Niklaus Wirth
Jurg Gutknecht

Project Oberon

The Design of an
Operating System
and Compiler

Edition 2005

Project Oberon

Preface

This book presents the results of Project Oberon, namely an entire software environment for a modern
workstation. The project was undertaken by the authors in the years 1986-89, and its primary goal was to
design and implement an entire system from scratch, and to structure it in such a way that it can be
described, explained, and understood as a whole. In order to become confronted with all aspects,
problems, design decisions and details, the authors not only conceived but also programmed the entire
system described in this book, and more.

Although there exist numerous books explaining principles and structures of operating systems, there is a
lack of descriptions of systems actually implemented and used. We wished not only to give advice on
how a system might be built, but to demonstrate how one was built. Program listings therefore play a key
role in this text, because they alone contain the ultimate explanations. The choice of a suitable formalism
therefore assumed great importance, and we designed the language Oberon as not only an effective
vehicle for implementation, but also as a publication medium for algorithms in the spirit in which Algol
60 had been created three decades ago. Because of its structure, the language Oberon is equally well
suited to exhibit global, modular structures of programmed systems.

In spite of the small number of man-years spent on realizing the Oberon System, and in spite of its
compactness letting its description fit a single book, it is not an academic toy, but rather a versatile
workstation system that has found many satisfied and even enthusiastic users in academia and industry.
The core system described here, consisting of storage, file, display, text, and viewer managers, of
program loader and device drivers, draws its major power from a suitably chosen, flexible set of basic
facilities and, most importantly, of their effective extensibility in many directions and for many
applications. The extensibility is particularly enhanced by the language Oberon on the one, and by the
efficiency of the basic core on the other hand. It is rooted in the application of the object-oriented
paradigm which is employed wherever extensibility appears advantageous.

In addition to the core system, we describe in full detail the compiler for the language Oberon and a
graphics system, which both may be regarded as applications. The former reveals how a compact
compiler is designed to achieve both fast compilation and efficient, dense code. The latter stands as an
example of extensible design based on object-oriented techniques, and it shows how a proper integration
with an existing text system is possible. Another addition to the core system is a network module
allowing many workstations to be interconnected. We also show how the Oberon System serves
conveniently as the basis for a multi-server station, accommodating a file distribution, a printing, and an
electronic-mail facility.

Compactness and regular structure, and due attention to efficient implementation of important details
appear to be the key to economical software engineering. With the Oberon System, we wish to refute
Reiser's Law, which has been confirmed by virtually all recent releases of operating systems: In spite of
great leaps forward, hardware is becoming faster more slowly than software is becoming slower. The
Oberon System has required a tiny fraction of the manpower demanded for the construction of widely-
used commercial operating systems, and a small fraction of their demands on computing power and
storage capacity, while providing equal power and flexibility to the user, albeit without certain bells and
whistles. The reader is invited to study how this was possible.

But most importantly, we hope to present a worth-while case study of a substantial piece of programming
in the large for the benefit of all those who are eager to learn from the experiences of others.

We wish to thank the many anonymous contributors of suggestions, advice, and encouragement. In
particular we wish to thank our colleagues H. M&ssenbdck and B. Sanders and our associates at the
Institut fir Computersysteme for reading all or parts of the draft of this book. We are grateful to M.
Brandis, R. Crelier, A. Disteli, M. Franz, and J. Templ for their work in porting the Oberon System
successfully to various commercially available computers, and thus making the study of this book more

worth-while for many readers. And we gratefully acknowledge the contribution of our school, ETH, for
providing the environment and support which made it possible for us to pursue and complete this project.

Zirich, February 1992
N.W. and J.G.

Project Oberon

The Design of an Operating System and Compiler
N. Wirth and J. Gutknecht

Table of Contents

1. Historical background and motivation
References

2. Basic concepts and structure of the system

2.1. Introduction

2.2. Concepts

2.3. The System's Structure

2.4. A Tour through the Chapters

3. The Tasking System

3.1. The Concept of Task

3.1.1. Interactive Tasks

3.1.2. Background Tasks

3.2. The Task Scheduler

3.3. The Concept of Command
3.3.1. Generic Actions

3.3.2. Generic Text Selection
3.3.3. Generic Copy-Over for Text
3.3.4. Generic Copy Viewer

3.4. Toolboxes

4. The Display System

4.1. Screen Layout Model

4.2. Viewers as Objects

4.3. Frames as Basic Display Entities
4.4. Display Management

4.4.1. Viewers

4.4.2. Menu Viewers

4.4.3. Cursor Management

4.5. Raster Operations

4.6. Standard Display Configurations

5. The Text System

5.1. Text as Abstract Data Type
5.1.1. Loading and Storing
5.1.2. Editing Text

5.1.3. Accessing Text

5.2. Text Management

5.3. Text Frames

5.4. The Font Machinery

5.5. The Edit Toolbox

6. The Module Loader

6.1. Linking and Loading

6.2. Module Representation in the Oberon System
6.3. The Linking Loader

6.4. The Toolbox of the Loader

6.5. The Oberon Object File Format

7. The File System

7.1. Files

7.2. Implementation of Files on a Random-Access Store
7.3. Implementation of Files on a Disk

7.4. The File Directory

7.5. The Toolbox of File Utilities

8. Storage Layout and Management

8.1. Storage Layout and Run-time Organization
8.2. Allocation of Module Blocks

8.3. Management of Dynamic Storage

8.4. The Kernel

9. Device drivers

9.1. Overview

9.2. The RS-232 Standard for Keyboard

9.3. The RS-485 SDLC Standard for a Network
9.4. The SCSI Standard for Disks

10. The network

10.1. Introduction

10.2. The Protocol

10.3. Station Addressing
10.4. Implementation

11. A dedicated server for file distribution, electronic mail, and printing

11.1. Concept and Structure
11.2. Electronic Mail Service
11.3. Printing Service

11.4. Miscellaneous Services
11.5. User Administration

12. The compiler

12.1 Introduction

12.2 Code Patterns

12.3. Internal Data Structures and Interfaces
12.4. The Parser

12.5. The Scanner

12.6. The Symbol Table and Symbol Files
12.7. Code Selection

12.8. Code Generation

12.9. A Facility for Symbolic Debugging

13. A graphics editor

13.1. History and Goal

13.2. A Brief Guide to Oberon's Line Drawing System
13.2.1 Basic Commands

13.2.2. Menu Commands

13.2.3. Further Commands

13.2.4. Macros

13.2.5. Rectangles

13.2.6. Oblique Lines, Circles, and Ellipses
13.2.7. Spline Curves

13.2.8. Constructing new Macros

13.3. The Core and its Structure

13.4. Displaying Graphics
13.5. The User Interface

13.6. Macros

13.7. Object Classes

13.8. The Implementation
13.8.1. Module Draw

13.8.2. Module GraphicFrames
13.8.3. Module Graphics

13.9. Rectangles and Curves
13.9.1. Rectangles

13.9.2. Oblique Lines, Circles, and Ellipses

14. Building and maintenance tools

14.1. The Startup Process
14.2. Building Tools
14.3. Maintenance Tools

A. Ten Years After: From Objects to Components

A.1. Object Libraries

A.2. Frames as Visual Objects
A.3. Embedded Objects

A.4. Gadgets

Copyright N.Wirth, 30.8.91/9.11.91

1. Historical Background and Motivation

How could anyone diligently concentrate on his work on an afternoon with such warmth, splendid
sunshine, and blue sky. This rhetorical question | asked many times while spending a sabbatical leave
in California in 1985. Back home everyone would feel compelled to profit from the sunny spells to
enjoy life at leisure in the country-side, wandering or engaging in one's favourite sport. But here, every
day was like that, and giving in to such temptations would have meant the end of all work. And, had |
not chosen this location in the world because of its inviting, enjoyable climate?

Fortunately, my work was also enticing, making it easier to buckle down. | had the privilege of sitting
in front of the most advanced and powerful workstation anywhere, learning the secrets of perhaps the
newest fad in our fast developing trade, pushing colored rectangles from one place of the screen to
another. This all had to happen under strict observance of rules imposed by physical laws and by the
newest technology. Fortunately, the advanced computer would complain immediately if such a rule
was violated, it was a rule checker and acted like your big brother, preventing you from making steps
towards disaster. And it did what would have been impossible for oneself, keeping track of thousands
of constraints among the thousands of rectangles laid out. This was called computer-aided design.
"Aided" is rather a euphemism, but the computer did not complain about the degradation of its role.

While my eyes were glued to the colorful display, and while | was confronted with the evidence of my
latest inadequacy, in through the always open door stepped my colleague. He also happened to spend a
leave from duties at home at the same laboratory, yet his face did not exactly express happiness, but
rather frustration. The chocolate bar in his hand did for him what the coffee cup or the pipe does for
others, providing temporary relaxation and distraction. It was not the first time he appeared in this
mood, and without words | guessed its cause. And the episode would reoccur many times.

His days were not filled with the great fun of rectangle-pushing; he had an assignment. He was charged
with the design of a compiler for the same advanced computer. Therefore, he was forced to deal much
more closely, if not intimately, with the underlying software system. Its rather frequent failures had to
be understood in his case, for he was programming, whereas | was only using it through an application;
in short, 1 was an end-user! These failures had to be understood not for purposes of correction, but in
order to find ways to avoid them. How was the necessary insight to be obtained? | realized at this
moment that | had so far avoided this question; | had limited familiarization with this novel system to
the bare necessities which sufficed for the task on my mind.

It soon became clear that a study of the system was nearly impossible. Its dimensions were simply
awesome, and documentation accordingly sparse. Answers to questions that were momentarily
pressing could best be obtained by interviewing the system's designers, who all were in-house. In
doing so, we made the shocking discovery that often we could not understand their language.
Explanations were fraught with jargon and references to other parts of the system which had remained
equally enigmatic to us.

So, our frustration-triggered breaks from compiler construction and chip design became devoted to
attempts to identify the essence, the foundations of the system's novel aspects. What made it different
from conventional operating systems? Which of these concepts were essential, which ones could be
improved, simplified, or even discarded? And where were they rooted? Could the system's essence be
distilled and extracted, like in a chemical process?

During the ensuing discussions, the idea emerged slowly to undertake our own design. And suddenly it
had become concrete. "Crazy" was my first reaction, and "impossible". The sheer amount of work
appeared as overwhelming. After all, we both had to carry our share of teaching duties back home. But
the thought was implanted and continued to occupy our minds.

Sometime thereafter, events back home suggested that | should take over the important course about
System Software. As it was the unwritten rule that it should primarily deal with operating system

principles, | hesitated. My scruples were easily justified: After all | had never designed such a system
nor a part of it. And how can one teach an engineering subject without first-hand experience!

Impossible? Had we not designed compilers, operating systems, and document editors in small teams?
And had | not repeatedly experienced that an inadequate and frustrating program could be programmed
from scratch in a fraction of source code used by the original design? Our brain-storming continued,
with many intermissions, over several weeks, and certain shapes of a system structure slowly emerged
through the haze. After some time, the preposterous decision was made: we would embark on the
design of an operating system for our workstation (which happened to be much less powerful than the
one used for my rectangle-pushing) from scratch.

The primary goal, to personally obtain first-hand experience, and to reach full understanding of every
detail, inherently determined our manpower: two part-time programmers. We tentatively set our time-
limit for completion to three years. As it later turned out, this had been a good estimate; programming
was begun in early 1986, and a first version of the system was released in the fall of 1988.

Although the search for an appropriate name for a project is usually a minor problem and often left to
chance and whim of the designers, this may be the place to recount how Oberon entered the picture in
our case. It happened that around the time of the beginning of our effort, the space probe VVoyager
made headlines with a series of spectacular pictures taken of the planet Uranus and of its moons, the
largest of which is named Oberon. Since its launch | had considered the Voyager project as a
singularly well-planned and successful endeavor, and as a small tribute to it | picked the name of its
latest object of investigation. There are indeed very few engineering projects whose products perform
way beyond expectations and beyond their anticipated lifetime; mostly they fail much earlier,
particularly in the domain of software. And, last but not least, we recall that Oberon is famous as the
king of elfs.

The consciously planned shortage of manpower enforced a single, but healthy guideline: Concentrate
on essential functions and omit embellishments that merely cater to established conventions and
passing tastes. Of course, the essential core had first to be recognized and crystallized. But the basis
had been laid. The ground rule became even more crucial, when we decided that the result should be
able to be used as teaching material. I remembered C.A.R. Hoare's plea that books should be written
presenting actually operational systems rather than half-baked, abstract principles. He had complained
in the early 70s that in our field engineers were told to constantly create new artifacts without being
given the chance to study previous works that had proven their worth in the field. How right was he,
even to the present day!

The emerging goal to publish the result with all its details let the choice of programming language
appear in a new light: it became crucial. Modula-2 which we had planned to use, appeared as not quite
satisfactory. Firstly, because it lacked a facility to express extensibility in an adequate way. And we
had put extensibility among the principal properties of the new system. By "adequate” we include
machine-independence. Our programs should be expressed in a manner that makes no reference to
machine peculiarities and low-level programming facilities, perhaps with the exception of device
interfaces, where dependence is inherent.

Hence, Modula-2 was extended with a feature that is now known as type extension. We also
recognized that Modula-2 contained several facilities that we would not need, that do not genuinely
contribute to its power of expression, but at the same time increase the complexity of the compiler. But
the compiler would not only have to be implemented, but also to be described, studied, and understood.
This led to the decision to start from a clean slate also in the domain of language design, and to apply
the same principle to it: concentrate on the essential, purge the rest. The new language, which still
bears much resemblance to Modula-2, was given the same name as the system: Oberon [1, 2]. In
contrast to its ancestor it is terser and, above all, a significant step towards expressing programs on a
high level of abstraction without reference to machine-specific features.

We started designing the system in late fall 1985, and programming in early 1986. As a vehicle we
used our workstation Lilith and its language Modula-2. First, a cross-compiler was developed, then
followed the modules of the inner core together with the necessary testing and down-loading facilities.
The development of the display and the text system proceeded simultaneously, without the possibility

of testing, of course. We learned how the absence of a debugger, and even more so the absence of a
compiler, can contribute to careful programming.

Thereafter followed the translation of the compiler into Oberon. This was swiftly done, because the
original had been written with anticipation of the later translation. After its availability on the target
computer Ceres, together with the operability of the text editing facility, the umbilical cord to Lilith
could be cut off. The Oberon System had become real, at least its draft version. This happened around
mid 1987; its description was published thereafter [3].

The system's completion took another year and concentrated on connecting the workstations in a
network for file transfer [4], on a central printing facility, and on maintenance tools. The goal of
completing the system within three years had been met. The system was introduced in mid 1988 to a
wider user community, and work on applications could start. A service for electronic mail was
developed, a graphics system was added, and various efforts for general document preparation systems
proceeded. The display facility was extended to accommodate two screens, including color. At the
same time, feedback from experience in its use was incorporated by improving existing parts. Since
1989, Oberon has replaced Modula-2 in our introductory programming courses.

At this point, a word about the underlying hardware is perhaps in order. The Ceres workstation had
also been developed at the Institute for Computer Systems of ETH, and it provided an ideal platform
for implanting the Oberon System on a bare machine. It offered the immensely valuable opportunity to
design without regard to established constraints and to avoid compromises enforced by an
incompatible environment.

Ceres-1 was built around a National Semiconductor 32032 microprocessor, which was in 1985 the first
commercially available processor using a 32 bit wide bus. It appeared as particularly attractive to the
compiler builder because of its regular instruction set. The computer was equipped with 2 MBytes of
main memory, a 40 MByte disk, a diskette, a 1024*800 pixel display, and of course with keyboard and
mouse. These resources were more than adequate for the Oberon System.

Ceres-2 was introduced in 1988 and replaced the processor by its faster version, the NS 32532, which
increased its computing power by a factor of at least 5 over its predecessor. Memory was extended to 4
- 8 MByte and the disk to 80 MByte. In order to install the software, "only" a few modules had to be
adapted, the kernel because of different page structure, and device drivers because of different device
addresses.

In 1990, a low-cost version, Ceres-3 was designed, and 100 computers were built and installed in
laboratories. This single-board computer is based on the NS 32GX32 processor without virtual
addressing unit, and includes a 4-8 MByte memory. The distinctive feature is that the file system is
implemented in one (protected) half of memory instead of a disk, increasing operating speed
dramatically. Ceres-3 is free from mechanically moving parts (no fan) and therefore is completely
noiseless. It is primarily used in laboratories for students. The usefulness of a central server for system
file distribution is evident.

Because of its success and flexibility in use, a project was started in 1989 to transport the System to a
number of commercially available workstations. The plan to install it on bare machines, like on Ceres,
was quickly discarded; nobody would even give it a try, if one had to buy another computer or even
only to exchange ROMs in order to experiment with Oberon. The drawback of building on top of an
existing system had to be accepted; it implies the cost of some rarely used software occupying part of
memory, sometimes even occupying a sizeable part. At the time of this writing, implementations exist
on Apple's Macintosh I, Sun Microsystem's Sparc Station, DEC's DECStation 3100 and 5000, and
IBM's RS/6000. These implementations each took about half a man-year of effort. The solution to
build on top of an existing system carries the invaluable advantage that applications designed under the
base system are accessible from Oberon. All these systems comply with their published description in
a user manual [Reiser, 1991], all have exactly the same user interface, and every program operating on
one of these computers can be executed on any of the others without change. Evidently, this is an
important advantage that can only be gained by programming at a higher level of abstraction, such as
in the language Oberon.

10

References

1. N. Wirth. The programming language Oberon. Software - Practice and Experience 18, 7, (July
1988) 671-690.

2. M. Reiser and N. Wirth. Programming in Oberon - Steps beyond Pascal and Modula. Addison-
Wesley, 1992.

3. N. Wirth and J. Gutknecht. The Oberon System. Software - Practice and Experience, 19, 9 (Sept.
1989), 857-893.

4. N. Wirth. Ceres-Net: A low-cost computer network. Software - Practice and Experience, 20, 1 (Jan.
1990), 13-24.

5. M. Reiser. The Oberon System - UserGuide and Programmer's Manual. Addison-Wesley, 1991.

Copyright N.Wirth, 30.8.91/9.11.91

2. Basic Concepts and Structure of the System

2.1 Introduction

In order to warrant the sizeable effort of designing and constructing an entire operating system from
scratch, a number of basic concepts need to be novel. We start this chapter with a discussion of the
principal concepts underlying the Oberon System and of the dominant design decisions. On this basis,
a presentation of the system's structure follows. It will be restricted to its coarsest level, namely the
composition and interdependence of the largest building blocks, the modules. The chapter ends with an
overview of the remainder of the book. It should help the reader to understand the role, place, and
significance of the parts described in the individual chapters.

The fundamental objective of an operating system is to present the computer to the user and to the
programmer at a certain level of abstraction. For example, the store is presented in terms of requestable
pieces or variables of a specified data type, the disk is presented in terms of sequences of characters (or
bytes) called files, the display is presented as rectangular areas called viewers, the keyboard is
presented as an input stream of characters, and the mouse appears as a pair of coordinates and a set of
key states. Every abstraction is characterized by certain properties and governed by a set of operations.
It is the task of the system to implement these operations and to manage them, constrained by the
available resources of the underlying computer. This is commonly called resource management.

Every abstraction inherently hides details, namely those from which it abstracts. Hiding may occur at
different levels. For example, the computer may allow certain parts of the store, or certain devices to
be made inaccessible according to its mode of operation (user/supervisor mode), or the programming
language may make certain parts inaccessible through a hiding facility inherent in its visibility rules.
The latter is of course much more flexible and powerful, and the former indeed plays an almost
negligible role in our system. Hiding is important because it allows maintenance of certain properties
(called invariants) of an abstraction to be guaranteed. Abstraction is indeed the key of any
modularization, and without modularization every hope of being able to guarantee reliability and
correctness vanishes. Clearly, the Oberon System was designed with the goal of establishing a modular
structure on the basis of purpose-oriented abstractions. The availability of an appropriate programming
language is an indispensible prerequisite, and the importance of its choice cannot be over-emphasized.

2.2. Concepts

2.2.1. Viewers

Whereas the abstractions of individual variables representing parts of the primary store, and of files
representing parts of the disk store are well established notions and have significance in every
computer system, abstractions regarding input and output devices became important with the advent of
high interactivity between user and computer. High interactivity requires high bandwidth, and the only
channel of human users with high bandwidth is the eye. Consequently, the computer's visual output
unit must be properly matched with the human eye. This occurred with the advent of the high-
resolution display in the mid 1970s, which in turn had become feasible due to faster and cheaper
electronic memory components. The high-resolution display marked one of the few very significant
break-throughs in the history of computer development. The typical bandwidth of a modern display is
in the order of 100 MHz. Primarily the high-resolution display made visual output a subject of
abstraction and resource management. In the Oberon System, the display is partitioned into viewers,
also called windows, or more precisely, into frames, rectangular areas of the screen(s). A viewer
typically consists of two frames, a title bar containing a subject name and a menu of commands, and a
main frame containing some text, graphic, picture, or other object. A viewer itself is a frame; frames
can be nested, in principle to any depth.

The System provides routines for generating a frame (viewer), for moving and for closing it. It
allocates a new viewer at a specified place, and upon request delivers hints as to where it might best be

11

placed. It keeps track of the set of opened viewers. This is what is called viewer management, in
contrast to the handling of their displayed contents.

But high interactivity requires not only a high bandwidth for visual output, it demands also flexibility
of input. Surely, there is no need for an equally large bandwidth, but a keyboard limited by the speed
of typing to about 100 Hz is not good enough. The break-through on this front was achieved by the so-
called mouse, a pointing device which appeared roughly at the same time as the high-resolution
display.

This was by no means just a lucky coincidence. The mouse comes to fruition only through appropriate
software and the high-resolution display. It is itself a conceptually very simple device delivering
signals when moved on the table. These signals allow the computer to update the position of a mark -
the cursor - on the display. Since feedback occurs through the human eye, no great precision is
required from the mouse. For example, when the user wishes to identify a certain object on the screen,
such as a letter, he moves the mouse as long as required until the mapped cursor reaches the object.
This stands in marked contrast to a digitizer which is supposed to deliver exact coordinates. The
Oberon System relies very much on the availability of a mouse.

Perhaps the cleverest idea was to equip mice with buttons. By being able to signal a request with the
same hand that determines the cursor position, the user obtains the direct impression of issuing
position-dependent requests. Position-dependence is realized in software by delegating interpretation
of the signal to a procedure - a so-called handler or interpreter -which is local to the viewer in whose
area the cursor momentarily appears. A surprising flexibility of command activation can be achieved in
this manner by appropriate software. Various techniques have emerged in this connection, e.g. pop-up
menus, pull-down-menus, etc. which are powerful even under the presence of a single button only. For
many applications, a mouse with several keys is far superior, and the Oberon System basically assumes
three buttons to be available. The assignment of different functions to the keys may of course easily
lead to confusion when every application prescribes different key assignment. This is, however, easily
avoided by the adherence to certain "global” conventions. In the Oberon System, the left button is
primarily used for marking a position (setting a caret), the middle button for issuing general commands
(see below), and the right button for selecting displayed objects.

Recently, it has become fashionable to use overlapping windows mirroring documents being piled up
on one's desk. We have found this metaphor not entirely convincing. Partially hidden windows are
typically brought to the top and made fully visible before any operation is appiled to their contents. In
contrast to the insignificant advantage stands the substantial effort necessary to implement this scheme.
It is a good example of a case where the benefit of a complication is incommensurate with its cost.
Therefore, we have chosen a solution that is much simpler to realize, yet has no genuine disadvantages
compared to overlapping windows: tiled viewers as shown in Fig. 2.1.

Fig. 2.1. Oberon Display with tiled Viewers

2.2.2. Commands

Position-dependent commands with fixed meaning (fixed for each type of viewer) must be
supplemented by general commands. Conventionally, such commands are issued through the keyboard
by typing the program's name that is to be executed into a special command text. In this respect, the
Oberon System offers a novel and much more flexible solution which is presented in the following
paragraphs.

First of all we remark that a program in the common sense of a text compiled as a unit is mostly a far
too large unit of action to serve as a command. Compare it, for example, with the insertion of a piece
of text through a mouse command. In Oberon, the notion of a unit of action is separated from the
notion of unit of compilation. The former is a command represented by a (exported) procedure, the
latter is a module. Hence, a module may, and typically does, define several, even many commands.
Such a (general) command may be invoked at any time by pointing at its name in any text visible in
any viewer on the display, and by clicking the middle mouse button. The command name has the form
M.P, where P is the procedure's identifier and M that of the module in which P is declared. As a
consequence, any command click may cause the loading of one or several modules, if M is not already

12

present in main store. The next invocation of M.P occurs instataneously, since M is already loaded. A
further consequence is that modules are never (automatically) removed, because a next command may
well refer to the same module.

Every command has the purpose to alter the state of some operands. Typically, they are denoted by
text following the command identification, and Oberon follows this convention. Strictly speaking,
commands are denoted as parameterless procedures; but the system provides a way for the procedure
to identify the text position of its origin, and hence to read and interpret the text following the
command, i.e. the actual parameters. Both reading and interpretation must, however, be programmed
explicitly.

The parameter text must refer to objects that exist before command execution starts and are quite likely
the result of a previous command interpretation. In most operating systems, these objects are files
registered in the directory, and they act as interfaces between commands. The Oberon System broadens
this notion; the links between consecutive commands are not restricted to files, but can be any global
variable, because modules do not disappear from storage after command termination, as mentioned
above.

This tremendous flexibility seems to open Pandora's box, and indeed it does when misused. The reason
is that global variables' states may completely determine and alter the effect of a command. The
variables represent hidden states, hidden in the sense that the user is in general unaware of them and
has no easy way to determine their value. The positive aspect of using global variables as interfaces
between commands is that some of them may well be visible on the display. All viewers - and with
them also their contents - are organized in a data structure that is rooted in a global variable (in module
Viewers). Parts of this variable therefore constitute visible states, and it is highly appropriate to refer to
them as command parameters.

One of the rules of what may be called the Oberon Programming Style is therefore to avoid hidden
states, and to reduce the introduction of global variables. We do not, however, raise this rule to the
rank of a dogma. There exist genuinely useful exceptions, even if the variables have no visible parts.

There remains the question of how to denote visible objects as command parameters. An obvious case
is the use of the most recent selection as parameter. A procedure for locating that selection is provided
by module Oberon. (It is restricted to text selections). Another possibility is the use of the caret
position in a text. This is used in the case of inserting new text; the pressing of a key on the keyboard is
also considered to be a command, and it causes the character's insertion at the caret position.

A special facility is introduced for designating viewers as operands: the star marker. It is placed at the
cursor position when the keyboard's mark key (SETUP) is pressed. The procedure
Oberon.MarkedViewer identifies the viewer in whose area the star lies. Commands which take it as
their parameter are typically followed by an asterisk in the text. Whether the text contained in a text
viewer, or a graph contained in a graphic viewer, or any other part of the marked viewer is taken as the
actual parameter depends on how the command procedure is programmed.

Finally, a most welcome property of the system should not remain unmentioned. It is a direct
consequence of the persistent nature of global variables and becomes manifest when a command fails.
Detected failures result in a trap. Such a trap should be regarded as an abnormal command termination.
In the worst case, global data may be left in an inconsistent state, but they are not lost, and a next
command can be initiated based on their current state. A trap opens a small viewer and lists the
sequence of invoked procedures with their local variables and current values. This information helps a
programmer to identify the cause of the trap.

2.2.3. Tasks

From the presentations above it follows that the Oberon System is distinguished by a highly flexible
scheme of command activation. The notion of a command extends from the insertion of a single
character and the setting of a marker to computations that may take hours or days. It is moreover
distinguished by a highly flexible notion of operand selection not restricted to registered, named files.
And most importantly, by the virtual absence of hidden states. The state of the system is practically
determined by what is visible to the user.

13

This makes it unnecessary to remember a long history of previously activated commands, started
programs, entered modes, etc. Modes are in our view the hallmark of user-unfriendly systems. It
should at this point have become obvious that the system allows a user to pursue several different tasks
concurrently. They are manifest in the form of viewers containing texts, graphics, or other displayable
objects. The user switches between tasks implicitly when choosing a different viewer as operand for
the next command. The characteristic of this concept is that task switching is under explicit control of
the user, and the atomic units of action are the commands.

At the same time, we classify Oberon as a single-process (or single-thread) system. How is this
apparent paradox to be understood? Perhaps it is best explained by considering the basic mode of
operation. Unless engaged in the interpretation of a command, the processor is engaged in a loop
continuously polling event sources. This loop is called the central loop; it is contained in module
Oberon which may be regarded as the system's heart. The two fixed event sources are the mouse and
the keyboard. If a keyboard event is sensed, control is dispatched to the handler installed in the so-
called focus viewer, designated as the one holding the caret. If a mouse event (key) is sensed, control is
dispatched to the handler in which the cursor currently lies. This is all possible under the paradigm of a
single, uninterruptible process.

The notion of a single process implies non-interruptability, and therefore also that commands cannot
interact with the user. Interaction is confined to the selection of commands before their execution.
Hence, there exists no input statement in typical Oberon programs. Inputs are given by parameters
supplied and designated before command invocation.

This scheme at first appears as gravely restrictive. In practice it is not, if one considers single-user
operation. It is this single user who carries out a dialog with the computer. A human might be capable
of engaging in simultaneous dialogs with several processes only if the commands issued are very time-
consuming. We suggest that execution of time-consuming computations might better be delegated to
loosely coupled compute-servers in a distributed system.

The primary advantage of a system dealing with a single process is that task switches occur at user-
defined points only, where no local process state has to be preserved until resumption. Furthermore,
because the switches are user-chosen, the tasks cannot interfere in unexpected and uncontrollable ways
by accessing common variables. The system designer can therefore omit all kinds of protection
mechanisms that exclude such interference. This is a significant simplification.

The essential difference between Oberon and multiprocess-systems is that in the former task switches
occur between commands only, whereas in the latter a switch may be invoked after any single
instruction. Evidently, the difference is one of granularity of action. Oberon's granularity is coarse,
which is entirely acceptable for a single-user system.

The system offers the possibility to insert further polling commands in the central loop. This is
necessary if additional event sources are to be introduced. The prominent example is a network, where
commands may be sent from other workstations. The central loop scans a list of so-called task
descriptors. Each descriptor refers to a command procedure. The two standard events are selected only
if their guard permits, i.e. if either keyboard input is present, or if a mouse event occurs. Inserted tasks
must provide their own guard in the beginning of the installed procedure.

The example of a network inserting commands, called requests, raises a question: what happens if the
processor is engaged in the execution of another command when the request arrives? Evidently, the
request would be lost unless measures are taken. The problem is easily remedied by buffering the
input. This is done in every driver of an input device, in the keyboard driver as well as the network
driver. The incoming signal triggers an interrupt, and the invoked interrupt handler accepts the input
and buffers it. We emphasize that such interrupt handling is confined to drivers, system components at
the lowest level. An interrupt does not evoke a task selection and a task switch. Control simply returns
to the point of interruption, and the interrupt remains unnoticeable to programs. There exists, as with
every rule, an exception: an interrupt due to keyboard input of the abort character returns control to the
central loop.

2.2.4. Tool Texts as Configurable Menus

14

Certainly, the concepts of viewers specifying their own interpretation of mouse clicks, of commands
invokable from any text on the display, of any displayed object being selectable as an interface
between commands, and of commands being dialog-free, uninterruptible units of action, have
considerable influence on the style of programming in Oberon, and they thoroughly change the style of
using the computer. The ease and flexibility in the way pieces of text can be selected, moved, copied,
and designated as command and as command parameters, drastically reduces the need for typing. The
mouse becomes the dominant input device: the keyboard merely serves to input textual data. This is
accentuated by the use of so-called tool texts, compositions of frequently used commands, which are
typically displayed in the narrower system track of viewers. One simply doesn't type commands! They
are usually visible somewhere already. Typically, the user composes a tool text for every project
pursued. Tool texts can be regarded as individually configurable private menus.

The rarity of issuing commands by typing them has the most agreeable benefit that their names can be
meaningful words. For example, the copy operation is denoted by Copy instead of cp, rename by
Rename instead of rn, the call for a file directory excerpt is named Directory instead of Is. The need for
memorizing an infinite list of cryptic abbreviations, which is another hallmark of user-unfriendly
systems, vanishes.

But the influence of the Oberon concept is not restricted to the style in which the computer is used. It
extends also to the way programs are designed to communicate with the environment. The definition of
the abstract type Text in the system's core suggests the replacement of files by texts as carrier of input
and output data in very many cases. The advantage to be gained lies in the text's immediate editability.
For example, the output of the command System.Directory produces the desired excerpt of the file
directory in the form of a (displayed) text. Parts of it or the whole may be selected and copied into
other texts by regular editing commands (mouse clicks). Or, the compiler accepts texts as input. It is
therefore possible to compile a text, execute the program, and to recompile the re-edited text without
storing it on disk between compilations and tests. The ubiquiteous editability of text together with the
persistence of global data (in particular viewers) allows many steps that do not contribute to the
progress of the task actually pursued to be avoided.

2.2.5. Extensibility

An important objective in the design of the Oberon System was extensibility. It should be easy to
extend the system with new facilities by adding modules that make use of the already existing
resources. Equally important, it should also reduce the system to those facilities that are currently and
actually used. For example, a document editor processing documents free of graphics should not
require the loading of an extensive graphics editor, a workstation operating as a stand-alone system
should not require the loading of extensive network software, and a system used for clerical purposes
need include neither compiler nor assembler. Also, a system introducing a new kind of display frame
should not include procedures for managing viewers containing such frames. Instead, it should make
use of existing viewer management. The staggering consumption of memory space by many widely
used systems is due to violation of such fundamental rules of engineering. The requirement of many
megabytes of store for an operating system is, albeit commonly tolerated, absurd and another hallmark
of user-unfriedliness, or perhaps manufacturer friendliness. Its reason is none other than inadequate
extensibility.

We do not restrict this notion to procedural extensibility, which is easy to realize. The important point
is that extensions may not only add further procedures and functions, but introduce their own data
types built on the basis of those provided by the system: data extensibility. For example, a graphics
system should be able to define its graphics frames based on frames provided by the basic display
module and by extending them with attributes appropriate for graphics.

This requires an adequate language feature. The language Oberon provides precisely this facility in the
form of type extensions. The language was designed for this reason; Modula-2 would have been the
choice, had it not been for the lack of a type extension feature. Its influence on system structure was
profound, and the results have been most encouraging. In the meantime, many additions have been
created with surprising ease. One of them is described at the end of this book. The basic system is
nevertheless quite modest in its resource requirements (see Table at the end of Section 2.3).

15

2.2.6. Dynamic Loading

Activation of commands residing in modules that are not present in the store implies the loading of the
modules and, of course, all their imports. Invoking the loader is, however, not restricted to command
activation; it may also occur through programmed procedure calls. This facility is indispensible for a
successful realization of genuine extensibility. Modules must be loadable on demand. For example, a
document editor loads a graphics package when a graphic element appears in the processed document,
but not otherwise.

The Oberon System features no separate linker. A module is linked with its imports when it is loaded,
and never before. As a consequence, every module is present only once, in main store (linked) as well
as on backing store (unlinked, as file). Avoiding the generation of multiple copies in different, linked
object files is the key to storage economy. Prelinked mega-files do not occur in the Oberon System,
and every module is freely reusable.

2.3 The System's Structure

The largest identifiable units of the system are its modules. It is therefore most appropriate to describe
a system's structure in terms of its modules. As their interfaces are explicitly declared, it is also easy to
exhibit their interdependence in the form of a directed graph. The edges indicate imports.

The module graph of a system programmed in Oberon is hierarchical, i.e. has no cycles. The lowest
members of the hierarchy effectively import hardware only. We refer here to modules which contain
device drivers. But module Kernel also belongs to this class; it "imports memory" and includes the disk
driver. The modules on the top of the hierarchy effectively export to the user. As the user has direct
access to command procedures, we call these top members command modules or tool modules.

The hierarchy of the basic system is shown in Fig. 2.1. The picture is simplified by omitting direct
import edges if an indirect path also leads from the source to the destination. For example, Files
imports Kernel; the direct import is not shown, because a path form Kernel leads to Files via FileDir.
Module names in the plural form typically indicate the definition of an abstract data type in the
module. The type is exported together with the pertinent operations. Examples are Files, Modules,
Fonts, Texts,Viewers, MenuViewers, and TextFrames. (The exception is Reals which is an auxiliary
module to Texts containing conversion operations for floating-point numbers programmed in
assembler code). Modules whose names are in singular form typically denote a resource that the
module manages, be it a global variable or a device. The variable or the device is itself hidden (not
exported) and becomes accessible through the module's exported procedures. Examples are all device
drivers, Input for keyboard and mouse, Kernel for the store and disk, Display, and SCC
(communication controller). Exceptions are the command modules whose name is mostly chosen
according to the activity they primarily represent, like Edit and Backup.

Module Oberon is, as already mentioned, the heart of the system containing the central loop to which
control returns after each command interpretation, independent of whether it terminates normally or
abnormally. Oberon exports several procedures of auxiliary nature, but primarily also the one allowing
the invocation of commands (Call) and access to the command's parameter text through variable
Oberon.Par. Furthermore, it contains the log text and exports this variable. The log text typically serves
to issue prompts and short failure reports of commands. The text is displayed in a log viewer that is
automatically opened when module System is initialized. Module Oberon furthermore contains the two
markers used globally on the display, the cursor and the mark. It exports procedures to draw and to
erase them, and allows the installation of different patterns for them.

16

System Edit Net Backup
] Y Y Y
command modules T T T
TextFrames Printer
MenuViewers
Oberon
Viewers Texts Reals
T—\
Modules Fonts
Files
Display FileDir drivers Input SCC Diskette
Kernel

Fig. 2.2. Structure of the Oberon core

The system shown in Fig. 2.1. basically contains facilities for generating and editing texts, and for
storing them in the file system and for backing them up on diskettes. All other functions are performed
by modules that must be added in the usual way by module loading on demand. This includes, notably,
the compiler, network communication, document editors, and all sorts of programs designed by users.
The high priority given in the system's conception to modularity, to avoiding unnecessary frills, and to
concentrate on the indispensible in the core, has resulted in a system of remarkable compactness.
Although this property may be regarded as of little importance in this era of falling costs of large
memories, we consider it to be highly essential. We merely should like to draw the reader's attention to
the correlation between a systems' size and its reliability. Also, we do not consider it as good
engineering practice to consume a resource lavishly just because it happens to be cheap. The following
table lists the core's modules and the major application modules, and it indicates the number of bytes
used for their code, their constants, and their static variables and, lastly, the number of source code
lines.

module name code (bytes) constants variables source lines
Kernel 1896 144 108 *

FileDir 4324 56 0 368

Files 3640 24 4 450
Modules 2356 32 48 229

Input 452 4 48 73

Display 2284 392 52 *

Fonts 1204 44 8 117

Viewers 1836 12 20 248

17

Reals 484 104 0 *
Texts 9388 176 8 666
Oberon 3836 48 120 495
MenuViewers 2776 8 4 226
TextFrames 10148 152 112 868
System 6820 688 76 617
51444 1884 608 4357
SCC 1144 8 2056 161
V24 340 4 516 71
Diskette 2812 40 1504 382
Printer 1512 36 1072 175
Edit 4668 240 596 458
Backup 1428 280 48 147
Net 5868 548 88 610
17772 1156 5880 2004
Compiler 8988 144 84 967
OCS 3600 448 944 314
OCT 5000 504 260 583
ocCcC 6252 140 22540 611
OCE 12212 320 48 972
OCH 5804 48 36 553
41856 1604 23912 4000
Graphics 7124 232 116 728
GraphicFrames 5648 60 60 566
Draw 2876 268 44 265
Rectangles 1508 16 8 128
Curves 3572 12 4 229
20728 588 232 1916
total 131800 5232 30632 12277

* written in assembler code

2.4. A Tour through the Chapters

Implementation of a system proceeds bottom-up. Naturally, because modules on higher levels are
clients of those on the lower levels and cannot function without the availability of their imports.
Description of a system, on the other hand, is better ordered in the top-down direction. This is because
a system is designed with its expected applications and functions in mind. Decomposition into a
hierarchy of modules is justified by the use of auxiliary functions and abstractions and by postponing
their more detailed explanation to a later time when their need has been fully motivated. For this
reason, we will proceed essentially in the top-down direction.

Chapters 3 - 5 describe the outer core of the system. Chapter 3 focusses on the dynamic aspects. In
particular, this Chapter introduces the fundamental operational units of task and command. Oberon's
tasking model distinguishes the categories of interactive tasks and background tasks. Interactive tasks
are represented on the display screen by rectangular areas, so-called viewers. Background tasks need
not be connected with any displayed object. They are scheduled with low priority when interactions are
absent. A good example of a background task is the memory garbage collector. Both interactive tasks
and background tasks are mapped to a single process by the task scheduler. Commands in Oberon are
explicit atomic units of interactive operations. They are realized in the form of exported parameterless
procedures and replace the heavier-weight notion of program known from more conventional operating
systems. The Chapter continues with a definition of a software toolbox as a logically connected
collection of commands. It terminates with an outline of the system control toolbox.

18

Chapter 4 explains Oberon's display system. It starts with a discussion of our choice of a hierarchical
tiling strategy for the allocation of viewers. A detailed study of the exact role of Oberon viewers
follows. Type Viewer is presented as an object class with an open message interface providing a
conceptual basis for far-reaching extensibility. Viewers are then recognized as just a special case of so-
called frames that may be nested. A category of standard viewers containing a menu frame and a frame
of contents is investigated. The next topic is cursor handling. A cursor in Oberon is a marked path.
Both viewer manager and cursor handler operate on an abstract logical display area rather than on
individual physical monitors. This allows a unified handling of display requests, independent of
number and types of monitors assigned. For example, smooth transitions of the cursor across screen
boundaries are conceptually guaranteed. The Chapter continues with the presentation of a concise and
complete set of raster operations that is used to place textual and graphical elements in the display area.
An overview of the system display toolbox concludes the Chapter.

Chapter 5 introduces text. Oberon distinguishes itself by treating Text as an abstract data type that is
integrated in the central system. Numerous fundamental consequences are discussed. For example, a
text can be produced by one command, edited by a user, and then consumed by a next command.
Commands themselves can be represented textually in the form M.P, followed by a textual parameter
list. Consequently, any command can be called directly from within a text (so-called tool) simply by
pointing at it with the mouse. However, the core of this Chapter is a presentation of Oberon's text
system as a case study in program modularization. The concerns of managing a text and displaying it
are nicely separated. Both the text manager and the text display feature an abstract public interface as
well as an internally hidden data structure. Finally in this Chapter, Oberon's type-font management and
the toolbox for editing are discussed and, in particular, an abstract printer interface is defined.

Chapters 6 - 9 describe the inner core, still in a top-down path. Chapter 6 explains the loader of
program modules and motivates the introduction of the data type Module. The chapter includes the
management of the memory part holding program code and defines the format in which compiled
modules are stored as object files. Furthermore, it discusses the problems of binding separately
compiled modules together and of referencing objects defined in other modules. It is explained how the
processor's addressing modes support this objective in the case of the Ceres computer.

Chapter 7 is devoted to the file system, a part of crucial importance, because files are involved in
almost every program and computation. The chapter consist of two distinct parts, the first describing
the structure of files, i.e. their representation on disk storage with its sequential characteristics, the
second describing the directory of file names and its organisation as a B-tree for obtaining fast
searches.

The management of memory is the subject of Chapter 8. A single, central storage management was one
of the key design decisions, guaranteeing an efficient and economical use of storage. The chapter
explains the store's partitioning into specific areas. Its central concern, however, is the discussion of
dynamic storage management in the partition called the heap. As an exception, the algorithm for
allocation (corresponding to the intrinsic procedure NEW) and for retrieval (called garbage collection)
are explained in their principles rather than through concrete program listings. The reason for this is
that they are programmed in assembler code rather than in the language Oberon, and that therefore
their details are of less general interest to the readership.

At the lowest level of the module hierarchy we find device drivers. They are desribed in Chapter 9,
which contains drivers for some widely accepted interface standards: an RS-232 line driver used in
modules Input for the keybord, and module V24 for data links, an RS-485 line driver (module SCC)
used for the network connecting workstations, and a SCSI driver usable for interfaces to disks and
possibly other devices via a 8-bit parallel bus.

The second part of the book, consisting of Chapter 10 - 14, is devoted to what may be called first
applications of the basic Oberon System. These chapters are therefore independent of each other,
making reference to Chapters 3 - 9 only.

Although the Oberon System is well-suited for operating stand-alone workstations, a facility for
connecting a set of computers should be considered as fundamental. Module Net, which makes
transmission of files among workstations connected by a bus-like network possible, is the subject of

19

Chapter 10. It presents not only the problems of network access, of transmission failures and collisions,
but also those of naming partners. The solutions are implemented in a surprisingly compact module
which uses the network driver presented in Chapter 9.

When a set of workstations is connected in a network, the desire for a central server appears. A central
facility serving as a file distribution service, as a printing station, and as a storage for electronic mail is
presented in Chapter 11. It emerges by extending the Net module of Chapter 10, and is a convincing
application of the tasking facilities explained in section 2.2. In passing we note that the server operates
on a machine that is not under observation by a user. This circumstance requires an increased degree of
robustness, not only against transmission failures, but also against data that do not conform to defined
formats.

The presented system of servers demonstrates that Oberon's single-thread scheme need not be
restricted to single-user systems. The fact that every command or request, once accepted, is processed
until completion, is acceptable if the request does not occupy the processor for too long, which is
mostly the case in the presented server applications. Requests arriving when the processor is engaged
are queued. Hence, the processor handles requests one at a time instead of interleaving them which, in
general, results in faster overall performance due to the adsence of frequent task switching.

Chapter 12 describes the Oberon Compiler. Although here it appears as an application module, it
naturally plays a distinguished role, because the system (and the compiler itself) is formulated in the
language which the compiler translates into code. Together with the text editor it was the principal tool
in the system's development. The use of straight-forward algorithms for parsing and symbol table
organization led to a reasonably compact piece of software (see Section 2.3). A main contributor to this
result is the language's definition: the language is devoid of complicated structures and rarely used
embellishments. Its structure is regular and its syntax compact.

The compiler and thereby the chapter is partitioned into three main parts. The first is language-specific,
but does not refer to any particular target computer. This part is therefore of most general interest to
the readership. The second part is, essentially, language-independent, but is specifically tailored to the
instruction set of the target computer; it discusses the selection of instructions. The third part describes
the module which puts instructions into the particular format defined by the target machine.

Although the algorithms and details decribed in the latter two parts are machine-specific, much would
remain similar for other target computers with similar architectures. Our choice of the National
Semiconductor 32000 processor (eight years ago) may appear mistaken, because it happens to be not
widely known. In contrast to similar architectures (like Motorola 680x0 and Intel 80x86) it is
distinguished by a much more regular instruction set. This is the most attractive property for compiler
designers, and it is even more so for the compiler's description. Every irregularity is a source of
additional complexity. Even in retrospect, the 32000 was by far the best choice from the point of view
of description. And we presume that our readers wish to not merely copy, but to understand our
programs.

Texts play a predominant role in the Oberon System. Their preparation is supported by the system's
major tool, the editor. In Chapter 13 we describe another editor, one that handles graphic objects. At
first, only horizontal and vertical lines and short captions are introduced as objects. The major
difference to texts lies in the fact that their coordinates in the drawing plane do not follow from those
of their predecessor automatically, because they form a set rather than a sequence. Each object carries
its own, independent coordinates. The influence of this seemingly small difference upon an editor are
far-reaching and permeate the entire design. There exist hardly any similarities between a text and a
graphics editor. Perhaps one should be mentioned: the partitioning into three parts. The bottom module
defines the respective abstract data structure for texts or graphics, together with, of course, the
procedures handling the structure, such as searches, insertions, and deletions. The middle module in
the hierarchy defines a respective frame and contains all procedures concerned with displaying the
respective objects including the frame handler defining interpretation of mouse and keyboard events.
The top modules are the respective tool modules (Edit, Draw). The presented graphics editor is
particularly interesting in so far as it constitutes a convincing example of Oberon's extensibility. The
graphics editor is integrated into the entire system; it embeds its graphic frames into menu-viewers and
uses the facilities of the text system for its caption elements. And lastly, new kinds of elements can be

20

incorporated by the mere addition of new modules, i.e. without expanding, even without recompiling
the existing ones. Three examples are shown in Chapter 13 itself: rectangles, circles, and ellipses.

The Draw System has been extensively used for the preparation of diagrams of electronic circuits. This
application suggests a concept that is useful elsewhere too, namely a recursive definition of the notion
of object. A set of objects may be regarded as an object itself and be given a name. Such an object is
called a macro. It is a challenge to the designer to implement a macro facility such that it is also
extensible, i.e. in no way refers to the type of its elements, not even in its input operations of files on
which macros are stored.

At this point the reader may have become aware that our presented applications are those that were
actually required by our own project. This at least bears the guarantee that they were not only designed
but used. In fact, many have been used by hundreds of people, and many daily over several years.
Chapter 14 indeed presents two other such tools, namely one used for installing an Oberon System on a
new, bare machine, and two used to recover from failures of the disk. Although rarely employed, the
first was indispensible for the development of the system. The maintenance or recovery tools are
invaluable assets when failures occur. And they do! Chapter 14 covers material that is rarely presented
in the literature.

21

3. The Tasking System

Eventually, it