he gave some of his associates time
to write textbooks on computer science, without considering how this would
influence the immediate needs of the company. That was short-sighted of
me. While Bech gave younger colleagues the chance to create new things,
he gave his senior people the opportunity to lay the foundation of computer
science education in Denmark.

Denmark has made four world-class contributions to computer technol-

78 A Programmer’s Story

ogy: the Algol 60 report, the Gier Algol compiler, the RC 2000 paper tape
reader, and the RC 4000 multiprogramming system. Each of these products
combined radically new ideas, which were years ahead of their time (and
therefore could not be motivated by an immediate “need”). Without Niels
Ivar Bech’s brilliant sense of innovation, a small Danish company could prob-
ably not have attracted so many outstanding young engineers and be at the
cutting edge of programming technology for more than a decade.

Bech’s drive and vision went far beyond his job at Regnecentralen. From
1959, he was instrumental in organizing the Nordic Symposiums on Comput-
ing, known as NordSAM. In 1960, he became one of the founding members
of the International Federation for Information Proccessing (IFIP). For his
contributions to IFIP, Bech received the Silver Core Award in 1974.

The decision to publish a Scandinavian journal of computing was made
over a glass of beer in Bech’s office in 1960. Bech provided economic support
and offered to let Regnecentralen handle the administration and distribution.
The first issue of the journal BIT gave readers the following choice:

1. Yes, I want to subscribe.
2. No, I do not hesitate. Put me on your subscription list.
3. I don’t know of any good reason why I should not subscribe.

From its start, Peter Naur served as co-editor of BIT. His seminal papers
on the Gier Algol compiler, elimination of go to statements, type checking,
program assertions (“general snapshots”), and modular programming (“ac-
tion clusters”) all appeared in BIT. Naur’s paper on Go to statements and
good Algol style (1963b) appeared five years before Dijkstra’s more widely
publicized Go to statements considered harmful (1968a).

My early papers on the Siemens Cobol compiler, the RC 4000 architec-
ture and the real-time system at Pulawy were also published in BIT.

During the cold war, American companies were not allowed to sell com-
puters in Eastern Europe. This gave Bech a unique opportunity to sell
Regnecentralen’s equipment in Poland, Czechoslovakia, Hungary, Bulgaria,
Rumania, East Germany, and Yugoslavia.

If a communist country was short on western currency, Bech was not
above a little horse trading (seriously). On one occasion he apparently de-
livered computer equipment to Poland in return for a shipment of horseflesh,
which he somehow managed to sell in Denmark.

His boundless energy and visionary thinking made it inevitable that some
of his efforts would meet resistance. Around 1960, the Technical University
of Denmark and the National Engineering and Science Foundation (Statens

4. Young Man in a Hurry 1966–70 79

teknisk-videnskabelige fond) recommended that the government support the
use of Gier computers for research and education at Danish universities. This
idea was successfully opposed by Willy Olsen, manager of the government’s
own computing center, Datacentralen, opened in 1959 at the initiative of
Viggo Kampmann, minister of finance. I once asked Kampmann, who was
married to my father’s cousin, why he supported the creation of Datacen-
tralen. He said he thought competition would be good for Regnecentralen.
Willy Olsen, apparently, did not share Kampmann’s belief in competition.

Throughout the 1960s, Bech tried unsuccessfully to persuade Scandina-
vian computer manufacturers to merge. Once, Bent Scharøe Petersen and I
accompanied him to a meeting with DataSaab in Linkőping, Sweden. That
evening, we returned to Copenhagen on a tiny airplane, flying through a
blizzard with zero visibility. Sitting in front with the pilot, Scharøe men-
tioned that we had lost all radio contact. That did not seem to worry Bech
in the least.

On another flight in Bulgaria, passengers started screaming and praying
when an engine caught fire. The story goes that Bech calmly ordered beer
for everybody.

Towards the end of the 1960s, it became increasingly clear that the pi-
oneering era of the Danish computer industry was coming to an end. In
1970, I left Regnecentralen and moved to the United States. At that time,
Niels Ivar Bech was already showing signs of illness. Since then I only saw
him briefly at the IFIP 71 Congress in Milena’s hometown, Ljubljana, in
Slovenia.

In 1971, Bech was fired by Regnecentralen’s board of directors. I don’t
know why he was dismissed. In his dealings with business leaders and gov-
ernment employees, he probably had the misfortune of thinking big among
people who were not used to thinking big. Since he was decades ahead of his
time, Bech undoubtedly would have found some of his board members short-
sighted. They, in turn, would almost certainly have found him unrealistic
(as I did, on the occasion when Bech told me that his goal was “to push IBM

back into the Atlantic Ocean”). Perhaps, in the words of Vartan Gregorian,
“He did not and could not serve people he did not respect, especially those
who were political hacks, men without integrity, mission or vision, empty
suits.” Who knows?

On July 25, 1975, he died of a heart attack at age 55. With Niels Ivar
Bech’s death, Denmark lost its leading role in the development of program-
ming technology. Four years later, Regnecentralen ceased to exist. However,

80 A Programmer’s Story

by then it hardly mattered. Bech had already made a lasting contribution to
his country by training the first generation of computer pioneeers and lay-
ing the groundwork for computer science education in Denmark. Over the
years, a number of Regnecentralen’s senior people became faculty members
at Danish universities: Peter Naur, Aage Melbye, Ole Møller, Poul Sveistrup,
Christian Andersen, Henning Isaksson, Henning Bernhard Hansen, Christian
Gram, Peter Kraft, Søren Lauesen, Paul Lindgreen, and I (for a short time).

Those of us, who were privileged to start our careers under Bech’s vision-
ary leadership, will always remember Regnecentralen as the lost paradise.

In 1983, I dedicated my book, Programming a Personal Computer, to
the memory of Niels Ivar Bech.

? ? ?

My years at Regnecentralen were some of the happiest years of my profes-
sional life. I had worked in compilers, computer architecture, and operating
systems. And I had met four computer scientists, who would influence my
future work: Peter Naur, Edsger Dijkstra, Niklaus Wirth, and Tony Hoare.

It was time to move on. I was now planning to go abroad and write the
first systematic textbook on operating system principles.

