
INTERNATIONAL
STANDARD

ISO/IEC

First edition
1996-l 2-l 5

Information technology - Syntactic
metalanguage - Extended BNF

Technologies de /‘information - Mbtalangage syntaxique - BNF &endu

Reference number
ISO/IEC 14977:1996(E)

ISO/IEC 14977 : 1996(E)

Contents Page

Foreword ...

Introduction ...

1 Scope ..

2 Normative references

3 Definitions ..

4 The form of each syntactic element of Extended BNF
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

General ...
Syntax ...
Syntax-rule
Definitions-list
Single-definition
Syntactic-term
Syntactic exception
Syntactic-factor
Integer ...
Syntactic-primary
Optional-sequence
Repeated sequence
Grouped sequence
Meta-identifier
Meta-identifier-character
Terminal-string.
First-terminal-character
Second-terminal-character
Special-sequence
Special-sequence-character
Empty-sequence
Further examples

@ ISO/IEC 1996
All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3

ISOLIEC Copyright Office l Case Postale 56 l CH-1211 Geneve 20 l Switzerland
Printed in Switzerland

ii

ISO/IEC 14977 : 1996(E)

5 The symbols represented by each syntactic element.
5.1 General ...
5.2 Terminal-string.
5.3 Meta-identifier
5.4 Grouped-sequence
5.5 Optional-sequence
5.6 Repeated-sequence
5.7 Syntactic-factor

5.8 Syntactic-term
5.9 Single-definition
5.10 Definitions-list
5.11 Special-sequence
5.12 Empty-sequence

6 Layout and Comments
6.1 General ...
6.2 Terminal-character
6.3 Gap-free-symbol
6.4 Gap-separator
6.5 Commentless-symbol
6.6 Comment-symbol
6.7 Bracketed-textual-comment

7 The representation of each terminal-character in Extended BNF . .
7.1 General ...

7.2 Letters and digits
7.3 Other terminal characters
7.4 Alternative representations.
7.5 Other-character
7.6 Gap-separator
7.7 Terminal-characters represented by a pair of characters
7.8 Invalid character sequences

8 Examples ...
8.1 The syntax of Extended BNF
8.2 Extended BNF used to define itself informally
8.3 Extended BNF defined informally

Annexes

A Two-level grammars

B Biblioeranhv ..

3
3
4
4
4
4
4
4
4
5
5
5
5

8
8

10
10

11

12

. . .
111

ISOIIEC 14977 : 1996(E) @ ISO/IEC

Foreword

IS0 (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of IS0 or IEC participate
in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of
technical activity. IS0 and IEC technical committees collaborate in fields
of mutual interest. Other international organizations, governmental and non-
governmental, in liaison with IS0 and IEC, also take part in the work.

In the field of information technology, IS0 and IEC have established a joint
technical committee ISO/IEC JTC 1. Draft International Standards adopted
by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of
the national bodies casting a vote.

International Standard ISO/IEC 14977 was prepared by BSI (as BS 6154)
and was adopted, under a special “fast-track procedure”, by Joint Technical
Committee ISO/IEC JTC 1, Information technology, in parallel with its approval
by national bodies of IS0 and IEC.

Annexes A and B of this Internation .a1 Standard are for in formation only.

iv

@ ISO/IEC ISOJIEC 14977 : 1996(E)

Introduction

A syntactic metalanguage is an important tool of computer science. The
concepts are well known, but many slightly different notations are in use. As a
result syntactic metalanguages are still not widely used and understood, and the
advantages of rigorous notations are unappreciated by many people.

Extended BNF brings some order to the formal definition of a syntax and will
be useful not just for the definition of programming languages, but for many
other formal definitions.

Since the definition of the programming language Algol 60 (Naur, 1960) the
custom has been to define the syntax of a programming language formally.
Algol 60 was defined with a notation now known as BNF or Backus-Naur Form.
This notation has proved a suitable basis for subsequent languages but has
frequently been extended or slightly altered. The many different notations are
confusing and have prevented the advantages of formal unambiguous definitions
from being widely appreciated. The syntactic metalanguage Extended BNF
described in this standard is based on Backus-Naur Form and includes the most
widely adopted extensions.

Syntactic metalanguages

A syntactic metalanguage is a notation for defining the syntax of a language
by use of a number of rules. Each rule names part of the language (called a
non-terminal symbol of the language) and then defines its possible forms. A
terminal symbol of the language is an atom that cannot be split into smaller
components of the language. A syntactic metalanguage is useful whenever a
clear formal description and definition is required, e.g. the format for references
in papers submitted to a journal, or the instructions for performing a complicated
task.

A formal syntax definition has three distinct uses:

a> it names the various syntactic parts (i.e. non-terminal symbols) of the
language;

b)

C>

it shows which sequences of symbols are valid sentences of the language;

it shows the syntactic structure of any sentence of the language.

The need for a standard syntactic metalanguage

Without a standard syntactic metalanguage every programming language definition
starts by specifying the metalanguage used to define its syntax. This causes
various problems:

ISO/IEC 14977 : 1996(E) @ ISO/IEC

Many different notations - It is unusual for two different programming
languages to use the same metalanguage. Thus human readers are handicapped
by having to learn a new metalanguage before they can study a new language.

Concepts not widely understood - The lack
the use of rigorous unambiguous definitions.

of a standard notation hinders

Imperfect notations - Because a metalanguage needs to be defined for
every programming language, almost inevitably, the metalanguage contains
defects. For example errors occurred in the drafting of RTL/2 (BS5904) and
CORAL 66 (BS5905) because the metalanguages could not be typed easily.

Special purpose notations - A metalanguage defined for a particular pro-
gramming language is often simplified by taking advantage of special features
in the language to be defined. However, the metalanguage is then unsuitable
for other programming languages.

Few general syntax processors - The multiplicity of syntactic meta-
languages has limited the availability of computer programs to analyse
and process syntaxes, e.g. to list a syntax neatly, to make an index of the
symbols used in the syntax, to produce a syntax-checker for programs written
in the language.

In practice experienced readers have little difficulty in picking up and learning
a new notation, but even so the differences obscure mutual understanding
and hinder communication. A standard metalanguage enables more people to
crystallize vague ideas into an unambiguous definition. It is also useful because
other people needing to provide formal definitions no longer need to reinvent
similar concepts.

The objectives to be satisfied

It is desirable that a standard syntactic metalanguage should be:

a> concise, so that languages can be defined briefly and thus be more easily
understood;

b)

C>

precise, so that the rules are unambiguous;

formal, so
computer when

that the rules can be
required;

parsed, or otherwise processed, bY a

d) natural, so that the notation and format are relatively simple to learn and
understand, even for those who are not themselves language designers; (The
meaning of a symbol should not be surprising. It should also be possible to
define the syntax of a language in a way that helps to indicate the meaning
of the constructions.)

e) general, so that the notation is suitable for many purposes including the
description of many different languages;

f-l simple in its character set and with a notation that avoids, as far as
is practicable, using characters that are not generally available on standard
keyboards (both typewriters and computer terminals) so that the rules can be
typed and can be processed by computer programs;

self describing, so that the notation is able to describe itself;

vi

0 ISO/IEC ISO/IEC 14977 : 1996(E)

h) linear, so that the syntax can be expressed as a single stream of characters.
(This simplifies printing a syntax. Computer processing of a syntax is also
simpler.)

Some common syntactic metalanguages

Unfortunately n one of the existing sy
adoption as the standard, for example:

ntactic metalanguages was suitable for

a) COBOL (IS0 1989:1985) lists alternatives vertically and uses brackets
spreading over many lines. This is inconvenient for computer processing and
cannot be prepared on typewriters.

b) Backus-Naur Form (used in ALGOL 60) has problems if the metasymbols
< > 1 ::= occur in the language being defined. Some common forms of
construction (e.g. comments) cannot be expressed naturally, other constructions
(e.g. repetition) are long-winded.

c) The obsolete FORTRAN 77 (IS0 1539: 1980) had ‘railroad tracks’. These
are easy to understand but difficult to prepare and to process on a computer
or typewriter. The current version, FORTRAN 90 (ISO/IEC 1539:1991), no
longer uses this notation.

Most other languages use a variant of one of these metalanguages. Most of
them cannot be candidates for standardization because they use characters not in
the language being defined as metasymbols of the metalanguage. This simplifies
the metalanguage but prevents it from being used generally.

POSIX (ISO/IEC 9945-2: 1993) includes two complementary facilities which
both assume an ISO/IEC 646: 1991 character set is applicable: LEX permits
the definition and lexical analysis of regular expressions, but is inadequate for
the description of an arbitrary context-free grammar, and YACC (Yet Another
Compiler Compiler) is a parser generator for an LALR(l) grammar.

The standard metalanguage Extended BNF

Extended BNF, the metalanguage defined in this International Standard, is based
on a suggestion by Niklaus Wirth (Wirth, 1977) that is based on Backus-Naur
Form and that contains the most common extensions, i.e.:

a) Terminal symbols of the language are quoted so that any character,
including one used in Extended BNF, can be defined as a terminal symbol of
the language being defined.

b) [and I indicate optional symbols.

{ and } indicate repetition.

d) Each rule has an explicit final character so that there is never any
ambiguity about where a rule ends.

e> Brackets group
) in their ordinary

items together. It is an obvious convenience to use (and
mathematical sense.

The main differences in Extended BNF are further features that
shown are often required when providing a formal definition:

experience has

vii

ISOIIEC 14977 : 1996(E) @ ISO/IEC

a) De$ning an explicit number of items. Fortran contains a rule that a label
field contains exactly five characters; an identifier in PWI or COBOL has up
to 32 characters: rules such as these can be expressed only with difficulty in
Backus-Naur Form. In practice, such definitions are often left incomplete and
the rules qualified informally in English.

b) DeJining something by specifying the few exceptional cases. An Algol
end-comment ends at the first end, else or semicolon. A rule like this cannot
be expressed concisely or clearly in Backus-Naur Form and is also usually
specified informally in English.

C> Including comments. Programming
a complicated syntax need many rules
be clearer if explanations and cross-refe
Extended BNF contains a comment facili
to a syntax for the benefit of a human
meaning of the syntax.

languages and other structures with
to define them. The syntax will

rences can be provided; accordingly
ty so that ordinary text can be added
reader without affecting the formal

d) Meta-identifier: A meta-identifier (the narne of a non-terminal symbol
in the language) need not be a single word or enclosed in brackets because
there is an explicit concatenate symbol. This also ensures that the layout of
a syntax (except in a terminal symbol) does not affect the language being
defined.

e) Extensions. A user may wish to extend Extended BNF. A special-sequence
is provided for this purpose, the format and meaning of which are not defined
in the standard except to ensure that the start and end of an extension
can always be seen easily. Various possible extensions are outlined in the
following paragraphs.

Limitations and extensions

The main limitation of Extended BNF is that the language being defined needs
to be linear, i.e. the symbols in a sentence of the language can be placed in
an ordered sequence. For example knitting patterns and recipes in cooking are
linear languages, but electric circuit diagrams are not.

A further limitation is that Extended BNF is inadequate for defining more
complex forms of grammars. Such facilities were not provided because it was
thought the main need was to define a notation sufficient for the simpler and
commoner requirements.

Instead Extended BNF has been designed so that various extensions can be
made in a natural way. There are two simple ways of extending the standard
metalanguage. Firstly, the special-sequence concept provides a basic framework
for any extension, the format between the special-sequence-characters being
almost completely arbitrary. This method would be suitable for an action
grammar, i.e. one specifying actions that are to take place as a sentence is
parsed. Secondly, a meta-identifier can never be followed immediately by a left
parenthesis in the standard metalanguage; thus another method of extending the
metalanguage is to define the syntax and meaning of a meta-identifier followed
by a sequence of parameters enclosed in parentheses. This would be reasonable
in an attribute grammar where the rules ensure consistency between different
parts of a sentence in the language being defined.

More complicated extensions are also possible. Annex A suggests how Extended
BNF might be extended to define a two-level grammar.

. . .
Vlll

INTERNATIONAL STANDARD @ ISO/IEC ISOAEC 14977:1996(E)

Information technology - Syntactic metalanguage - Extended BNF

1 Scope

This International Standard defines a notation, Extended
BNF, for specifying the syntax of a linear sequence of
symbols. It defines both the logical structure of the
notation and its graphical representation.

Extended BNF has applications in the definition of pro-
gramming and other languages, as well as in other formal
definitions, for example the commands to an operating
system, or the precise format of data and results.

Examples of Extended BNF are given in clause 8.

NOTE - Like many other notations, Extended BNF can still
be misused; thus it does not prevent someone from trying to
define an unparsable or ambiguous language.

2 Normative references

The following standards contain provisions which, through
reference in this text, constitute provisions of this Interna-
tional Standard. At the time of publication, the editions
indicated were valid. All standards are subject to revi-
sion, and parties to agreements based on this International
Standard are encouraged to investigate the possibility of
applying the most recent editions of the standards listed
below. Members of IEC and IS0 maintain registers of
currently valid International Standards.

IS0 2382-15 : 1985, Data processing - kcabulary -
Part 15: Programming languages.

ISO/IEC 646 : 1991, Information technology - IS0 7-bit
coded character set for information interchange.

ISO/IEC 6429 : 1992, Information technology - Control
functions for coded character sets.

BS 6154 : 198 1, Method of defining - Syntactic meta-
language.

3 Definitions

For the purposes of this International Standard, the
definitions given in IS0 2382- 15 and the following
definitions apply.

31 . sequence: An ordered list of zero or more items.

32 . subsequence: A sequence within a sequence.

33 non-terminal symbol:
guage being defined.

A syntactic part of the lan-

34
bol.

meta-identifier: The name of a non-terminal sym-

3.5 start symbol: A non-terminal symbol that is defined
by one or more syntax rules but does not occur in any
other syntax rule.

36 sentence:
the start symbol.

A sequence of symbols that represents

3.7 terminal symbol: A sequence of one or more
characters forming an irreducible element of a language.

NOTE - In this International Standard a terminal symbol of
Extended BNF is called a terminal-character, and a terminal
symbol of a language being defined by a syntax is represented
by a terminal-string.

4 The form of each syntactic element of Ex-
tended BNF

NOTES

1 The following conventions are used:

a) Each meta-identifier of Extended BNF is written as one
or more words joined together by hyphens;

b) A meta-identifier ending with “-symbol” is the name of
a terminal symbol of Extended BNF.

2 The normal character representing each operator of Extended
BNF and its implied precedence is (highest precedence at the
top):

* repetition-symbol
- except-symbol

concatenate-symbol
i definition-separator-symbol
= defining-symbol
. I terminator-symbol

3 The normal precedence is over-ridden by the following
bracket pairs:

1

ISO/IEC 14977 : 1996(E) @ ISO/IEC

/ first-quote-symbol
II second-quote-symbol
t* start-comment-symbol
(start-group-symbol
[start-option-symbol
1 start-repeat-symbol
? special-sequence

-symbol

first-quote-symbol ’
second-quote-symbol
end-comment-symbol *;
end-group-symbol)
end-option-symbol 1
end-repeat-symbol 1
special-sequence ?

-symbol

4.7 Syntactic exception

A syntactic-exception consists of a syntactic-factor subject
to the restriction that the sequences of symbols represented
by the syntactic-exception could equally be represented by
a syntactic-factor containing no meta-identifiers.

NOTE - If a syntactic-exception is permitted to be an arbitrary
syntactic-factor, Extended BNF could define a wider class of
languages than the context-free grammars, including attempts
which lead to Russell-like paradoxes, e.g.

Is ?“,I,
= I’A” - xx;

an example of xx? Such licence is undesirable
and the form of a syntactic-exception is therefore restricted
to cases that can be proved to be safe. Thus whereas a
syntactic-factor is in general equivalent to some context-free
grammar, a syntactic-exception is always equivalent to some
regular grammar. It may be shown that the difference between a
context-free grammar and a regular grammar is always another
context-free grammar; hence a syntactic-term (and hence any
grammar defined according to this standard) is equivalent to
some context-free grammar.

4.1 General

The logical structure of Extended BNF is defined in 4.2
to 4.21.

4.2 Syntax

The syntax
syntax-rules.

of a language consists of one or more

4.8 Syntactic-factor
4.3 Syntax-rule

A syntactic-factor consists of either:

A syntax-rule consists of a meta-identifier (the name of
the non-terminal symbol being defined) followed by a
defining-symbol followed by a definitions-list followed by
a terminator-symbol.

a>
bY

an integer followed by a repetition-symbol followed
a syntactic-primary, or

b) a syntactic-primary.

4.4 Definitions-list 4.9 Integer

A definitions-list consists of an ordered list of one or
more single-definitions separated from each other by a
definition-separator-symbol.

An integer consists of an ordered list of one or more
decimal-digits.

4.10 Syntactic-primary
4.5 Single-definition

A syntactic-primary consists of one of the following:

A single-definition consists of an ordered list of one
or more syntactic-terms separated from each other by a
concatenate-symbol.

a> an optional-sequence;

b) a repeated-sequence;

a grouped-sequence; 4.6 Syntactic-term

d) a meta-identifier;
A syntactic-term consists of either:

e> a terminal-string;
a> a syntactic-factor, or

a special-sequence;
b) a syntactic-factor followed by an except-symbol
followed by a syntactic-exception. g) an empty-sequence.

2

@ ISO/IEC ISOIIEC 14977 : 1996(E)

4.11 Optional-sequence

An optional-sequence consists of a start-option-symbol
followed by a definitions-list followed by an end-option-
symbol.

4.12 Repeated sequence

A repeated-sequence consists of a start-repeat-symbol
followed by a definitions-list followed by an end-repeat-
symbol.

4.13 Grouped sequence

A grouped-sequence consists of a start-group-symbol fol-
lowed by a definitions-list followed by an end-group-
symbol.

4.14 Meta-identifier

A meta-identifier consists of an ordered list of one or more
meta-identifier-characters subject to the condition that the
first meta-identifier-character is a letter.

4.15 Meta-identifier-character

A meta-identifier-character is a letter or a decimal-digit.

4.16 Terminal-string

A terminal-string consists of either:

a) A first-quote-symbol followed by a sequence of
one or more first-terminal-characters followed by a
first-quote-symbol, or

b) A second-quote-symbol, followed by a sequence of
one or more second-terminal-characters followed by a
second-quote-symbol.

4.17 First-terminal-character

A first-terminal-character is any terminal-character except
a first-quote-symbol.

4.18 Second-terminal-character

A second-terminal-character is any terminal-character ex-
cept a second-quote-symbol.

4.19 Special-sequence

A special-sequence consists of a special-sequence-symbol
followed by a (possibly empty) sequence of special-
sequence-characters followed by a special-sequence-
symbol.

4.20 Special .-sequence-character

A special-sequence-character is any terminal-character ex-
cept a special-sequence-symbol.

4.21 Empty-sequence

An empty-sequence consists of the empty sequence
terminal-characters.

of

4.22 Further examples

The following example is a syntax-rule that states that a
Fortran 77 continuation line starts with 5 blanks, the sixth
character must not be a blank or zero, and there must not
be more than 72 (= 5+1+66) characters altogether.

Fortran 77 continuation line = 5 * ' ",
(character - ('I 'I 1 "O")), 66 * [character] ;

In Fortran 66, the definition of a continuation line is more
complicated. The following example is a syntax-rule that
states that a continuation line must not start with C, there
must be at least 6 characters, the sixth character must not
be a blank or zero, and there must not be more than 72
(= 1+4+1+66) characters altogether.

Fortran 66 continuation line = character - "C",
4 * character, character - (" " 1 " 0 " > ,
66 * [character] ;

5 The symbols represented by each syntactic
element

5.1 General

Each syntax-rule is a syntax rule that defines (possibly
empty) sequences of terminal and non-terminal symbols.
Each of these sequences of symbols is represented by the
non-terminal symbol named by the meta-identifier at the
start of the syntax-rule. 5.2 to 5.12 define the sequences
of symbols that are represented by any definitions-list.

3

ISO/IEC 14977 : 1996(E) @ ISO/IEC

NOTES 5.7 Syntactic-factor

1 When the syntax of a complete language is defined there is: A syntactic-factor represents an explicit number of subse-
quences where each subsequence is a sequence of symbols
represented by the syntactic-primary that is part of that
syntactic-factor. The required number of subsequences
equals one when no integer is given and otherwise is equal
to the value of the integer.

a> a start symbol, and

b) at least one syntax-rule
used as a syntactic-primary.

starting with each meta-identifier

2 It is more difficult to understand a language if there are
several syntax-rules defining a meta-identifier and no indication
that each definition only partly defines the non-terminal symbol.

As examples the foll owing syntax-rules ill
facil ities for expressing repetition.

the

bb = 3 * aa, "B";
cc = 3 * [aa], IT";
dd = {aa}, I'D";
ee = aa, {aa}, 92";
ff = 3 * aa, 3 * [aa], "F";
gg = 3 * {aa}, "D";

5.2 Terminal-string

A termi nal-string represents either:

a> the sequence of first-terminal-characters between its
Termi nal-strings defined bY these rules are as follows: first-quote-symbols ? or

aa: A
bb: AAAB
cc: c AC AAC MUX
dd: D AD AAD AAAD AAAAD etc.
ee: AE AAE AAAE AAAAE AAAAAE etc.
ff: AAAF AAAAF AMAAF AAAAAAF

b) the sequence of second-terminal-characters
its second-quote-symbols.

between

5.3 Meta-identifier
NOTE - The definition for gg, although syntactically valid,
is not sensible. The sequences of symbols represented by gg
are identical with those given by dd but cannot be parsed
unambiguously.

5.8 Syntactic-term
54 . Grouped-sequence

When a syntactic-term is a single syntactic-factor it
represents any sequence of symbols represented by that
syntactic-factor.

A grouped-sequence represents any sequence of symbols
defined by the definitions-list enclosed by its start-group-
symbol and end-group-symbol.

When a syntactic-term is a syntactic-factor followed by
an except-symbol followed by a syntactic-exception it
represents any sequence of symbols that satisfies both of
the conditions:

5.5 Optional-sequence

An optional -sequence represents either:
a> it is a sequence of symbols represented by the
syntactic-factor, a> the empty sequence of symbols, or

b) it is not a sequence of symbols represented by the b) any sequence of symbols defined by the definitions-
list enclosed by its start-option-symbol and end-option-
symbol.

syntac tic-ex .cepti on.

As examples the following syntax-rules
facilities provided by the except-symbol.

illustrate the

56 . Repeated-sequence
letter = 'IA" 1 IIBII 1 'ICI' 1 I'D" 1 "El') 'IF"

1 II G II 1 'I H II 1 II 1 II 1 II J II 1 II K II 1 'I L 'I 1 '1 M 1'

I II N II 1 II 0 II 1 II p II 1 II Q 'I 1 'I R 'I 1 1' S 11 1 11 T 11

I I'~" I I'~" I llwll I Ilxll I llyll I "z";

vowel = "A" I II E II 1 II 1 II 1 II 0 II 1 II U II ;

consonant = letter - vowel;
ee = {llAII}-, 'IElI;

A repeated-sequence represents a (possibly empty) se-
quence of subsequences where each subsequence is any
sequence of symbols defined by the definitions-list enclosed
by the start-repeat-symbol and end-repeat-symbol.

CJ ISO/IEC ISO/IEC 14977 : 1996(E)

Terminal-strings defined by these rules are as follows:

letter: A B C D E F G H I J etc.
vowel: A E IO U
consonant: B C D F G H J K L M etc.
ee: AE AAE AAAE AAAAE AAAAAE etc.

NOTE - { IIAV' } - represents a sequence of one or more A's
because it is a syntactic-term with an empty syntactic-exception.

5.9 Single-definition

A single-definition represents a sequence of one or more
subsequences where each subsequence is a sequence of
symbols represented by the corresponding syntactic-term
in that single-definition.

5.10 Definitions-list

A definitions-list represents any sequence of symbols that
is represented by any one of the single-definitions forming
that definitions-list.

5.11 Special-sequence

The sequence of symbols represented by a special-sequence
is outside the scope of this International Standard. Only the
format of a special-sequence is defined in this International
Standard. A special-sequence provides a notation for
extensions which a user may require.

5.12 Empty-sequence

An empty-sequence represents the empty sequence of
symbols.

6 Layout and Comments

6.1 General

The layout of the syntax on a page is almost completely
arbitrary. 6.2 to 6.4 define that a non-printing character
such as space or new-line has no formal effect on a syntax
if the character is outside a terminal-string or pair of
characters forming a single terminal-character. 6.5 to 6.7
define where arbitrary text may be inserted as a comment
in a syntax.

NOTES

1 It is much easier for a person to read and understand a
syntax if each syntax-rule starts on a new line and the various
metalanguage symbols are sensibly spaced.

2 A language defined by Extended BNF may have completely
different lexical rules from Extended BNF’ itself.

3 Comments enable explanatory text to be added to a syntax
and thus help a human to understand a syntax. For example,
syntax-rules can be numbered and each meta-identifier followed
by a comment identifying the position of the syntax-rule that
defines it. It is recommended that any comment concerning a
syntax-rule should appear before the terminator-symbol of the
rule.

4 Comments have no formal effect on the language defined
by a syntax.

6.2 Terminal-character

A terminal-character of Extended BNF’ is one of the
following:

a> a letter;

b) a decimal-digit;

c) a concatenate-symbol;

d) a defining-symbol;

e) a definition-separator-symbol;

f) an end-comment-symbol;

g) an end-group-symbol;

h) an end-option-symbol;

i) an end-repeat-symbol;

j) an except-symbol;

k) a first-quote-symbol;

1) a repetition-symbol;

m) a second-quote-symbol;

n) a special-sequence-symbol;

o) a start-comment-symbol;

p) a start-group-symbol;

q) a start-option-symbol;

r) a start-repeat-symbol;

s) a terminator-symbol;

t) an other-character.

ISO/IEC 14977 : 1996(E) @ ISO/IEC

6.3 Gap-free-symbol 6.7 Bracketed-textual-comment

A bracketed-textual-comment is a start-comment-symbol
followed by a (possibly empty) sequence of comment-
symbols followed by an end-comment-symbol.

One or more bracketed-textual-comments may be placed:

a) before a syntax, and

b) between any two commentless-symbols of a syntax,
and

c) after a syntax

without affecting the language defined by the syntax.

NOTE - 6.5 to 6.7 imply that bracketed-textual-comments
cannot appear in any of the following:

a> a meta-identifier;

A gap-free-symbol is either:

a> a terminal-character that is neither a first-quote-
symbol nor a second-quote-symbol, or

b) a terminal-string.

64 . Gap-separator

A gap-separator is one of the non-printing characters:
space, horizontal-tabulation, new-line, vertical-tabulation,
or form-feed.

One or more gap-separators may be placed:

4 before a syntax, and

b) between any two gap-free-symbols of a syntax, and
b) an integer;

C> after a syntax
c> a special-sequence;

wi thout affecting the language defined by the syntax. d) a terminal-string.

65 . .entless-sy vmbol
7 The representation of each terminal-

character in Extended BNF A commentless-symbol is one of the following:

7.1 General a> a terminal-character that is neither a letter nor a
decimal-digit nor a first-quote-symbol nor a second-
quote-symbol nor a start-comment-symbol nor an end-
comment-symbol nor a special-sequence-symbol nor an
other-character;

The representation of each terminal-character and gap-
separator in Extended BNF using the characters in the a-bit
character set (ISO/IEC 646: 199 1 International Reference
Version) is defined in 7.2 to 7.8.

b) a meta-identifier;

7.2 Letters and digits C> an integer;

Each letter and deci
sponding character.

mal-digit is rep resented by the corre- d) a terminal-string;

e> a special-sequence.

7.3 Other terminal characters

66 . Comment-symbol
Table 1 defines the character representation for each
terminal-character that is neither a letter, nor a decimal-
digit nor an other-character.

A comment-symbol is one of the following:

a> a bracketed-textual-comment;

7.4 Alternative representations
b) a commentless-symbol;

Table 2 defines alternative
some terminal-characters.

character represen tations for
C> an other-character.

6

@ ISO/IEC ISO/IEC 14977 : 1996(E)

Table 1 - Representation of terminal-characters

Metalanguage symbol Normal representation
concatenate-symbol I comma
defining-symbol = equals sign
definition-separator-symbol 1 vertical line
end-comment-symbol *‘) asterisk,

right parenthesis
end-group-symbol 1 right parenthesis
end-option-symbol 1 right square bracket
end-repeat-symbol 1 right curly bracket
except-symbol hyphen-minus
first-quote-symbol I apostrophe
repetition-symbol * asterisk
second-quote-symbol II quotation mark
special-sequence-symbol ? question mark
start-comment-symbol t* left parenthesis,

asterisk
start-group-symbol (left parenthesis
start-option-symbol E left square bracket
start-repeat-symbol { left curly bracket
terminator-symbol . I semicolon

Table 2 - Alternative representation of terminal-
characters

Metalanguage symbol Alternative representation
definition-separator-symbol / solidus
definition-separator-symbol ! exclamation mark
end-option-symbol /> solidus,

right parenthesis
end-repeat-symbol :) colon,

right parenthesis
start-option-symbol (/ left parenthesis,

solidus
start-repeat-symbol (: left parenthesis,

colon
terminator-symbol . full stop

NOTES

1 The main reason for specifying alternative representations is
that not all computers and typewriters have the characters listed
in table 1.

2 To avoid confusion, the representation of a terminal-character
in any one document should be consistent.

3 7.2 to 7.4 imply that the characters required for Extended
BNF are:

letters digits = , - * () ?
1 or / or !
/ or both of []
: or both of { }
’ or I’ (Both characters are needed if either is
a terminal symbol of the language being defined)

7.5 Other-character

An other-character is any other character in the ISO/IEC
646: 1991 character set that is neither:

a) a control character, nor

b) required to represent any other terminal-character.

NOTE - When the terminal-characters are represented as
specified in table 1, the other-characters are:

space
. full stop
. . colon
! exclamation mark
+ plus sign

ii
lowline
percent sign

@ commercial at
& ampersand
number sign
$ dollar sign
< less-than sign
> greater-than sign
/ solidus
\ reverse solidus
A circumflex accent
\ grave accent
- tilde

7.6 Gap-separator

A gap-separator is represented as follows:

a> a space is represented by a Space character,

b) a horizontal-tabulation is represented by a Horizontal
Tabulation character,

ISO/IEC 14977 : 1996(E) @ ISO/IEC

Table 3 - Character pairs
terminal-character

that represent a single
t*

The syntax of Extended BNF can be defined using
itself. There are four parts in this example,
the first part names the characters, the second
part defines the removal of unnecessary non-
printing characters, the third part defines the
removal of textual comments, and the final part
defines the structure of Extended BNF itself.

Table 4 - Invalid sequences of characters

c) a new-line is represented by a (possibly empty)
sequence of Carriage Return characters, a Line Feed
character, and a (possibly empty) sequence of Carriage
Return characters,

d) a vertical-tabulation is represented by a Vertical
Tabulation character,

e) a form-feed is represented by a Form Feed character.

7.7 Terminal-characters represented by a pair of
characters

Each pair of characters in table 3 always represents a
single terminal-character in a syntax-rule except inside a
terminal-string or special-sequence.

NOTE - This restriction is necessary because these character
sequences are ambiguous, for example /) could be a definition-
separator-symbol followed by an end-group-symbol, or an
end-option-symbol.

7.8 Invalid character sequences

Each line of table 4 specifies a character sequence that
does not appear in a syntax-rule outside a terminal-string
or special-sequence.

NOTE - This restriction is necessary because these character
sequences are ambiguous, for example (*) could be a
start-comment-symbol followed by an end-group-symbol, or a
start-group-symbol followed by an end-comment-symbol.

Inserting a gap-separator allows either meaning, for example
(*) is a start-comment-symbol followed by an end-group-
symbol, and (*) is a start-group-symbol followed by an
end-comment-symbol.

8 Examples

8.1 The syntax of Extended BNF

Each syntax rule in this example starts with a
comment that identifies the corresponding clause
in the standard.

The meaning of special-sequences is not defined
in the standard. In this example (see the
reference to 7.6) they represent control
functions defined by ISO/IEC 6429:1992.
Another special-sequence defines a
syntactic-exception (see the reference to 4.7).

*>

t*
The first part of the lexical syntax defines the
characters in the 7-bit character set (ISO/IEC
646:1991) that represent each terminal-character
and gap-separator in Extended BNF.

*I
(* see 7.2 *) letter

= 'a, 1 'b' 1 'c, 1 'd' 1 'e, 1 'f, I 'g, I 'h'
I ‘i’ I ‘j’ 1 'k' I '1' I 'm, I 'n, I '0, I 'p,
I 'q' I 'r' I 's' I 't' I 'u' I 'v' 1 'w' I 'x'
1 'y' 1 'z'
I 'A' 1 'B' 1 'C' 1 'D' 1 'E' 1 'F' 1 'G' 1 'H'
I I 1 'J' 1 'K' 1 'L' 1 'M' 1 'N' 1 '0' 1 'P'
1 ::, 1 I 'R' 1 'S' 1 'T' 1 'U' 1 'V' 1 'W' 1 'X'
1 'Y' 1 'Z';

(* see 7.2 *) decimal digit
= '0' 1 '1' 1 '2' 1 '3' 1 '4' 1 '5' 1 '6' 1 '7'
1 '8' 1 '9';

t*
The representation of the following
terminal-characters is defined in clauses 7.3,
7.4 and tables 1, 2.

*>
concatenate symbol = ',';
defining symbol = I=';
definition separator symbol = , I, I ,/I) , !,;
end comment symbol = '*)';
end group symbol = ')';
end option symbol = 'I' I '/)';
end repeat symbol = '}' I ':)';
except symbol = I-';
first quote symbol = II I II .

repetition symbol = I*,;'
second quote symbol = "I';
special sequence symbol = I?';
start comment symbol = '(*';
start group symbol = '(';
start option symbol = '[' I '(/';
start repeat symbol = '{' I '(:I;
terminator symbol = '-' I '.'.
(* see 7.5 *) other character'

= I
t,: I I I

1 :a: 1 1;: / ,y: I ‘%’ I ‘@’
I 1 ,>r 1 I\’
I 1”’ I I \ I 1-t .

(* see 7.6 *) space/character = ' ';
horizontal tabulation character

= ? IS0 6429 character Horizontal Tabulation ? ;
new line

= { ? IS0 6429 character Carriage Return ? },

8

@ ISO/IEC ISOIIEC 14977 : 1996(E)

? IS0 6429 character Line Feed ?,
{ ? IS0 6429 character Carriage Return ? };

vertical tabulation character
= ? IS0 6429 character Vertical Tabulation ? ;

form feed
= ? IS0 6429 character Form Feed ? ;

t*
The second part of the syntax defines the
removal of unnecessary non-printing characters
from a syntax.

*I
(* see 6.2 *) terminal character

= letter
I decimal digit
I concatenate symbol
I defining symbol
1 definition separator symbol
1 end comment symbol
I end group symbol
I end option symbol
1 end repeat symbol
1 except symbol
I first quote symbol
] repetition symbol
1 second quote symbol
1 special sequence symbol
I start comment symbol
I start group symbol
I start option symbol
I start repeat symbol
I terminator symbol
I other character;

(* see 6.3 *) gap free symbol
= terminal character

- (first quote symbol I second quote symbol)
I terminal string;

t* see 4.16 *) terminal string
= first quote symbol, first terminal character,

{first terminal character},
first quote symbol

1 second quote symbol, second terminal character,
{second terminal character},
second quote symbol;

(* see 4.17 *) first terminal character
= terminal character - first quote symbol;

(* see 4.18 *) second terminal character
= terminal character - second quote symbol;

(* see 6.4 *) gap separator
= space character
I horizontal tabulation character
I new line
I vertical tabulation character
I form feed;

(* see 6.5 *) syntax
= (gap separator},
gap free symbol, {gap separator},
{gap free symbol, {gap separator}};

t*
The third part of the syntax defines the
removal of bracketed-textual-comments from
gap-free-symbols that form a syntax.

"1
(* see 6.6 *> commentless symbol

= terminal character
- (letter

I decimal digit
I first quote symbol
1 second quote symbol
I start comment symbol

1 end comment symbol
I special sequence symbol
I other character)

I meta identifier
I integer
I terminal string
I special sequence;

(* see 4.9 *) integer
= decimal digit, {decimal digit};

(* see 4.14 *) meta identifier
= letter, {meta identifier character};

(* see 4.15 *) meta identifier character
= letter
I decimal digit;

(* see 4.19 *) special sequence
= special sequence symbol,

(special sequence character},
special sequence symbol;

t* see 4.20 *) special sequence character
= terminal character - special sequence symbol;

(* see 6.7 *) comment symbol
= bracketed textual comment
I other character
I commentless symbol;

(* see 6.8 *) bracketed textual comment
= start comment symbol, {comment symbol),

end comment symbol;
(* see 6.9 *) syntax

= {bracketed textual comment},
commentless symbol,
{bracketed textual comment},
{commentless symbol,

{bracketed textual comment)};

t*
The final part of the syntax defines the
abstract syntax of Extended BNF, i.e. the
structure in terms of the commentless symbols.

*>

(* see 4.2 *) syntax
= syntax rule, {syntax rule};

(* see 4.3 *) syntax rule
= meta identifier, defining symbol,

definitions list, terminator symbol;
(* see 4.4 *) definitions list

= single definition,
{definition separator symbol,

single definition};
(* see 4.5 *) single definition

= syntactic term,
{concatenate symbol, syntactic term);

(* see 4.6 *) syntactic term
= syntactic factor,

[except symbol, syntactic exception];
(* see 4.7 *) syntactic exception

= ? a syntactic-factor that could be replaced
by a syntactic-factor containing no
meta-identifiers

? -
(* see La *) syntactic factor

= [integer, repetition symbol],
syntactic primary;

(* see 4.10 *) syntactic primary
= optional sequence
I repeated sequence
I grouped sequence
I meta identifier
I terminal string

special sequence
I empty sequence;

9

ISO/IjEC 14977 : 1996(E) @ ISO/IEC

(* see 4.11 *) optional sequence
= start option symbol, definitions list,
end option symbol;

(" see 4.12 *) repeated sequence
= start repeat symbol, definitions list,
end repeat symbol;

(* see 4.13 *) grouped sequence
= start group symbol, definitions list,
end group symbol;

(* see 4.21 *) empty sequence
= - I

defined *);
integer = decimal digit, {decimal digit};
special sequence = I?,, {character - '?I}, '?,

(* The meaning of a <special sequence> is not
defined in the standard metalanguage. *);

comment = '(*I, {comment symbol], 'jr)'
(* A comment is allowed anywhere outside a

<terminal string>, <meta identifier>,
<integer> or <special sequence> *);

comment symbol
comment I terminal string I special sequence

i h c aracter;

8.2 Extended BNF used to define itself informally
8.3 Extended BNF defined informally

(”
This example defines Extended BNF
informally. Many of the syntax rules include
a comment to explain their meaning; inside a
comment a meta identifier is enclosed in angle
brackets < and > to avoid confusion with
similar English words. The non-terminal symbols
<letter>, <decimal digit> and <character> are
not defined. The position of <comments> is
stated in a comment but not formally defined.

*I
syntax = syntax rule, {syntax rule};
syntax rule .

I-I = meta identifier, - , definitions list, 'a'
(* A <syntax rule> defines the sequences of'

symbols represented by a <meta identifier> *);
definitions list

= single definition, {'I', single definition}
(” I separates alternative

<single definitions> *);
single definition = term, {',', term}

t* I separates successive <terms> *>;
term = factor, ['-I, exception]

(* A <term> represents any sequence of symbols
that is defined by the <factor> but
not defined by the <exception> *);

exception = factor
(* A <factor> may be used as an <exception>

if it could be replaced by a <factor>
containing no <meta identifiers> *I;

factor = [integer, '*'I, primary
(* The <integer> specifies the number of

repetitions of the <primary> *);
primary

= optional sequence I repeated sequence
I special sequence I grouped sequence
I meta identifier I terminal string I empty;

empty = ;
optional sequence = '[I, definitions list, '1'

(* The brackets [and 1 enclose symbols
which are optional *);

repeated sequence = '{I, definitions list, '}'
(* The brackets { and > enclose symbols

which may be repeated any number of times *);
grouped sequence = '(', definitions list, I),

(* The brackets (and) allow any
<definitions list> to be a <primary> *);

terminal string
= II I II , character - "'I, {character - II I II >, II I II

I I ,I I , character - "I,, {character - 'I',}, "I'
(* A <terminal string> represents the

<characters> between the quote symbols
I , - or 11-u *);

meta identifier = letter, {letter I decimal digit}
(* A <meta identifier> is the name of a

syntactic element of the language being

t*
THIS EXAMPLE USES THE REPRESENTATION DEFINED
IN TABLE 2.

*I
SYNTAX = SYNTAX RULE, (: SYNTAX RULE :).
SYNTAX RULE

= META IDENTIFIER, '=', DEFINITIONS LIST, '.I.
DEFINITIONS LIST

= SINGLE DEFINITION,
(: V', SINGLE DEFINITION :).

SINGLE DEFINITION = TERM, (: I,', TERM :).
TERM = FACTOR, (/ I--', EXCEPTION /).
EXCEPTION = FACTOR.
FACTOR = (/ INTEGER, '*' /), PRIMARY.
PRIMARY

= OPTIONAL SEQUENCE / REPEATED SEQUENCE
/ SPECIAL SEQUENCE / GROUPED SEQUENCE
/ META IDENTIFIER / TERMINAL / EMPTY.

EMPTY = .
OPTIONAL SEQUENCE = I(/', DEFINITIONS LIST, '/)'.
REPEATED SEQUENCE = '(:', DEFINITIONS LIST, I:)'.
GROUPED SEQUENCE = '(', DEFINITIONS LIST, I)'.
TERMINAL

= II I II , CHARACTER - "I",
(: CHARACTER - II r II

9,
II I II

/
I II I , CHARACTER - I"',
(: CHARACTER - "I :), "'I.

META IDENTIFIER = LETTER, (: LETTER / DIGIT :).
INTEGER = DIGIT, (: DIGIT :).
SPECIAL SEQUENCE = I?', (: CHARACTER - '?' :), '?I.
COMMENT = I(*', (: COMMENT SYMBOL :), '*)'.
COMMENT SYMBOL

= COMMENT / TERMINAL / SPECIAL SEQUENCE
/ CHARACTER.

10

@ ISO/IEC

Annex A
(informative)

Two-level grammars

ISOIIEC 14977 : 1996(E)

A.1 For most users, the facilities described in this Inter-
national Standard will be more than adequate. However
some users will want to make more powerful extensions.
This annex illustrates the possibilities by suggesting how
Extended BNF might be extended to define a two-level
grammar. This sort of grammar, used for example in Algol
68 (van Wijngaarden, 1975) provides a more precise but
less direct method of defining languages. Although the
notation (also known as a van Wijngaarden grammar, or a
W-grammar) is more powerful, it is more complicated and,
as the authors of Algol 68 recognized, “may be difficult
for the uninitiated reader”.

There are two sorts of rules in a two-level grammar.
Some, called hyper-rules, are similar to the syntax-rules in
Extended BNF except that they may include special words
known as metanotions. Other rules, called metaproduction
rules, define the sequences of symbols that correspond
to each metanotion. The syntax-rules of a language are
generated by appropriately replacing each metanotion in a
hyper-rule. When a metanotion occurs more than once in
a hyper-rule, identical replacements for it are made when
generating a syntax-rule. Metanotions inside terminal
strings and comments are also systematically replaced.

A.2 Little extra notation is needed to extend Extended
BNF into a two-level grammar:

a) Introduce a metaproduction-defining-symbol, e.g. ==
so that a metaproduction rule can be distinguished from
a hyper-rule.

b) Distinguish metanotions from other hypernotions by
using upper-case letters for metanotions, and lower-case
letters for hypernotions and meta-identifiers.

For example, the language defined by the two-level
grammar:

metaproduction rule:
INTREAL == integer I real;

hyper-rules:
program = {statement}, 'end';
statement = INTREAL statement;
INTREAL statement

= 'print INTREAL', INTREAL expression;
INTREAL expression = INTREAL value,

{('+' 1 '-' 1 I*' 1 '/'), INTREAL value};
integer value = digit, {digit};
real value

= digit, I.', digit, {digit}, '@', digit;

is equivalent to the language (defined using Extended
BNF):

program = {statement}, 'end,;
statement = integer statement;
statement = real statement;
integer statement

= 'print integer,, integer expression;
real statement = 'print real', real expression;
integer expression = integer value,

(('+' I '-' 1 '*' I I/'), integer value};
real expression = real value,

{('+I I '-' I '*' I '/'), real value};
integer value = digit, {digit};
real value

= digit, '.', digit, {digit}, ,@', digit;

A.3 The syntax of Extended BNF would need to be altered
as follows:

a) Insert the following additional rules:

metaproduction rule
= metanotion, metaproduction defining symbol,
hypernotion,
{definition separator symbol, hypernotion},
terminator symbol;

metanotion
= upper case letter, {upper case letter);

metaproduction defining symbol = "==";
hypernotion

= letter, {letter I decimal digit};
upper case letter

= 'A' 1 'B' 1 'C' 1 'D' 1 'E' 1 'F' 1 'G'
I 'H' 1 'I' 1 'J' 1 'K' 1 'L' 1 'M' 1 'N'

I '0' 1 'P' 1 'Q' 1 'R' 1 'S' 1 'T' 1 'U'
I ‘V’ 1 ‘W’ 1 ‘X’ 1 ‘Y’ 1 ‘Z’;

lower case letter
'a, I 'b' I 'c, I 'd' I ,er I 'f' I 'g,

; /h/ 1 Ii/ 1 t j/ 1 IkI 1 '11 1 tm/ 1 /n/

I 'of 1 fp' I fq, I 'rf I 's' I 't' I 'u'

I ‘v’ 1 ‘w’ 1 ‘x’ 1 ‘y’ 1 ‘z’;

b) Alter the existing rules:

syntax = hyper rule, {hyper rule};
hyper rule = hypernotion, defining symbol,

definitions list, terminator symbol;
syntactic primary

III optional sequence I repeated sequence
I grouped sequence I hypernotion
I terminal string I special sequence
1 empty sequence;

letter = upper case letter I lower case letter;
meta identifier

= lower case letter,
{lower case letter I decimal digit};

However, this simple definition would leave some problems
unresolved: the substitution for a metanotion may not be
uniquely defined, there may be an infinite number of
production rules, and there may be production rules of
infinite length.

11

ISO/IEC 14977 : 1996(E) @ ISO/IEC

Annex B
(informative)
Bibliography

The following standards and papers are referred to only
in the introduction.

IS0 1539:1980, Endorsement of ANSI X3.9-1978, Amer-
ican National Standard - Programming Language FOR-
TRAN. American National Standards Institute, New York,
USA. 1978.

ISO/IEC 1539: 199 1, Information technology - Program-
ming languages - FORTRAN.

IS0 1989: 1985, Endorsement of ANSI X3.23-1985, Ameri-
can National Standard - Programming Language COBOL.
American National Standards Institute, New York, USA.
1985.

ISO/IEC 9945-2 : 1993, Information technology -
Portable Operating System Interface (POSIX) - Part
2: Shell and utilities.

BS 5904, Programming languages - RTU2, British Stan-
dards Institution, 1979.

BS 5905, Programming languages - CORAL 66, British
Standards Institution, 1979.

(Naur, 1960), P Naur (Editor}, Revised Report on the
Algorithmic Language ALGOL 60, Computer Journal, Vol
5, No 4, ~~349-367, Jan 1963.

(van Wijngaarden, 1975), A van Wijngaarden, B J Mail-
loux, J E L Peck, C H A Kostel; M SintzofJ; C H Lindsey,
L G L T Meertens, R G Fisker; Revised report on the
Algorithmic Language ALGOL 68, Acta Informatica, Vol
5, parts l-3, 1975 (also published in SIGPLAN Notices,
Vol 12, No 5, ~~1-70, May 1977).

(Wirth, 1977), N Wirth, What can we do about the
unnecessary diversity of notation for syntactic deJinitions?
Comm ACM, Vol 20, No 11, Nov 1977, ~822.

12

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

ISO/IEC 14977:1996(E) 0 ISO/lEC

ICS 35.060
Descriptors:
characters.

data processing, computer sofware, artificial languages, programmtng languages, logical structure, graphic methods, graphic

Price based on 12 pages

