
 1

The RISC Architecture NW 5.12.10, rev. 1.2.2014

0. Resources and registers

From the viewpoints of the programmer and the compiler designer the computer consists of an
arithmetic unit, a control unit and a store. The arithmetic unit contains 16 registers R0 – R15, with
32 bits each. The control unit consists of the instruction register IR, holding the instruction currently
being executed, and the program counter PC, holding the word-address of the instruction to be
fetched next. All branch instructions are conditional. The memory consists of 32-bit words, and it is
byte-addressed. Furthermore, there are 4 flag registers N, Z, C and V, called the condition codes.

There are four types of instructions and instruction formats. Register instructions operate on
registers only and feed data through a shifter or the arithmetic logic unit ALU. Memory instructions
fetch and store data in memory. Branch instructions affect the program counter.

1. Register instructions (formats F0 and F1)

Register instructions assign the result of an operation to the destination register R.a. The first
operand is the register R.b. The second operand n is either register R.c or is the constant im.

0 MOV a, n R.a := n
1 LSL a, b, n R.a := R.b ← n (shift left by n bits)
2 ASR a, b, n R.a := R.b → n (shift right by n bits with sign extension)
3 ROR a, b, n R.a := R.b rot n (rotate right by n bits)
4 AND a, b, n R.a := R.b & n logical operations
5 ANN a, b, n R.a := R.b & ~n
6 IOR a, b, n R.a := R.b or n
7 XOR a, b, n R.a := R.b xor n
8 ADD a, b, n R.a := R.b + n integer arithmetic
9 SUB a, b, n R.a := R.b – n
10 MUL a, b, n R.a := R.a х n
11 DIV a, b, n R.a := R.b div n

12 FAD a, b, c R.a := R.b + R.c floating-point arithmetic
13 FSB a, b, c R.a := R.b – R.c
14 FML a, b, c R.a := R.a х R.c
15 FDV a, b, c R.a := R.b / R.c

Immediate values are extended to 32 bits with 16 v-bits to the left. Apart from R.a these instructions
also affect the flag registers N (negative) and Z (zero). The ADD and SUB instructions also set the
flags C (carry, borrow) and V (overflow).

2. Memory instructions (format F2)

00u0 a b op c F0

F1 01uv a b im op

4 4 4 4 4 12

16

F2 10uv a b off

4 4 4 20

 2

LD a, b, im R.a := Mem[R.b + off] u = 0
ST a, b, im Mem[R.b + off] := R.a u = 1

If v = 0, access is for a word (4 bytes). If v = 1, a single byte is accessed.

3. Branch instructions (Format F3)

Bcond dest

If u = 0, the destination address is taken from register R.c. If u = 1, it is PC+1 + offset. If v = 1, the
link address PC+1 is deposited in register R15.

code cond condition code cond condition

0000 MI negative (minus) N 1000 PL positive (plus) ~N
0001 EQ equal (zero) Z 1001 NE positive (plus) ~Z
0010 CS carry set C 1010 CC carry clear ~C
0011 VS overflow set V 1011 VC overflow clear ~V
0100 LS less or same ~C|Z 1100 HI high ~(~C}Z)
0101 LT less than N≠V 1101 GE greater or equal ~(N≠V)
0110 LE less or equal (N≠V)|Z 1110 GT greater than ~((N≠V)|Z)
0111 always true 1111 never false

4. Special features

Modifier bit u = 1 changes the effect of certain instructions as follows:

 ADD', SUB' add, subtract also carry C
 MUL' unsigned multiplication
 MOV' form 0, c = 0: R.a := H
 MOV' form 0, c = 1: R.a := [N, Z, C, V]
 MOV' form 1 R.a := [R.c[15:0], 16'b0] (R.c left shifted 16 bits)

The MUL instruction deposits the high 32 bits of the product in the auxiliary register H. The DIV
instruction deposits the remainder in H.

110v cond c

4 4 4

F3 111v cond off

0000 110v cond

4 16

 3

The RISC0 implementation
The RISC architecture has been implemented on a Xilinx FPGA contained on the development
board Spartan. RISC0 stands at the origin of an evolving series of extensions. It represents a
Harvard architecture, and it uses FPGA-internal RAM for its memory, which is restricted to 8K
words of program and 8K words for data. It does not feature byte access, and the floating-point
instructions are not available..

RISC0's external devices are the following:

adr hex input output

-64 0FFFC0H millisecond counter
-60 0FFFC4H switches LEDs
-56 0FFFC8H RS-232 data RS-232 data
-52 0FFFCCH RS-232 status* RS-232 control

* bit 0: receiver ready, bit 1: transmitter ready

The RISC5 implementation
RISC5 is an extension of RISC0 based on a von Neumann architecture and uses the same
instruction set. The memory consists of the board-internal SRAM with a capacity of 1 MB. Byte
access is available, and so are floating-point instructions.

RISC5's external devices are the following:

adr hex input output

-64 0FFFC0H millisecond counter
-60 0FFFC4H switches LEDs
-56 0FFFC8H RS-232 data RS-232 data
-52 0FFFCCH RS-232 status RS-232 control
-48 0FFFD0H disk, net SPI data SPI data
-44 0FFFD4H disk, net SPI status SPI control
-40 0FFFD8H keyboard data (PS2)
-36 0FFFDCH mouse (and kbd status)

A further added device is the video controller. It maps memory at 0E7F00H - 0FFEFFH onto the
display (1024 x 768 pixels).

