

3

LEARNING FROM THE MASTERS 1963–66

Regnecentralen – Algol 60 – Peter Naur and Jørn Jensen – Dask and Gier Algol –

The mysterious Cobol 61 report – I join the compiler group – Playing roulette at

Marienlyst resort – Jump-starting Siemens Cobol at Mogenstrup Inn – Negotiating

salary – Compiler testing in Munich – Naur and Dijkstra smile in Stockholm – The

Cobol compiler is finished – Milena and I are married in Slovenia.

On January 31, 1963, I graduated from The Technical University of Denmark
with a master’s degree in electronic engineering. Shortly before, I started
looking for my first job as an electronic engineer:

I want to be sure I get a good job—one concerned with electronic
computers, and the main thing is not my wages, but rather that
I constantly learn something new. The question about what to
learn is quite tricky. First I wanted to learn “everything” about
computers, but lately a professor at our technical university has
convinced me that there is the danger, that I will spend my most
productive years merely trying to understand, what others have
done, without having time to contribute anything myself. So the
question comes up: When and what to specialize in? Anyhow I’m
going to have a talk with the manager at our biggest computing
center on January 3rd. (Letter to Milena, January 1, 1963.)

Actually, I did have some idea about my professional goals. I just didn’t
know, if I could pursue them in Denmark.

The only place in Denmark that developed computers was Regnecen-
tralen, a research institution under The Danish Academy of Technical Sci-
ences. In 1957, Regnecentralen completed the first Danish computer, Dask,
in an old villa on Bjerregaardsvej 5, in Valby, a suburb of Copenhagen. Built

Copyright c© 2004 by Per Brinch Hansen.

35

36 A Programmer’s Story

under the leadership of Bent Scharøe Petersen, Dask used thousands of vac-
uum tubes in its electronic circuits and tens of thousands of magnetic cores
in its memory. It executed 18,000 instructions per second.

Only one copy of Dask was built. Weighing three and a half metric tons,
it was installed in the former dining room of the villa. The oak parquet floor
had to be reinforced to support this computational monster. A large cooling
and ventilation system was installed in the basement.

The power supply of Dask emitted a sharp blue light that was visible
from the street. An elderly lady, with a vivid imagination, complained that
she felt a prickly sensation from “these electrons and atoms” whenever she
walked past the villa.

In November 1961, Regnecentralen finished a small, transistorized com-
puter, named Gier. Housed in a wardrobe-sized closet with teak paneling,
Gier looked like a piece of modern Danish furniture. It had a core store of
1024 words and a drum of 12800 words (about 5K and 60K bytes). Eventu-
ally about fifty Giers were produced.

My job interview at Regnecentralen started in the Rialto Center, a new
office building on Falkoner Alle 1, within walking distance of the apartment
I shared with my sister in Frederiksberg.

I talked briefly with the director, Niels Ivar Bech, a charming, dynamic
man, who asked me: “Where will you be in ten years?” With tongue in
cheek, I said: “In your chair!” He smiled—that was the kind of answer he
liked. Looking back, my answer was absurd. There was no chance that I
would ever be able to replace Bech’s inspired leadership. But I didn’t know
that at the time.

For the next six hours I had unscheduled meetings with various depart-
ment heads. Whenever they realized I was looking for something else, they
would suggest that I visit another department.

I spoke to Aage Melbye about administrative data processing. His people
programmed some of the most demanding computer applications. The main
problem was to update large files efficiently and reliably. Since drums and
disks were still small, the files were stored on magnetic tapes. To avoid wast-
ing computer time after a tape failure, it was necessary to include restart
facilities in these programs. A few years later, I would gain first-hand knowl-
edge of these problems, when I programmed the input/output system for the
Siemens Cobol compiler.

My next stop was the hardware group in Valby, headed by Henning
Isaksson. Two years earlier, they had finished the Gier computer. I explained

3. Learning from the Masters 1963–66 37

my interest in computer architecture and mentioned that I would prefer a
job that would constantly teach me something new. Henning made it clear
that, if he needed two flip flops, I would have to do the same thing twice.
This made sense from his point of view (but not mine). I could not have
predicted that Henning eventually would make my dream of becoming a
computer architect come true. However, on that day, he suggested that I go
back to the Rialto center and talk to the compiler group.

On the fifth floor, I met the leaders of Regnecentralen’s compiler group:
Peter Naur, a tall man with a serious expression and a full beard, and
Jørn Jensen, a short man with a friendly smile and an unruly mop of hair.
When I had explained my interest in understanding the relationship between
programming languages and computer architecture, they handed me a thick
yellow report with a devious smile and said: “Come back next week if you
understand this.” The report was entitled Cobol-1961, Report to Conference
on Data Systems Languages (U.S. Department of Defense 1961).

James Joyce would have given the Cobol 61 report high marks for un-
readability (but low marks for consistency). I did not understand a word of
it. Fortunately, nobody asked me about it when I joined Regnecentralen’s
compiler group. To Milena, I wrote: “At last I found the right thing—a
group working on advanced problems in computer languages.”

? ? ?

Peter Naur was educated as an astronomer. He joined Regnecentralen in
1959 and became heavily involved in the international development of the
programming language Algol 60.

The invention of programming languages is surely one of the most sig-
nificant milestones in the history of computing. The science writer, Isaac
Asimov (1976), put it this way:

I strongly suspect that the advance of science or any branch of
it depends upon the development of a simple and standardized
language into which its concepts can be put. Only in this manner
can one scientist understand another in his field.

Now, a programming language can only serve as a standard if it is con-
cisely defined in a language report. In practice, however, most language
definitions rely heavily on the reader’s ability to fill in gaps and remove in-
consistencies by educated guessing. I believe there is a reason for this sad
state of affairs:

38 A Programmer’s Story

The task of writing a report that defines a programming language with
complete clarity to its implementors and users may look deceptively easy
to someone who hasn’t done it before. But in reality it is one of the most
difficult intellectual tasks in the field of programming.

The programming language Algol 60 introduced recursive procedures,
block structure, scope rules, and type declarations in imperative program-
ming. It was developed by an international committee that included John
Backus (the developer of Fortran), Fritz Bauer and Klaus Samelson (who,
together, developed the stack method of expression evaluation), John Mc-
Carthy (the inventor of LISP and one of the founding fathers of artificial
intelligence), Alan Perlis (a pioneer of compiler development and the first
chair of computer science at Carnegie-Mellon), and Peter Naur (whose con-
tribution to Algol would be a landmark in computing).

Now, it is one thing to have a group of smart people sitting around a
table discussing clever ideas. It is quite another thing for these people to
describe their best ideas concisely in writing.

In 1959, at the initiative of Peter Naur, the Algol Bulletin was issued,
which served as an international forum for discussing the development of the
language. The bulletin was published by Regnecentralen.

For a meeting of the committee in January 1960, Naur prepared an un-
solicited draft of the Algol report. Throughout the draft, he used a recent
notation introduced by John Backus to define the syntax of all possible Al-
gol programs! Naur’s improvements of Backus’s notation became known as
BNF notation (or Backus-Naur form).

This was a huge step forward compared to the Fortran report, that de-
fined the programming language by examples only. The problem with this
informal method is illustrated by the old joke that “French is easy: ‘horse’
is cheval, ‘dog’ is chien,. . . and so on.”

John Backus (1981) acknowledged Naur as the driving intellectual force
behind the definition of Algol 60:

Peter Naur’s conduct of the Algol Bulletin and his incredible
preparation for that [January 1960] meeting in which Algol was
all written down already in his notebook—he changed it a little
bit in accordance with the wishes of the committee, but it was
that stuff that really made Algol 60 the language that it is, and
it wouldn’t have even come about, I don’t think, had he not done
that.

3. Learning from the Masters 1963–66 39

After seeing his draft, the committee asked Naur to be the editor of the
official Algol 60 report.1 Twelve years later, the Dutch computer scientist
Edsger Dijkstra (1972) wrote:

The famous Report on the Algorithmic Language Algol 60 is the
fruit of a genuine effort to carry abstraction a vital step further
and to define a programming language in an implementation-
independent way. . .The report gloriously demonstrated the power
of the formal method BNF, now fairly known as Backus-Naur-
Form, and the power of carefully phrased English, at least when
used by someone as brilliant as Peter Naur. I think that it is fair
to say that only very few documents as short as this have had
an equally profound influence on the computing community.

? ? ?

A computer program, written in a programming language, like Algol 60,
is just another text. You can print it and edit it, but a computer cannot
execute it as it stands. Before an Algol program can be executed, it must
be “translated” into numeric machine code for a particular computer. The
system program, that performs this translation, is called a compiler.

The small core memories of the mid 1960s made it impractical to write a
program, as large as an Algol compiler, in a programming language, such as
Fortran. Why? Because machine code generated by a Fortran compiler (or
any other compiler) occupied significantly more memory than hand-written
code. To use a small memory efficiently, a compiler had to be written in
assembly language—a cryptic notation that required a programmer to specify
each machine instruction in the code. A large program written in assembly
language usually only made sense to the person who wrote it.

After the completion of the Algol 60 report, Regnecentralen’s next chal-
lenge was to design Algol compilers for Dask and Gier. In this effort, Jørn
Jensen’s genius for machine coding would play a key role.

The American computer scientist, Alan Perlis (1981), left this impression
of Jørn:

1P. Naur (ed.), J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauer, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and
M. Woodger, Report on the algorithmic language Algol 60, Communications of the ACM,
May 1960.

40 A Programmer’s Story

When the [first Bendix G-20 computer] arrived at Carnegie it
came with a full load of software: one binary load routine used
by the engineers for testing memory. That was the sole extent of
the software.

How could one build a compiler [for Perlis’s language, named
Gate] quickly? We were fortunate at that time to have with us
a visitor from Denmark, Jørn Jensen, who was with the Regne-
centralen. Jørn was a magnificent programmer.

Jensen sat at one desk; he was building the assembler. Arthur
Evans sat at another desk; he was building the parser. Harold van
Zoren sat at the third desk; he was building the code generator.
All three were being defined simultaneously.

The method of construction worked as follows. Jensen would
decide that a certain construction ought to be in assembly lan-
guage, and he would broadcast to the other two. . .When they
decided. . .what changes would be required, working in good code-
team fashion, they suspended and broadcast back to Jensen their
proposals. Jensen would drop what he was doing and start an-
other independent process. The amount of code that each wrote
turned out to be of the order of about 2,000-3,000 machine lan-
guage instructions. It turned out that at that size of code, such a
technique worked magnificently. Each of the programmers could
keep two to four processes in the air simultaneously, and changes
progressed very fast. All three parts were completed at the same
time. Jensen debugged the assembly language on the computer,
simultaneously with the debugging of the parser and the code
generator.

In June 1960, the Dutch computer scientists, Edsger Dijkstra and Jaap
Zonneveld, completed the world’s first Algol 60 compiler. At Regnecentralen,
Jørn Jensen, Toke Jensen, Per Mondrup, and Peter Naur completed an Algol
compiler for Dask in late 1961. This was followed by the much more elegant
compiler for the Gier, which Dijkstra called “a masterpiece.” To appreciate
the achievements of the Dutch and Danish software pioneers, you need to
know that there were no textbooks on compilers at the time. In 1964, Brian
Randell and Lawford John Russell would publish the first book on Algol 60
Implementation.

Regnecentralen’s second compiler implemented Algol 60 on the Gier com-
puter with a memory of only 1K words and a drum of 12K words. Inspired

3. Learning from the Masters 1963–66 41

by the Atlas computer at Manchester University in England, the run-time
system implemented “demand paging” of compiled code—without any hard-
ware support! The demand paging used the drum to simulate a “virtual
memory” that was much larger than core memory, and, in most cases, al-
most as fast.

The programs and tables of the Gier compiler occupied about 5,200 mem-
ory words. The machine programming was done almost entirely by Jørn
Jensen. It is amazing that a human being could comprehend such a large
program written in unreadable assembly language!

Gier Algol (Naur 1963a) introduced several innovations in compiler tech-
nology, which I cannot go into here. The compiler was checked by using it
to compile small Algol programs constructed specifically to ensure that each
instruction of the compiler would be executed at least once. This systematic
approach to testing made the compiler virtually error-free.

Regnecentralen planned to demonstrate Gier Algol at the IFIP Congress
in Munich, Germany, in August 1962. As luck would have it, the Gier, that
was shipped to Munich by truck, was shaken to pieces. Bech immediately
borrowed another Gier, that had already been delivered to a customer, and
sent it to Munich (again by truck).

The demonstration of Gier Algol in Munich was a success, and Regne-
centralen got a contract with Siemens to develop a Cobol compiler for the
Siemens 3003 computer.

This is where things stood, when I joined Regnecentralen’s compiler
group on March 1, 1963.

? ? ?

At Control Data Corporation in Minnesota, Seymour Craig designed the
most powerful computers of the 1960s. The CDC 1604 was a large com-
puter intended for scientific customers. It had been used to provide on-line
quotations of stock prices from the New York Stock Exchange.

In 1963, Regnecentralen acquired a CDC 1604A computer for its main
service center. Many years later, I had dinner with a former CDC executive,
who remembered Niels Ivar Bech. He had never forgotten this Dane who
traveled to the corporate headquarters in Minneapolis and tried to convince a
roomful of rugged executives to give Regnecentralen a CDC 1604A computer,
in return for a Cobol compiler—with Danish keywords! When that didn’t
work, Bech negotiated an agreement with the Danish shipbuilding yard,
Burmeister & Wain, to buy a quarter of the computer time.

42 A Programmer’s Story

Regnecentralen was a lively place. On the afternoon of March 28, 1963,
seventy people gathered in the small cafeteria at the Rialto center to cele-
brate the news of the CDC computer. An hour later, after liberal consump-
tion of the strong beer, known as Easter brew, the room was very noisy.
At dinner time, I followed this happy group of people on a tour of local
restaurants. Around midnight, I walked home with a splitting headache.

In August 1963, the CDC machine was installed in the Rialto center.
Bent Bagger and Henning Bernhard Hansen would replace the English key-
words in the CDC Cobol compiler with Danish words. The creative part of
this task was to suggest Danish terminology for data processing concepts.
Once they had settled on the terminology, the actual replacement of key-
words in the CDC compiler must have been straightforward, compared to
the task of building a complete Cobol compiler from scratch (as the compiler
group had to do).

Peter Naur was also interested in the development of computer termi-
nology. One day he entered the office, in which Paul Lindgreen and I were
working, and started talking about finding Danish words for computing.
Since computers are not just number crunchers, he felt that “computer sci-
ence” was a misnomer. He had decided to call the discipline datalogy (in
Danish: “datalogi”). The architect of Gier, Bjarner Svejgaard, would later
remark, that English may not be good Danish, but apparently a mixture of
Latin and Greek is all right.

Naur was now trying to decide what a “computer” ought to be called. In
a facetious mood, I suggested calling it a datamaton (Danish: “datamat”).
I didn’t tell Naur that my inspiration was a self-service laundry in Fred-
eriksberg, named “laundromat” (Danish: “vascomat”). On the spot, Paul
Lindgreen added the word datamatics (Danish: “datamatik”) to denote au-
tomatic data processing (Naur 1966b). (Paul Lindgreen’s recollection is that
he was the one who asked me to suggest a Danish word for a computer.)

This is the only time, I have added a new word to my own language.
For many years, everybody in Denmark called it a “datamat,” until a new
generation of PC users decided that smart people speak “Denglish.” So,
nobody says “datamat” anymore. It is now “computeren”—pronounced with
a heavy Danish accent.

? ? ?

Before I could contribute anything to a Cobol compiler, I obviously needed
to teach myself to write small computer programs.

3. Learning from the Masters 1963–66 43

One Sunday, my father wanted to invite me to the horse races, but, since
I didn’t care which horses won, I preferred to stay at home. The following
Sunday, he proposed that we try our luck at the casino. After a pleasant
dinner, we drove to the Marienlyst resort, north of Copenhagen.

At the roulette, my father followed a simple strategy for postponing the
inevitable loss of his money, by slowly increasing his bets, until he reached
the maximum amount permitted by the resort. When that happened, he
would begin another round of bets, starting with the smallest possible bet.
If he won anything, he would immediately start another round. When his
total losses exceeded the modest amount, he was prepared to lose for the
evening, he quit.

To my great surprise, I won a small amount of money that evening. The
same thing happened to me on another occasion. Of course, something must
be wrong, I thought—every roulette is designed to have only one winner
in the long run: the owner! This reminds me of the classic exchange in
the movie Never give a sucker an even break (1941): “Is this a game of
chance?” asks the patsy. “Not the way I play it!” responds the card shark.
So I decided to write an Algol program that would make the Gier act like a
roulette.

Since Gier had no operating system, I signed up for a block of time,
say 15 minutes, and had the machine all to myself. Most of the time, the
computer was idle, while I input my program text from paper tape, typed
user commands, or printed my output on the typewriter terminal.

For larger computers, the inefficiency of open shop operation inspired
computer manufacturers to develop batch processing or multiprogramming
systems. However, for the small Gier computer, the manual operation was
not a serious problem.

At first, my computer roulette was not very random: it stopped twice as
often on odd numbers as it did on even ones. But, after a while, it worked:

The other day I invited my father to Regnecentralen, because I
had succeeded in making the computer Gier play roulette. My
father was very amused indeed. The computer is connected to
a typewriter, and the roulette-program was made so, that the
computer started the performance by asking: “How many games
are you prepared to risk?” I typed: “10000 games.” Then the
computer started playing the many games, saying BZZ, BZZ. . .
for nearly three minutes. And, finally it typed: “Sorry!—you
have lost 45980 Dinars.” [For the benefit of Milena, I replaced

44 A Programmer’s Story

Danish kroner with Yugoslav dinars.] (Letter to Milena, June 6,
1963.)

Using elementary probability theory, it was easy to verify the results of my
simulation. Once I understood the exact nature of the game, I lost all interest
in playing roulette.

In my book, Programming for Everyone in Java (1999), I used roulette
simulation as a beginner’s exercise.

Milena felt that my simulation was a frivolous way of using an expensive
computer. I explained that it was an example of the Monte Carlo Method of
computing, named after the famous resort town in Monaco, which has the
world’s oldest casino.

Thirty years later, I used simulation on a supercomputer with 48 pro-
cessors to find the shortest tour through 100 cities in two minutes (Brinch
Hansen 1995). This is obviously a problem of some practical importance.
(It is also a much harder problem than roulette simulation.)

? ? ?

The programming language Cobol was designed about the same time as
Algol. At the 1978 conference on the History of Programming Languages
(HOPL), Joe Wegstein, National Bureau of Standards, commented (Cobol
Discussion 1981):

The Cobol Committee had these people from various manufac-
turers who had a lot of vested interest, and were very intense
about that sort of thing in connection with everything being
done. Whereas, the Algol Committee had a bunch of senior pro-
fessors of Europe and an oddball collection from the U.S., and—
all very temperamental and intense about mathematical aspects
of programming.

Now, Algol was designed for numeric computations. The only data struc-
tures supported by the language were tables (“arrays”) of numbers.

Cobol, on the other hand, was designed for business data processing. The
most important contribution of Cobol was the introduction of data records
and sequential files, which were needed to process data on punched cards
and magnetic tapes.

Ten years later, Niklaus Wirth combined both forms of computing by
including records and files in his Algol-like language, Pascal.

In his History of Modern Computing, Paul Ceruzzi (2003) writes:

3. Learning from the Masters 1963–66 45

Cobol became one of the first languages to be standardized to a
point where the same program could run on different computers
from different vendors and produce the same results.

Alas, this worthy goal was not reached. After completing the Siemens Cobol
compiler, Regnecentralen concluded that:

The major problem of implementation turned out to be the nu-
merous definition problems created by the vagueness of the offi-
cial Cobol report. (Brinch Hansen 1966)

Compared to Algol 60, Cobol was poorly defined. In places, where the Cobol
report was incomprehensible, Regnecentralen’s compiler group had to guess
what the intention of the Cobol committee might have been. More than
likely, other compiler groups interpreted the report differently and imple-
mented incompatible variants of the language.

A peculiar feature of Cobol was its attempt to replace well-known alge-
braic notation by verbose English: whereas you might write a/b in Algol,
this became DIVIDE A BY B in Cobol (or even DIVIDE B INTO A). This
was supposed to make it easier for managers to read programs.

At the HOPL conference, the Cobol notation provoked the following
exchanges of questions and answers:

Question: Did the participants in the original Cobol develop-
ment sincerely believe that the use of an English-like language
would enable nonprogrammers (e.g. managers) to understand
programs.

Answer: Yes. We sincerely believed managers would be able to
read the programs and that more people would find them easier
to write.

Question: Did the Cobol committee seriously believe that the
users could not handle grade school operators +,−, ×, /?

Answer: Quite seriously, there was a strong sentiment. . .that the
users did not want to use algebraic symbols in the normal course
of writing an arithmetic expression.

46 A Programmer’s Story

How can one explain that Cobol remained the most widely used program-
ming language on the planet for decades? Well, in 1960, the U.S. Depart-
ment of Defense announced that it would only use computers that supported
Cobol. That guaranteed the commercial success of Cobol—independent of
its merits!

Needless to say, the government could not dictate the opinions of com-
puter scientists:

Question: [Cobol] continues to be viewed with great disdain, as
is data processing in general, by many computer scientists. It
is rarely taught in “prestigious” computer science departments,
where it is still regarded as an abomination. Have you any com-
ments?

Answer: I think Cobol ought to be taught because there are con-
cepts in there which are important and which are useful, and
business data processing has a large significant, intellectual com-
ponent. But most of the senior key computer science people don’t
agree.

This was the programming language that Regnecentralen’s compiler group
would be responsible for implementing for Siemens in Munich.

? ? ?

Peter Naur and Jørn Jensen worked so closely together that they hardly
needed to say anything to solve a problem. I remember a discussion where
Peter was writing something on the blackboard, when Jørn suddenly said
“but Peter . . .” and immediately was interrupted with the reply “yes, of
course, Jørn.” I swear that nothing else was said. It made quite an im-
pression on me, especially since I didn’t even know what the discussion was
about in the first place.

As an electronic engineer, I was used to circuit diagrams showing resis-
tors, capacitors, and transistors. What the compiler guys did was completely
different. On the blackboard, they would illustrate their ideas with small
Algol 60 fragments. Since Algol was not a natural language for thinking
about data structures, they would also draw complicated pictures of tables
linked together in mysterious ways by arrows.

However, in truth, the Cobol compiler was progressing very slowly (if
at all). Naur and Jensen had already finished their second compiler for the

3. Learning from the Masters 1963–66 47

elegant Algol language. Now they had to do it again with a far less attractive
language. It seemed to me that their hearts were not in it.

After three months, I began to catch on. On May 23, 1963, I wrote to
Milena:

We have common meetings sometimes on Fridays, just to coordi-
nate things and settle issues of doubt. You see, the normal situa-
tion is that everyone gets a small part of the project to work on.
First, everyone will work enthusiastically for a few weeks or so,
independent of the others, but gradually the tempo slows down
for a lot of psychological reasons—some details cannot be solved,
before you know what the others are doing, and other problems
you simply close your eyes to (and put them in a drawer).

So every now and then, Peter Naur calls for a meeting to
make us face the problems. You can’t imagine, how I enjoy the
atmosphere of a group of people, who have to convince each
other, defend their views, and reach decisions.

Sometimes I get permission to work at home for several days—
mainly, when I have to write a report on what I have been doing
lately. (There are too many distracting factors at work: noise
from the street below, and the temptation to chat with the oth-
ers.) [Throughout my professional career, I would continue to do
all my writing at home.]

Well, the latest crazy and wonderful idea is, that the whole
department of some ten engineers is going to work “at home”
for one week to jump-start the project. From Monday, the 21st
of October, until Saturday, the 26th, we are moving to a small
inn [Mogenstrup Kro] in the southern part of Zealand, far away
from any big, noisy town. [Zealand, on which Copenhagen is also
situated, is the largest island in Denmark.] Each of us will have
his own small room to work in, and often we will gather for a
common discussion. In the evenings, we can walk in the woods
and get to know each other outside the office. I find it a splendid
idea.

The Mogenstrup meeting clarified many things: The Cobol compiler
would be divided into ten phases (known as “passes”). Since the Siemens
computer had no drum or disk, the compiler would use three magnetic tapes.
The compiler would be input, one pass at a time, from a system tape. The
other two tapes would be used as scratch tapes during compilation.

48 A Programmer’s Story

Pass 1 would input a Cobol program from punched cards, perform a
partial compilation and output intermediate code on one of the scratch tapes.
Pass 2 would then input the intermediate code from tape, perform another
partial compilation, and output slightly more detailed code on the other
scratch tape, and so on. In this way, the compiler passes would be loaded,
one at a time, from the system tape, while the compiled code would move
back and forth between the scratch tapes, being gradually refined. The last
pass would leave final code on a scratch tape, from which it could be loaded
and executed.

Since every pass performed a single scan of the original Cobol program
(or the intermediate code), this scheme was known as multipass compilation.
Multipass compilation made it possible to use a compiler that was much
larger than the available core memory. The compiler group had already
used multipass compilation of Algol programs on Dask and Gier.

Peter Naur and Jørn Jensen would be responsible for the overall design of
the Cobol compiler. However, in reality, Peter Villemoes became the project
leader. The design, programming, and testing of the individual passes would
be done by Sven Eriksen, Roger House, Jørn Jensen, Peter Kraft, Paul
Lindgreen, Ole Riis, Peter Villemoes, and me. Naur’s cousin, Berta Kiær,
would be our secretary.

Back in the Rialto center, my first task was to program the parser, a
compiler phase that would check if the syntax of a Cobol program (that is,
the sequence of programming symbols) was correct.

Instead of having a few basic constituents, that could be used in many
contexts (as in Algol 60), Cobol 61 consisted of a large number of unrelated
clauses, each of which required a special piece of code in each pass. This
complexity made it impractical to perform syntax analysis the same way it
was done in Gier Algol (by simulating a so-called “finite state machine”).

I invented a different method of representing the Cobol syntax by linked
lists of symbols. The parser would input a Cobol program, one symbol at
a time, and use the linked lists to check the syntax. The parser would also
erase all clauses with illegal syntax. This was my first (modest) invention in
system programming.

When it was finished, the machine code and fixed tables of the syntax
analyser occupied about 5,000 lines in assembly language—a fairly hefty
program for a beginner. Other members of the group programmed compiler
passes that were more complicated than the parser. However, after forty
years, I no longer remember exactly who did what.

3. Learning from the Masters 1963–66 49

As I mentioned earlier, assembly language is extremely difficult to un-
derstand. Even after a short vacation, you may find it difficult to remember
the meaning of your own assembly language program. I solved the problem
of program documentation by adopting a brilliant method used to document
the Gier Algol compiler: I divided each program page into two halves. The
left half defined the program in assembly language, while the right half de-
fined the same program in Algol 60. The assembler treated the Algol 60
statements as comments to be ignored. However, these comments simplified
my job tremendously, since it was fairly easy to determine if a sequence of
assembly language instructions implemented an Algol 60 statement correctly.

Now, if a program and its description are two separate documents, a
programmer may not always remember to update the description, every
time the program is modified. However, since the documentation method
combined an assembly language program and its definition in Algol 60 in one
document, it became natural for me to update both parts simultaneously.

My yearly salary of 22,900 kroner (about $3,300) was not a lot of money
in 1963. So at the end of my first year at Regnecentralen, I asked Jørn for
a raise. I told him, that I liked my job and would hate to give it up at
this point. On the other hand, I felt obliged to take the consequences of my
request—otherwise, how could I expect him to take it seriously? So I asked
him to reach a decision within a fortnight. If I got no raise, I would find
myself another job. Jørn smiled and said: “This is a viewpoint I can only
respect. I will talk to Bech and tell you, whether you will get a raise or lose
your job.”

On April 5, 1964, I wrote to Milena: “Don’t be nervous: I got my raise
the following day.”

A month later, serious testing of the Cobol compiler began. The compiler
passes were tested, one at a time, in their natural sequence (pass 1 was
debugged first, then pass 2, and so on). The compiler was tested by letting
it compile small test programs written in Cobol—a method borrowed from
Gier Algol.

The parser was the second compiler pass. When I began my tests, pass 1
had already been tested and was therefore able to compile my test programs
into correct input for pass 2. In each test run, the compiler printed the test
program, that was being compiled, followed by the output produced by pass
2. By comparing the test program and the corresponding output from the
parser, it was easy to see which symbols it handled incorrectly. I would then
correct the parser and repeat the same test case, until it worked.

50 A Programmer’s Story

You must remember, that the compiler was being programmed in one
country and tested in another. In Munich, Siemens was still testing various
aspects of the hardware. The machine was in so much demand, that we
also had to use it in the evenings and during weekends, when the Germans
went home. Let me tell you, walking towards Siemens on Hofmannstrasse
51, at 4 in the afternoon, while 10,000 workers walked the other way, was an
experience!

With our limited access to the computer, there was no opportunity to
experiment with incomplete programs. We took turns arriving in Munich
with a complete compiler pass and a set of test programs, that had already
been punched on cards and proofread in Copenhagen. The compiler passes
were so carefully planned that few (if any of them) had logical flaws. The
main purpose of our systematic testing was to remove the inevitable clerical
errors.

I continued to use this method of program development for forty years.
In my experience the combination of careful design, proof reading, and sys-
tematic testing can make programs more reliable than the hardware they
run on.

Of course, this glib description does not reveal my early frustration with
the parser, when nothing worked, and nothing was printed! The only thing
I could do in that situation, was to read the beginning of my program,
instruction by instruction, until I figured out why it produced no output.

From then on, my testing went as planned:

May 26, 1964

Dear Father—My program works! Believe me, it is an experience,
finally to work on a large computer. I have been to Yugoslavia
twice on my weekends.

Soberly yours, Per

Although I now ‘knew’ how a computer worked, I still found it unbeliev-
able that a machine would follow thousands of instructions I had written in
pencil. It is pure magic that human beings have learned to construct com-
putational processes by combining electricity, transistors, circuits, computer
architecture, assemblers, compilers, operating systems, and user programs.
If you don’t share that feeling of awe, you haven’t really understood the
miracle of computing.

3. Learning from the Masters 1963–66 51

In Munich, we stayed at Hotel Daniel, Karlsplatz 15, close to the main
railroad station. Here is a letter to Milena, mailed from the hotel on June
8, 1964:

You are quite right, we had troubles with the program. In such
a large program, there are always bound to be some errors. In
fact, we are only here to detect and correct such ‘bugs’ and it
has been quite a tricky task. But it works now, and I think I can
fly back to Copenhagen by the middle of this week. However,
first I must have some talks with the Germans about my next
program.

We are running to and from the computer all day long, from 9
in the morning till 7 in the evening. In the begining, the Germans
were a bit puzzled by our unsocial behavior: we never spent much
time chatting with them and would often criticize the way they
had designed their computer.

Last week, however, we had occasion to repair this impres-
sion. We were invited to join them in their monthly ‘lab evening’
(‘Labor-Abend’). This is an evening where they go with their
spouses to a restaurant and talk about anything but their work.
When we arrived at the outdoor restaurant in Schwabing, the
Germans had already been drinking for three hours and were in
high spirits. One shy fellow was making speeches for all the girls
at Siemens. That evening, artists exhibited their paintings by
candlelight, while a group of teenagers played guitar and sang
the blues. An endless stream of people crowded the pavement
and the outdoor restaurants.

We had several bottles of a not-so-famous white wine, labeled
‘No 1a,’ and engaged the Germans in the conversation they had
missed. The evening ended in some strange restaurant at 3 a.m.
The next day, I felt like a dying man in the computer room.

? ? ?

We were young and cocky and not always as polite to our German hosts, as
we should have been.

The Siemens 3003 had a hardware feature that was meant to prevent
its operating system from being destroyed by incorrect (or malicious) user
programs. The operating system resided in a fixed part of memory. When

52 A Programmer’s Story

you flipped a switch on the computer, it became impossible to change any
memory location within the protected area. This certainly guaranteed that
the operating system code could not be changed during program execution.

However, the computer architect had overlooked one thing: an operat-
ing system must be able to record various data about running programs to
function correctly. Since it was impossible to update memory locations in
the protected area, the operating system had to keep its variables in unpro-
tected memory locations, where they were completely at the mercy of user
programs. If programs made arbitrary changes to these locations, it would
soon crash the operating system.

In short, the so-called “memory protection” was a hacker’s dream. The
members of the compiler group knew this. When the Germans demonstrated
the machine for us, it was a favorite joke of our American programmer, Roger
House, to say: “Excuse me, you forgot to turn the protection switch on!”

? ? ?

Once in a while, the computer broke down, leaving us with a perfect excuse
to relax:

Last friday, our computer broke down completely, so we have
had a quiet weekend without any work whatsoever. It is very
hot in Munich, so yesterday we took a trip to the countryside to
a small mountain lake, where we ate a tremendous dinner. Af-
terwards, we rented a rowing boat and drifted around the lake.
Our ‘real’ work has been delayed quite a bit by repeated com-
puter failures, so I will probably have to stay here at least an-
other week. Not that I mind, since time passes easily in a city
like Munich: we go to the theater and concerts, and eat mostly
in ‘foreign’ restaurants—Chinese, Hungarian, Bosnian, Russian,
Spanish, and Italian. (Letter to my father, June 11, 1964)

Breakfast was included in our hotel bill, and Siemens gave us a free
lunch. Since Regnecentralen allowed us to spend a fixed daily amount for
meals, we had plenty left for sumptuous dinners around town. We became
connoisseurs of Munich’s restaurant scene, and knew, for example, which of
the two Russian restaurants was the best one. I soon learned that putting
on weight is much easier than losing it again (which I never did).

? ? ?

3. Learning from the Masters 1963–66 53

On August, 21, 1964, I presented my first scientific paper at the NordSAM

conference in Stockholm, Sweden. It described a method that made the
evaluation of logical expressions slightly faster during the execution of a
compiled Cobol program.

A logical expression of the form [if] a greater b and less c . . ., is
evaluated in three steps: (1) First, check if it is true (or false) that a is
greater than b; (2) Then, check if it is it is true (or false) that a is less
than c; (3) Finally, check if both conditions turned out to be true (or not).
Since the greater and less relations are evaluated before the and relation,
greater and less are said to be operators of higher priority than and.

However, if it turns out in step 1 that a is not greater than b, then step 2
is superfluous, and can be skipped. That was the whole idea behind my code
optimization.

To me, this was an elegant compilation technique. But, looking back, I
don’t think it served any practical purpose. Before you go to the trouble of
optimizing compiled code, you should conduct an experiment to find out, if
it has any measurable effect. Otherwise, you are just increasing the size of
your compiler for no good reason.

I cannot imagine that the efficiency of business data processing will ever
depend on the speed at which a computer evaluates logical expressions. How-
ever, this minor optimization (which I do not claim to have invented) would
later be included as a language feature in C and Java.

Today, it is still common for programmers to confidently recommend
a method, because “it is faster” than another one—without offering any
performance measurements to document the magnitude of the improvement.

Anyhow, here I was at my first computer conference lecturing in English
to an international audience that included Peter Naur and Edsger Dijkstra.
I was very encouraged to see both of them smiling broadly during my pre-
sentation. Afterwards, I discovered why: In my talk, I constantly said “the
priority of this operator is higher than the priority of that one.” Since En-
glish was not my native language, I mispronounced the word “higher” as
“hi-ger” (with a hard “g” as in “good”). Everytime I did that, Naur and
Dijkstra smiled.

? ? ?

My most difficult programming task was to write the input/output proce-
dures for files stored on punched cards, magnetic tapes, and line printer

54 A Programmer’s Story

forms. This file system would be used during the execution of compiled
Cobol programs.

Each tape station was about the size of a small closet. While a tape
was being read or written, it moved from one reel across a magnetic head to
another reel. To prevent the fast moving tape from breaking during frequent
starts and stops, it also moved through two vacuum chambers, which held
enough loose tape to absorb the forces of acceleration and deceleration.

The tape stations on the Siemens computer were rather unreliable. Jørn
Jensen witnessed a faulty tape station jam a tape by rewinding both reels
at the same time! Dust particles on the tape caused transient input/output
errors. I handled these by transferring the same block of data again. This
could, of course, have been done simply by backspacing over the last block
and reading (or writing) it again. Instead I backspaced ten blocks—enough
to move the bad block into the nearest vacuum chamber, where the air
current would blow the dust off the tape. I would then upspace nine blocks
and transfer the same block again.

A more serious problem was the permanent errors caused by spots of
missing oxide on the tape. The only thing you could do with a bad spot was
to ignore it and write the same block again after the spot. To facilitate error
recovery, each block was output with a block number and a block length.
A block that did not have the correct number and expected length during
input was assumed to be a bad spot and was skipped.

When Jørn Jensen first told Siemens about the need to extend data
blocks on user tapes with two additional words, they would not agree to
this. And who could blame them. It would be a major problem for Siemens
to ask its customers to adopt a new tape format, that would make their
existing tapes unreadable.

I then asked Jørn to tell the Germans that Regnecentralen could not be
responsible for the reliability of tape input/output, unless they agreed to our
proposal. That did it! They agreed, and the tapes worked fine.

Peter Villemoes had developed the techniques for dealing with tape errors
during compilation. However, the more general file system I was writing for
the execution of Cobol programs, posed additional challenges.

Compiled Cobol programs were supposed to run in a core memory of 8K
words only. When a program opened a file, it was assigned a buffer space in
memory. To make the best use of the small memory, the buffer space was
reclaimed, when the file was closed. Over time, the memory ended up being
full of active buffers separated by gaps of unused space left behind by closed

3. Learning from the Masters 1963–66 55

files. If a buffer space could not be found for a new file, the gaps between
the buffers were closed by moving all the buffers to one end of the memory.

The trickiest feature was probably the ability to restart a Cobol program
from a previous point of execution, after a hardware failure. At regular in-
tervals, my input/output procedures would stop the running program briefly
and output restart data on a tape. When the hardware had been fixed, the
most recent restart data were used to instruct the operator to mount the
same tapes, one at a time. The tapes would then automatically move to
the same spots, where they had been, when the restart data were written,
and the computation would resume, as if nothing had happened. This was
fun—and awesome—to watch!

I regard the run-time filing system as my graduation project from the
compiler group. I now understand that it was really a small operating sys-
tem, I had programmed. However, in the mid 1960s, the dividing line be-
tween language implementation and operating systems was still not clearly
understood.

? ? ?

After a total effort of 15 man-years, Regnecentralen delivered a complete
Cobol implementation of 39,000 instructions to Siemens in July 1965. We
had used about 600 hours of computer time to assemble and test the system.
In human time, it took about 45 minutes to program each instruction and
less than 1 minute to test it.

The Siemens Cobol compiler was eight times faster than the fastest Amer-
ican compiler evaluated by the Bureau of Ships (Siegel 1962). After a basic
input/output time of 45 sec, our compiler translated a Cobol program at the
rate of 250 cards per minute, generating final machine code.

When the compiler was completed, Sven Eriksen joined Siemens in Mu-
nich and became responsible for maintaining the compiler. He was incredibly
well organized. We mailed every compiler change to him as a deck of punched
cards with a separate test program to verify that the correction worked. He
kept the punched cards of our original Cobol implementation, and all sub-
sequent modifications, in chronological order in a card filing cabinet.

About a year after the delivery of the Cobol system, a user reported
that my filing system did not work correctly. Since Siemens had modified
the Cobol system in places, it could have been a nightmare for me to travel
to Munich and determine what the error was and who was responsible for
correcting it.

56 A Programmer’s Story

Instead I asked Eriksen to reestablish the compiler exactly as it was a
year ago. He was able to do that, and demonstrate that the customer’s
program worked under the original file system, we had delivered. That got
me off the hook and left Siemens with the problem of figuring out, what they
had done wrong after the delivery.

I wonder, how many software developers today treat system updates in
the same professional manner?

? ? ?

Peter Naur encouraged Roger House, whose native language was English,
to write a paper about the Cobol compiler. Since this idea got nowhere, I
wrote the paper with helpful comments from Roger. It was published in the
Scandinavian journal BIT in 1966.

Today, few people (if any) have access to the Cobol compiler for the
Siemens 3003 computer. But anyone, who is interested, can still read about
it in BIT. In the long run, it seems to me, the most important aspect of
programming is the description of interesting ideas in readable papers. The
programs themselves are merely useful by-products of this effort. Besides
intellect, the most valuable asset of a programmer is the ability to write
clearly! Needless to say, this viewpoint is not popular among students, who
prefer free-style “coding” without the burden of documentation.

? ? ?

Before joining Regnecentralen in 1963, I met Milena in Slovenia. During my
trips to Munich over the next two years, I visited her ten times. This was
the most romantic episode in my life. On March 27, 1965, we were married
in the townhall of Ljubljana.

The compiler group sent us a telegram with amusing comments on the
wisdom of marrying (Fig. 3.1).

3. Learning from the Masters 1963–66 57

27 3 65

milena and per brinch hansen
hotel belvedere
izola istria

lucky test berta stop
no protest riis stop
poor you but yet gerda kraft stop
lucky you lindgreen stop
and all that jazz diane stop
mondrup toke johansen stop
believe us it is not too bad roger and jeanne stop
a challenge but worth it naur stop
a huge gratulation from the absent guys

Figure 3.1 Wedding telegram from the compiler group.

