

Pascal User Manual and Report
Fourth Edition

Kathleen Jensen
Niklaus Wirth

Pascal User Manual
and Report
ISO Pascal Standard

Fourth Edition, Revised by
Andrew B. Mickel
James F. Miner

With 76 Figures

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

Kathleen Jensen
Digital Equipment Corporation
Office Automation
Reading, England RG7 3DP
United Kingdom

Andrew B. Mickel
MCAD Computer Center
2501 Stevens Ave. S.
Minneapolis, MN 55404
USA

Niklaus Wirth
Institut fuer Informatik
ETH-Zentrum
CH-8092 Zurich
Switzerland

James F. Miner
Academic Computing Services
University of Minnesota
Minneapolis, MN 55455
USA

Library of Congress Cataloging in Publication Data
Jensen, Kathleen

Pascal: user manual and report
Bibliography: p.
Includes index.
1. Pascal (Computer program languag,e) 1. Wirth,

Niklaus. II. Mickel, Andrew B. III. Miner, James F.
IV. Title.

Printed on acid-free paper.

© 1974, 1985, 1991 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereaf
ter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by
anyone.

Illustrations by William W. Porter.
1Ypeset using Interleaf by Source Code Systems, Minneapolis, MN.

9 8 7 6 5 432 1
ISBN-13: 978-0-387-97649-5 e-ISBN: 978-1-4612-4450-9

DOl: 10.1007/978-1-4612-4450-9

Foreword to the Fourth Edition

We are pleased to have the opportunity in this Fourth Edition to correct
typographical errors in the Third Edition as well as to bring the book in
line with the recent revision of the ISO Pascal standard performed by
Working Group 2 ofISO committee lEC JTC I/SC22 since the standard
was formally approved in 1983. This revision of the ISO standard also
resolved differences between it and the American (ANSI-X3/IEEE
P770) standard.

The major changes affect the definition of UnsignedReal, textfiles,
the procedure Read, and complying processors.

We should note that, as this edition goes to press, a new "Extended
Pascal" standard is near final approval. Extended Pascal is intended to
address many complaints about limitations in the "classic" Pascal
language that this book describes.

Andy Mickel and Jim Miner
Minneapolis, USA
February, 1991

Foreword to the Third Edition

For nearly a decade Pascal User Manual and Report has served as the
standard tutorial and reference book for practicing programmers who
wanted to learn and use Pascal. During the 1970's the popularity of
Pascal grew beyond anyone's expectations and has become one of the
most important computer programming languages used throughout the
world. At that time in the United States, commercial use of Pascal often
exceeded academic interest. Today most universities use Pascal to
teach programming. Pascal is the modem alternative to PL/l or Algol
60, and even Fortran is changing to take advantage of Pascal's
innovations.

In our work with Pascal User's Group and Pascal News, we
witnessed the spread of Pascal implementations to every modem com-

v

vi Foreword

puter system. In 1971 one computer system had a Pascal compiler. By
1974 the number had grown to 10 and in 1979 there were more than 80.
Pascal is always available on those ubiquitous breeds of computer
systems: personal computers andl professional workstations.

Questions arising out of the Southampton Symposium on Pascal in
1977 [Reference 10] began the first organized effort to write an
officially sanctioned, international Pascal Standard. Participants
sought to consolidate the list of questions that naturally arose when
people tried to implement Pascal compilers using definitions found in
the Pascal User Manual and Report. That effort culminated in the ISO
7185 Pascal Standard [Reference 11] which officially defines Pascal
and necessitated the revision of this book.

We have chosen to modify the User Manual and the Report with
respect to the Standard - not to make this book a substitute for the
Standard. As a result this book retains much of its readability and
elegance which, we believe, set it apart from the Standard. We updated
the syntactic notation to Niklaus Wirth's EBNF and improved the style
of programs in the User Manual. For the convenience of readers
familiar with previous editions of this book, we have included
Appendix E which summarizes the changes necessitated by the
Standard.

Finally, there ought to be a note in this book that Pascal was named
after the French mathematician, humanist, and religious fanatic Blaise
Pascal, who built a simple calculating machine. We wish to thank
Roberto Minio and Niklaus Wirth for their support of the project to
revise this book. Henry Ledgard offered us much timely and
consistently useful advice. Elise Oranges conscientiously facilitated
production schedules. We also thank William W. Porter for his artwork
and Linda Strzegowski who did the typesetting for this edition.

Andy Mickel
Jim Miner
Minneapolis, USA
November, 1984

Preface

A preliminary version of the programming language Pascal was drafted
in 1968. It followed in its spirit the Algol 60 and Algol W line of
languages. After an extensive development phase, a first compiler
became operational in 1970, and publication followed a year later [see
References 1 and 8.] The growing interest in the development of
compilers for other computers called for a consolidation of Pascal, and
two years of experience in the use of the language dictated a few
revisions. This led in 1973 to the publication of a Revised Report and a
definition of a language representation in terms of the ISO character set.

This book consists of two parts: The User Manual, and the Revised
Report. The User Manual is directed to those who have previously
acquired some familiarity with computer programming, and who wish
to get acquainted with the language Pascal. Hence, the style ofthe User
Manual is that of a tutorial, and many examples are included to
demonstrate the various features of Pascal. Summarizing tables and
syntax specifications are added as Appendices. The Report is included
in this book to serve as a concise, ultimate reference for both
programmers and implementors. It describes Standard Pascal which
constitutes a common base between various implementations of the
language.

The linear structure of a book is by no means ideal for introducing a
language. Nevertheless, in its use as a tutorial, we recommend
following the given organization of the User Manual, paying careful

vii

viii Preface

attention to the example programs, and then to reread those sections
which cause difficulties. In pm1icular, one may wish to reference
Chapter 12, if questions arise concerning input and output conventions.

Chapter 0-12 of the User Manual, and the entire Report, describe
Standard Pascal. Implementors s,hould regard the task of recognizing
ISO Standard Pascal as the basic requirement of their systems, whereas
programmers who intend their programs to be transportable from one
computer system to another should use only features described as
Standard Pascal. Of course, indi vidual implementations may provide
additional facilities which, however, should be clearly labelled as
extensions.

The efforts of many go into the User Manual, and we especially
thank the members of the Institut fuer Informatik, ETH Zurich, and
John Larmouth, Rudy Schild, Olivier Lecarme, and Pierre Desjardins
for their criticism, suggestions, and encouragement. Our
implementation of Pascal- which made this manual both possible and
necessary - is the work of Urs Ammann, aided by Helmut Sandmayr.

Kathleen Jensen
Niklaus Wirth
ETH Zurich
Switzerland
November, 1974

Table of Contents

Forewords .. v
Preface ... vii
Table of Contents ix
List of Figures xv

USER MANUAL (Pascal Tutorial)
by K. Jensen and N. Wirth

CHAPTER 0
Introduction 1
O.A. An Overview of Pascal Programs 1
O.B. Syntax Diagrams 3
O.C. EBNF ... 3
O.D. Scope ... 5
O.E. Miscellaneous 6

CHAPTER 1
Notation: Symbols and Separators 9
I.A. Separators 9
1.B. Special Symbols and Word Symbols 9
I.e. Identifiers 10
I.D. Numbers 12
I.E. Character Strings 12
I.F. Labels ... 13
I.G. Directives 13

CHAPTER 2
The Concept of Data: Simple Data Types 14
2.A. Ordinal Data Types 15
2.B. The Type Boolean 16
2.C. The Type Integer 17
2.D. The Type Char. 18
2.E. The Type Real 19

ix

x Table of Contents

CHAPTER 3
The Program Heading and the Declaration Part 21
3.A. Program Heading 22
3.B. Label Declaration Part 22
3.C. Constant Definition Part 23
3.D. Type Definition Part 24
3.E. Variable Declaration Part 25
3.F. Procedure and Function Declaration Part 27
3.0. Scope of Identifiers and Labels 27

CHAPTER 4
The Concept of Action 28
4.A. The Assignment Statement and Expressions 28
4.B. The Procedure Statement 33
4.C. The Compound Statement and the Empty Statement 34
4.D. Repetitive Statements 35

4.D.l The While Statement 35
4.D.2 The Repeat Statement 35
4.D.3 The For Statement 37

4.E Conditional Statements 43
4.E.l The If Statement 43
4.E.2 The Case Statement 46

4.F. The With Statement 47
4.0. The Ooto Statement 47

CHAPTER 5
Enumerated and Sub range Types 50
5.A. Enumerated Types 50
5.B. Subrange Types 53

CHAPTER 6
Structured Types in General - Array Types in Particular 55
6.A. The Array Type 56
6.B. String Types 63
6.C. Pack and Unpack 64

CHAPTER 7
Record Types 65

Table of Contents xi

7.A. Fixed Records 65
7.B. Variant Records 69
7.C. The With Statement. .. 73

CHAPTERS
Set Types ... 76
8.A. Set Constructors 77
8.B. Set Operations 78
8.C. On Program Development " 80

CHAPTER 9
File Types ... 86
9.A. The File Structure 86
9.B. Textfiles 92

CHAPTER 10
Pointer Types 94
10.A. Pointer Variables and Identified (Dynamic) Variables. .. 94
lO.B. New and Dispose 99

CHAPTER 11
Procedures and Functions 102
II.A. Procedures 103

II.A.I Parameter Lists 106
II.A.2 Conformant-Array Parameters 112
11.A.3 Recursive Procedures 113
11.A.4 Procedural Parameters 117

11.B. Functions 122
I 1.B. 1 Functional Parameters 124
11.B.2 Side Effects 125

11.C. Forward Declarations 126

CHAPTER 12
Textfile Input and Output 127
12.A. The Predeclared Files Input and Output 128
12.B. The Procedures Read and Readln 133
12.C. The Procedures Write and Writeln 135
12.D. The Procedure Page 140

xii Table of Contents

REPORT (Pascal Reference) by N. Wirth

1. Introduction , .. 142
2. Summary of the Language 143
3. Notation and Tenninology 147
4. Symbols and Symbol Separators 148
5. Constants. .. 151
6. Types. .. 152

6.1 Simple Types 153
6.1.1 Enumerated Types 154
6.1.2 Predefined Simple Types 154
6.1.3 Subrange Types 155

6.2 Structured Types 155
6.2.1 Array Types 156
6.2.2 Record Types 156
6.2.3 Set Types 158
6.2.4 File Types 158

6.3 Pointer Types 159
6.4 Example of Type Definition Part 159
6.5 Type Compatibility 160

7. Variables. .. 161
7.1 Entire Variables 162
7.2 Component Variables 162

7.2.1 Indexed Variables 162
7.2.2 Field Designators 163

7.3 Identified Variables 163
7.4 Buffer Variables 164

8. Expressions. .. 165
8.1 Operands 165
8.2 Operators 167

8.2.1. Arithmetic Operators 167
8.2.2. Boolean O]Derators 168
8.2.3. Set Operators 168
8.2.4. Relational Operators 169

9. Statements. .. 170
9.1 Simple Statements 170

9.1.1 Assignment Statements 170
9.1.2 Procedure Statements 170

Table of Contents xiii

9.1.3 Goto Statements 171
9.2 Structured Statements 172

9.2.1 Compound Statements 172
9.2.2 Conditional Statements 172
9.2.3 Repetitive Statements 173
9.2.4 With Statements 176

to. Blocks, Scope, and Activations 177
to.1 Blocks 177
10.2 Scope 178
to.3 Activations 179

11. Procedures and Functions 181
11.1 Procedure Declarations 181
11.2 Function Declarations 183
11.3 Parameters 184

11.3.1 Formal Parameter Lists 185
11.3.2 Actual Parameter Lists. 187
11.3.3 Parameter-List Congruity 188
11.3.4 Conformability and Conformant Types . 189

11.4 Predeclared Procedures 190
11.4.1 File Handling Procedures 190
11.4.2 Dynamic Allocation Procedures 191
11.4.3 Data Transfer Procedures 192

11.5 Predeclared Functions 192
11.5.1 Arithmetic Functions. 192
11.5.2 Boolean Functions. 193
11.5.3 Transfer Functions 193
11.5.4 Ordinal Functions 193

12. Textfile Input and Output 194
12.1 Read 194

12.1.1 Char Read 195
12.1.2 Integer Read 195
12.1.3 Real Read 195

12.2 Readln 195
12.3 Write 196

12.3.1 Char Write 197
12.3.2 Integer Write 197
12.3.3 Real Write 197
12.3.4 Boolean Write 198

xiv Table of Contents

12.3.5 String Write 198
12.4 Writeln 198
12.5 Page 199

13. Programs 199
14. Compliance with ISO 7185 200

References .. 202

APPENDIX A Predeclared Procedures and Functions ... 204

APPENDIX B Summary of Operators 208
Operator Precedence in Expressions 209
Other Operations 209

APPENDIX C Tables 210
Table of Standard Identifiers 211
Table of Symbols 212

APPENDIX D Syntax 213
Collected EBNF: Hierarchical 215
Cross Reference of EBNF Indexed To Report 221
Collected EBNF: Alphabetical 225
Syntax Diagrams 230

APPENDIX E Summary of Changes to Pascal User Manual
and Report Necessitated by the ISO 7185 Standard. . .. 240

APPENDIX F Programming Examples 242

APPENDIX G ASCII Character Set 247

Index to Programs, Program Fragments, and
Program Schemata 249

Index 254

List of Figures
D.a Syntax diagram for Program 4
D.b Syntax diagram for Block .. 4
D.c Block Structure 5

I.a Syntax diagram for Letter .. 11
l.b Syntax diagram for Digit 11
I.c Syntax diagram for Identifier .. 11
l.d Syntax diagram for UnsignedInteger and DigitSequence 12
I.e Syntax diagram for UnsignedNumber 12
l.f Syntax diagram for CharacterString 13
I.g Syntax diagram for Directive 13

2.a Type Taxonomy of Data Types 14
2.b Type Taxonomy of Simple Data Types 15
2.c Syntax diagram for SimpleType 15
2.d Syntax diagram for OrdinalType .. 16

3.a Syntax diagram for Program 21
3.b Syntax diagram for Block. .. 21
3.c Syntax diagram for StatementPart .. 22
3.d Syntax diagram for ProgramHeading .. 22
3.e Syntax diagram for LabelDeclarationPart 22
3.f Syntax diagram for ConstantDefinitionPart 23
3.g Syntax diagram for Constant 23
3.h Syntax diagram for TypeDefinitionPart 24
3.i Syntax diagram for Type .. 24
3.j. Syntax diagram for VariableDeclarationPart 25

4.a Syntax diagram for Statement. .. 29
4.b Syntax diagram for AssignmentStatement 29
4.c Syntax diagram for Variable .. 3D
4.d Syntax diagram for Factor .. 3D
4.e Syntax diagram for UnsignedConstant 31
4.f Syntax diagram for Term 31
4.g Syntax diagram for SimpleExpression 31
4.h Syntax diagram for Expression .. 32
4.i Syntax diagram for CompoundStatement 34
4.j Syntax diagram for WhileStatement .. 35
4.k Syntax diagram for RepeatStatement .. 35
4.1 Syntax diagram for F orStatement .. 38
4.m Syntax diagram for IjStatement 43
4.n Syntax diagram for CaseStatement .. 46
4.0 Syntax diagram for GotoStatement .. 47

xv

xvi List of Figures

5.a Syntax diagram for EnumeratedType .. 50
5.b Syntax diagram for SubrangeType 53

6.a Type Taxonomy of Structured Data Types 55
6.b Syntax diagram for StructuredType 56
6.c Syntax diagram for ComponentVariable 57
6.d Syntax diagram for ArrayType 61

7.a Syntax diagram for RecordType 66
7.b Syntax diagram for FieldList 66
7.c Syntax diagram for FixedPart 66
7.d Syntax diagram for RecordSection .. 66
7.e Syntax diagram for VariantPart .. 70
7.f Syntax diagram for Variant. .. 70
7.g Two Sample People 71
7.h Syntax diagram for WithStatement .. 73

8.a Syntax diagram for SetType 76
8.b Syntax diagram for SetConstructor 77

9.a Syntax diagram for FileType .. 87
9.b Syntax diagram for BufferVariable .. 87

10.a Syntax diagram for PointerType .. 95
lO.b Syntax diagram for IdentifiedVariable 95
10.c Linked List ... 98
lO.d Linked List Before Insertion .. '. .. 100
10.e Linked List After Insertion 100

II.a Syntax diagram for ProcedureAndFunctionDeclarationPart . .. 102
II.b Syntax diagram for ProcedureOrFunctionHeading 102
II.c Syntax diagram for ProcedureH eading 103
II.d Syntax diagram for ProcedureStatement 106
I I.e Syntax diagram for FormalParameterList 109
IIJ Syntax diagram for ActualParameterList 109
11.g Syntax diagram for ConformantArraySchema 112
11.h Syntax diagram for IndexTypeSptrcification 112
l1.i Binary Tree Structure 118
11.j Syntax diagram for FunctionHeajding 122

12.a Syntax diagram for WriteParamererList 136
12.b Formatted Write Examples 138

C.a Complete Type Taxonomy of Data Types 210

D.a Collected Syntax Diagrams 230

USER MANUAL

CHAPTER 0

Introduction

O.A. An Overview of Pascal Programs

Much of the following text assumes that you, the reader, have a minimal
grasp of computer terminology and a "feeling" for the structure of a
program. The purpose of this section is to spark your intuition.

An algorithm or computer program consists of two essential parts, a
description of actions that are to be performed, and a description of the
data, that are manipulated by these actions. Actions are described by
so-called statements, and data are described by s<r-Called declarations
and definitions.

The program is divided into a heading and a body, called a block.
The heading gives the program a name and lists its parameters. These
are (file) variables and represent the arguments and results of the
computation. The block consists of six sections, where any except the
last may be empty. They must appear in the order given in the definition
for a block:

Block = LabeLDeclarationPart
C onstantDefinitionP art
TypeDejinitionPart
VariableDeclarationP art
ProcedureAndFunctionDeclarationPart
StatementPart .

1

2 Pascal User Manual

An Example Program

program Inflation(Output);

{ Assuming annual inflation rates of 7%, 8%, and 10%,
find the factor by which any unit of currency such as
the franc, dollar, pound sterling, mark, ruble, yen,
guilder will have been devalued in 1, 2, ... ,n years.}

const
MaxYears = 10;

var
Year: O .. MaxYears;
Factor1, Factor2, Factor3: Real;

begin
Year := 0;
Factor1 := 1.0; Factor2:= 1.0; Factor3:= 1.0;
Writeln(' Year
repeat

Year := Year + 1;

7% 8%

Factor1 .- Factor1 * 1.07;
Factor2 := Factor2 * 1.08;
Factor3 := Factor3 * 1.10;

10%'); Writeln;

Writeln(Year: 5, Factor1: 7:3, Factor2: 7:3
Factor3 :7:3)

until Year = MaxYears
end .

Produces as results:

Year 7% 8% 10%

1 1.070 1. 080 1.100

2 1.145 1.166 1. 210

3 1. 225 1. 260 1.331

4 1.311 1. 360 1. 464

5 1. 403 1. 469 1.611

6 1.501 1.587 1.772

7 1.606 1.714 1.949

8 1.718 1.851 2.144

9 1. 838 1.999 2.358

10 1.967 2.159 2.594

Introduction 3

The first section lists all labels defined in this block. The second
section defines synonyms for constants; i.e., it introduces "constant
identifiers" that may later be used in place of those constants. The third
contains type definitions; and the fourth, variable definitions. The fifth
section defines subordinate program parts (i.e., procedures and
functions). The statement part specifies the actions to be taken.

O.B. Syntax Diagrams

The previous program outline is more graphically expressed in a syntax
diagram. Starting at the diagram for Program (Figure a.a), a path
through the diagram defines a syntactically correct program. Each
rectangular box references a diagram by that name, which is then used
to define its meaning. Terminal symbols (those actually written in a
Pascal program) are in rounded enclosures. (See Appendix D for the
complete set of diagrams for Pascal.)

O.c. EBNF

An alternative method for describing syntax is the Extended
Backus-Naur Form, (EBNF), where syntactic constructs are denoted
by English words and literals. These words are suggestive of the nature
or meaning of the construct while the literals denote actual symbols
used in writing the language. Literals are enclosed in quotation marks.

Enclosure of a sequence of constructs and literals by the
metasymbols { and I implies its occurrence zero or more times.
Alternatives are separated by the metasymboll . Parentheses (and) are
used for grouping and the metasymbols [and J denote that the enclosed
constructs and literals are optional. (A complete explanation of EBNF
and the EBNF of Pascal is given in Appendix D.) As an example, the
construct Program of Figure a.a is defined by the following EBNF
formulas called productions.

Program = ProgramHeading ";" Block ".".

ProgramHeading = "program" Identifier ["("IdentifierList ")"].

IdentifierList = Identifier {H," identifier}.

4 Pascal User Manual

Identifier l--o;M

Figure O.a Syntax diagram for Program

)--------:r-----~ Unsignedinteger 1--------".

}------=-J Identifier I----+{)------l~ Constant

}-------:;,........ .. IIdentifier 1----.-(

}---=----:::;r-+lIdentifier 1--....... -<

end)---

Figure O.b Syntax Diagram for Block

Introduction 5

O.D. Scope

Each procedure and function declaration has a structure similar to a
program; i.e. , each consists of a heading and a block. Hence, procedure
and function declarations may be nested within other procedures or
functions . Labels, constant synonyms, type, variable, procedure, and
function declarations are local to the procedure or function in which
they are declared. That is, their identifiers have significance only within
the program text that constitutes the block. This region of program text
is called the scope of these identifiers. Since blocks may be nested, so
may scopes. Objects that are declared in the main program, i.e., not
local to some procedure or function, are called glohal and have
significance throughout the entire program.

Since blocks may be nested within other blocks by procedure and
function declarations, one is able to assign a level of nesting to each. If
the outermost program-defined block (e.g., the main program) is called
level 0, then a block defined within this block would be of level I; in
general, a block defined in level I would be of level (i+ I). Figure O.c
illustrates a block structure.

"
P

Q

Where : level 0 - H

levell=P.Q

Figure O.c Block structure

I eve I 2 = A. R. S

leve I 3 - 8

6 Pascal User Manual

This block structure could represent the following program
skeleton:

program M;

procedure P;
procedure A;

procedure B;
begin
end { B };

begin
end { A };

begin
end { P };

procedure Q;
procedure R;
begin
end { R };
procedure S;
begin
end { S };

begin
end { Q };

begin
end { M }.

In terms of this formulation the scope or range of validity of an
identifier x is the entire block in which x is defined, including those
blocks defined in the same block as x. (For this example, note that all
identifiers must be distinct. Section 3.G discusses the case where
identifiers are not necessarily distinct.)

block may access objects in blocks

M M

P P, M
A A, P, M
B B, A, P, M

Q Q, M
R R, Q, M
S S, Q, M

O.E. Miscellaneous

For programmers acquainted with Algol, PL/I, or Fortran, it may prove
helpful to glance at Pascal in terms of these other languages. For this

Introduction 7

purpose, we list the following characteristics of Pascal:

1. Declaration of variables is mandatory.

2. Certain key words (e.g., begin, end, repeat) are
"reserved" and cannot be used as identifiers.

3. The semicolon (;) is considered as a statement separator.

4. The standard data types are those of whole and real
numbers, the logical values, and the (printable)
characters. The basic data structuring facilities include
the array, the record (corresponding to Cobol's and PL/l's
"structure"), the set, and the (sequential) file. These
structures can be combined and nested to form arrays of
sets, files of records, etc. Data may be allocated
dynamically and accessed via pointers. These pointers
allow the full generality of list processing. There is a
facility to declare new, basic data types with symbolic
constants.

5. The set data structure offers facilities similar to the PL/l
"bit string".

6. Arrays may be of arbitrary dime~sion with arbitrary
bounds; the array bounds are constant (i.e., there are no
dynamic arrays.)

7. As in Fortran, Algol, and PL/l, there is a goto statement.
Labels are unsigned integers and must be declared.

8. The compound statement is that of Algol, and
corresponds to the DO group in PL/l.

9. The facilities of the Algol switch and the computed goto
of Fortran are represented by the case statement.

10. The for statement, corresponding to the DO loop of
Fortran, may only have steps of 1 (to) or-l (downto) and
is executed only as long as the value of the control
variable lies within the limits. Consequently, the
controlled statement might not be executed at all.

11. There are no conditional expressions and no multiple
assignments.

8 Pascal User Manual

12. Procedures and functions may be called recursively.

13. There is no "own" attribute for variables (as in Algol).

14. Parameters are passed either by value or by reference;
there is no "call by name."

15. The "block structure" differs from that of Algol and PL/I
insofar as there are no anonymous blocks; i.e., each block
is given a name and thereby is made into a procedure or
function.

16. All objects - constants, variables, etc. - must be
declared before they are referenced. The following two
exceptions are however allowed:

a. the type identifier in a pointer type definition
(Chapter 10)

b. procedure and function identifiers when there is a
forward declaration (Section 11.C).

17. The conform ant-array parameter offers facilities similar
to the Fortran "adjustable dimension" array argument.

Upon first contact with Pascal, some programmers tend to bemoan
the absence of certain "favorite features." Examples include an
exponentiation operator, concatenation of strings, dynamic arrays,
arithmetic operations on Boolean values, automatic type conversions,
and default declarations. These were not oversights, but deliberate
omissions. In some cases their presence would be primarily an
invitation to inefficient programming solutions; in others, it was felt
that they would be contrary to the aim of clarity and reliability and
"good programming style." Finally, a rigorous selection among the
immense variety of programming facilities available had to be made in
order to keep Pascal compilers relatively compact and efficient -
efficient and economical for both the user who writes only small
programs using a few constructions of the language and the user who
writes large programs and tends to make use of the full language.

CHAPTER 1

Notation: Symbols and Separators

Pascal programs are represented by symbols and symbol separators.
Pascal symbols include special symbols, word symbols, identifiers,
numbers, character strings, labels, and directives. Symbol separators
are explained in the next section.

1.A. Separators

Blanks, ends-of-lines (line separators), and comments are considered
as symbol separators. No part of a separator can occur within a Pascal
symbol. You must use at least one separator between two consecutive
identifiers, word-symbols, or numbers.

A comment begins with either { or (* (not inside a character string)
and ends with either a } or *). A comment may contain any sequence of
end-of-lines and characters except} or *). A comment may be replaced
with a space in the program text without altering its meaning.

Often you can improve the readability of a Pascal program by
inserting blanks, end-of-lines (blank lines), and comments in it.

1.B. Special Symbols and Word Symbols

Here are the lists of special symbols and word symbols used to write
Pascal programs. Note that two--character special symbols are written
without any intervening separators.

9

10 Pascal User Manual

Here are the special symbols:

+ * /

<> < <= > >=

:= i

Alternative special symbols:

(. for [
.) for]
@ or A for i

Word symbols (or reserved words) are normally underlined in the
hand-written program to emphasize their interpretation as single sym
bols with fixed meaning. You may not use these words in a context other
than that explicit in the definition of Pascal: in particular, these words
may not be used as identifiers. They are written as a sequence of upper
case or lower--case letters (without surrounding escape characters).
Here are the word-symbols:

and end nil set
array file not then
begin for of to
case function or type
const goto packed until
div if procedure var
do in program while
downto label record with
else mod repeat

I.C. Identifiers

Identifiers are names denoting constants, types, bounds, variables, pro
cedures, and functions. They must begin with a letter, which may be fol
lowed by any combination and number of letters and digits. The spell
ing of an identifier is significant over its whole length. Corresponding
upper--case and lower--case letters are considered equivalent.

Notation: Symbols and Separators 11

Figure l.a Syntax diagram for Letter

Figure l.b Syntax diagram for Digit

E Letter 3
---------+1.1 Letter I-I--~-~-. ---~-?--------..

Digit

Figure 1.e Syntax diagram for Identifier

Examples of identifiers:

PhoneList Root3 Pi h4g x
ThisIsAVeryLongButNeverTheLessValidIdentifier
ThisIsAVeryLongButDifferentIdentifierThanTheOneAbove

LettersAndDigits and lettersanddigits denote the same
identifier.

These are not identifiers:

3rd array level.4 Root-3 Tenth Planet

Certain identifiers, called predeclared identifiers, are provided
automatically (e.g., sin, cos). In contrast to the word-symbols (e.g.,
array), we are not restricted to their definitions and may elect to
redefine any predeclared identifiers, as they are assumed to be declared
in a hypothetical block surrounding the entire program block. See
Appendix C for tables listing all the predeclared identifiers in Pascal.

12 Pascal User Manual

I.D. Numbers

Decimal notation is used for numbers, which denote either integer or
real values. Any number can be preceded by a sign (+ or -); unsigned
numbers cannot be signed. No comma may appear in a number. Real
numbers are written with a decimal or scale factor or both. The letter E

(or e) preceding the scale factor is pronounced as "times 10 to the
power." Note that if a real number contains a decimal point, at least one
digit must precede and follow the point.

(__ "_I_D_igl_.t ___ J
Figure I.d Syntax diagram for UnsignedInteger; DigitSequence

DigitSequence

>+--~ DigitSequence

Figure I.e Syntax diagram for UnsignedNumber

Examples of unsigned numbers.

3 03 6272844

Incorrectly written numbers:

3,487,159

3.487.159

XII

3.

I.E. Character Strings

.6

0.6

E10

5E-8 49.22E+08 1E10

5.E-16 five

...

Sequences of characters enclosed by apostrophes (single quote marks)
are called strings. To include an apostrophe in a string, write the
apostrophe twice.

Notation: Symbols and Separators 13

Figure 1.r Syntax diagram for CharacterString

Examples of strings:

'a' ';' '3' 'begin' 'don"t'
This string has 33 characters.'

1.F. Labels

Labels are unsigned integers used to mark a Pascal statement. Their
apparent value must be in the range 0 to 9999.

Examples of labels:

13 00100 9999

l.G. Directives

Directives are names that substitute for procedure and function blocks.
Directives have the same syntax as identifiers. (See Chapter 11.)

t """,, 3
--------.. ~I Letter I-I----;;~r__-.---~--f--------.....

Digit

Figure l.g Syntax diagram for Directive

CHAPTER 2

The Concept of Data:
Simple Data Types

Data is the general term describing all that is operated on by a computer.
At the hardware and machine-code levels, all data are represented as
sequences of binary digits (bits). Higher-level languages allow the use
of abstractions that ignore the details of representation - by
developing the data type concept.

A data type defines the set of values a variable may assume and the
operations which may be applied to it. Every variable occurring in a
program is associated with one and only one type. Although data types
in Pascal can be quite sophisticated, each must be ultimately built from
unstructured, simple types.

Pascal also provides facilities for creating collections of data types
in the form of structured types and pointer types. These types are
described in Chapters 6 through 10.

[llita Types I

Simpl' ~" I p~,,, TypO'

Structured Data Types

Figure 2.a Type taxonomy of data types

14

The Concept of Data: Simple Data Types 15

The two kinds of simple types in Pascal are ordinal types and the
real type. An ordinal type is either defined by you (called an enumerated
or subrange type) or is denoted by one of the three predefined ordinal
type identifierS-Boolean, Integer, or Char. The real type is denoted
by the predefined type identifier Real.

I Simple Data Types I

/ ~
Real Ordinal Data Types

/ ~ ~
Enumerated Predefined Ordinal Subrange

Data Typ/tat T~Data Types

Boolean Integer Char

Figure 2.b Type taxonomy of simple data types

---'l---------I.~I OrdinalType Ir---------~--·

~-----_.).I RealTypeldentifier Ir------~J
Figure 2.c Syntax diagram for SimpleType

An enumerated type is characterized by the set of its distinct values,
upon which a linear ordering is defined. The values are denoted by
identifiers in the definition of the type. A subrange type specifies a
minimum and maximum value from a previously declared ordinal type
to create a new ordinal type. Enumerated and subrange types are
described in Chapter 5.

2.A. Ordinal Data Types

An ordinal data type describes a finite and ordered set of values. These
values are mapped onto ordinal numbers 0, I, 2, ... , except for the
ordinal numbers of integers which are mapped onto themselves. Each
ordinal type has a minimum and maximum value. Except for the
minimum value, each value of an ordinal type has a predecessor value.
Except for the maximum value, each value of an ordinal type has a
successor value.

16 Pascal User Manual

Typeldentifier r---------::.---

1'--------.1 EnumeratedType r-------"'I

'-----------.,.-j SubrangeType 1---------"

Figure 2.d Syntax diagram for OrdinalType

The predeclared functions succ, pred, and ord accept arguments of
any ordinal type:

succ(X)

pred(X)

ord(X)

the successor of x; yields the next ordinal value

the predecessor of x; yields the previous ordinal
value

the ordinal-number function; yields the ordinal
number ofx.

The relational operators =, <>, <, <=, >=, and> are applicable to
all ordinal types provided both operands are ofthe same type. The order
is determined by the values of the ordinal numbers underlying the
operands.

2.B The Type Boolean

A Boolean value is one of the logical truth values denoted by the
predefined identifiers false and true.

These logical operators yield a Boolean value when applied to
Boolean operands: (Appendix B summarizes all operators.)

and logical conjunction

or logical disjunction

not logical negation

Each of the relational operators (=, <>, <=, <, >, >=, in) yields a
Boolean result. "<>" denotes inequality. Furthermore, the type
Boolean is defined such that false < true. Hence, it is possible to
define each of the 16 Boolean operations using the above logical and
relational operators. For example, if p and Q are Boolean values, one
can express

implication

equivalence

exclusive or

as

as

as

The Concept of Data: Simple Data Types 17

P <= Q

P = Q

P <> Q

Predeclared Boolean functions - i.e., predeclared functions which
yield a Boolean result - are:

odd (I)

eoln(F)

eof(F)

true if the integer I is odd, false otherwise.

end of a line, explained in Chapter 9.

end of file, explained in Chapter 9.

(Appendix A summarizes all predeclared functions.)

2.C. The Type Integer

A value of type In t ege r is an element of an implementation-defined
subset of whole numbers. The following arithmetic operators yield an
integer value when applied to integer operands:

* multiply

di v divide and truncate (i.e., value is not rounded)

mod modulus: let Remainder = A - (A div B) * B;

+

if Remainder < 0 then A mod B = Remainder+B
otherwise A mod B = Remainder

add

subtract

An implementation-defined, predefined constant identifier
Max1nt specifies the largest integer value allowable for all integer
operations. If A and B are integer expressions, then the operation:

A op B

is guaranteed to be correctly implemented when:

abs (A op B) <=

abs (A) <=

Max1nt,
Max1nt,and

abs(B) <= Max1nt

18 Pascal User Manual

Four predeclared functions yielding integer results are:

abs(l)

sqr (I)

the absolute value of the integer value I.

the integer value I squared,
assuming I <= Max1nt di v 1.

trunc (R) R is a real value: the result is its whole part.
(The fractional part is discarded. Hence
trunc(3.7) = 3 andtrunc(-3.7) = -3).

round (R) R is a real value: the result is the rounded integer.
round (R) for R >= 0 means trunc (R + 0.5)

and for R < 0 means trunc (R - 0.5).

If I is an integer value, then

succ(l)

pred (I)

yields the "next" integer (I + 1), and

yields the preceding integer (I - 1).

2.D. The Type Char

A value of type Char is an element of a finite and ordered set of
characters. Every computer system defines such a set for the purpose of
communication. These characters are then available on the input and
output equipment. Unfortunately, one standard character set does not
exist; therefore, the elements and their ordering is strictly
implementation-defined. (See Appendix G.)

A character enclosed in apostrophes (single quotes) denotes a value
of this type. (To represent an apostrophe, write it twice.) However, it is
possible that some character val ues have no constant representation.

Examples:
, *, 'G' , 3' 'f' , , X'

The following minimal assumptions hold for the type Char,
independent of the underlying implementation:

I. The decimal digits' 0' through' 9' are numerically ordered
and consecutive (e.g., succ (' 5') = , 6').

The Concept of Data: Simple Data Types 19

2. Upper-case letters' A' through' z' may exist; if so, they are
alphabetically ordered, but not necessarily consecutive
(e.g., 'A' < 'B').

3. Lower-case letters' a' through' z' may exist; if so, they are
alphabetically ordered, but not necessarily consecutive
(e.g., ' a' < ' b').

The predeclared functions ord and chr allow the mapping of the
character set onto the ordinal numbers of the character set - and vice
versa; ord and chr are called transfer functions.

i.e.,

ord(C)

chr (I)

is the ordinal number of the character C in the
underlying ordered character set.

is the character value with the ordinal number I.

You can see immediately that ord and chr are inverse functions,

chr(ord(C)) = C and ord (chr (1)) = I

Furthermore, the ordering of a given character set is defined by

C1 < C2 iff ord(C1) < ord(C2)

This definition can be extended to each of the relational operators:
<>, <, <=, >=, >. If R denotes one of these operators, then

C1 R C2 iff ord(C1) R ord(C2)

When the argument ofthe predeclared functions pred and succ is
of type Char, the functions can be defined as:

pred (C)

succ(C)

chr (ord (C) -1)

chr(ord(C)+l)

Note: The predecessor (successor) of a character is dependent upon the
underlying character set. The two properties hold only if the
predecessor or successor exists.

2.E. The Type Real

A value of type Real is an element of the implementation-defined
subset of real numbers.

20 Pascal User Manual

All operations on values of type Real are approximations, the
accuracy of which is defined by the implementation (machine) that you
are using. Real is the only simple type that is not an ordinal type. Real
values have no ordinal numbers, and for any real value there is no
successor or predecessor value.

As long as at least one of the operands is of type Real (the other
possibly being of type Integer) the following operators yield a real
value:

* multiply

/ divide (both operands may be integers, but the result is
always real)

+ add

subtract

These predeclared functions accept a real argument and yield a real
result:

abs (R)

sqr (R)

absolute value of R

R squared, if the resulting value doesn't exceed
the range of real numbers

These predeclared functions accept a real or integer argument and
yield a real result:

sin(X)

cos (X)

sine of X, X in radians

cosine of x, X in radians

arctan (X) arc tangant in radians of X

In(X)

exp(X)

sqrt(X)

natural logarithm (to the base e) of x, X > 0

exponential function (e raised to the x)

square root of }(, X >= O.

Warning: Although real is included as a simple type, it cannot always be
used in the same context as the other simple types (i.e., ordinal types). In
particular, the functions pred and succ cannot take real arguments;
and values of type Real cannot be used when indexing arrays, nor in
controlling for statements, nor for defining the base type of a set.
Furthermore reals cannot be used in a subrange type nor to index a case
statement.

CHAPTER 3

The Program Heading and
the Declaration Part

Every program consists of a heading and a block. The block contains a
declaration part, in which all objects local to the program are defined,
and a statement part, which specifies the actions to be executed upon
these objects.

ProgramHeading r--------.~CJC)~----------~.~~~----~.~~

Figure 3.a Syntax diagram for Program

----~ LabeLDeclarationPart f-----------.J ConstantDefinitionPart

'-------I TypeDefinitionPart I--------------t VariableDeclarationPart

ProcedureAndFunctionDeclarationPart I----------.f StatementPart

Figure 3.b Syntax diagram for Block

21

22 Pascal User Manual

----------+1-1 CompoundStatement 11----------.... -

Figure 3.e Syntax diagram for StatementPart

3.A. Program Heading

The heading gives the program a name (not otherwise significant inside
the program) and lists its parameters that denote entities that exist out
side the program and through which the program communicates with
the environment. The entities (usually files - see Chapter 9) are called
external. Each parameter must be declared in the block constituting the
program, just as an ordinary local variable (see Section E.).

Figure 3.d Syntax diagram for ProgramHeading

3.B. Label Declaration Part

Any statement in a program may be marked by prefixing the statement
with a label followed by a colon (making possible a reference by a goto
statement). However, the label must be declared in the label
declaration part before its use. The symbol label heads this part,
which has the general form:

I-------::r----I Unsignedlnteger 1----...----1

Figure 3.e Syntax diagram for LabelDeclarationPart

A label is defined to be an unsigned integer, with a value in the range
o to 9999.

The Program Heading and the Declaration Part 23

Example:

label 13, 00100, 99;

3.C. Constant Definition Part

A constant definition introduces an identifier as a synonym for a
constant. The symbol const heads the constant definition part, which
has the general form:

Figure 3.f Syntax diagram for ConstantDefinitionPart

where a constant is either a number, a constant identifier (possibly
signed), a character, or a string.

Constantldentifier

UnsignedNumber

'----------+l CharacterString \--------------'

Figure 3.g Syntax diagram for Constant

The use of constant identifiers generally makes a program more
readable and acts as a convenient documentation aid. It also allows you
to group machine- or example-dependent quantities at the beginning
of the program where they can be easily noted and changed or both.
This improves the portability and modularity of the program.

24 Pascal User Manual

Example:

const
Avogadro
PageLength
Border
MyMove

6.02::E23;
60;
, # * ';
True;

3.D. Type Definition Part

A data type in Pascal may be either directly described in a variable
declaration (see below) or referenced by a type identifier. There are
some places in Pascal where a type may be represented only by a type
identifier. Pascal provides not only several standard type identifiers, but
also a mechanism, the type definition, for introducing a new type
identifier to represent a type. The symbol type heads a program part
containing type definitions. The general form is:

1" ~ 1d,""""f---0~. ----+I-~f------.j. GJ).--...,-)J~.

~------------------------~.~------------------~

Figure 3.h Syntax diagram for TypeDefinitionPart

Note that Type represents a simple type, structured type, or
pointer-type, and consists of either a type-identifier denoting an
existing type or else a new type description.

-----------------------~L Sim!pleType 11----------------------:.-....

I'----------------~ Struc~uredType 1------------------1

'------------------~ Poi~terType 1------------------..../

Figure 3.i Syntax diagram for Type

Examples of type definitions are found throughout the remainder of the
User Manual.

The Program Heading and the Declaration Part 25

3.E. Variable Declaration Part

Every variable identifier occurring in a program must be introduced in a
variable declaration. This declaration must textually precede any use
of the variable, unless the variable is a program parameter.

A variable declaration introduces a variable identifier and its
associated data type by simply listing the identifier followed by the
type. The symbol var heads the variable declaration part. The general
form is:

Figure 3.j Syntax diagram for VariableDeclarationPart

Example:

var Rootl, Root2, Root3: Real:
Count, I: Integer;
Found: Boolean;
Filler: Char;

Any identifier (denoting an external entity - usually a file) listed in the
program heading parameter list except Input or Output must be
declared in the program's variable declaration part. Input or Output,

if listed, are automatically declared to be textfiles (see Chapter 9).

program TemperatureConversion(Output);

{ Program 3.1 - Example program illustrating constant

and type definition and variable declaration parts. }

const
Bias = 32; Factor = 1.8; Low
Separator = ' '; Blanks

type
CelciusRange = Low .. High

-20; High
, . ,

39;

{ a subrange type-see Chapter 5 };

26 Pascal User Manual

var
Degree: CelciusRange;

begin
for Degree := Low to High do

begin
Write (Output, Degree, , C' , Separator) ;
Write (Output, Round(Degree*Factor + Bias) , , F') ;
if odd (Degree) then Writeln(Output)
else Write (Output, Blanks)

end;
Write In (Output)

end

Produces as results:

-20 C -4 F -19 C -2 F
-18 C 0 F -17 C 1 F
-16 C 3 F -15 C 5 F
-14 C 7 F -13 C 9 F
-12 C 10 F -11 C 12 F
-10 C 14 F -9 C 16 F

-8 C 18 F -7 C 19 F
-6 C 21 F -5 C 23 F
-4 C 25 F -3 C 27 F
-2 C 28 F -1 C 30 F

0 C 32 F 1 C 34 F
2 C 36 F 3 C 37 F
4 C 39 F 5 C 41 F
6 C 43 F 7 C 45 F
8 C 46 F 9 C 48 F

10 C 50 F 11 C 52 F

12 C 54 F 13 C 55 F
14 C 57 F 15 C 59 F

16 C 61 F 17 C 63 F

18 C 64 F 19 C 66 F

20 C 68 F 21 C 70 F

22 C 72 F 23 C 73 F

24 C 75 F 25 C 77 F

26 C 79 F 27 C 81 F

28 C 82 F 29 C 84 F
30 C 86 F 31 C 88 F

32 C 90 F 33 C 91 F

34 C 93 F 35 C 95 F

36 C 97 F 37 C 99 F

38 C 100 F 39 C 102 F

The Program Heading and the Declaration Part 27

3.F. Procedure and Function Declaration Part

Every procedure or function identifier must be declared before its use.
Procedure and function declarations take the same form as a program
- a heading followed by a block - see Chapter 11 for details and
examples. Procedures are subprograms that are activated by procedure
statements. Functions are subprograms that yield a result value, and are
used as constituents of expressions.

3.G. Scope of Identifiers and Labels

The declaration or definition of an identifier (constant, type, variable,
procedure, or function identifier) or label holds for the entire block
containing the definition or declaration, except for any nested
(subordinate) block in which the identifier or label is redeclared or
redefined. The region over which the declaration or definition of an
identifier or label applies is called the scope of that identifier or label.

An identifier or label declared or defined in the program block is
said to be global. An identifier or label is said to be local to the block
where it is declared or defined. An identifier or label is non-local to a
block if it is declared or defined in an enclosing block. See Section D.D
for examples.

You cannot declare a single identifier more than once within the
same level and scope. Hence the following is incorrect:

Example of incorrect variable declaration part:

var x: Integer;
X: Char;

CHAPTER 4

The Concept of Action

Essential to a computer program is action. That is, a program must do
something with its data - even if that action is the choice of doing
nothing! Statements describe these actions. Statements are either
simple (e.g., the assignment statement) or structured. See the syntax
diagram for Statement (Figure 4.a).

4.A. The Assignment Statement and Expressions

The most fundamental of statements is the assignment statement. It
specifies that a newly computed value, specified by an expression, be
assigned to a variable. Assignment statements have the form shown in
Figure 4.b. The : = symbol denotes assignment and is not to be
confused with the relational operator =. The statement "A : = 5" is read
"the current value of A is replaced with the value 5," or simply, "A

becomes 5."

A variable (see Figure 4.c) may be an entire variable representing
all the data storage for a simple, structured, or pointer type. In the case
of structured types (see Chapter:; 6 through 9), a variable may be a
component variable or a buffer variable representing one component of
the data storage. For pointer types, a variable may be an identified
variable representing data storag\~ indirectly referenced by a pointer.

An expression consists of operators and operands. An operand may
be a constant, variable, array-parameter bound (discussed in Chapter

28

The Concept of Action 29

11), or function designator. (A function designator specifies activation
of a function. Predeclared functions are listed in Appendix A;
user-declared functions are explained in Chapter 11.)

UnsignedInteger . ,----.

.

AssignmentStatement l

Procedure Statement I

CompoundStatement1

If Statement

Case Statement L

WhileStatement l

RepeatStatement1

ForStatement 1

WithStatement l

GotoStatement1

Figure 4.a Syntax diagram for Statement

----.---~ Variable ~--~-_ }---..-j Expression 1------

FunctionIdentifier

Figure 4.b Syntax diagram for AssignmentStatement

30 Pascal User Manual

Varllableldentifier

Coml~onentVariable ~

IdenltifiedVariable

J BufferVariable I

Figure 4.c Syntax diagram for Variable

An expression is a rule for calculating a value based on the
conventional rules of algebra for left-to-right evaluation of operators
and operator precedence. Expressions are composed of factors, terms,
and simple expressions.

Factors are evaluated first and consist of individual constants or
variables or function designators or array-parameter bounds or set
constructors (see Chapter 8). A factor may also consist of the operator
not applied to another factor representing a Boolean value. A factor
may also comprise an expression enclosed within parentheses which is
evaluated independently of preceding and following operators.

SetConstructor

UnsignedConstant

J Boundldentifier

I Variable J

Functionldentifier

l
ActualParameterList f--'t

(L Expression J)

not Factor

Figure 4.d Syntax diagram for Factor

The Concept of Action 31

Terms are evaluated next and consist of a sequence of factors,
separated by multiplying operators (* , I, di v, mod, and) or
alternatively, simply a factor by itself.

--.......,----------1 Constantldentifier ~-------~---

I'--------~ UnsignedNumber 1---------1

nil ~---------I

'---------1 CharacterString 1------------'

Figure 4.e Syntax diagram for UnsignedConstant

Simple expressions are evaluated after terms and consist of a
sequence of terms, separated by adding operators (+, -,or) or
alternatively, simply a term by itself. An optional sign-inversion
operator (+, -) may prefix the first term of a simple expression.

Figure 4.f Syntax diagram for Term

Finally expressions are evaluated. These comprise a simple
expression, a relational operator (=, <>, <=, >=, >, in) and another
simple expression, or simply a simple expression itself.

Figure 4.g Syntax diagram for SimpleExpression

32 Pascal User Manual

SimpleExpression t----.;;--"""""-~~-"""""'-~----.;,.--------",....

'-----"'~-"'--"'----"'------"--~ Simple Expression

Figure 4.h Syntax diagram for Expression

Examples:

2 * 3-4 * 5
15 div 4 * 4
SO/5/3
4/2 *3
sqrt(sqr(3)+11*5)

12*3) - (4*5)
115 div 4)*4
ISO/5)/3
14/2)*3

-14
12

5.333
6.000
S.OOO

We recommend that you refer to the table below whenever in doubt
of the exact rules of operator precedence.

not
* ,
+,

Operator

/ , diY, mod, and
- or
<>, <, <=, >=, >, in

Classification (precedence)
Boolean negation (highest)
Multiplying operators (next highest)
Adding operators (third highest)
Relational operators (lowest).

See Appendix B for a full description of operators.
Boolean expressions have the property that their value may be

known before the entire expression has been evaluated. Assume for
example, that x = o. Then the value of the expression

(X > 0) and (X < 10)

is already known to be false after computation of the first factor, and the
second need not be evaluated. Whether or not the second factor is
evaluated is implementation-dependent. This means that you must
assure that the second factor is well defined, independent of the value of
the first factor. Hence, if we assume that the array A has an index
ranging from I to 10, then the following example is in error! (Arrays are
discussed in Chapter 6.)

I ; = 0;

repeat I ;= I + 1 until (I > 10) or (A[I] = 0)

(Note that if no A [I] = 0, a reference to A [11] will occur.)

The Concept of Action 33

Except for file variables (see Chapter 9), assignment is possible to
variables of any type. The variable (or the function) and the expression
must be assignment compatible. All the cases for assignment
compatibility are listed below:

1. The variable and the expression are the same type except if
that type is a file type (see Chapter 9) or contains a file type
as a component in another structured type.

2. The variable is real type and the expression is integer type.

3. The variable and the expression are the same or subranges
(see Chapter 5) of the same ordinal type, and the value of
the expression lies within the closed interval specified by
the type of the variable. The value of the expression must
be a value of the type of the variable

4. The variable and the expression are the same set type (see
Chapter 8) or are set types with base types which are the
same or subranges of the same ordinal type. Either both
types or neither type must be packed.

5. The variable and the expression are string types (see Section
6.B) with the same number of elements.

Examples of assignments:

Root1 .= Pi*X/Y
Root2 .= -Root1
Root3 .- (Root1 + Root2) * (1.0 + Y)

Danger .= Temp > VaporPoint
Count .= Count + 1
Degree .- Degree + 10
SqrPr .- sqr (pr)
Y .= sin(X) + cos(Y)

4.B. The Procedure Statement

Another kind of simple statement is the procedure statement, which
activates the named procedure which is a subprogram specifying
another set of actions to be performed on data. So far in this tutorial we
have used the procedures Read, Readln, Write, and Writeln to
perform input and output. Procedure statements are discussed fully in
Chapter 11.

34 Pascal User Manual

4.C. The Compound Statement and the Empty Statement

The compound statement specifies that its component statements be
executed in the same sequence as they are written. The symbols begin

and end act as statement brackets. Note that the statement part or
"body" of a program has the form of a compound statement. (See
Figures 3.a - 3.c.)

--"~G8}------:(T"---t"1 Statement 1-1 -~J'-----"~GDr---..
~------{CDf+-" --

Figure 4.i Syntax diagram for CompoundStatement

program BeginEndExample(Output);
{ Program 4.1 - Illustrate the compound statement. }

var
Sum: Integer;

begin
Sum := 3 + 5;
Writeln(Output, Sum, -Sum)

end .

Produces as results:

8 -8

Pascal uses the semicolon to separate statements, not to terminate
statements; i.e., the semicolon is not part of the statement. The explicit
rules regarding semicolons are reflected in the syntax of Appendix D. If
one had written a semicolon after the second statement in Program 4.1,
then an empty statement (implying no action) would have been assumed
between the semicolon and the symbol end. This does no harm, for an
empty statement is allowable at this point. Misplaced semicolons can,
however, cause troubles - note the example for if statements in
Section 4.E.

The Concept of Action 35
4.0. Repetitive Statements

Repetitive statements specify that certain statements be repeatedly
executed. If the number of repetitions is known beforehand (before the
repetitions are begun), the for statement is usually the appropriate
construct you can use to express the situation; otherwise use the repeat
or while statement.

4.0.1 The while statement

The while statement has the form:

--"~EBI---~"I Expression 1-1 ---+I .. G)1-------+l .. 1 Statement 1-1 -_ ..

Figure 4.j Syntax diagram for WhileStatement

The statement following the symbol do is executed zero or more times.
The expression controlling the repetition must be of type Boolean.

Before the statement is executed the expression is evaluated; the
statement is executed if the expression is true, otherwise the while
statement terminates. Because the expression is evaluated for each
iteration, you should be careful to keep the expression as simple as
possible.

Program 4.3 raises a real value x to the power Y, where Y is a
non-negative integer. A simpler, and evidently correct version is
obtained by omitting the inner while statement: the variable Result is
then obtained through y multiplications by x. Note the loop invariant:
Result * power (Base,Exponent) = power(X,Y). The inner while
statement leaves Resul t and power (Base, Exponent) invariant, and
improves the efficiency of the algorithm.

4.0.2 The repeat statement

The repeat statement has the form:

~I-----:~~~ 7 I---'::--+("~I----~ .. I Expression ~

Figure 4.k Syntax diagram for RepeatStatement

36 Pascal User Manual

program WhileExample(Input,Output);

Program 4.2 - Compute the Nth partial sum of the
harmonic series H(N) = 1 + 1/2 + 1/3 + ... + l/N
using a while statement for iteration. }

var
N: Integer;
H: Real;

begin
Read(Input,N); Write (Output,N) ;
H : = 0;

while N > 0 do
begin

H := H + l/N; N
end;

Writeln(Output,H)
end .

Produces as results:

10 2.928968E+00

N - 1

program Exponentiation (Input, Output);

{ Program 4.3 - Compute power(X,Y) = "X raised to the
power y" using natural exponent. }

var
Exponent, Y: Integer;
Base, Result, X: Real;

begin Read(Input,X,Y); Writeln(Output,X,Y);
Result := 1; Base:= X; Exponent:= Y;
while Exponent > 0 do

begin {Result*power(Base,Exponent) power(X,Y),
Exponent > 0 }

while not Odd (Exponent) do
begin Exponent :~ Exponent div 2;

Base .- Sqr(Base)
end;

Exponent .- Exponent-I; Result:= Result * Base
end;

Writeln(Output,Result) { Result = power(X,Y)
end .

Produces as results:

2.000000E+00
1.280000E+02

7

The Concept of Action 37

The sequence of statements between the symbols repeat and until

is executed at least once. After each execution of the sequence of
statements the Boolean expression is evaluated. Repeated execution is
continued until the expression becomes true. Because the expression is
evaluated for every iteration, you should be careful to keep it as simple
as possible.

program RepeatExample(Input,Output)i
{ Program 4.4 - Compute the Nth partial sum of the

harmonic series H(N) = 1 + 1/2 + 1/3 + + l/N
using a repeat statement for iteration.

var
N: Integeri
H: Reali

begin
Read(Input,N)i Write(Output,N)i
H : = Oi
repeat

H := H + l/Ni N.- N - 1
until N = Oi
Writeln(Output,H)

end .

Produces as results:

102.928968E+00

The above program performs correctly for N > o. Consider what
happens if N <= o. The while-version of the same program is correct
for all N, including N = o.

Note that it is a sequence of statements that the repeat statement
executes; a bracketing pair begin ... end would be redundant (but not
incorrect) .

4.D.3 The for statement

The for statement indicates that a statement be repeatedly executed
while a progression of values is assigned to the control variable of the
for statement. It has the general form:

38 Pascal User Manual

for }---~Variableldentifier 1----.(• - r-----~ Expression r-----.....

'-----~ Expression ~----i~ do l-----i~ Statement

Figure 4.1 Syntax diagram for F orStatement

program ForExample(Input,Output);
{ Program 4.5 - Compute the Nth partial sum of the

harmonic series H(N) = 1 + 1/2 + 1/3 + ... + liN
using a for statement for iteration. }

var
I, N: Integer;
H: Real;

begin
Read(Input,N); Write(Output,N);
H : = 0;
for I := N downto 1 do

H := H + 1/1;
Writeln(Output,H)

end .

Produces as results:

10 2.928968E+00

The control variable, which appears following the symbol for, must
be of an ordinal type and declared in the same block in which the for
statement appears. The initial value and the final value must be of an
ordinal type compatible with the control variable. The control variable
must not be altered by the component statement. This prohibits its
appearing as a variable on the left-hand side of an assignment, in a Read

or Readln procedure or as the control variable of another for
statement, either directly within the for statement or within a procedure
or function declared within the same block. The initial and final values

The Concept of Action 39

are evaluated only once. If in the case of to (down to) the initial value is
greater (less) than the final value, the component statement is not
executed. If the component statement is executed, it is an error if either
the initial value or final value cannot be assigned to the control variable.
The control variable is left undefined upon nonnal exit from the for
statement.

program Cosine(Input,Output);
{ Program 4.6 - Compute the cosine using the

expansion: cos (X) = 1 - sqr(X)/(2*1)
+ sqr(X)*sqr(X)/(4*3*2*1) - ...

const
Epsilon 1e-7;

var
Angle:

ASquared:
Series:

Term:
I, N:

Power:

Real
Real
Real
Real
Integer
Integer

{ radians };
{ Angle squared };
{ cosine series };
{ next term in series };

{ number of cosines to compute };
{ power of next term };

begin
Readln(Input,N);
for I := 1 to N do

end

begin
Readln(Input,Angle);
Term := 1; Power:= 0; Series:= 1;
ASquared := Sqr(Angle);
while Abs(Term) > Epsilon * Abs(Series) do

begin
Power := Power + 2;
Term := -Term * Asquared / (Power*(Power-1));
Series := Series + Term

end;
Writeln(Output, Angle, Series, Power div 2

{ = terms to convergence })
end

Produces as results:

1.534622E-01 9.882478E-01
3.333333E-01 9.449569E-01
5.000000E-01 8.775826E-01
1.000000E+00 5.403023E-01
3.141593E+00-1.000000E+00

3
4
5
6

10

40 Pascal User Manual

The following program plots a real-valued function f (X) by
letting the X-axis run vertically and then writing an asterisk in positions
corresponding to the coordinates. The position of the asterisk is
obtained by computing Y = f (X), multiplying by a scale factor,
rounding the product to the next integer, and then adding a constant and
letting the asterisk be preceded by that many blank spaces.

program Graph1(Output);
{ Program 4.7 - Generate graphic representation of

the function:
f(X) = exp(-X) * sin(2*Pi*X)

const
XLines = 16 { line spacings per 1 abscissa unit };
Scale = 32 { character widths per 1 ordinate unit};
ZeroY = 34 {character position of X axis };
XLimit = 32 { length of graph in lines };

var
Delta: Real
TwoPi: Real
X, Y : Real;

increment along abscissa };
2 * Pi = 8 * ArcTan(1.0) };

Point: Integer;
YPosition: Integer;

begin {initialize constants:
Delta := 1 / Xlines;
TwoPi := 8 * ArcTan(1.0);
for Point := 0 to XLimlt do

end

begin
X := Delta * Point.:
Y := Exp(-X) * Sin(TwoPi * X);
YPosition := Round(Scale * Y) + ZeroY;
repeat

Write (Output, ' '); YPosition:= YPosition - 1
until YPosition = J;
Writeln(Output, '*')

end

The Concept of Action 41

Produces as results,'

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*
*

*
*

*

As a final example of for statements consider this program.

program SummingTerms(Output);

{ Program 4.8 - Compute in four ways the series:
1 - 1/2 + 1/3 - ... + 1/9999 - 1/10000
1) left to right in succession,
2) left to right, all pos and neg

terms then subtract,
3) right to left in succession, and
4) right to left, all pos and neg

terms then subtract. }

42 Pascal User Manual

var
SeriesLR, { series sum left to right in succession}
SumLRPos, { sum of positive terms, left to right }

SumLRNeg, { sum of negative terms, left to right }

SeriesRL, { series sum right to left in succession}
SumRLPos, { sum of positive terms, right to left }

SumRLNeg, { sum of negative terms, right to left }

PosTermLR, { next positive term, left to right }

NegTermLR, { next negative term, left to right }

PosTermRL, { next positive term, right to left }

NegTermRL: Real { next negative term right to left
} ;

PairsOfTerms: Integer { count of pairs of terms };

begin
SeriesLR .- 0; SumLRPos.- 0; SumLRNeg.- 0;
SeriesRL .- 0; SumRLPos·= 0; SumRLNeg·= 0;

for PairsOfTerms := 1 to 5000 do
begin

PosTermLR .= 1 / (2 * PairsOfTerms - 1);

NegTermLR 1 / (2 * PairsOfTerms);
PosTermRL .- 1 / (10001 - 2 * PairsOfTerms);
NegTermRL .= 1 / (10002 - 2 * PairsOfTerms);
SeriesLR .= SeriesLR + PosTermLR
SumLRPos .- SumLRPos + PosTermLR;
SumLRNeg .- SumLRNeg + NegTermLR;
SeriesRL .- SeriesRL + PosTermRL
SumRLPos .- SumRLPos + PosTermRL;
SumRLNeg .- SumRLNeg + NegTermRL;

end;

Writeln(Output, SeriesLR);
Writeln(Output, SumLRPos - SumLRNeg);
Write In (Output, SeriesRL);
Writeln(Output, SumRLPos - SumRLNeg)

end .

Produces as results:

6.930919E-01
6.931014E-01
6.930970E-01
6.930971E-01

Why do the four "identical" sums differ?

- NegTermLR;

- NegTermRL;

The Concept of Action 43

4.E. Conditional Statements

A conditional statement selects a single statement of its component
statements for execution. Pascal offers two kinds of conditional
statements, the if and case statements.

4.E.l The if statement

The if statement specifies that a statement be executed only if a certain
condition (Boolean expression) is true. If it is false, then either no
statement or the statement following the symbol else is executed.

The form of an if statement is:

Statement ~...::>-...

Figure 4.m Syntax diagram for IjStatement

The expression between the symbols if and then must be oftype
Boolean. Note that the first form may be regarded as an abbreviation of
the second when the alternative statement is the empty statement.
Caution: there is never a semicolon before an else! Hence, the text:

if P then begin Sl; S2; S3 end; else S4

is incorrect. More deceptive is the text:

if P then; begin Sl; S2; S3 end

Here, the statement controlled by the if is the empty statement
between the then and the semicolon; hence, the compound statement
following the if statement will always be executed.

The syntactic ambiguity arising from the construction:

if expression1 then if expression2 then statement1
else statement2

is resolved by interpreting this construction as equivalent to

44 Pascal User Manual

if expression1 then
begin if expression2 then statement1

else statement2
end

You are further cautioned that a carelessly formulated if statement
can be very costly. Take the example where there are n mutually
exclusive conditions, C1 ... Cn, each instigating a distinct action, Si.

Let P (Ci) be the probability of Ci being true, and say that P (Ci) >=

P (C j) for i < j. Then the most efficient sequence of if clauses is:

if C1 then Sl
else if C2 then S2

else
else if C(n-1) then S(n-1) else Sn

The fulfillment of a condition and the execution of its statement
completes the if statement, thereby bypassing the remaining tests.

If Found is a variable of type Boolean, another frequent abuse of
the if statement can be illustrated by:

if Key = ValueSought then Found .- true
else Found := false

A much simpler statement is:

Found := Key = ValueSought

The following program transforms Arabic numbers to Roman
numerals by successively reducing the number in a sieve implemented
by using if statements.

program ArabicToRoman(Output);

{ Program 4.9 - Write a table of powers of 2 in
Arabic numbers and Roman numerals.

var
Rem {remainder},
Number: Integer;

The Concept of Action 45

begin
Number := 1;
repeat

Write (Output, Number, , ');
Rem := Number;
while Rem >= 1000 do

begin Write (Output, 'M'); Rem := Rem - 1000 end;
if Rem >= 900 then

begin Write (Output, 'CM'); Rem := Rem - 900 end
else

if Rem >= 500 then
begin Write (Output, 'D'); Rem "- Rem - 500 end

else
if Rem >= 400 then

begin Write (Output, 'CD');
Rem := Rem - 400

end;
while Rem >= 100 do

begin Write (Output, 'C'); Rem := Rem - 100 end;
if Rem >= 90 then

begin Write (Output, 'XC'); Rem:= Rem - 90 end
else

if Rem >= 50 then
begin Write (Output, 'L'); Rem "= Rem - 50 end

else
if Rem >= 40 then

begin Write (Output, 'XL');
Rem := Rem - 40

end;
while Rem >= 10 do

begin Write (Output, 'X'); Rem:= Rem - 10 end;
if Rem = 9 then

begin Write (Output, 'IX'); Rem:= Rem - 9 end
else

if Rem >= 5 then
begin Write (Output, 'V'); Rem"= Rem - 5 end

else
if Rem = 4 then

begin Write (Output, 'IV');
Rem := Rem - 4

end;
while Rem >= 1 do

begin Write (Output, 'I'); Rem:= Rem - 1; end;
Writeln(Output);
Number := Number * 2

until Number > 5000
end "

46 Pascal User Manual

Produces as results:

1 I
2 II
4 IV
8 VIII

16 XVI
32 XXXII
64 LXIV

128 CXXVIII
256 CCLVI
512 DXII

1024 MXXIV
2048 MMXLVIII
4096 MMMMXCVI

Notice again that each "branch" of an if statement consists of only one
statement. Therefore, when more than one action is intended, a
compound statement is necessary.

4.E.2 The case statement

The case statement consists of an expression (the selector) and a list of
statements, each being associated with one or more constant values of
the type of the selector. The selector type must be an ordinal type. Each
constant value must be associated with at most one of the statements.
The case statement selects for execution the statement that is associated
with the current value of the selector; if no such constant is listed, it is an
error. Upon completion of the selected statement, control goes to the
end of the case statement. The form is:

Figure 4.n Syntax diagram for CaseStatement

The Concept of Action 47

Examples: (Assume var i: Integer; eh: Char;)

ease i of
0: x := 0;
1 : x .- sin (x) ;
2 : x := eos(x);
3 : x exp(x);
4 : x '= 1n(x)

end;
ease eh of

'A', 'E', 'I', '0', 'U',
'a', 'e', 'i', '0', 'u':

vowel := vowel + 1;
'+', '-', '*', 'i', '=', '>', '<',
" " ,,,, '?' 'I' I_I 1.1 "" _

_ , " ./ Of -'"

pune := pune + 1
end

Notes: 1. Case constants are not labels (see Sections 3.B and 4.G) and
cannot be referenced by a goto statement; their ordering is arbitrary.

2. Although the efficiency of the case statement depends on
the implementation, the general rule is to use it when one has several
mutually exclusive statements with similar probability of selection.

4.F. The With Statement

A with statement is used in conjunction with variables having a record
type (a structured type). It is discussed in Section 7.e.

4.G. The Goto Statement

A goto statement is a simple statement indicating that further
processing should continue at another part of the program text, namely
at the place of the label.

-------I~8}---------t~1 Unsignedlnteger I--I-------~

Figure 4.0 Syntax diagram for GotoStatement

48 Pascal User Manual

Each label:

1. must appear in the label declaration prior to its occurrence
in the block.

2. must prefix one and only one statement appearing in the
statement part of the block.

3. has a scope over the entire text of that block excepting any
nested blocks that redeclare the label.

At least one of the following three conditions must hold for labels
and the goto statements which refer to them:

1. The label prefixes a statement which contains the goto
statement.

2. The label prefixes a statement in a statement sequence
(within a compound statement or repeat statement) and any
statement in the statement sequence contains the goto
statement.

3. The label prefixes a statement in the statement sequence
forming the statement part of a block that contains a proce
dure or function declaration that contains the goto.

Example (programfragment):

label 1; { block A }

procedure B; { block B }
label 3, 5;

begin
goto 3;

3: Writeln('Hello');
5: if P then

begin S; goto 5 end; { while P do S }
goto 1; this causes early termination of

the activation of B }
Writeln('Goodbye')

end; { block B }

begin
B;

1: Writeln(' Edsger')
{ a "goto 3" is not allowed in block A }

end { block A }

The Concept of Action 49

Jumps from outside of a structured statement into that statement are
not allowed. Hence, these examples are incorrect.

Incorrect examples:

a) for I := 1 to 10 do
begin Sl;

3: S2
end;

goto 3

b) if B then goto 3;

if B1 then 3: S

c) procedure P:
procedure Q;
begin ...

3: S
end;

begin ...
goto 3

end.

A goto statement should be reserved for unusual or uncommon
situations where the natural structure of an algorithm cannot be
reasonably expressed with other structured statements. A common
situation is the handling of an unexpected type of input data. A good
rule is to avoid the use of jumps to express regular iterations and
conditional execution of statements, for such jumps destroy the
reflection of the structure of computation in the textual (static)
structures of the program.

Moreover, the lack of correspondence between textual and
computational (static and dynamic) structure is extremely detrimental
to the clarity of the program and makes the task of verification much
more difficult. The presence of goto's in a Pascal program is often an
indication that the programmer has not yet learned "to think" in Pascal
(as the goto is a necessary construction in some other programming
languages).

CHAPTER 5

Enumerated and Sub range Types

We have seen the predefined, simple type identifiers Boolean, Char,

Integer and Real. By using these type identifiers you can refer to the
existing types that they represent. We now show how new ordinal types
can be created by two mechanisms: the enumerated type and the
subrange type. The enumerated type creates a new type that is unrelated
to any other type, while the subrange type creates a new type that has a
subset of the values of another existing ordinal type.

S.A. Enumerated Types

An enumerated type definition specifies an ordered set of values by
enumerating the constant identifiers which denote the values.

The ordinal number of the first constant listed is 0; the second one is
1, etc.

--~-CDl------;--.J-lldentifier 1-1 -~----~-CDI---·-

('-----------lG)I+-------"~ J
Figure S.a Syntax diagram for EnumeratedType

50

Enumerated and Subrange Types 51

Example:

type Color = (White, Red, Orange, Yellow, Green,
Blue, Purple, Black);

Sex = (Male, Female);
Day = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
Operators = (Plus, Minus, Times, Divide);
Continent = (Africa, Antarctica, Asia, Europe

Australia, NorthAmerica, SouthAmerica);

Incorrect example:

type Workday (Mon, Tues, Wed, Thur, Fri, Sat);
Free = (Sat, Sun);

because the type of Sat is ambiguous.
You are already acquainted with the predefined type Boolean

defined as:
type Boolean = (false, true);

This automatically defines the constant identifiers false and true

and specifies that false < true.

The relational operators =, <>, <, <=, >=, and >, are
applicable to all enumerated types provided both operands are of the
same type. The order is determined by the sequence in which the
constants are listed.

Predeclared functions with arguments of ordinal types are:

succ (X) e.g. succ (Blue)

pred(X)

ord(X)

pred(Blue)

ord(Blue) = 2

Yellow the successor of x
Red the predecessor of x

the ordinal number of x

Assuming that C and C1 are of type Color (above), B is of type
Boolean, and Sl ... Sn are arbitrary statements, then the following are
meaningful statements:

for C := Black downto Red do Sl;
while (C1 <> C) and B do Sl;
if C > White then C := pred(C);
case C of

end

Red, Blue, Yellow: Sl;
Purple: S2;
Green, Orange: S3;
White, Black: S4

52 Pascal User Manual

Program 5.1 illustrates some operations on data having an
enumerated type.

program DayTime(Output);
{ Program 5.1 - Illustrate enumerated types. }
type

Days
When

(Mon, Tue, Wed, Thu, Fri, Sat, Sun);
(Past, Present, Future);

var
Day: Days;
Yesterday, Today, Tomorrow: Days;
Time: When;

begin
Today := Sun Pascal can't read a value of an

emumerated type from Input. }; Time := Present;
repeat

case Time of
Present: begin {Calculate Yesterday}

Time := Past;
if Today = Mon then Yesterday := Sun
else Yesterday := pred(Today);
Day := Yesterday; Write (Output, 'Yesterday');

end;
Past: begin {Calculate Tomorrow

Time := Future;
if Today = Sun then Tomorrow := Mon
else Tomorrow := succ(Today);
Day := Tomorrow; Write (Output, 'Tomorrow');

end;
Future: begin {Reset to Present

Time := Present;
Day .- Today; Write (Output, 'Today');

end;
end;
case Day of

Mon: Write (Output,
Tue: Write (Output,
Wed: Write (Output,
Thu: Write (Output,
Fri: Write (Output,
Sat: Write (Output,
Sun: Write (Output,

end;

'Monday') ;
'Tuesday');
, Wednesday') ;
, Thursday') ;
, Friday') ;
, Saturday') ;
, Sunday')

Writeln(Output, Ord(Time) - 1)
until Time = Present

end .

Enumerated and Subrange Types 53

Produces as results:

Yesterday Saturday -1
Tomorrow Monday 1
Today Sunday 0

S.B. Subrange Types

A type may be defined as a subrange of any other previously defined
ordinal type - called its host type. The definition of a subrange simply
indicates the least and the largest constant value in the subrange, where
the lower bound must not be greater than the upper bound. A subrange
of the type Real is not allowed, because real is not an ordinal type.

-~"~I Constant I~------.l" G)~--------J"I Constant If---....
Figure S.b Syntax diagram for Subran[?eType

The host of the subrange type determines the validity of all
operations involving values of the subrange type. Recall that
ordinal-type assignment compatibility assumes that the variable and
the expression are the same or subranges of the same ordinal type, and
the value of the expression lies within the closed interval specified by
the type of the variable. For example, given the declaration:

var A: 1. .10; B: O .. 30; c: 20 .. 30;

The host type for A, B, and c is Integer. Hence the assignments

A := B; C:= B; B:= C;

are all valid statements, although their execution may sometimes be an
error. Whenever ordinal types are discussed throughout this text, the
phrase "or subrange thereof' is therefore assumed to be implied and is
not always mentioned.

54 Pascal User Manual

Example:

type Days = (Mon,Tue,Wed,Thu,Fri,Sat,Sun)
{ enumerated type };

Workdays = Mon .. Fri { subrange of days };
Index = 0 .. 63 { sub range of Integer };
Letter = 'A' .. 'Z' { sub range of Char };
Natural = O .. MaxInt;
Positive = 1 .. MaxInt;

Subrange types provide the means for a more explanatory statement
of the problem. To the implementer they also suggest an opportunity to
conserve memory space and to introduce validity checks upon
assignment at run-time. (For an example with subrange types, see
Program 6.1.). For example, a variable declared to be oftype o .. 200

might occupy only one byte (8 bits) on many implementations,
whereas a variable of type Integer might occupy many bytes.

CHAPTER 6

Structured Types in General -
The Array Type in Particular

Simple types (ordinal and real types) are unstructured types. The other
types in Pascal are structured types and pointer types. As structured
statements are compositions of other statements, structured types are
compositions of other types. It is the type(s) of the components and -
most importantly - the structuring method that characterize a
structured type.

I Structured Data Types I

An,y 0':;':: / \ R~'U T~"
File Data Types Set Data Types

Figure 6.a Type Taxonomy of Structured Data Types

55

56 Pascal User Manual

ArrayType

RecordType

SetType

FileType

Type Identifier

Figure 6.b Syntax diagram for StructuredType

An option available to each of the structuring methods is an
indication of the preferred internal data representation. A structured
type definition prefixed with the symbol packed signals the compiler
to economize storage requirements, even at the expense of additional
execution time and a possible expansion of the code, due to the
necessary packing and unpacking operations. It is your responsibility to
realize if you want this trade of execution efficiency for space. (The
actual effects upon efficiency and savings in storage space are
implementation dependent, and may, in fact, be zero.)

6.A. The Array Type

An array type consists of a fixed number of components (defined when
the array type is introduced) all having the same type, called the
component type. Each component can be explicitly denoted and
directly accessed by the name of the array variable followed by the
so-called index in square brackets. Indices are computable; their type is
called the index type. Furthermore, the time required to select (access) a
component does not depend upon the value of the selector (index);
hence the array is termed a random-access structure.

The definition of a new array type specifies both the component
type and the index type. The general form is:

type A = array [TIl of T2;

where A is a new type identifier; T 1 is the index type, which must be
ordinal, and T2 is any type.

Array Types 57

Arrays provide a means of grouping under a single name several
variables having identical characteristics. An array variable
declaration gives a name to the entire array structure. Two operations
valid for entire array variables are assignment and selection of
components. A component is selected by specifying the name of the
array variable followed by an ordinal expression enclosed in square
brackets. The operations permitted on such a component variable are
those which are valid for any variable of the component type of that
array type.

~r--~ Variable I----or--~ I----o::;r---i~ OrdinalExpression I--~~

)----..,-1 Fieldldentifier 1--------/

Figure 6.c Syntax Diagram for ComponentVariable

Examples of variable declarations:

Memory: array [0 .. Max) of Integer

Sick: packed array [Days) of Boolean

Examples of sample assignments:

Memory [I+J) := X

Sick[Mon) := true

(Of course these examples assume the definition of the auxiliary
identifiers.)

Programs 6.1 and 6.2 illustrate the use of arrays. Consider how you
would extend Program 6.2 to plot more than one function - both with
and without the use of an array.

58 Pascal User Manual

program MinMax(Input,Output);
{ Program 6.1 - Find the largest and smallest number

in a given list.
const

MaxSize = 20;
type

ListSize = 1 .. MaxSize;
var

Item; ListSize;
Min, Max, First, Second; Integer;
A; array [ListSize] of Integer;

begin
for Item ;= 1 to MaxSize do

begin Read(Input, A[Item]);
Write (Output, A[Item] ;4)

end;
Writeln(Output) ;
Min ;= A[l]; Max;= Min; Item;= 2;
while Item < MaxSize do

begin First ;= A[Item]; Second.- A[Item+l];
if First > Second then

begin
if First> Max then Max ;= First;
if Second < Min then Min ;= Second

end
else

begin
if Second> Max then Max ;= Second;
if First < Min ~hen Min ;= First

end;
Item ;= Item + 2

end;
if Item = MaxSize then

if A[MaxSize] > Max then Max ;= A[MaxSize]

else
if A[MaxSize] < Min then Min ;= A[MaxSize];

Writeln(Output, Max, Min)
end .

Produces as results (assuming appropriate input):

35 68 94 7 88 -5 -3 12 35

74 88 52 43

94 -6

5 4

9 -6 3 o -2

Array Types 59

program Graph2(Output);

{ Program 6.2 - Generate graphic representation
(with X-axis) of the function:
f(X) = exp(-X) * sin(2*Pi*X)
Compare with Program 4.7. }

const
XLines = 16 { line spacings per 1 abscissa unit };
Scale = 32 { character widths per 1 ordinate unit};
ZeroY = 34 character position of X axis };
XLimit 32 length of graph in lines };
YLimit

type
68 height of graph in character widths};

Domain = 1 .. YLimit;
var

Delta: Real { increment along abscissa };
TwoPi: Real { 2 * Pi = 8 * ArcTan(1.0) };
X, Y: Real;
Point: 0 .. XLimit;
Plot, YPosition, Extent: Domain;
YPlot: array [Domain] of Char;

begin {initialize constants:
Delta := 1 / Xlines;
TwoPi := 8 * ArcTan(1.0);
for Plot := 1 to Ylimit do

YPlot[Plot] :=";

for Point := 0 to XLimit do

end

begin
X := Delta * Point;
Y := Exp(-X) * Sin(TwoPi * X);
YPlot [ZeroY] := ':';

YPosition := Round(Scale * Y) + ZeroY;
YPlot[YPosition] := '*';

if YPosition < ZeroY then Extent := ZeroY
else Extent := YPosition;
for Plot := 1 to Extent do
Write (Output, YPlot[Plot]);
Writeln(Output); YPlot[YPosition] .= ' ,

end

60 Pascal User Manual

Produces as results:

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*
*

~:

*
~

Since T2 may be any type, the components of arrays may be
structured. In particular, if T2 is also an array type, then the original
array type A is said to be multidimensional. Hence, the declaration of a
multidimensional array M can be so formulated:

var M: array [A .. BJ of array [C .. DJ of T;

Array Types 61

and then

M[I] [J]

denotes the component J (of type T) of component I of M.

For multidimensional arrays, it is customary to make these
convenient abbreviations:

var M: array [A .. B,C .. D] of T;

and

M[I, J]

We may regard M as a matrix and say that M [I, J] is component J (in
column J) of component I of M (of row I of M).

Arrays are not limited to two dimensions, for T can again be a
structured type. In general, the (abbreviated) form is:

~"--.. (packed array)--____

J---:~~OrdinalType I--~~

Figure 6.d Syntax diagram for ArrayType

If n index types are specified, the array is said to be n-dimensional, and
a component is denoted by n index expressions.

If A and B are array variables of the same type, then the assignment
statement

A := B

is allowed if the arrays are component-wise assignable:

A[i] := B[i]

(for each i that is a value of the index type), and is an abbreviation for
the assignment of each corresponding component.

62 Pascal User Manual

program MatrixMul(Input,Output);
{ Program 6.3 - Matrix Hultiplication
const

M = 4; P

var
I: 1.. M;

J: 1. .N;

K: 1. .P;

3; N = 2;

Sum, Element: Integer;
A: array [l .. M, 1 .. P] of Integer;
B: array [l .. P, 1 .. N] of Integer;
C: array [l .. M, 1 .. N] of Integer;

begin {Assign initial values to A and B: }
for I := 1 to M do begin

for K := 1 to P do begin
Read(Input,E1ement);
Write(Output,Element);
A[I,K] := Element

end;
Write1n(Output)

end;
Writeln(Output);
for K := 1 to P do begin

for J := 1 to N do begin
Read(Input,E1ement);
Write(Output,Element);
B[K,J] := Element

end;
Writeln(Output)

end;
Writeln(Output);
{ Multiply A and B to ge: C:
for I := 1 to M do begin

for J .- 1 to N do begin
Sum := 0;
for K := 1 to P do

Sum := Sum + A[I,K] * B[K,J];
C[I,J] := Sum; Writ,=(Output,Sum)

end;
Writeln(Output)

end;
Writeln(Output)

end .

Array Types 63

Produces as results (assuming appropriate input):

1 2 3
-2 0 2

1 0 1

-1 2 -3

-1 3
-2 2

2 1

1 10

6 -4

1 4
-9 -2

Note that the index types for arrays A, B, and C in the above program
are fixed. If we could write a generalized matrix-multiply subprogram
for a library, we need a facility to provide for adjustable index types.
Pascal provides conform ant-array parameters for this purpose (see
Section 11.A.2); and Program 11.4, MatrixMul2, illustrates their use.

6.B. String Types

Strings were defined earlier as sequences of characters enclosed in
apostrophes (Section I.E). Strings consisting of a single character are
the constants of the standard type Char (Section 2.D); those of N

characters (N > 1), are constants of a type defined by:

packed array [1 .. N] of Char

Such a type is called a string type.
The assignment

A := E

where array variable A and expression E have any string types with the
same number of components is valid. Similarly, the relational operators
(=, <>, <, >, <=, and <=) may be used to compare any two strings that
have the same number of components; the ordering considers the first

64 Pascal User Manual

element (A [1)) to be most signific IIIlt and is detennined by the ordering
of the predeclared type Char.

6.C. Pack and Unpack

Access to individual components \If packed arrays is often costly, and
depending on the situation and the particular Pascal implementation,
sometimes you are advised to pack or unpack a packed array in a single
operation. This is possible through the predeclared transfer procedures
Pack and Unpack. Letting U be a non-packed array variable of type

array [A .. D) of T

{ T cannot be a t I)E' containing a file type }

and P be a packed array variable (If type

packed array [B .. C) of

where ord (D) - ord (A) >= ord ") - ord (B) then

Pack (U,I,P)

means to pack that part of u beginning at component I into P, and

Unpack (P,U,I)

means to unpack pinto u beginnillg at component 1.

CHAPTER 7

Record Types

Record types are perhaps the most flexible of data constructs.
Conceptually, a record type is a template for a structure whose parts
may have quite distinct characteristics. For example, assume we wish
to record information about a person. Known are the name, height, sex,
date of birth, number of dependents, and marital status. Furthermore, if
the person is married or widowed, the date of the (last) marriage is
given; if divorced, the date of the (most recent) divorce and whether this
is the first divorce or not; and if single, no other information is of
interest. All of this information can be expressed in a single "record,"
and each piece of information can be accessed separately.

7.A. Fixed Records

More formally, a record is a structure consisting of a fixed number of
components, called fields. Unlike the array, components of a record
type can have different types and cannot be indexed by an expression. A
record-type definition specifies for each component its type and an
identifier, the field identifier, to denote it. The scope of a field identifier
is the innermost record in which it is defined. The two operations valid
for entire record variables are assignment and selection of components.

In order that the type of selected component be evident from the
program text (without executing the program), the record selector
consists of fixed field identifiers rather than a computable index value.

65

66 Pascal User Manual

To take a simple example, assume we wish to compute with
complex numbers of the form a ; ::1 i, where a and b are real numbers
and i is the square root of -1. Thl're is no predefined type "complex."
However, we can easily define il record type to represent complex
numbers. This record would need two fields, both oftype Real, for the
real and imaginary parts. The Syll tax necessary to express this is:

r~I----:::Jr---~ ---I-I Fie/dList II----~-0-

Figure 7.a Syntax dIagram for RecordType

~---------------------.-------------------~

-E--~ FixedPart)----..c--------- .--------"7"' _____ ----------'7+_

Figure 7.b Syntax diagram for FieldList

(-

Figure 7.c Syntax diagram for FixedPart

~I---""",,-------. CD}------------+l-~f----

Figure 7.d Syntax dia~!ram for RecordSection

Record Types 67

Applying these rules, we can state the following definition and
declaration:

type Complex = record Re,Im: Real end;
var Z: Complex;

where Complex is a type identifier, Re and 1m are identifiers of fields,
and Z is a variable of type Complex. Consequently, Z is a record made
up of two components or fields. See Program 7.1.

To access a record component, the name of the record is followed by
a period, and the respective field identifier (see Figure 6.c). For
example, the following assigns 5 + 3i to z:

Z.Re .- 5:
Z.Im := 3

Likewise, a type representing a date can be defined as:
Date = packed record

Year: 1900 .. 2100;
Mo: (Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec);
Day: 1 .. 31

end

Note: The type Date also includes, for instance, a 31st April. A toy can
be described as:

Toy = record

end

Kind: (Ball, Top, Boat, Doll, Blocks,
Game, Model, Book);

Cost: Real;
Received: Date;
Enjoyed: (Alot, Some, Alittle, None);
Broken, Lost: Boolean

A homework assignment can be defined as:
Assignment = packed record

Subject: (History, Language, Lit,
Math, Psych, Science);

Assigned: Date;
Grade: O •• 4;
Weight: 1 .. 10

end

68 Pascal User Manual

program ComplexArithmetic (I Iltput);

Program 7.1 - Illustrate ,'::Jmplex numbers operations.}

const

Increment 4;

type

Complex

record

var

Re, 1m: Real

end;

X, Y: Complex;

Pair: Integer;

begin

X.Re := 2; X.Im:= 5;

Y := X;

for Pair := 1 to

Writeln(Output,

Writeln(Output,

5 do

'X

'Y =

{X + Y}
Writeln(Output, 'Sum

beg

, ,

initialize X

initialize Y

n

X.Re : 5: 1, X.Im
'f.Re : 5: 1, Y.Im

: 5: 1,

: 5: 1,

X.Re + Y.Re :5:1,

X.Im + Y. III : 5 : 1, 'i');

{X * Y}
Writeln(Output, 'Produc'

X.Re * Y.le - X.Im*Y.Im :5:1,

' i') ;

' i') ;

X. Re * Y. 'fl + X. 1m * Y. Re : 5: 1, 'i');

Writeln(Output);

X.Re X.Re + Increment

X.Im .- X.Im - Increment

end

end .

Produces as results:

X = 2.0 5.0i

Y = 2.0 5.0i

Sum 4.0 10.0i

Product = -21.0 20.0i

X = 6.0 1.0i

Y = 2.0 5.0i

Sum 8.0 6.0i

Product = 7.0 32.0i

x = 10.0 -3.0i

Y = 2.0 5.0i

Sum 12.0 2.0i
Product = 35.0 44.0i

x = 14.0 -7.0i
Y = 2.0 5.0i
Sum 16.0 -2.0i
Product = 63.0 56.0i

x = 18.0-11.0i
Y = 2.0 5.0i

Sum 20.0 -6.0i
Product = 91.0 68.0i

Record Types 69

If the record is itself nested within another structure, the naming of
the record variable reflects this structure. For example, assume we wish
to record the most recent smallpox vaccination for each member in a
family. A possibility is to define the members as an enumerated type,
and then keep the dates in an array of records:

type Fami1yMember =

(Father, Mother, Chi1d1, Child2, Child3);
var VaccinationDate: array [FamilyMember] of Date;

An update might then be recorded as:

VaccinationDate[Child3] .Mo := Apr;
VaccinationDate[Child3] .Day := 23;
VaccinationDate[Child3] .Year := 1973

7.B. Variant Records

Sometimes we may want to include information in a record structure
which depends on some other information already in the record. We can
define a variant record type which includes additional fields depending
on the value of another field.

The syntax for a record type makes provisions for a variant part,
implying that a record type may be specified as consisting of several
variants. This means that different variables, although said to be of the
same type, may assume structures which differ in the number and types
of components.

70 Pascal User Manual

Each variant is characteriz I'd by a list, in parentheses, of
declarations of its pertinent comp(lilents. Each list is preceded by one or
more constants, and the set of I isis is preceded by a case clause
specifying the data type of these ('nnstants (i.e., the type according to
which the variants are discriminak'd).

Figure 7.e Syntax cI.lagram for VariantPart

Figure 7.f Syntax diagram for Variant

As an example, assume the existence of a

type
MaritalStatus = (Marr d,Widowed,Divorced,Single)

Then we can describe persons by data of the

type Person
record

{ fields common to
case MaritalStatus of

Married: ({fields
Single: ({fields c

end

,~l persons go here };

,j married persons only});
:;ingle persons only});

Note that every value of the type by which the variants are
discriminated (the so-called tag typ,') must be explicitly listed with one
of the variants. In the above eXaJllple the constants Widowed and
Di vorced must also appear (along ,vilh Marr ied and Single) for the
example to be valid.

Usually, a component (field) I)f the record itself indicates its
currently valid variant. For example the above defined person record is
likely to contain a common field:

Record Types 71

MS: MaritalStatus

This frequent situation can be abbreviated by including the declaration
of the discriminating component - the so-called tag field - in the
case clause itself, i.e., by writing

case MS: MaritalStatus of

It is helpful to "outline" the information about a person before defining
it as a variant record structure.

1. Person
A. name (last, first)
B. height (natural number)
C. sex (male, female)
D. date of birth (year, month, day)
E. number of dependents (natural number)
F. marital status

if married, widowed
a. date of marriage (year, month, day)

if divorced
a. date of divorce (year, month, day)
b. first divorce (false, true)

if single

Figure 7.g is a corresponding picture of two "sample" people with
different attributes.

jun

apr

wayne

elizabeth

169

female

I 27 I 1947

3

divorced

I 17 I 1981

false

} (A) {

} (8) {

} (C) [

} (D) [

} (E) [

} (8 {

sep

whitcomb

william

186

male

I 12 I
I

single

Figure 7.g Two Sample People

1951

72 Pascal User Manual

A record defining Person can n:1W be fonnulated as:

type String15 = packed a:ray [1 .. 15] of Char;
Status = (Married, Wid wed, Divorced, Single);
Date = packed record

Year: 1900 .. 2)0;

Mo: (Jan, Feb ~ar, Apr, May, Jun,
Ju1, Aug. Sep, Oct, Nov, Dec);

Day: 1. .31;

end;
Natural = O .. Maxlnt;
Person = record

Notes:

Name: recor(First, Last: String15 end;
Height: Natl! ,,1 { centimeters };
Sex: (Male ,'emale) ;

Birth: Date;
Depdts: Natl dl;
case MS: Sti ll:; of

Married, v j()wed: (MDate: Date);
Divorced: :~II)ate: Date;

Single: ()

end { Person }

~.rstD: Boolean);

1. All field names must be distinct - even if they occur in
different variants.

2. If a variant is empty (i.e., has no fields), the fonn is:
c: ()

3. A field list can have only (Ille variant part and it must follow
the fixed part of the recon 1 .

4. A variant may itself contaill a variant part; hence variant
parts can be nested.

5. The scope of enumerated t I pe constant identifiers that are
introduced in a record typl: extends over the enclosing
block.

Referencing a record compon~nt is essentially a simple linear
reconstruction of the outline. As an example, assume a variable P of
type Person and "create" the second of the model people.

P.Name.Last := 'Whitcomb

P.Name.First := 'William

P.Height := 186;

P.Sex := Male;

P.Birth.Year := 1951;

, . ,
, . ,

Record Types 73

P.Birth.Mo := Sep; P.Birth.Day .= 12;

P . Depdt s : = 1;

P.MS := Single;

7.C. The With Statement

The above notation can be a bit tedious, and you may wish to abbreviate
it using the with statement. The with statement effectively opens the
scope containing the field identifiers of the specified record variable, so
that the field identifiers may occur as variable identifiers (thereby
providing an opportunity for the Pascal compiler to optimize the
qualified statement). The general fonn is:

~~---::("'----+l.1 VariableJI-------..J--..t.G)r---~.lstatementf__.

~.--~~~.~-~

Figure 7.h Syntax diagram for WithStatement

Within the qualified statement of the with statement we denote a
field of a record variable by designating only its field identifier (without
preceding it with the entire record variable).

The with statement below is equivalent to the preceding series of
assignments:

with P do begin

with Name do begin

Last := 'Whitcomb

First := 'William

end;

Height := 186;

Sex := Male;

with Birth do begin

, . ,

Year .= 1951; Mo := Sep; Day .= 12

end;

74 Pascal User Manual

Depdts := 1;
MS .= Single;

end

Likewise,

var CurrentDate: Date,

with Currentdate do

if Mo = Dec then
begin Mo := Jan; 'ear .- Year + 1 end

else Mo .= succ(Mo)

is equivalent to

var CurrentDate: Date;

if CurrentDate. Mo = Dt then
begin CurrentDate .Mt :" Jan;

CurrentDate.Year: CurrentDate.Year + 1 end
else CurrentDate.Mo :, SJcc(CurrentDate.Mo)

And the following accomplishes the vaccine update example given
earlier:

with VaccinationDate [Clild3] do
begin Year := 1973; Mo := Apr; Day := 23 end

When the with statement is executed, a reference to the record
variable is established prior to the ~'xecution of the qualified statement.
Therefore assignments made by th~' qualified statement to any elements
of the record variable list will n(~t change the identity of the record
variable.

For example:

var Who: FamilyMember;

Who := Father;
with VaccinationDate[W 0] do begin

Who := Mother;
Mo .- Jul; Day := 7; YE'ar := 1947

end

The with statement sets the fields of VaccinationDate [Father] .

Record Types 75

Nested with statements can be abbreviated. The form:
with R1, R2, ... , Rn do S

is equivalent to
with R1 do

with R2 do

with Rn do S

Thus the example defining a person p can be rewritten:

with P, Name, Birth do begin
Last := 'Whitcomb ' ;
First := 'William
Height := 186;
Sex := Male;
Year := 1951;
Mo := Sep;

Day := 12;
Depdts : = 1;
MS := Single;

end { with }

, . ,

An example which illustrates scopes of field identifiers follows.
Whereas:

var A: array [2 .. 8] of Integer;
A: 2 .. 8;

is not allowed, because the definition of A is ambiguous,

var A: Integer;
B: record

A: Real; B: Boolean
end;

is allowed, because the notation for the integer A is easily
distinguishable from the real B. A. Likewise, the record variable B is
distinguishable from the Boolean B . B. Within the qualified statement S

III

with B do S

the identifiers A and B now denote the components B. A and B. B

respectively, and the integer variable identified by A is inaccessible.

CHAPTER 8

Set Types

A set type provides a compact structure for recording a collection of
values having the same ordinal t) I)e. More precisely, a set type defines
the set of values that is the powe,\et of its base type, i.e., the set of all
possible subsets of values of the base type, including the empty set.
Therefore, a single value of a set t) pe is a set, and the elements of that set
are values of the base type. A set is also a random-access structure
whose elements all have the same base type, which must be an ordinal
type .

..... 'l~==.:~_pa_Ck_ed_I-_-_-_--"-J~--./. (~r------+l·IOrdinalType~

Figure 8.a Synta\ diagram for SetType

Operations valid for set vallil:s are assignment, the familiar set
operations (e.g., set union), equality. and selection of components by
testing for membership (see beloVo I. Set values may be built up from set
elements by the operation of se 1 construction. Implementations of
Pascal usually define limits for the ~ize of sets, which can be quite small
(e.g., the number bits in a machine·' word"). The limit applies directly to
the range of the base type of the set type.

76

Set Types 77

S.A. Set Constructors

A set value can be specified by a set constructor which contains
descriptions of the set elements separated by commas and enclosed in
square brackets. An element description can be an expression, the value
of which is the element, or a range of the form low .. high, where the
values of the expressions low and high are the lower and upper
bounds of a collection of elements. If the lower bound is greater than the
upper bound of the range (i.e., low> high), no elements are described.

The expressions must all have the same ordinal type which is the
base type of the set constructor type. The set constructor [] denotes the
empty set of every set type. Set constructors do not carry full type
information [see Reference 10], such as whether ornotthe set is packed.
Therefore the type of a set constructor is both packed and unpacked to
be type compatible with other sets in set expressions.

Expression f--~--"'-.,.

Figure S.b Syntax diagram for SetConstructor

Examples of set constructors:

[13]

[i+j,i-j]

[' 0' .. ' 9']
[red, yellow, blue]

['a' ,'b' ,'e' I'd' ,'e' ,'f' f'g' ,'h' ,'i',
'j' ,'k' ,'1' ,'m' ,'n' ,'0' ,'p' ,'q' ,'r',
's' ,'t' ,'U' ,'v' ,'w' ,'x' ,'y' ,'z']

78 Pascal User Manual

8.B. Set Operations

If x is a set variable, and E is a ,et expression, then

x := E

is allowed if all members of E are I n the base type of x, and the types of x
and E both are packed or neither I" packed. The following operators are
applicable on all objects with St: I structure. Assume A and B are set
values of the same type:

A + B set union of all elements in both A and B.

A * B set intersection of ,,\I elements common to both A

and B.

A - B set difference of all clements of A that are not also
elements of B.

Five relational operators are .'Ipplicable to set operands. Assume A

and B are set expressions of t lIe same type and e is an ordinal
expression of the base type.

e in A set membership. Th~ result is true when e is an
element of A, otherw ise false.

A = B set equality.

A <> B set inequality.

A <= B set inclusion; true il A is a proper or improper
subset of B.

A >= B set inclusion; true i1 B is a proper or improper
subset of A.

Examples of declarations

type Primary = (Red, ' ·.llow, Blue);
Color = set of Pl ir[ury;

var Huel, Hue2: Color;

Vowels, ConsonantE. Letters: set of Char;
Opcode: set of 0 .. i;

Add: Boolean;
Ch: Char;

Set Types 79

Examples of assignments

Huel := [Red]; Hue2 := [];
Hue2 := Hue2 + [succ(Red)];
Letters ['A' ,'B' ,'C' ,'0' ,'E' ,'F' ,'G' ,'H' ,'I',

'J' ,'K' , 'L' ,'M' , 'N' , '0' , 'P' ,'Q' , 'R' ,
, S' , ' T' , 'U' , 'V' , 'W' , ' X' , ' Y' , ' Z'] ;

Vowels:= ['A','E','I','O',U];
Consonants := Letters - Vowels;
Add := [2,3] <= Opcode

Set operations are intended to be relatively fast and can be used to
eliminate more complicated tests. A simpler test for:

is:

if (Ch='A')or(Ch='E')or(Ch='I')or(Ch='O')or(Ch='U')

then S

if Ch in ['A','E','I','O','U'] then S

program Convert(Input,Output);
{ Program 8.1 - Read a sequence of digits and convert

them to the integer they represent.
Assume no leading sign. }

var
Ch: Char;
Digits: set of '0' .. '9';

Number: Integer;
begin

Digits := ['0' .. '9']
Read(Input, Ch);
Number := 0;
while Ch in Digits do

begin

{ initialize value of the set};

Number := Number * 10 + Ord(Ch) - Ord('O');
Writeln(Output, Number);
Read(Input, Ch)

end
Ch contains the character following the integer }

end

Produces as results (assuming appropriate input):

4

43
432

4321

80 Pascal User Manual

program SetOperations (Outf: I~);
{ program 8.2 - Illustra 0 set operations. }

type
Days
Week

var

(Mon, Tue, Wed, [hu, Fri, Sat, Sun);

set of Days;

FullWeek, Work, Free: ·.,·,'k;

Day: Days;
procedure Check(W: Week)

{ procedures a I' introduced in Chapter 11 }

var D: Days;

begin
for D := Mon to Sun do

if D in W then Write ll,t put, , x')
else Write(Output, , , I;

Writeln(Output)
end { Check };

begin
Work:= []; Free:= []; ,'llllWeek·= [Mon .. Sun];

Day := Sat;
Free := [Day] + Free + [, lin];

Check(Free);
Work := FullWeek - Free;
Check(Work);
if Free <= FullWeek then Write(Output, '0');
if FullWeek >= Work then Write(Output, 'K');
if not (Work >= Free) thl n Write(Output, , Jack');
if [Sat] <= Work then Wr te(Output, , Forget it!');
Writeln(Output)

end .

Produces as results:

oooooxx
xxxxxoo

OK Jack

s.c. On Program Development

Programming - in the sense of d~signing and formulating algorithms
and data structures - is in general a complicated process requiring the
mastery of numerous details and specific techniques. Only in
exceptional cases will there be a single good solution. Usually, so many

Set Types 81

solutions exist that the choice of an optimal program requires a
thorough analysis not only of the available algorithms and computer
systems but also of the way in which the program will most frequently
be used.

Consequently, the construction of a program should consist of a
sequence of deliberations, investigations, and design decisions. In the
early stages, attention is best concentrated on the global problems, and
the first draft of a solution may pay little attention to details. As the
design process progresses, we can split the problem into sub-problems,
and gradually give more consideration to the details of problem
specification and to the characteristics of the available tools. The terms
stepwise refinement [Reference 2] and structured programming
[Reference 4] are associated with this approach.

The remainder of this chapter illustrates the development of a
program by rewording (to be consistent with Pascal notation) an
example c.A.R. Hoare presents in the book Structured Programming
[Reference 4, "Notes on Data Structuring"].

The problem is to generate the prime numbers falling in the range
2 .. n, where n >= 2. After a comparison of the various algorithms, that of
Eratosthenes' sieve is chosen because of its simplicity (no
multiplications or divisions).

The first formulation is descriptive.

1. Put all the numbers between 2 and n into the "sieve."
2. Select and remove the smallest number remaining in the

sieve.
3. Include this number in the "primes."
4. Step through the sieve, removing all multiples of this

number.
5. If the sieve is not empty, repeat steps 2-5.

Although initialization of variables is the first step in the execution of a
program, it is often the last in the development pro-cess. Full
comprehension of the algorithm is a prerequisite for making the proper
initializations; updating these initializations with each program
modification is necessary to keep the program running. (Unfortunately,
updating is not always sufficient!).

82 Pascal User Manual

Hoare chooses a set type with elements 2 .. n to represent both the
sieve and the primes. The following is a slight variation of the program
sketch he presents.

program Prime1;

{ Program 8.3 - Use sets to implement
Sieve of Erastosthenes.

const
N = 10000;

type
Positive = 1 .. Maxlnt;

var
Sieve, Primes: set of .. N;
NextPrime, Multiple: P ~;itive;

begin {initialize}
Sieve := [2 .. N]; Primes:= []; NextPrime:= 2;
repeat {find next prim>

while not (NextPrime i: Sieve) do
NextPrime := Succ(Ne: I Prime);

Primes := Primes + [Ne>tPrime];
Multiple := NextPrime;
while Multiple <= N do {eliminate

begin Sieve:= Sieve - [Multiple];
Multiple := Multipl~ + NextPrime;

end
until Sieve = []

end .

As an exercise Hoare proposes rewriting the program, so that the sets
only represent the odd numbers. TIle following is one solution. Note the
close correlation with the first solution.

program Prime2;

{ Program 8.4 - Use sets ,) implement Sieve of

Erastosthenes; r·present odd numbers only.
const

N = 5000 {N' = N div };
type

Positive = 1 .. Maxlnt;
var

Sieve, Primes: set of 2 .. N;
NextPrime, Multiple, NewPrime: Positive;

Set Types 83

begin {initialize}
Sieve := [2 .. N]; Primes:= []; NextPrime·= 2;
repeat {find next prime }

while not (NextPrime in Sieve) do
NextPrime := Succ(NextPrime);

Primes := Primes + [NextPrime];
NewPrime := 2 * NextPrime - 1;
Multiple := NextPrime;
while Multiple <= N do eliminate

begin Sieve:= Sieve - [Multiple];
Multiple := Multiple + NewPrime;

end
until Sieve = []

end .

A design goal for Pascal implementations is that all basic set
operations execute relatively fast. Some implementations restrict the
maximum size of sets according to their "wordlength," so that each
element of the base set is represented by one bit (0 meaning absence, 1
meaning presence). Most implementations would not accept a set with
10,000 elements. These considerations lead to an adjustment in the data
representation, as shown in Program 8.5.

A large set can be represented as an array of smaller sets such that
each "fits" into a few words (implementation dependent). The
following program uses the second sketch as an abstract model of the
algorithm. Sieve and Primes are redefined as arrays of sets; Next is
defined as a record.

program Prime3(Output);

{ Program 8.5 - Generate the primes between 3 .. 10000
using a sieve containing odd integers in this range.

const
SetSize = 128 { implementation-dependent; >= 2 };
MaxElement = 127 { SetSize - 1 };
SetParts = 39 { = 10000 div Setsize div 2 };

type
Natural o .. Maxlnt;

84 Pascal User Manual

var
Sieve, Primes:

array [O .. SetParts]
set of O .. MaxEleme I ;

NextPrime:
record

Part: 0 SetPart. ;
Element: 0 .. MaxE ~ment

end;
Multiple, NewPrime: Na' 'Hal;
P, N, Count: Natural;
Empty: Boolean;

begin {initialize}

for P : = 0 to SetParts d, begin
Sieve[P] := [0 .. MaxE "ment]; Primes[P] := []

end;
Sieve[O] := Sieve[O] - [I I; Empty:= False;
NextPrime.Part := 0; Ne:.1 "'rime.Element := 1;

with NextPrime do
repeat {find next pr.-e }

while not (Element ir Sieve[Part]) do
Element := Succ(Elt~ent);

Primes [Part] := Prim~3lPart] + [Element];
NewPrime := 2 * ElemE·nt + 1;

Multiple := Element; P:= Part;
while P <= SetParts C:J {eliminate

begin Sieve [P] .-;ieve [P] - [Multiple];
P := P + Part * ;;
Multiple := Mult:,le + NewPrime;
while Multiple > ~dxElement do

end;

begin P := P ~ _.

Multiple . - ~ I.' iple - SetSize
end

if Sieve [Part] = [] t It'll

begin Empty:= Trl, Element:= 0 end;
while Empty and (Part <: SetParts) do

begin
Part := Part + 1; Empty:= Sieve[Part] []

end
until Empty;

Set Types 85

Count := 0;
for P := 0 to SetParts do

end.

for N := 0 to MaxElement do
if N in Primes[P] then

begin

Write (Output, 2 * N + 1 +
P * SetSize * 2:6);

Count := Count + 1;
if (Count mod 8) = 0 then Writeln(Output)

end

Produces as results:

3 5 7 11 13 17 19 23
29 31 37 41 43 47 53 59
61 67 71 73 79 83 89 97

101 103 107 109 113 127 l31 l37

9871 9883 9887 9901 9907 9923 9929 9931
9941 9949 9967 9973 10007 10009 10037 10039

10061 10067 10069 10079 10091 10093 10099 10103
10111 10133 10139 10141 10151 10159 10163 10169

CHAPTER 9

File Types

In many ways the simplest struCtli ring method is the sequence. In the
data-processing profession the generally accepted term to describe a
sequence is a sequentialfile. Pasc,d uses simply the wordfile to specify
a structure consisting of a sequencl: of components - all of which have
the same type. A special kind 01 file called a textfile consists of a
sequence of variable-length lines of characters and forms the basis for
legible communications between people and computer systems.

9.A. The File Structure

A natural ordering of the com pont' nts is defined through the sequence,
and at any instance only one component is directly accessible. The
other components are accessible II)' progressing sequentially through
the file. The number of componell''i, called the length of the file, is not
fixed by the file-type definition. This is a characteristic which clearly
distinguishes the file from the arra~ A file with no components is said to
be empty. A file type, therefore, dill'ers from array, record, and set types
because it is a sequential-access Si ructure whose components all have
the same type.

File Types 87

Figure 9.a Syntax diagram for FileType

The declaration of every file variable F automatically introduces a
buffer variable, denoted by Ft, of the component type. It can be
considered as an access to the file through which one can either inspect
(read) the value of existing components or generate (write) new
components, and which is automatically advanced by certain file
operations. Assignment is not pos~ible to entire file variables. Rather
the buffer variable is used to append components one at a time, in a
one-way (sequential) manner. The buffer variable becomes undefined
if the file is positioned past its last component.

--------+i--\ Variable!1---------.j--(01----------

Figure 9.b Syntax diagram for BufferVariable

The sequential processing, varying length, and the existence of a buffer
variable suggest that files may be associated with secondary storage
and peripherals. Exactly how the components are allocated is
implementation-dependent, but we can assume that only some of the
components are present in primary storage at anyone time, and only the
component indicated by Fi is directly accessible.

When the buffer variable Ft is moved beyond the end of ajile F, the
predeclared Boolean function eof (F) returns the value true, otherwise
false. The basic file-handling procedures are:

Reset (F) initiates inspection (reading) of F by placing the file at
its beginning. If F is not empty, the value of the first
component of F is assigned to Fi and eo f (F) becomes
false.

88 Pascal User Manual

Rewrite (F) initiates generation (writing) of the file F. The
current value of is replaced with the empty file.
Eo f (F) become~ true, and a new file may be written.

Get (F) advances the file t(1 the next component and assigns the
value of this component to the buffer variable Fi. If no
next component eXIsts, then eof (F) becomes true, and
Fibecomes undefined. The effect of Get (F) is an error
if eof(F) is true pfl or to its execution or if F is being
generated.

Put (F) appends the value of the buffer variable Fi to the file
F. The effect is an error unless prior to execution the
predicate eof (F) ii, true. eof (F) remains true, and Fi
becomes undefineG, Put (F) is an error if F is being
inspected.

In principle, all the operations Ilf sequential-file generation and
inspection can be expressed entire I y in terms of the four primitive file
operators and the predicate eof. In practice, it is often natural to
combine the operation of advancin,~~ the file position with the access to
the buffer variable. We therefore introduce the two procedures Read
and Write as follows:

Read (F, X) (for X, a variable) is equivalent to

begin
X • - Fi; Get (F)

end

Write (F, E) (for E, an expre "sinn) is equivalent to

begin
Fi:= E; Put

end

Read and Write are in fact special procedures extended to accept
a variable number of actual parameters (VI ... Vn are variables and
EI ... En are expressions):

Read (F, VI, ... , Vn) is equiv,dent to the statement

begin Read(F,V); ... ;Read(F,Vn) end

File Types 89

Write (F, E1, ... , En) is equivalent to the statement

begin Write(F,E1); ... ;Write(F,En) end

The advantage of using these procedures lies not only in brevity, but
also in conceptual simplicity, since the existence of a buffer variable Fi,

which is sometimes undefined, may be ignored. The buffer variable
may, however, be useful as a "lookahead" device.

Examples of declarations

var Data: file of Integer;
A: Integer;

var Plotfile: file of
record

C: Color;
Len: Natural

end;

var Club: file of Person;
P: Person;

Examples of statements with files

A := Datai; Get (Data)

Read(Data,A)

Plotfilei.c := Red;

Plotfilei.Len := 17; Put (Plotfile)

Clubi:= P; Put (C1ub)

Write(Club,P)

Files may be local to a program (or local to a procedure), or they
may already exist outside the program. The latter are called external
files. External files are passed as parameters in the program heading
(see Chapter 3) into the program.

The next two programs illustrate the use of files. Program 9.1
reprocesses a file of real numbers representing measurements produced
by an instrument or another program. Program 9.2 operates on two files

90 Pascal User Manual

representing sequences of person~ ordered by last name.

Fl,F2, ... , Fm and (;1, G2, ... ,Gn

such that F (r+l) >= F (I) and; (J+l) >= G (J), for all I, J and
merges them into one ordered file 'I such that

H(K+l) >= H(K) forK = 1, " ... , (M+N-l).

program Normalize (DataIn, D, t.aOut) ;

{ Program 9.1 - Normaliz, a file of measurements

generate", as real numbers from an

instrume:l- or another program. }

type

Measurements = file of }~al;

Natural = O .. MaxInt;

var
Dataln, DataOut: MeasurE~ents;

Sum, Mean,

SumOfSquares, StandardDE :iation: Real;

N: Natural;

begin
Reset (Dataln); N:= 0;
Sum := 0.0; SumOfSquares 0.0;
while not eof(Dataln) do

begin N:= N + 1;

Sum := Sum + Datalni;

SumOfSquares .= SumOf.5 I~dres + Sqr (Datalni);

Get (Dataln)

end;

Mean := Sum / N;

StandardDeviation : = Sqrt ((,:umOfSquares / N) -

,::qr (Mean));

Reset (Dataln); Rewrite (Da ,Jllut);

while not Eof(Dataln) do

begin

DataOuti:= (Datalni - l'ean) / StandardDeviation;

Put(DataOut); Get (Dat lIn)

end

end { Normalize }.

File Types 91

program MergeFiles(F,G,H);

{ Program 9.2 - Merge files F and G sorted by
last name into H. }

type
Natural = O .. Maxlnt;
String15 = packed array [1 .. 15] of Char;
Person = record

Name:
record

First, Last: String15;
end;

Height: Natural { centimeters
end;

var
F, G, H: file of Person;
EndFG: Boolean;

begin
Reset(F); Reset(G); Rewrite(H);
EndFG := Eof(F) or Eof(G);
while not EndFG do

begin

if Fi.Name.Last < Gi.Name.Last then

begin Hi:= Fi; Get(F); EndFG:= Eof(F)
end

else

begin Hi:= Gi; Get(G); EndFG.- Eof(G)
end;

Put (H)
end;

while not Eof(G) do
begin

Write(H, Gi); Get(G)
end;

while not Eof(F) do
begin

end

Write(H, Fi); Get(F)

end

92 Pascal User Manual

9.B. Textfiles

Textfiles are files that consist of a sequence of characters that is
subdivided into variable-length tOICS. The predefined type Text is
used to declare textfiles.

We may consider the type Text as being defined over the base type
Char extended by a (hypothetical) line terminator or end-of-line
marker. Therefore type Text is nut equivalent to (Packed) file of

Char. This end-of-line marker can be both recognized and generated
by the following special textfile procedures.

Writeln (F) terminates the current line of the textfile F.

Readln (F) skips to the beginning of the next line of the textfile F

(Fi becomes the fiN character of the next line).

Eoln (F) a Boolean function mdicating whether the end of the
current line in the te '(tfile F has been reached. (If true,
Fi corresponds to the position of a line separator, but Fi
is a blank.)

If F is a textfile and Ch a character variable,

Write (F, Ch) is an abbreviation for
begin Fi : = Ch; E .. t (F) end

Read (F, Ch) assigns the character iat the current position of file F

or the value of Fi to Ch, followed by a Get (F) . The
choice is implement;ltion-dependent.

Input and Output are the names of two standard textfile variables
used as program parameters for le;!ible reading and writing of text.
Chapter 12 describes them in detail t, 'gether with extended forms ofthe
procedures P.ead, Write, Readln, ani ',~citeln.

The following program schem; ta use the above conventions to
demonstrate some typical operation. performed on textfiles.

1. Writing a textfile Y. Assume that (") computes a (next) character
and assigns it to parameter c. If the .:lIlTcnt line is to be terminated, a
Boolean variable Bl is set to true; and if the text is to be terminated, B2

is set to true.

Rewrite(Y) ;
repeat

repeat P(C); Write(Y,C)
until B1;
Writeln(Y)

until B2

File Types 93

2. Reading a textfde x. Assume that Q (C) denotes the processing of a
(next) character c. R denotes an action to be executed upon
encountering the end of a line.

Reset(X);
while not eof(X) do

begin

end

while not eoln(X) do
begin Read(X,C); Q(C)
end;

R; Readln(X)

3. Copying a textfile x to a textfile Y while preserving the line
structure of x.

Reset(X); Rewrite(Y);
While not eof(X) do

begin { copy a line
while not eoln(X) do

end

begin Read(X,C); Write(Y,C)
end;

Readln(X); Writeln(Y)

A note on implementation: A straightforward method of representing
the end-of-line marker is by using control characters. For instance, in
the ASCII character set the two characters, cr (carriage return) and If
(line feed), conventionally are used to mark the end of a line. However,
some computer systems use a character set devoid of such control
characters; this implies that other methods for indicating the end of a
line must be employed.

CHAPTER 10

Pointer Types

So far we have talked about type~; that provide for the declaration of
statically allocated variables. A stafic variable is one that is declared in
a program and subsequently denotl~d by its identifier. It is called static,
because it exists (i.e., memory i~ allocated for it) during the entire
execution of the block (program, procedure, or function) to which it is
local. A variable may, on the other hand, be created and destroyed
dynamically during the execution of a block (without any correlation to
the static structure of the progran i). Such a variable is consequently
called a dynamic variable or an identified variable.

to.A. Pointer Variables and Idt~ntified (Dynamic) Variables

Identified (dynamic) variables do not occur in an explicit variable
declaration and cannot be accessed directly by identifiers. Instead they
are created and destroyed by using Ille predeclared procedures New and
Dispose, and they are identified I,y pointer values (which might be
implemented as nothing more than the storage addresses of the newly
allocated variables). Pointer valUt ~ must be assigned to previously
existing pointer variables having tl I? appropriate pointer type.

Pointer Types 95

--...... :-----~. CDf---------~.1 Typeldentifier f-I -------,-;r--.....

L'-_______ ~.I Typeldentifier II--------~J
Figure 10.a Syntax diagram for PointerType

The description of a pointer type p specifies a domain type T:

type p = IT;

The set of pointer values of type p consists of an unbounded number of
identifying values, each of which identifies a variable of type T, together
with the special value nil that does not identify any variable.

An identified (dynamic) variable is accessed by the pointer value
that identifies it; in particular, if Pt r is declared as:

var ptr: P;

and an identifying value has been assigned to Pt r, then the construct
Ptrl is used to denote the identified variable.

-------1·1 Variable I-I-------+<· CJ)f----------.
Figure 10.b Syntax diagram for IdentifiedVariable

Ptrl is an error if ptr is nil or undefined.
Use New (Ptr) to create or allocate an identified variable of type T

and to assign its identifying value to Ptr. Use Dispose (Ptr) to
destroy or deallocate the variable identified by the value of ptr; Ptr

becomes undefined after Dispose.

Pointers are a simple tool for the construction of complicated and
flexible (and even recursive) data structures. If the type T is a record
structure that contains one or more fields of type P, then structures
equivalent to arbitrary finite graphs may be built, where the identified
variables represent the nodes, and the pointers are the edges.

Program 10.1 illustrates the use of pointers to maintain a waiting list
of clients. (Procedures are discussed in the next chapter.)

96 Pascal User Manual

program WaitingList(Input,O ·.put);
{ Program 10.1 - Simulate client waiting list;

serve th, first 3. }
const

NameLength 15;
type

Namelndex = 1 .. NameLengt~;

NameString= packed arra'l [Namelndex] of Char;
Natural = O .. Maxlnt;

ClientPointer = iClient;
Client =

var

record
Name: NameString;
Nxt: ClientPointer

end;

Head, Tail: ClientPointe

Name: packed array [Name ndex] of Char;

procedure ReadName;
var c: Namelndex;

begin
for c := 1 to NameLength 10

if Eoln(Input) then Name[c]
else begin

Read(Input,Name[c]);
Write (Output,Name [c]

end;
Readln(Input); Writeln(1 (.'put)

end { ReadName };

procedure AddClientToList;
var NewClient: ClientPo. ,','r;

begin
New(NewClient);

, ,

if Head = nil then Head: ~ewClient

else Tail i. Nxt : = NewCliE It;

NewClienti.Name := Name; NewClienti.Nxt·= nil;

Tail := NewClient
end { AddClientToList };

procedure ServeClient (HowMa:lY: Natural);

Pointer Types 97

while (HowMany > 0) and (Head <> nil) do begin

ClientToServe := Head; Head:= Headi.Nxt;

Writeln(ClientToServei.Name);
Dispose(ClientToServe);
HowMany := HowMany - 1

end
end ServeClients };

begin WaitingList }
Head := nil;
while not Eof(Input) do begin

ReadName; AddClientToList
end;
Writeln(Output);
ServeClients(3)

end { WaitingList }

Produces as results (assuming appropriate input):
Hikita
Balasubramanyam
Nagel
Lecarme
Bello
Pokrovsky
Barron
Yuen
Sale
Price

Hikita
Balasubramanyam
Nagel

As another example, consider the construction of a "data base" for a
group of people. Assume the persons are represented by records as
defined in Chapter 7. We may then form a chain or linked list of such
records by adding a field of a pointer type and use the list for searching
and insertion operations:

type Link = iperson;

Person record

Next: Link;
end;

98 Pascal User Manual

A linked list of n persons can be represented as in Figure 10.c. Each
box represents one person.

Person Person

•
Figure 10.c Linked List

A variable of type Link, called Fi [st, points to the first person of the
list. The Next field of the last person in the list is ni 1. Note in passing
that

Firstl.Nextl.Next

points to the third person in the list If we assume that, for example, we
can read integer data representing the heights of people, then the
following code could have been u~ed to construct the above chain.

var First, P: Link; H,': Integer;

First := nil;

for I := 1 to N do
begin Read(H); New(l);

pI.Next := First;

end

pI.Height := H;],itializeOtherFields(PI);

First .- P

Note that the list grows backwards. For purposes of access, we will
introduce another variable, say Pt, I)f type Link and allow it to move
freely through the list. To demons!) :Ite selection, we assume there is a
Person with Height equal to 1 " and access this Person. The
strategy is to advance Pt via Link itntil the desired person is located:

Pt := First;

while Ptl.Height <> 175L, Pt := Ptl.Next

In words this says, "Let Pt point to the first person. While the height of
the person pointed to (identified) by Pt is not 175, assign to Pt the
pointer value stored in the Next field (also a pointer variable) of the
record that Pt currently identifies."

Pointer Types 99

This simple search statement works only if one is sure that there is at
least one person with Height equal to 175 on the list. But is this
realistic? A check for failing to find 175 before reaching the end of the
list is mandatory unless you can guarantee it. We might first try the
following solution:

Pt := First;

while (pt <> nil) and (Pti.Height <> 175) do

Pt := Pti.Next

But recall Section 4.A. If Pt = nil, the variable Pt i, referenced in the
second factor of the termination condition, does not exist at all, and
referencing it is an error. The following are two possible solutions
which treat this situation correctly:

(1) Pt:= First; B := true
while (Pt <> nil) and B do

if pti.Height = 175 then B .- false

else Pt := Pti.Next

(2) Pt:= First;
while Pt <> nil do

begin if pti.Height

Pt .- Pti.Next
end;

13:

10.B. New and Dispose

175 then goto 13;

To pose another problem, say we wish to add the sample person to the
data base. First a variable must be allocated, and its identifying value
obtained by means of the predeclared procedure New.

New (P) a procedure that allocates a new identified (dynamic)
variable pi having as its type the domain type of P, creates a
new identifying pointer value having the type of P, and as
signs it to P. If pi is a variant record, New (P) allocates
enough space to accommodate all variants.

New(P,Cl, ... ,Cn) allocates a new identified (dynamic) vari
able pi having the variant record type of P with tag field val
ues C 1, ... , Cn for n nested variant parts, creates a new
identifying pointer value having the type of P, and assigns it
to P.

100 Pascal User Manual

Warning: if a record variable pi i' created by the second form of New,

then this variable must not change Iii" variant during program execution.
Assignment to the entire variable i I an error; however one can assign to
the components of pi.

The first step in programmin I~ a solution to our problem posed
above, is to introduce a pointer var lable. Let it be called NewP. Then the
statement

New(NewP)

allocates a new variable of type PI [son.

Next the new variable, referenced by the pointer NewP, is to be
inserted after the person referenced by Pt. See Figure 1O.d.

Person /

New

, ~.

NewP ~

Figure lO.d Linked List Before Insertion

Insertion is a simple matter of changing the pointers:

Newpi.Next := Pti.Next;

Pti.Next := NewP

Figure 10.e illustrates the result.

Newp~

Insert

Figure lO.c Linked List After Insertion

..

••

Pointer Types 101

Deletion of the person following the auxiliary pointer Pt IS

accomplished in the single instruction:

Pti.Next := Pti.Nexti.Next

It is often practical to process a list using two pointers - a
lookahead and a trailer, one following the other. In the case of deletion,
it is then likely that one pointer - say pi - precedes the member to be
deleted, and P 2 points to that member. Deletion can then be expressed
in the single instruction:

PIi.Next := P2i.Next

You are, however, warned that deletions in this manner will sometimes
result in the loss of usable (free) storage. A possible remedy is to
maintain an explicit list of "deleted" members, pointed to by a variable
Free. New variables will then be taken from this list (if it is not empty)
instead of using the procedure New. A deletion of a list member now
becomes a transfer of that member from the list to the free-member list.

PIi.Next := P2i.Next;

P2i.Next := Free;

Free := P2

Finally, by using the predeclared procedure Dispose, the
management of deleted members can be left to the Pascal
implementation.

Dispose (Q) deallocates the identified variable Qi and destroys
the identifying value Q. It is an error if Q is nil or unde
fined. The value Q must have been created with the first
form of New.

Dispose (Q, KI, ... , Kn) deallocates the identified variant record
variable Qi with active variants selected by KI, ... , Kn and
destroys the identifying value Q. It is an error if Q is nil or
undefined. The value Q must have been created with the sec
ond form of New and KI, ... , Kn must select the same vari
ants selected when Q was created.

Chapter 11 presents Programs 11.6 and 11.7 illustrating the
traversal of tree structures which are built using pointer types.

CHAPTER 11

Procedures and Functions

As we grow in the art of comrluter programming, we construct
programs in a sequence of refinemoll steps. At each step we break our
task into a number of subtasks, thneby defining a number of partial
programs. To camouflage this struCI ure is undesirable. The concepts of
the procedure andfunction allow you to display the subtasks as explicit
subprograms.

~~~ ProcedureOrFunctionHeading 

Figure l1.a Syl lax diagram for 
ProcedureAndFuncl1 iIIDe('/aralionPart 

1 ~I Procedurt ... ,j~ J 
l~. -------~ .. I Functionl ~I------------' 

Figure l1.b Syntax diagram for ProcedureOrFunctionHeading 

10~ 

.. 



Procedures and Functions 103 

H.A. Procedures 

Throughout the example programs in this User Manual, the predeclared 
procedures Read, Readln, Write, and Writeln are used. This section 
describes how to build your own "programmer-declared" procedures; 
in fact, Programs 8.2 and 1 0.1 use them. 

The procedure declaration serves to define a program part and to 
associate it with an identifier, so that it can be activated by a procedure 
statement. The declaration has the same form as a program, except it is 
introduced by a procedure heading instead of a program heading. 

procedure }----./ Identifier t---~-~ ForrnalParameterList f---r-. 
'------" 

Figure H.c Syntax diagram for ProcedureHeading 

Recall Program 6.1 that found the minimum and maximum values 
in a list of integers. As an extension, say that n increments are added to 
A [ 1] ... A [ n] , then Mi n and Max are again computed. The resulting 
program, which employs a procedure to determine Min and Max, 

follows. 

program MinMax2(Input,Output); 

{ Program 11.1 - Extend Program 6.1 by introducing a 
procedure. } 

const 
MaxSize = 20; 

type 
ListSize = 1 .. MaxSize; 

var 

Increment: Integer; 
Item: ListSize; 

A: array [ListSize] of Integer; 

procedure MinMax; 
var 

Item: ListSize; 

Min, Max, First, Second: Integer; 



104 Pascal User Manual 

begin 
Min := A[l]; Max:= Mi I; Item:= 2; 
while Item < MaxSize de begin 

First := A[Item]; SE'()nd:= A[Item+1]; 
if First > Second thE begin 

if First> Max ther ~dX := First; 
if Second < Min th~' Min .- Second 

end else begin 
if Second> Max the: Max .- Second; 
if First < Min the~ Min := First 

end; 
Item .= Item + 2 

end; 
if Item = MaxSize then 

if A[MaxSize] > Max t len Max := A[MaxSize] 
else 

if A[MaxSize] < Min ~hen Min := A[MaxSize]; 
Writeln(Output, Max, lin); Writeln(Output) 

end {MinMax}; 

begin 
for Item := 1 to MaxSize 

Read (Input, A[Itemj); 
end; 
Writeln(Output); 
MinMax; 

(0 begin 
:rite(Output, A[Itemj :4) 

for Item := 1 to MaxSize 10 begin 
Read(Input, Increment); 
A[Item] := A[Itemj + ~n rement; 
Write (Output, A[Itemj 

end; 
Writeln(Output); 
MinMax 

end . 

Produces as results (assuming aplmpriate input): 

-1 -3 4 7 8 54 2 .~ 3 9 9 9 -6 

45 79 79 3 1 1 5 
79 -6 

44 40 7 15 9 88 1 4 7 43 12 17 -7 
48 59 39 9 7 7 12 

88 -7 



Procedures and Functions 105 

Although simple, this program illustrates many points: 

1. The simplest form of the procedure heading, namely: 
procedure Identifier; 

2. Blocks. A procedure is a block with a name. The program block 
is MinMax2 and the procedure block is MinMax. In this case the 
part of the Program 6.1 used only to find the minimum and 
maximum values is isolated and given the name MinMax. Just 
like the program block, the block constituting a procedure has 
a declaration part which introduces the objects local to the 
procedure. 

3. Local Variables. Local to procedure MinMax are the variables 
Item, First, Second, Min and Max; assignments to these 
variables have no effect on the program outside the scope of 
MinMax. Local variables are undefined at the beginning of the 
statement part each time the procedure is activated. 

4. Global Variables. A, Item and Increment are global 
variables declared in the main program. They may be 
referenced throughout the program (e.g., the first assignment 
in MinMax is Min : = A [1] ). 

5. Scope. Note that Item is the name for both a global and a local 
variable. These are not the same variable! A procedure may 
refer to any variable non-local to it, or it may choose to 
redefine the name. If a variable name is redeclared, the new 
name/type association is then valid for the scope of the 
defining procedure, and the non-local variable of that name 
(unless passed as a parameter) is no longer available within the 
procedure scope. Assignment to the local variable Item (e.g., 
Item : = Item + 2) has no effect upon the global variable 
Item, and because within MinMax the local Item has 
precedence, the global Item is effectively inaccessible. 

It is a good programming practice to declare every 
identifier which is not referred to outside the procedure, as 
strictly local to that procedure. Not only is this good 
documentation, but it also provides added security. For ex
ample, Item could have been left as a global variable; but then 
a later extension to the program which activated procedure 



106 Pascal User Manual 

MinMax within a loop c( ntrolled by Item would cause 
incorrect computation. 

6. The Procedure Statement. III this example, the statement 
MinMax in the main program activates the procedure. 

--~ Procedureldentifier 1-----.--------------~-__ 

.. Actua!ParameterList 1-----... 1 

WriteParameterList 1----.-/ 

Figure H.d Syntax diag lam for ProcedureStatement 

Examining Program 11.1 in more detail, note that MinMax is 
activated twice. By formulating tht' program part as a procedure - i.e., 
by not explicitly writing this prog ram part twice - you can conserve 
not only your typing time, but ahll the memory (space) used by the 
program. The static code is stored only once, and the space for local 
variables is dynamically activated only during the execution of the 
procedure (created at the beginning and destroyed at the end). 

You should not hesitate, however, from formulating an action as a 
procedure - even when called on I yonce - if doing so enhances the 
readability of a program. In gelleral, shorter blocks are easier to 
understand than long ones. Definilg development steps as procedures 
makes a more communicable and .erifiable program. 

H.A.l Parameter lists 

Often necessary with the decompm Ilion of a problem into subprograms 
is the introduction of new variable', to represent the arguments and the 
results of the subprograms. The purpose of such variables should be 
clear from the program text. 

Program 11.2 extends the abow example to compute the minimum 
and maximum value of an array in ,I more general sense. This illustrates 
several further points about procedures. 



Procedures and Functions 107 

1. The second fonn of the procedure heading, i.e., one with a 
parameter list. 

2. Formal Parameters. The parameter list gives the name of each 
fonnal parameter followed by its type. MinMax has L, Min, 

and Max as fonnal parameters. The fonnal parameter list 
opens a new scope for the parameters. 

3. Actual Parameters. Note a correspondence between the 
procedure heading and the procedure statement. The latter 
contains a list of actual parameters, which are substituted for 
the corresponding fonnal parameters that are defined in the 

program MinMax3(Input,Output); 
{ Program 11.2 - Modify Program 11.1 for two lists. } 
const 

MaxSize = 20; 
type 

ListSize = 1 .. MaxSize; 
List = array [ListSize] of Integer; 

var 
Item: ListSize; 
A, B: List; 
MinA, MinB, MaxA, MaxB: Integer; 

procedure MinMax(var L: List; var Min, Max: Integer); 
var 

Item: ListSize; 
First, Second: Integer; 

begin 
Min := L[l]; Max:= Min; Item:= 2; 
while Item < MaxSize do begin 

First := L[Item]; Second:= L[Item+1]; 
if First > Second then begin 

if First> Max then Max := First; 
if Second < Min then Min Second 

end else begin 
if Second> Max then Max .- Second; 
if First < Min then Min := First 

end; 
Item .= Item + 2 

end; 
if Item = MaxSize then 

if L[MaxSize] > Max then Max 
else 

L[MaxSize] 



108 Pascal User Manual 

if L[MaxSize] < Mi: then Min "= L[MaxSize] 
end { MinMax }; 
procedure ReadWrite(var: List); 
begin 

for Item : = 1 to MaxSi:,' do begin 
Read(Input, L[item]); 
Write (Output, L[Item :4) 

end; 
Writeln(Output) 

end { ReadWrite }; 
begin {main program 

ReadWrite (A) ; 
MinMax(A, MinA, MaxA); 
Writeln (Output, MinA, Ma> !." MaxA - MinA); 
Writeln(Output); 
ReadWrite (B) ; 
MinMax(B, MinB, MaxB); 
Writeln(Output, MinB, Max~, MaxB - MinB); 
Writeln(Output); 
Writeln(Output); 
Writeln(Output, abs(MinA 
Writeln(Output); 

MinB), abs(MaxA - MaxB»; 

for Item := 1 to MaxSize do begin 
A[Item] := A[Item] + B[ :tem]; 
Write (Output, A[Item] : .1) 

end; 
Writeln(Output); 
MinMax(A, MinA, MaxA) ; 
Writeln(Output, MinA, Max,\, MaxA - MinA) 

end " 

Produces as results (assuming appropriate input): 

-1 -3 4 7 8 54 2 -s 3 9 9 9 -6 
45 79 79 3 1 1 5 

-6 79 ~ ~) 

45 43 3 8 1 34 4 34 3 8 -1 

3 -2 -4 6 6 6 7 
-8 45 ~ 3 

2 34 

44 40 7 15 9 88 1 -4 7 43 12 17 -7 
48 77 75 9 7 7 12 

-7 88 9S 



Procedures and Functions 109 

I'----~ Typeldentifierr------.. 

ConformantArraySchema 

ProcedureOrFunctionHeadingf---~'---< 

Figure 11.e Syntax diagram for F ormalParameterList 

procedure declaration. The correspondence is established by 
the positioning of the parameters in the lists of actual and 
formal parameters. Parameters provide a substitution 
mechanism that allows a process to be repeated with a 
variation of its arguments (e.g., MinMax is activated twice to 
scan array A and once to scan array B). There exist four kinds 
of parameters: value parameters, variable parameters, 
procedural parameters (described in Section 11.A.4), and 
functional parameters (described in Section l1.B.l). 

r---~---.,--------+l Variable f------:r--~-___r 

1'-----.1 Expression 1----"'1 

Procedure Identifier '----.II 

'---.! Functionldentifier 1----' 

Figure 11.f Syntax diagram for ActualParameterList 



110 Pascal User Manual 

4. Variable Parameters. Procedllre MinMax shows the case ofthe 
variable parameter. The actual parameter must be a variable; 
the corresponding formal pw'ameter must be preceded by the 
symbol var and becomes a ,ynonym for this actual variable 
during the entire execution If the procedure. Any operation 
involving the formal paran leter is then performed directly 
upon the actual parameter, Use variable parameters to 
represent the results of a pn Icedure - as is the case for Min 

and Max in Program 11.2. J urthermore, if Xl ... Xn are the 
actual variables that com~pond to the formal variable 
parameters VI ... Vn, then, 1 ... Xn should be distinct 
variables. All address calcuLltions are done at the time of the 
procedure activation. Hence, I f a variable is a component of an 
array, its index expression is ,'valuated when the procedure is 
activated. Note that a compolllcnt of a packed structure or a tag 
field in a variant record must not appear as an actual variable 
parameter, thus avoiding implementation problems for 
calculating addresses. 

When no symbol heads the paumeter section, the parameter(s) of 
this section are said to be value parameter(s). In this case the actual 
parameter must be an expression (of which a variable is a simple case). 
The corresponding formal parameter represents a local variable in the 
activated procedure. As its initial value, this variable receives the 
current value of the corresponding actual parameter (i.e., the value of 
the expression at the time of the prlCedure activation). The procedure 
may then change the value of this \ .lriable through an assignment; this 
cannot, however, affect the value ()f the actual parameter. Hence, a 
value parameter can never represen. a result of a computation. Note that 
file parameters or structured variahles with files as components may 
not be specified as actual value par. I meters, as this would constitute an 
assignment. 

The difference in the effects 01 value and variable parameters is 
shown in Program 11.3. 

The following table summarize', the correct kinds of parameters for 
formal and actual parameter lists. 



Procedures and Functions 111 

parameter kind 

value parameter 
variable parameter 
procedural parameter 
functional parameter 

formal parameter 

variable identifier 
variable identifier 
procedure heading 
function heading 

program Parameters(Output); 

actual parameter 

expression 
variable 
procedure identifier 
function identifier 

{ Program 11.3 - Illustrate value and var parameters. 

var 
A, B: Integer; 

procedure Addl(X: Integer; var Y: Integer); 
begin 

X := X + 1; Y:= Y + 1; Writeln(Output,X,Y) 
end { Addl }; 

begin 
A := 0; B:= 0; Addl(A,B); 
Writeln(Output,A,B) 

end { Parameters }. 

Produces as results: 

1 

o 
1 

1 

In procedure MinMax of Program 11.2 none of the values in array L 

are altered; i.e., L is not a result. Consequently L could have been 
defined as a value parameter without affecting the end result. To 
understand why this was not done, it is helpful to look at the 
implementation. 

A procedure activation allocates a new area for each value 
parameter; this represents the local variable. The current value of the 
actual parameter is "copied" into this location; exit from the procedure 
simply releases this storage. 

If a parameter is not used to transfer a result of the procedure, a 
value parameter is generally preferred. The accessing may be more 
efficient, and you are protected against mistakenly altering the data. 
However in the case where a parameter is of a structured type (e.g., an 



112 Pascal User Manual 

array), you should be cautious, f<'r the copying operation is relatively 
expensive, and the amount of stOl,lge needed to hold the copy may be 
large. In the example, because ,:'ach component in the array L is 
accessed only once, it is desirable 10 define the parameter as a variable 
parameter. 

We may change the dimension of the array simply by redefining 
Max S i z e. To make the program ap:11 icable for an array of reals, we need 
only change the type and variabk definitions; the statements are not 
dependent upon integer data. 

ll.A.2. Conformant-array panameters 

Another way to pass different-sizl ,I arrays to a procedure or function is 
to use a conform ant-array paramek'r as a variable or value parameter in 
the formal parameter list. CautiOli: Conform ant-array parameters are 
an optional feature in the ISO Pas('al Standard. Some implementations 
will not support them. 

~-~ Typeldentifier 

Figure ll.g Syntax diagrar11 for ConformantArraySchema 

-1 Identifier I • 81---1 
Figure ll.h Syntax diagram for IndexTypeSpecification 



Procedures and Functions 113 

Conformant arrays specify the actual bounds of each dimension of 
the array as bound identifiers which are a kind of read-only variable. 
The index type of the actual array parameter must be compatible with 
the type in the conform ant array's index type specification. The 
smallest and largest values of that index type must lie within the closed 
interval of the type in the index type specification. The component 
types must be the same, and if the component type of the 
conformant-array parameter is another conformant-array parameter 
then the component type of the actual array parameter must conform to 
it. 

A conformant-array parameter may be packed only in its last 
dimension. Actual parameters to value conformant-array parameters 
may be variables or strings. 

Program MatrixMul of Chapter 6 is rewritten as Program 11.4 to 
use conformant-array parameters. Program 11. 7 passes 
different-length strings to a formal conformant-array parameter. 

1l.A.3 Recursive procedures 

The use of a procedure identifier within the text of the procedure itself 
implies recursive execution of the procedure. Problems whose 
definition is naturally recursive, often lend themselves to recursive 
solutions. An example is Program 11.5. 

The task is to construct a program to convert expressions into 
postfix form (Polish notation). This is done by constructing an 
individual conversion procedure for each syntactic construct 
(expression, term, factor). As these syntactic constructs are defined 
recursively, their corresponding procedures may activate themselves 
recursively. 

Given as data are the symbolic expressions: 

(a+b) * (c-d) 
a+b*c-d 

a * b)* c-d 
a+b* (c-d) 

a * a * a * a 
b+c*(d+c*a*a)*b+a 



114 Pascal User Manual 

program MatrixMu12 (Input, 'dtput); 
{ Program 11.4 - Rewrite [ogram 6.3 using a 

procedure with co ~ormant-array parameters. 
const 

M = 4; P = 3; N = 2; 
type 

Positive = 1 .. MaxInt; 
var 

A: array [1 .. M, 1 .. P] 
B: array [1. . P, 1 .. N] 
C: array [1 .. M, 1 .. N] 

procedure ReadMatrix 

0 

0 

0 

Integer; 
Integer; 
Integer; 

(var X: array [LoRow .. H {ow: Positive; 
LoCol..H ':e)l: Positive] of Integer); 

var 
ROw, Col: Positive; 

begin 
for Row := LoRow to HiRe w do 

for Col := LoCol to H Col do 
Read(Input, X[Row,Ccl]) 

end { ReadMatrix }; 

procedure WriteMatrix 
(var X: array [LoRow .. H_Row: Positive; 

LoCol .. Heol: Positive] of Integer); 

var 
ROw, Col: Positive; 

begin 
for Row : = LoRow to HiRe ., do begin 

for Col := LoCol to H L do 
Write (Output, X[Row, I,L]); 

Writeln(Output) 
end 

end { WriteMatrix } 

procedure Multiply 
(var A: array [LoARow .. 1 ARow: Positive; 

LoACol .. H1ACol: Positive] of Integer; 
var B: array [LoBRow .. ! ~BRow: Positive; 

LoBCol .. HjBCol: Positive] of Integer; 
var C: array [LoCRow .. ! ;CRow: Positive; 

LoCCol. .Hi(~ol: Positive] of Integer); 



Procedures and Functions 115 

var 
Sum: Integer; 
I, J, K: Positive; 

begin 
if (LoARow <> 1) or (LoACol <> 1) or 

(LoBRow <> 1) or (LoBCol <> 1) or 
(LoCRow <> 1) or (LoCCol <> 1) or 
(HiARow <> HiCRow) or (HiACol <> HiBRow) 
(HiBCol <> HiCCol) then {error} 

else 
for I 1 to HiCRow do begin 

for J .= 1 to HiCCol do begin 
Sum := 0; 
for K := 1 to HiACol do 

Sum := Sum + A[I,K] * B[K,J]; 
C [I, J] .- Sum 

end; 
end 

end { Multiply}; 

begin 
ReadMatrix (A) ; 
WriteMatrix (A) ; 
ReadMatrix(B); 
WriteMatrix(B); 
Multiply(A,B,C); 
WriteMatrix(C) 

end . 

Produces as results: 

1 

-2 
1 

-1 

-1 

-2 

2 

2 
0 

0 

2 

3 

2 
1 

1 10 

6 -4 
1 4 

-9 -2 

3 

2 

1 

-3 

or 



116 Pascal User Manual 

which are formed accordng to the E B NF below. A period terminates the 
input. 

Expression = Term { ( "+" I "-" ) Term} . 
Term = Factor { "*,, Factor }. 
Factor = Identifier "(" Expression ")" . 
Identifier = Letter. 

program PostFix (Input,Outpu' ); 
{ Program 11.5 - Convert an infix expression to 

Polish I ostfix form. 
label 13 { premature end f file }; 
var 

Ch: Char; 
procedure Find; 
begin 

if Eof(Input) then goto 13; 
repeat Read (Input, Ch); 
until (Ch <> ' ') or Eo: (Input) 

end { Find }; 
procedure Expression; 

var 
Op: Char; 

procedure Term; 
procedure Factor; 
begin 

if Ch = ' (' then 
begin Find; ExpJession; {Ch 

else 
Write (Output, Ch); 

Find 
end { Factor }; 

begin { Term } 
Factor; 
while Ch , *, do 

, )' } end 

begin Find; Facto]; Write (Output, '*') end 
end { Term }; 

begin { Expression 
Term; 
while (Ch = '+') or (Ch = '-') do 

begin 
Op := Chi Find; TE rm; Write (Output, Op) 

end 
end { Expression }; 



begin { PostFix 
Find; 
repeat 

Expression; 
Writeln(Output) 

until Ch = , .'; 

13: 
end { PostFix } . 

Produces as results: 

ab+cd-* 
abc*+d
ab+c*d
abcd-*+ 
aa*a*a* 
bcdca*a*+*b*+a+ 

Procedures and Functions 117 

A binary tree is a data structure that is naturally defined in recursive 
terms and processed by recursive algorithms. It consists of a finite set of 
nodes that is either empty or else consists of a node (the root) with two 
disjoint binary trees, called the left and right subtrees [Reference 6]. 
Recursive procedures for generating and traversing binary trees 
naturally reflect this mode of definition. 

Program 11.6 builds a binary tree and traverses it in pre-, in-, and 
postorder. The tree is specified in preorder, i.e., by listing the nodes 
(single letters in this case) starting at the root and following first the left 
and then the right subtrees so that the input corresponding to Figure ll.i 
IS: 

abc .. de .. fg ... hi. . jkl. .m .. n .. 

where a point signifies an empty subtree. 

ll.A.4. Procedural parameters 

We can rewrite Program 11.6 to illustrate passing procedures as 
parameters. Procedural parameters appear in the formal parameter list 
of procedures and functions as procedure headings. In the 
corresponding actual parameter list only the procedure identifier must 
be specified. Program 11.7 illustrates this as well as the passing of 
actual string values to conform ant-array parameters. 



118 Pascal User Manual 

Root 

Figure ll.i Bir lary Tree Structure 

program Traversal (Input, Out ,t); 

{ Program 11.6 - Illustra G binary tree traversal. } 

type 

Ptr = iNode; 
Node = 

record 

var 

Info: Char; 

LLink, RLink: Ptr 
end; 

Root: ptr; 

Ch: Char; 



procedure PreOrder(P: Ptr)i 
begin 

Procedures and Functions 119 

if P <> nil then begin 

Write(Output,pi.Info)i PreOrder(pi.LLink)i 
PreOrder(Pi.RLink) 

end 
end { PreOrder }i 

procedure InOrder(P: Ptr)i 
begin 

if P <> nil then begin 

InOrder(Pi.LLink)i Write (Output, Pi.Info)i 
InOrder(Pi.RLink) 

end 
end { InOrder }i 

procedure PostOrder(P: Ptr)i 
begin 

if P <> nil then begin 

PostOrder(pi.LLink)i PostOrder(Pi.RLink)i 

Write (Output,pi.Info) 
end 

end { PostOrder }i 

procedure Enter(var P: Ptr)i 
begin Read(Input, Ch)i Write (Output, Ch)i 

if Ch <> '.' then begin 
New(P)i 
Pi.Info .= Chi Enter(pi.LLink)i Enter (Pi.RLink) 

end else P := nil 
end Enter}i 

begin Traversal 
Enter(Root)i Writeln(Output)i 
PreOrder(Root)i Writeln(Output)i 
InOrder(Root)i Writeln(Output)i 
PostOrder(Root)i Writeln(Output) 

end { Traversal } 

Produces as results: 
abc .. de .. fg ... hi. . jkl. .m . . n .. 
abcdefghijklmn 
cbedgfaihlkmjn 
cegfdbilmknjha 



120 Pascal User Manual 

program Traversa12 (Input,Ou !)I;t); 

al 
Program 11.7 - Rewrite t~gram 11.6 using procedur-

paramete . } 
type 

Ptr = INode; 
Node = 

record 
Info: Char; 
LLink, RLink: Ptr 

end; 
Positive = 1 .. MaxInt; 

var 
Root: Ptr; 
Ch: Char; 

procedure PreOrder(P: Ptr); 
begin 

if P <> nil then 
begin 

Write(Output,PI.Infc); PreOrder(pI.LLink); 

PreOrder(pI.RLink) 
end 

end { PreOrder }; 

procedure InOrder(P: Ptr); 
begin 

if P <> nil then 
begin 

InOrder(pI.LLink); ~ il e(Output, pI.Info); 

InOrder(pI.RLink) 
end 

end { InOrder }; 

procedure PostOrder(P: Ptr 
begin 

if P <> nil then 
begin 

PostOrder (PI. LLink); cst Order (PI. RLink) ; 

Write(Output,PI.Infc 
end 

end { PostOrder }; 



Procedures and Functions 121 

procedure Enter(var P: Ptr); 
begin Read(Input, Ch); Write (Output, Ch); 

if Ch <> '.' then 
begin New(P); 

PI.Info .= Chi Enter(pI.LLink); Enter (PI.RLink) 

end 
else P := nil 

end { Enter }; 

procedure WriteNodes 

var 

(procedure TreeOperation(Start: Ptr); Root: Ptr; 
Title: packed array [M .. N: Positive) of Char); 

c: Positive; 
begin 

Writeln(Output); 
for C := M to N do Write (Output, Title[C)); 
Writeln(Output); Writeln(Output); 
TreeOperation(Root); Writeln(Output) 

end { WriteNodes }; 

begin Traversa12 
Enter(Root); Writeln(Output); 
WriteNodes(PreOrder, Root, 

'Nodes listed in preorder:'); 
WriteNodes(InOrder, Root, 'Nodes listed inorder:'); 
WriteNodes(PostOrder, Root, 

'Nodes listed in postorder:') 
end { Traversa12 } . 

Produces as results: 

abc .. de .. fg ... hi. . jkl. .m .. n .. 

Nodes listed in preorder: 

abcdefghijklmn 

Nodes listed inorder: 

cbedgfaihlkmjn 

Nodes listed in postorder: 

cegfdbilmknjha 



122 Pascal User Manual 

Be careful of applying recursive techniques indiscriminately. 
Although appearing "clever," the~ do not always produce the most 
computationally efficient solutiom. 

If a procedure p activates a procedure Q and Q also activates P, and 
neither is declared within the other, then either p or Q must be declared 
in aforward declaration (Section II.C). 

The predeclared procedures in Appendix A are provided in every 
implementation of Standard Pascal, Any implementation may feature 
additional predeclared procedures. Since they are, as all predeclared 
and predefined objects, assumed to have a scope surrounding the user 
program, no conflict arises from ;11 declaration redefining the same 
identifier within the program. 

Predeclared procedures may n<)t be passed as actual procedural 
parameters. 

11.B. Functions 

Functions are program parts (in the same sense as procedures) which 
compute a single ordinal, real, or pointer value for use in the evaluation 
of an expression. Afunction desigllator specifies the activation of a 
function and consists of the identifier denoting the function and a list of 
actual parameters. The parameters are variables, expressions, 
procedures, or functions and are substituted for the corresponding 
formal parameters. 

The function declaration has the·,ame form as the program, with the 
exception ofthefunction heading which has the form: 

Figure ll.j Syntax diagrlll11 for FunctionHeading 

As in the case of procedures, the lahels in the label declaration part 
and all identifiers introduced in the constant definition part, the type 
definition part, the variable, procedUl'c, or function declaration parts are 
local to the function declaration, v. hich is called the scope of these 
objects. They are not known outsid,:' their scope. The values of local 



Procedures and Functions 123 

variables are undefined at the beginning of the statement part. 
The identifier specified in the function heading names the function. 

The result type is named by the type identifier and must be a simple or 
pointer type. Within the function declaration there must be an executed 
assignment (of the result type) to the function identifier to "return n" the 
result of the function. 

Program 11.8 reformulates the exponentiation algorithm of 
Program 4.3 as a function declaration. 

The appearance of the function identifier in an expression within 
the function itself implies recursive execution of the function. 
Appendix F illustrates a recursive function. 

Function designators may occur before the function declaration if 
there is aforward declaration (Section II.C). 

The predeclared functions of Appendix A are assumed to be 
provided in every implementation of Standard Pascal. Any 
implementation may feature additional predeclared functions. 
Predeclared functions may not be passed as actual functional 
parameters. 

program Exponentiation2(Output); 

{ Program 11.8 - Reformulate Program 4.6 using a 
function. 

type 
Natural 

var 
O •• Maxlnt; 

Pi, PiSquared: Real; 

function Power(Base: Real; Exponent: Natural): Real; 
var 

Result: Real; 
begin Result := 1; 

while Exponent > 0 do begin 

while not Odd (Exponent) do begin 

Exponent := Exponent div 2; Base := Sqr(Base) 
end; 

Exponent := Exponent - 1; Result := Result * Base 
end; 

Power := Result 
end { Power }; 



124 Pascal User Manual 

begin Pi := ArcTan(1.0) * , 
Write1n(Output, 2.0 :11:(. 7 :3, Power(2.0,7) :11:6); 
PiSquared := Power(Pi,2); 
Write1n(Output, Pi :11:E, 2 :3, PiSquared 
Writeln(Output, PiSquared :11:6, 2 :3, 

: 11: 6) ; 

Power (PiSquared, 2) :11:6); 
Writeln(Output, Pi :11:6, 4 :3, Power(Pi,4) :11:6) 

end { Exponentiation2 } . 

Produces as results: 

2.000000 7 128.000000 
3.141593 2 9.869605 
9.869605 2 97.409100 
3.141593 4 97.409100 

11.B.1. Functional parameters 

Functions themselves may also be passed as parameters to procedures 
and functions. A formal functional parameter is specified by a function 
heading; its corresponding actual parameter is a function identifier. 
Program 11.9 computes the sum of terms in a series for different 
functions specified at activation. 

program SumSeries(Output); 

{ Program 11.9 - Write a table of a series sum 
progress: ,m. } 

const 
MaxTerms = 10; 

var 
Term: 1 .. MaxTerms; 

function Sigma ( function r,:X:Real):Real; 
Lower,:pper :Integer ): Real; 

var 
Index: Integer; 
Sum: Real; 

begin 
Sum := 0.0; 
for Index : = Lower to UFT'er do 

Sum := Sum + F(Index); 
Sigma := Sum 

end { Sigma }; 



Procedures and Functions 125 

function IncreasingSine(X: Real): Real; 

begin 

IncreasingSine := sin(X) * X 

end { IncreasingSine }; 

function InverseCube(X: Real): Real; 

begin 

InverseCube := 1 / (Sqr(X) * X) 

end InverseCube }; 

begin SumSeries } 
for Term := 1 to MaxTerms do 

Writeln(Term ,Sigma(IncreasingSine,I,Term), 

Sigma(InverseCube,I,Term)) 

end { SumSeries } 

Produces as results: 

1 8. 414710E~01 1.000000E+00 

2 2.660066E+00 1.125000E+00 

3 3.083426E+00 1.162037E+00 

4 5.621672E~02 1.177662E+00 

5~4.738405E+00 1.185662E+00 
6~6.414900E+00 1.190292E+00 
7~1.815995E+00 1.193207E+00 

8 6.098872E+00 1.195160E+00 

9 9.807942E+00 1.196532E+00 
10 4.367733E+00 1.197532E+00 

I1.B.2 Side Effects 

An assignment (occurring in a function declaration) to a non-local 
variable or to a variable parameter is called a side effect. Such 
occurrences often disguise the intent of the program and greatly 
complicate the task of verification. Hence, the use of functions 
producing side effects is strongly discouraged. As an example, consider 
Program 11.10. 

program SideEffect(Output); 

{ Program 11.10 ~ Illustrate function side effects. } 

var 

A, Z: Integer; 



126 Pascal User Manual 

function Sneaky (X: IntegE:): Integer; 
begin 

Z := Z - X { side effec" on Z }; 
Sneaky := Sqr(X) 

end { Sneaky}; 

begin 
Z := 10; A:= Sneaky(Z); 
Write1n(Output, A, Z); 
Z := 10; A:= Sneaky(10): A:= A * Sneaky(Z); 
Write1n(Output, A, Z); 
Z := 10; A:= Sneaky(Z); A:= A * Sneaky(10); 
Write1n(Output, A, Z); 

end { SideEffect } . 

Produces as results: 

100 0 
o 0 

10000 -10 

H.C. Forward Declarations 

Procedure (function) identifiers may be used before the procedure 
(function) declaration if there i~, a forward declaration. Forward 
declarations are necessary to allow mutually recursive procedures and 
functions that are not nested. The form is as follows: (Notice that the 
parameter list and result type ,Ire written only in the forward 
declaration. ) 

procedure Q(X: T); For,'rd; 
procedure PlY: T); 
begin 

Q(A) 

end; 

procedure Q; 
{ parameters and res "I types are not repeated} 

begin 
P(B) 

end; 



CHAPTER 12 

Textfile Input and Output 

Communication between people and computer systems was already 
mentioned in Chapter 9, File Types. Both learn to understand through 
what is termed pattern recognition. Unfortunately, the patterns 
recognized most easily by people (mainly those of picture and sound) 
are very different from those acceptable to computer systems (electrical 
impulses). In fact, the expense of physically transmitting data -
implying a translation of patterns legible to people into those legible to 
computer systems and vice versa - can be as costly as the processing of 
the data itself. (Consequently, much research is devoted to minimizing 
the cost by "automating" more of the translation process.) This task of 
communication is called input and output handling (I/O). 

People can transmit information to computer systems via input 
devices and media (e.g., keyboards, diskettes, pointing devices, tape 
cartridges, optical discs, magnetic tapes, terminals) and receive results 
via output devices and media (e.g., printers, magnetic tapes, diskettes, 
tape cartridges, optical discs, plotters, speakers, and video displays). 
What is common to most of these - and defined by each individual 
computer installation - is a set of legible characters (Chapter 2). It is 
over this character set that Pascal defines the standard type Text (see 
Chapter 9). 

It is important to remember that each such input-output device 
enforces certain conventions as to the meaning of specific characters 
and patterns (strings) of characters. For example, most printers enforce 
some maximum line length. Also, many older line printers interpret the 

127 



128 Pascal User Manual 

first character of each line as a "cal riage control" character, which is not 
printed but may cause some actioJl such as a page eject or overprinting. 
When a textfile is used to represmt a particular device, the program 
must obey the conventions for us i ng that device. 

Textfiles may be accessed through the predeclared file procedures 
Get and Put. This can, of course, be quite cumbersome as these 
procedures are defined for single-~:haracter manipulation. To illustrate, 
suppose we have a natural number stored in a variable x and wish to 
write it on the file output. Note that the pattern of characters denoting 
the decimal representation of the \ alue will be quite different from that 
denoting the value written as a Roman numeral (see Program 4.9). But 
as we are usually interested in del imal notation, it appears sensible to 
offer built-in, standard, transf0nnation procedures that translate 
abstract numbers (from whatever I~omputer-internal representation is 
used) into sequences of decimal dl,gits and vice versa. 

The two predeclared procedures Read and Write are thereby 
extended in several ways to facilit.:tte the analysis and the formation of 
textfiles. 

12.A. The Standard Files Inpu1 and Output 

The standard textfiles Input and Output usually represent the 
standard I/O media of a computer s:vstem (such as the keyboard and the 
video display). Hence, they are the principal communication line 
between the computer system and Its human user. 

Because these two files an used very frequently, they are 
considered as "default values" in tl \tfile operations when the textfile F 

is not explicitly indicated. That is 

Write (Ch) 

Read(Ch) 

Writeln 

Readln 

Eof 

Eoln 

Page 

WritE: '1Itput,Ch) 

Read( 'l},ut,Ch) 

WritE '(Output) (See Section 12.B.) 
Readl I ( nput) (See Section 12.B.) 
Eof (1 ,:'llt) (See Section 12.B.) 
Eoln ( :-put) (See Section 12.B.) 
Page (lulput) (See Section 12.D.) 



Textfile Input and Output 129 

If any of these procedures and functions are used without indication 
of a file parameter, the default convention specifies that the standard 
file Input or Output is assumed; in which case, it must be placed in 
the parameter list of the program heading. 

Note: The effect of applying the predeclared procedure Reset or 

Rewrite to either Input or Output is implementation-defined. 
Accordingly, reading and writing a textfile can be expressed as 

follows (assume var Ch: Char; B1, B2: Boolean; and P, Q, and R 

user -defined procedures). 

Writing characters on file Output: 
repeat 

repeat P(Ch); Write(Ch) 

until B1; 
Writeln 

until B2 

Reading characters from file Input: 
while not eof do 

begin {process a line} P; 
while not eoln do 

begin Read(Ch); Q(Ch) 
end; 

R; Read1n 
end 

The next two examples of programs show the use of the textfiles 
Input and Output. (Consider what changes would be necessary if 
only Get and Put, not Read and Write, were to be used.) 

program LetterFrequencies(Input,Output); 

{ Program 12.1 - Perform a frequency count of letters 

in the Input file; echo the input. } 

type 
Natural 

var 
Ch: Char; 

O •• MaxInt; 

Count: array [Char] of Natural; 
Letters, Upper, Lower: set of Char; 



130 Pascal User Manual 

begin 

Upper.- ['A','B','C','D' 'E','F','G','H','I', 

'J' ,'K' ,'L' ,'M' 'N' ,'0' ,'P' ,'Q' ,'R', 
's' ,'T' ,'U' ,'v' 'W' ,'X' f'Y' ,'Z']; 

Lower ['a' ,'b' ,fe' I'd' l'e' ,'f' f'g' ,'h' ,'i', 
'j' I'k' ,'1' ,'m'l In' ,'0' ,'p' I'q' f'r', 
, s' , , t 1 , 'u' , I v' , ' w' , , x' , 'y' , , Z I ] ; 

Letters := Lower + Upper; 
for Ch 'A' to 'Z' do Cc unt[Ch] .- 0; 
for Ch .- 'a' to 'z' do Cc unt[Ch] .= 0; 
while not Eof do begin 

while not Eoln do begin 
Read(Ch); Write(Ch); 
if Ch in Letters then 'ount[Ch] .= Count[Ch] + 1 

end; 
Readln; 

end; 

Writeln 

for Ch := 'A' to 'Z' do 
if Ch in Upper then Writ'ln (Ch, Count [Ch]); 

for Ch := 'a' to 'z' do 
if Ch in Lower then Writ ~:n(Ch, Count[Ch]); 

end 

Produces as results (assuming appropriate input): 

A rat in Tom's house might eat Tom's ice cream! 
(Arithmetic) 
Pack my box with five dozen , iquor jugs. 
The quick brown fox jumped 0 'er the lazy sleeping dog. 
A 2 

B 0 

C 0 

D 0 

E 0 

F 0 

G 0 

H 0 

I 0 

J 0 

K 0 

L 0 

M 0 

N 0 

0 0 



Textfile Input and Output 131 

p 1 

Q 0 

R 0 

S 0 

T 3 

U 0 

V 0 

W 0 

X 0 

Y 0 

Z 0 

a 5 

b 2 

c 5 

d 3 

e 13 

f 2 

g 4 
h 6 

i 10 

j 2 

k 2 

1 3 

m 7 

n 4 

0 10 

p 2 

q 2 

r 6 

s 5 
t 7 

u 5 
v 2 

w 2 

x 2 

y 2 

z 2 



132 Pascal User Manual 

The following program copk ... Input to Output, inserting line 
numbers at the beginning of each line. 

program Addln(Input,Output); 
{ Program 12.2 - Add linE ~umbers to text file. } 
type 

Natural = O .. MaxInt; 
var 

LineNum: Natural; 

begin 
LineNum := 0; 

while not Eof do begin 
LineNum := LineNum + 1; 
Write(LineNum :2, ' '); 
while not Eoln do begin 

Write(Inputf); Get(I put) 
end; 
Readln; Write1n 

end 
end . 

Produces as results (assuming appropriate input): 

1 A rat in Tom's house miif.t eat Tom's ice cream! 
2 (Arithmetic) 
3 Pack my box with five do:.en liquor jugs. 
4 The quick brown fox jump,'d over a lazy sleeping dog. 

When the file variable Input r .!presents an input device (such as a 
keyboard) attached to an int :ractive terminal, most Pascal 
implementations delay evaluation ( r the buffer variable In pu t f until its 
value is actually required in the program. The use of Input f in 
expressions or implicitly as part of (he action of Read, Readln, eof, or 
eo In causes its evaluation. Alth( ugh an implicit Reset (Input) is 
done at the beginning of the progralll, the program will not wait for data 
from the terminal until it is neede I - for example, when Inputf is 
used. If the program writes a mess,lge to prompt its user for a response 
to be read in, the request for input \vill occur after the prompt has been 
written (just as you would expect llrdinarily). 

The program fragment belt w illustrates prompting a user 
interactively: 



Textfile Input and Output 133 

program PromptExample(Input,Output); 

var Guess: Integer; 

begin { Implicit Reset (Input) occurs here. } 
Writeln('Please enter an integer from 1 and 10.'); 

Read(Guess) 

A Pascal implementation not employing the delayed evaluation of 
Input i will cause a request or wait for data before the message is 
written because of the implicit Reset (Input) which occurs as the 
program begins executing. Whether or not delayed evaluation is 
supported is implementation-defined. 

12.B. The Procedures Read and Readln 

The procedure Read was defined for textfiles in Section 9.B. Read is 
extended not only to accept a variable number of parameters, but also to 
accept parameters of type Integer (or a subrange of Integer) and 
Real. 

Let Vl,V2, ... ,Vn denote variables of type Char, Integer, (or sub
range of either) or Real, and let F denote a textfile. Read (F, V) is an 
error if F is undefined or F is not in inspection mode or eof (F) is true. 

1.Read(Vl, ... ,Vn) stands for 
Read(Input,Vl, ... ,Vn) 

2. Read(F,Vl, ... ,Vn) stands for 
begin Read(F,Vl); ... ;Read(F,Vn) end 

3. Readln(Vl, ... ,Vn) stands for 
Readln(Input,Vl, ... ,Vn) 

4. Readln(F,Vl, ... ,Vn) stands for 
begin Read(F,Vl); ... ;Read(F,Vn); Readln(F) 

end 

The effect for Readln is that after Vn is read (from F), the 
remainder of the current line is skipped. (However, the values 
of Vl ... Vn may stretch over several lines.) 



134 Pascal User Manual 

5. If Ch is a variable of type Cd: or subrange of Char, then 
Read (F, Ch) assigns the chal Icier at the current position of 
file F or the value of Fi to I. followed by a Get (F), the 
choice being implementation- dependent. 

6. If a parameter v is of tYll' I nteger or a subrange of 
Integer then Read accel'ts a sequence of characters 
forming a signed integer witl possible leading blanks. The 
integer value denoted by this I.~quence is then assigned to v. 

7. If a parameter v is of type: 1 l, Read accepts a sequence 
of characters forming a signee number with possible leading 
blanks. The real value deno l~d by this sequence is then 
assigned to v. 

In scanning F (skipping blank ) to read numbers, Read may also 
skip end-of-line markers. F l~ left positioned to the non-digit 
character following the last digit l \)flstituting a number. To correctly 
read consecutive numbers, separa e them by blanks or put them on 
separate lines. Read accepts the longest sequence of digits, and if two 
numbers are not separated, Read cannot distinguish them as two 
numbers (and neither can people!) 

Examples: 

Read and process a sequence of numbers where the last value is 
immediately followed by an asterisk. Assume F to be a textfile, x and 
Ch to be variables oftypes Intege (or Real) and Char respectively. 

Reset(F); 

repeat 

Read(F,X,Ch); 

P (X) 

until Ch = '*' 

Perhaps a more common situ Ition is when there is no way of 
knowing how many data items arc to be read. and there is no special 
symbol that terminates the list. T.o convenient schemata are show 
below. They make use of procedur .. ; k ipBlanks: 

procedure SkipBlanks (v, IF: Text); 

var Done: Boolean; 

begin 

Done := False; 



Textfile Input and Output 135 

repeat 
if eof(F) then Done := True 
else 

if Fi = ' , then Get (F) 
else Done .- True 

until Done 
end 

The first schema processes single numbers: 

Reset (F) ; 
while not eof(F) do 

begin 
Read(F,X); SkipBlanks(F); 
P (X) ; 

end 

The second schema processes n-tuples of numbers: 

Reset(F); 
while not eof(F) do 

begin 
Read(F,XI, ... ,Xn); SkipBlanks(F) 
P(Xl, ... ,Xn); 

end 

For the above schema to function properly, the total number of 
single numbers must be a multiple of n. 

12.C. The Procedures Write and Writeln 

The procedure Write was defined for textfiles in Section 9.B. Write 

is extended to accept a variable number of parameters whose types are 
compatible with Integer, Real, Boolean, or string types. 

The procedure Write appends character strings (one or more 
characters) to a textfile. Let Pl,P2, ... ,Pn be parameters of the form 
defined in the syntax diagram for WriteParameterList (Figure 
12.a), and let F be a textfile. Then Write (F,P) is an error if F is 
undefined or F is not in generation mode or if eof (F) is not true. 

1. Write (PI, ... ,Pn) stands for 
Write (Output,PI, ... ,Pn) 



136 Pascal User Manual 

2.Write(F,PI, ... ,Pn) stands for 
begin Write(F,P] ; ... ,Write(F,Pn) end 

3.Writeln(Pl, ... ,Pn) stands for 
Writeln(Output,E , ... ,Pn) 

4.Writeln(F,Pl, ... ,Pn) stands for 
begin Write(F,P] ; ... ;Write(F,Pn); 

Writeln(F) end 
Writeln has the effect (I writing PI, ... ,Pn and then 
terminating the current line Ill' the textfile F. 

Lc;~-- ---~ Expression t--~-I 

Lc;~-----------iO>j Expression f----' 

Figure 12.a Syntax di.lgram for WriteParameterList 

5. Every parameter Pi mu' l be of one of the forms: 
e 

e: w 

e: w: f 

where e, w, and fare expre ,~ions. e is the value to be written 
whose type is Char, Integ( :.any~ring,Boolean,orReal.w 
- called the minimumfiel, ' width - is an optional control. w 
must be a positive integer e~ pression and indicates the number 
of characters to be written In general, e is written with w 
characters ewith precedin~ blanks if necessary). If no field 
width is specified, a default value is assumed according to the 
type of e. f - called the li'action length - is an optional 
control and is applicable on Iy when e is oftype Real. It must 
be a positive integer expre· sion. 



Textfile Input and Output 137 

6. If e has type Char, the default value of w is 1. Therefore 
Write (F, C) stands for begin ft: = c; Put (F) end. 

7. If e has type Integer, the default value of w is implemen
tation defined. If w is less than the number of characters 
needed to write the integer, the entire representation of the 
integer (including a' -' if e is negative) is written anyway! 

8. If e has a string type, the default value of w is the length of 
the string. If w is less than this length, then only the first w 

characters of e are written. 

9. If e has type Boolean, the default value of w is 
implementation defined. One of the strings 'true' or 
'false' is written according to 8. above depending on the 
value of w. Whether upper-case or lower-case (or even 
mixed-case) letters are written to represent the values true 

or false is implementation defined. 

10. If e has type Real, the default value of w IS 

implementation-defined. If w is less than the number of 
characters needed to write the real number, more space is 
taken (including room for a '-' if e is negative). If f (the 
fraction length) is specified, the value of e will be written in 
fixed-point notation. Otherwise the value is written in decimal 
floating-point form using exponent notation. 

The general form for fixed-point notation is the sequence of 
characters: an optional minus sign (if the number is negative), 
a digit sequence representing the integer part, a period 
(decimal point), and a digit sequence representing the fraction 
part. The length of the fraction part is specified by f. 
The general form for floating-point form is the sequence of w 

characters: a blank or minus sign, one digit, a period (decimal 
point), a digit sequence, the letter E (or e), a plus sign or minus 
sign, and a digit sequence having an implementation-defined 
length representing the exponent. The length of the first digit 
sequence (preceding the letter E) will vary depending on the 
value of w. No additional preceding blanks are written for 
decimal floating-point form. 

Figure 12.b gives examples of formatted writes with each type. 



138 Pascal User Manual 

Char w 

Integer w 

4 

strings w 

Boo lean w 

Write('$ w) 

$ 
L..J 

$ 
L....I.-L..J 

Write(-l Y_84_: w....;.) __ 

- 1 984 
I I I I I I 

- 198 4 
, ! I , I I 

- 1 984 
L.I......l..-.L J 

- 1 9 8 4 
I I I ! I I I I 

Write( 'h.·llo' :w) 

h 
w 

h e I 
L...J......L.J 

h ell 
L.I......l..-.L , 

h e J 0 
L.I......l..-.L L.LJ 

Write(fa ;f!:W) 

f 
w 

f a I 
L...J......L.J 

f a 1 s . 
I I I I I.J 

f a 5 e 
IIIIL..L.J 

Write(l984:w) 

1 984 
~ 

1 984 
~ 

1 9 8 4 
I I I I I 

1 984 
I I I I , , I 

Write(true:w) 

t 
LJ 

t r u 
L.L..L.J 

t rue 
! I I I ! 

t rue 
, ! I I ! ! , 

Figure 12.b Formatted Write Examples 



Real 

8 

10 

11 

Write(l23. 789:w: f) 

I 2 3 
I I I J I I 

123 789 
I ! ! J r J I J 

123 7890 
! t I , J I I ! I 

123 . 8 
I I I I t 

123 . 8 
I I I I I J I 

I 2 3 . 8 
, I J ! , I 

Write(987.6:w) 

9.9E+02 
I I I I I I I t 

9 . 9 E + 0 2 
I I ! I I I I , 

988 E + 0 2 
I I I I I ! I I ! I 

Textfile Input and Output 139 

Write(-123. 789 :w: f) 

- 123 
! I I I ! I I 

- 1 2 3 . 789 
! I ! ! ! ! ! I I 

- 1 2 3 7 8 9 0 
I ! I I I ! I J I ! 

- 1 2 3 
I I I t I ! I 

- 1 2 3 
I I I ! I 

- 1 2 3 
I I ! , I I I 

Write(-987.6:w) 

- 9 . 9 E + 0 2 
I I I I I I I I J 

- 9 . 9 E + 0 2 
I I I I I ! ! I I 

- 9 8 8 E + 0 2 
! I J I I , ! I I ! 

9 . 8 7 6 E + 0 2 - 9 . 876 E + 0 2 
J I I I I I I I I I I I I I I I I I ! I I I 

9 . 8 7 6 0 E + 0 2 - 9 . 8 760 E + 0 2 
I I ! I I I I I J I I I I I I I ! I I I I I I 

Figure 12.b Continued 

Note: In the Write(123.789:1:4) and Write(987.6:11) 

examples, zeroes mayor may not be written because of the differing 
representation of fractions of real numbers on different computer 
systems. 

W r i t e ( 123 . 78 9 : 1 : 4) might appear as 123 . 788 9 and 
Write(987.6:11) might appear as 9.8759E+02 



140 Pascal User Manual 

12.D. The Procedure Page 

As a convenience for formatting tt xtfiles, Pascal has a predefined Page 

procedure. Page (F) is intended tn cause subsequent text written on F 

to appear on a new "page" (if F ii, printed or displayed, etc.). 
Page (F) causes an implemenlation-defined action on the file F. In 

most implementations, Page (F writes the appropriate control 
characters (such as an ASCII Form Feed) to cause the desired effect. 

Noles: If Page (F) is invoked and the last operation on F was not 
Writeln (F) then Page (F) pert,)rms an implicit Writeln (F) as its 
first action. F must be defined an( I in generation mode or else Page (F) 

is an error. The effect of reading II file F to which Page (F) has been 
applied is implementation-depenclent. 



REPORT 



1. Introduction 

The development of the langua;le Pascal is based on two principal 
aims. The first is to make available a language suitable to teach 
programming as a systematic di~cipline based on certain fundamental 
concepts clearly and naturally rellected by the language. The second is 
to develop implementations of this language that are both reliable and 
efficient on presently available lomputers. 

The desire for a new language for the purpose of teaching 
programming is due to my dissatl" faction with the presently used major 
languages whose features and co lstruCts too often cannot be explained 
logically and convincingly at d that too often defy systematic 
reasoning. Along with this dissa' isfaction goes my conviction that the 
language in which students are t(.1 ught to express their ideas profoundly 
influences their habits of though t and invention, and that the disorder 
governing these languages Ilirectly imposes itself onto the 
programming style of the students. 

There is of course plenty of reason to be cautious with the 
introduction of yet another prog-amming language, and the objection 
against teaching programming ill a language which is not widely used 
and accepted has undoubtedly ..,ome justification, at least based on 
short-term commercial reasoning. However, the choice of a language 
for teaching based on its widvspread acceptance and availability, 
together with the fact that the Ian ~uage most widely taught is therefore 
going to be the one most widt Iy used, forms the safest recipe for 
stagnation in a subject of sucl profound pedagogical influence. I 
consider it therefore well worth ,\'hile to make an effort to break this 
vicious circle. 

Of course a new language sh, IU III not be developed just for the sake 
of novelty; existing language ,; should be used as a basis for 
development wherever they mt: .~,t the criteria mentioned and do not 
impede a systematic structure. In I hat sense Algol 60 was used as a basis 
for Pascal, since it meets the dl mands with respect to teaching to a 
much higher degree than any other standard language. Thus the 
principles of structuring, and in f.tct the form of expressions, are copied 
from Algol 60. It was, however, Ilot deemed appropriate to adopt Algol 
60 as a subset of Pascal; certail construction principles, particularly 

142 



Pascal Report 143 

those of declarations, would have been incompatible with those 
allowing a natural and convenient representation of the additional 
features of Pascal. 

The main extensions relative to Algol 60 lie in the domain of 
data-structuring facilities, since their lack in Algol 60 was considered 
as the prime cause for its relatively narrow range of applicability. The 
introduction of record and file structures should make it possible to 
solve commercial-type problems with Pascal, or at least to employ it 
successfully to demonstrate such problems in a programming course. 

2. Summary of the Language 

A computer program consists of two essential parts, a description of 
actions which are to be performed, and a description of the data that are 
manipulated by these actions. Actions are described by so-called 
statements, and data are described by so-called declarations and 
definitions. 

The data are represented by values of variables. Every variable 
occurring in a statement must be introduced by a variable decim'ation, 
which associates an identifier and a data type with that variable. The 
type essentially defines the set of values that may be assumed by that 
variable, and restricts the set of valid operations on those values. A type 
in Pascal may be either directly described in the variable declaration, or 
it may be associated with a type identifier by a type definition and then 
represented by name. 

The simple types are the predefined type Real and the various 
ordinal types. Every simple type defines an ordered set of values. Each 
ordinal type is characterized by a one-to-one mapping from its values 
to an interval of the integers - the so-called ordinal numbers of those 
values. 

The basic ordinal types are the programmer-defined enumerated 
types and the predefined types Boolean, Char, and Integer. An 
enumerated type introduces a new set of values and a distinct identifier 
to denote each value. The values of Char are denoted by quotations, and 
the values of Integer and Real are denoted by numbers; these are 
syntactically distinct from identifiers. The set of values of type Char 



144 Pascal Report 

and their graphic representation vary from implementation to 
implementation, depending on 1 he character set of a particular 
computer system. 

Another ordinal type that may llc defined is a subrange of any basic 
ordinal type (the host type) by indic .lting the smallest and largest values 
in the interval of values represented by the subrange. 

The structured types are defined by describing the types of their 
components and by indicating a structuring method. The various 
structuring methods differ in the mechanism serving to access the 
components of a variable of the structured type. In Pascal, there are four 
basic structuring methods available: array structure, record structure, 
set structure, and file structure. 

In an array structure, all COlli ponents are of the same type. A 
component is accessed by a complltahle index, whose type is indicated 
in the array type description and which must be ordinal. It is usually an 
enumerated type or a subrange of Integer. Given a value of the index 
type, an indexed variable accesse .. one component of the array. Each 
array variable can therefore be regarded as a mapping of the index type 
onto the component type. The time needed for a component access does 
not depend on the value of the index. The array structure is therefore 
called a random-access structure. 

In a record structure, the mmponents (called fields) are not 
necessarily of the same type. In order that the type of a field be evident 
from the program text (without e\ccuting the program), a field is not 
specified by a computable value, hut instead is specified by a unique 
identifier. These field identifier I, are declared in the record type 
description. Again, the time need,'d 10 access any component does not 
depend on the field identifier, ,lnd the record is therefore also a 
random-access structure. 

A record type may be specif 11,:d as having several variants. This 
implies that different variables, <,:though said to be of the same type, 
may assume structures that diffel in a certain manner. The difference 
may consist of a different numbel and different types of components. 
The variant that is assumed by till: current value of a record variable 
may be indicated by a component field which is common to all variants 
and is called the tag field. Usually. the part common to all variants will 
consist of several components, including the tag field. 



Pascal Report 145 

A set structure defines the set of values that is the powerset of its 
base type, i.e., the set of all subsets of values of the base type. The base 
type must be an ordinal type, and will usually be an enumerated type, 
Char, or a subrange of Integer. Components (members) of sets are not 
directly accessed, but the set operations (including the membership 
operator) and a set-value constructor allow creation and manipulation 
of entire sets. 

A file structure describes a sequence of components of the same 
type. A natural ordering of the components is defined through the 
sequence. At any instant, only one component is directly accessible, 
and it may be either inspected or generated but not both. The other 
components are accessed by progressing sequentially through the file. 
A file is generated by sequentially appending components at its end. 
Consequently, the file type description does not determine the number 
of components. 

A variable declaration associates an identifier with a type, and when 
the block (see below) in which the declaration occurs is activated, a 
variable that is named by the identifier is created. Such variables that 
are declared in explicit declarations are sometimes called static. In 
contrast, variables may be generated by executable statement; such a 
dynamic generation yields a so-called pointer (a substitute for an 
explicit identifier) which subsequently serves to identify the variable. 
This pointer value may be assigned to variables and functions that 
possess its type. Each pointer type has a fixed domain type, and every 
variable identified by a pointer value of the pointer type possesses the 
domain type. In addition to such identifying values, each pointer type 
also has the value nil which points to no variable. Because components 
of structured variables may possess pointer types, and the domain type 
of pointer types may be structured, the use of pointers permits the 
representation of finite graphs in full generality. 

The most fundamental statement is the assignment statement. It 
specifies that a value obtained by evaluating an expression be assigned 
to a variable (or component thereof). Expressions consist of variables, 
constants, array-parameter index bounds, set constructors, and 
operators and functions operating on the denoted quantities yielding 
result values. Variables, constants, and functions are either declared in 



146 Pascal Report 

the program or are standard ("pll,'declared") entities. Pascal defines a 
fixed set of operators, each of \\ hich can be regarded as describing a 
mapping from the operand typ."s into the result type. The set of 
operators is divided into four gn 'ups. 

1. Arithmetic operators al'e addition, subtraction, sIgn 
inversion, multiplication, division, and modulus. 

2. Boolean operators ar,,' negation, union (or), and 
conjunction (and). 

3. Set operators are union, intersection, and set difference. 
4. Relational operators are I;'quality, inequality, ordering, set 

membership, and set inclusion. The result type of 
relational operators is B ,olean. 

The procedure statement cau ',es the execution of the designated 
procedure (see below). Assignm( lit and procedure statements are the 
components, or "building block<' of structured statements, which 
specify sequential, selective, llr repeated execution of their 
components. Sequential execution of statements is specified by the 
compound statement, conditional or selective execution by the if and 
case statements, and repeated exe'l'ution by the repeat, while, andjor 
statements. The if statement serve~ to make the execution of a statement 
dependent on the value of a Boolean expression, and the case statement 
allows the selection among many ,tatements according to the value of 
an ordinal expression. The for ,tatement is used to execute the 
component statement while each If a succession of ordinal values is 
assigned to a so-called control variable. The repeat and while 
statements are used otherwise. 

In addition, Pascal provides a, I If I I statement, which indicates that 
execution is to continue at anothel place in the program; that place is 
marked by a label, which must be .lcl'lared. 

Statements along with declal :11 Ions of labels, constants, types, 
variables, procedures, and functiOJ. ,Ire collected together into blocks. 
The labels, constants, variables, types, procedures and functions 
declared in a block may be referil,'d to only within that block, and 
therefore are called local to tl It' block. Their identifiers have 
significance only within the progralll text that constitutes the block and 
that is called the scope of these ick'ntifiers. Blocks are the basis for 



Pascal Report 147 

declaring programs, procedures, and functions, in which a block is 
given a name (identifier) by which the block may be denoted. Since 
procedures and functions may be nested, scopes may be nested. 

A procedure or function has a fixed number of parameters, each of 
which is denoted within the procedure or function by an identifier 
called theformal parameter. When a procedure or function is activated, 
an actual quantity has to be indicated for each parameter; the quantity 
can be referenced from inside the block of the procedure or function 
through the formal parameter. This quantity is called the actual 
parameter. There are four kinds of parameters: value parameters, 
variable parameters, procedural parameters, and functional 
parameters. In the first case, the actual parameter is an expression 
which is evaluated, and the value assigned to the formal parameter, 
once at the beginning of each activation of the procedure or function. 
The formal parameter represents a local variable. In the case of a 
variable parameter, the actual parameter denotes a variable and the 
formal parameter denotes the same variable during the entire activation 
of the procedure or function. In the case of procedural or functional 
parameters, the actual parameter is a procedure or function identifier. 

A function is declared analogously to a procedure, except that the 
function yields a result which must possess the type that is specified in 
the function declaration. The result type is confined to be a simple type 
or a pointer type. Functions may be used as constituents in expressions. 
Assignments to non-local variables and other so-called side effects 
should be avoided within function declarations. 

3. Notation and Terminology 

Syntactic constructs are denoted by descriptive English words 
(meta-identifiers) written in italics and are defined by rules of 
Extended Backus-Naur Form (EBNF) [Reference 13]. Each rule 
defines a meta-identifier by means of an EBNF expression, which 
consists of one or more alternative phrases separated by vertical 
bars ( I ). A phrase consists of zero or more elements, each of which is a 
meta-identifier, a literal symbol enclosed in quotes (" "), or an 
expression enclosed in matching braces, brackets, or parentheses. 



148 Pascal Report 

Braces { and } indicate repetition (zero or more occurrences), 
brackets [ and] indicate option<llity (zero or one occurrences), and 
parentheses ( and) indicate groUT mg (exactly one occurrence) ofthe 
enclosed expression. 

Within Section 4, EBNF rub describe the formation of lexical 
symbols from characters; additiona, characters must not occur within a 
symbol. Sections 5 through 13 use EBNF rules to define the syntax of 
programs in terms of symbols; s vmbols may be separated by (or 
preceded by) symbol separators as described in Section 4. 

The term error describes a Prof ram action or state that violates the 
standard. Any processor may fail 1 () detect errors. 

Implementation-defined mean that a particular Pascal construct 
may differ between various impll mentations. Each implementation 
must specify how it implements th It construct. 

Implementation-dependent me,tI1s that a particular construct varies 
between implementations and that ,Ill implementation does not have to 
specify how it implements that COl struct. 

An extension is an additional construct not available in all 
implementations that does not in itself affect or invalidate the 
constructs of Standard Pascal. Implementations often support 
extensions in the form of additional predefined and predeclared 
constants, types, variables, procedures and functions. 

A program that conforms to the standard must not depend on any 
implementation-dependent constructs or on any extensions. A portable 
program must, in addition, h' very careful in its use of 
implementation-defined construct.; (c.g., character set, or range of 
integer values). 

4. Symbols and Symbol Separators 

A program is represented as a seqUt nce of symbols arranged according 
to the rules of Pascal syntax. Adjal cnt symbols often are separated by 
symbol separators for purposes of r,.:aclability. Symbols are categorized 
as the special symbols, identifier" directives, numbers, labels, and 
character strings. Symbol separat. Irs are spaces, comments, and the 
ends of lines of the textual prograI I representation. 



Pascal Report 149 

SpecialSymhol = "+" I "-" I "*" I "I" I 

"=" I "<>" I "<" I "<=" I ">" I ">=" I 

"(" I ")" I "[" I "]" I ":=" I "." I " .. " I 

" :" I ";" I "i" I WordSymhol. 

WordSymhol = "di v" I "mod" I "nil" I "in" I "or" I "and" I 

"not"I"if"I"then"I"else"I"case"I"of"l 

"repeat" I "until" I "while" I "do" I "for" I 

"to" I "goto" I "downto" I "begin" I "end" I 

"with" I "const" I "var" I "type" I "array" I 

"record" I "set" I "file" I "function" I 

"procedure" I "label" I "packed" I "program" . 

The following alternative representations are standard: 

Reference Alternative 
i 

( . 
. ) 

or @ 

Many ofthe symbols are constructed from letters and digits. Except 
within a character string, a lower-case letter is equivalent to the 
corresponding upper-case letter. 

Letter = "a" I "b" I "c" I "d" I "e" I "f" I "g" I "h" I "i" I 

"j"I"k"I"l"I"m"I"n"I"o"I"p"I"q"I"r"l 

"s"I"t"I"u"I"v"I"w"I"x"I"y"I"z" . 

Digit = "0" I "1" I "2" I "3" I "4" I "5" I "6" I "7" I "8" I "9" . 

Identifiers serve to denote constants, types, variables, procedures, 
functions, fields, and bounds. Directives are used in procedure and 
function declarations. 

Identifier = Letter I Letter I Digit} . 

Directive = Letter I Letter I Digit} . 

The spelling of a word symbol, identifier, or directive is the entire 
sequence of specific letters and digits that it contains. No identifier or 
directive may have the same spelling as a word symbol. 



150 Pascal Report 

Examples of identifiers (six di. lillct spellings): 

FirstPlace 
Elizabeth 

ord 
John 

I' r ocedureOrFunctionDeclaration 
"rocedureOrFunctionHeading 

A specific identifier spellmg is introduced by a declaration or 
definition to have a specific meaning, and that identifier spelling cannot 
have any other meaning within a region of the program text that is called 
the scope of that declaration or definition (see Section 10). 

Numbers are expressed using the usual decimal notation. Unsigned 
integers and unsigned reals are, respectively, constants of the 
predefined types Integer and R,:al (see Section 6.1.2). The letter "e" 

preceding the scale factor in an unsigned real means "times 1 0 to the 
power." The maximum value th.iI an Unsignedlntegermay represent is 
the implementation-defined va lie of the predefined constant Maxint. 

UnsignedNumber = Unsigned/III,' ,:a ) UnsignedReal . 

Unsigned/nteger = DigitSeque/l(" 

UnsignedReal = DigitSequence .. " DigitSequence [" e" ScaleF actor] 

) DigitSequi'lIc(' "e" ScaleFactor. 

ScaleFactor = [Sign] DigitSeqUt IICC . 

Sign = "+" ) "-" . 

DigitSequence = Digit { Digit} . 

Examples of unsigned integers: 

1 100 0010( 

Examples of unsigned reals: 

0.1 O.leO 1E2 

The signed numbers are the fom I that is acceptable for numeric input 
from textfiles (see Section 12). 

SignedNumber = Signed/nteger) S 1.:II('dRcul. 

Signed/nteger = [Sign] Unsigned.' '111'L:('1' . 

SignedReal = [Sign] UnsignedRc,iI. 

Character strings are sequences of string elements enclosed in 
apostrophes. A string element represents an implementation-defined 
value of the predefined type Chal . and consists either of two adjacent 
apostrophes or of any other implementation-defined character. Two 



Pascal Report 151 

distinct characters occurring as string elements must denote different 
values of type Char. The string element consisting of two apostrophes 
denotes the apostrophe character. 

CharacterString = .. , .. StringElement ! StringElement I .. , ... 

StringElement = .. , , .. I AnyCharacterExceptApostrophe . 

A character string is a constant of type Char if it has one string element; 
otherwise it is a constant of a string type (see Section 6.2.1) that has as 
many components as there are string elements. 

Note: A character string must be written on just one line of program 
text. 

Examples of character strin/?s: 

'A' 
'Pascal' 

, .' , 
'" , 

'This is a character string' 

Symbol separators may be placed between any two adjacent symbols or 
before the first symbol of a program. At least one symbol separator 
must occur between two adjacent identifiers, directives, word symbols, 
labels, or numbers. A separator is a space, the end of a line of program 
text, or a comment. The meaning of a program is unaltered if a comment 
is replaced with a space. 

Comment = ("{" I "(*") [CommentElement J ("j" I "*)"). 

A CommentElement is either an end of line or any sequence of 
characters not containing "]" or "*)". 

Notes: { ... *) and (* ... ) are valid comments. The comment {(*) is 
equivalent to the comment {(). 

5. Constants 

A constant definition introduces a constant identifier to denote the 
value that is specified by the constant in the definition; the constant 
identifier being defined must not occur in the constant part of the 
definition. Constant definitions are collected into constant definition 
parts. 



152 Pascal Report 

ConstantDefinitionPart = ["canst ConstantDefinition ";" 

{ ConstantDefinition ";" } ]. 

ConstantDefinition = Identifier "=" Constant. 

Constant = [Sign] (UnsignedNumber I Constantldentifier) I CharacterString . 

Constantldentijier = Identifier. 

A constant identifier that is prefixed with a sign ("+" or "-") must 
denote a value of type Integer or Real. There are three standard 
predefined constant identifiers: Maxint denotes an implementation
defined value of type Integer; False and True denote the values of type 
Boolean (see Section 6.1.2). 

Example of a constant definition p .. trt: 

const 
N = 20; 
SpeedOfLight = 2.998f {meters / second }; 
PoleStar = 'Polaris'; 
epsilon = lE-6; 

6. Types 

A type determines the set of values that variables, expressIOns, 
functions, etc., possessing that type may assume. Rules of type 
compatibility determine how t) pes may be used together in 
expressions, assignments, etc. 

A type definition introduces a type identifier to denote a type; the 
type identifier being defined must not occur in the type part of the 
definition except as the domain type of a pointer type (see Section 6.3). 
Type definitions are collected intc type definition parts. Section 6.4 
gives an example of a type definiti· 111 part. 

TypeDefinitionPart = [ "type" Typ, '>,,{illition ";" {TypeDejinition ";" } ]. 

TypeDefinition = Identifier "=" TYPI 

Typeldentifier = Identifier. 

Types are represented by the EbNF meta-identifier Type. If a type 
representation consists only of a t) pc identifier, then it represents the 
same (existing) type that the tYllc identifier denotes. If a type 



Pascal Report 153 

representation does not consist only of a type identifier, then it 
represents an entirely new type. Types are classified according to some 
of their properties: 

Type = SimpleType I StructuredType I Pointe/Type. 

6.1. Simple Types 

A simple type determines an ordered set of values, and is either the 
predefined Real type or an ordinal type. A real type identifier is a type 
identifier that denotes the Real type. 

SimpleType = OrdinalType I RealTypeldentijier . 

RealTypeldentifier = Typeldentifier . 

An ordinal type is distinguished (from the Eeal type) by the 
one-to-one correspondence between its values and a set of ordinal 
numbers. The ordinal numbers for any ordinal type constitute an 
interval of the integers. 

The following three predeclared functions apply to any ordinal 
value x: 

ord (X) yields the ordinal number corresponding to x; the result 
is of type Integer. 

succ (X) yields the successor of x. That is, 
succ(X) > x,andord(succ(X» = ord(X) + 1 

unless x is the largest value of its type, in which case 
succ (X) is an error. 

pred (X) yields the predecessor of x. That is, 
pred (X) < x, and ord (pred (X» = ord (X) - 1 

unless X is the smallest value of its type, in which case 
pred (X) is an error. 

Clearly, the ordering of the values of an ordinal type is the same as the 
ordering of their ordinal numbers. 

An ordinal type either is an enumerated type or one of the 
predefined types Integer, Char, or Boolean, or else is a subrange of one 
of these. 

OrdinalType = EnumeratedType I SuhrangeType I OrdinaITypeldentijle/: 

OrdinalTypeldentifier = Typeldentijler . 

An ordinal type identifier is a type identifier that denotes an ordinal 
type. 



154 Pascal Report 

6.1.1. Enumerated types. An enumerated type defines a set of entirely 
new values and introduces a constant identifier to denote each value. 

EnumeratedType = .. ( .. IdentifierLlst .. ) , .. 

IdentijierList = Identifier { .. , .. Idelllifler I . 

The first identifier denotes the smallest value, which has the ordinal 
number zero. Every other identifier in the list denotes the successor of 
the value denoted by the preceding identifier. That is, the constant 
identifiers are listed in increasing order. 

Examples of enumerated types: 

(Red, Orange, Yellow, <een, Blue) 
(Club, Diamond, Heart, ,;pade) 
(Monday, Tuesday, Wedn ;day, Thursday, Friday, 
Saturday, Sunday) 

6.1.2. Predefined simple type!\ The following predefined type 
identifiers are standard in Pascal. 

Real detennines an implementation-defined subset of the 
real numbers. 

Integer includes the set of integers having an absolute value less 
than or equal to the implementation-defined value of 
the predefined constant identifier Maxint. For any 
integer I, ord (I) = 1. 

Boolean detennines the set of truth values denoted by the 
predefined constant identifiers False and True. Note 
that false < true and ord (false) = O. 

Char detennines an i Illplementation-defined set of 
characters having illlplementation-defined ordinal 
numbers, such that: 

(a) the digits '( . , . 1 ' , ... , ' 9' are numerically 
ordered and conseCl live (e.g., 5UCC (' 0') = '1'); 

(b) ifthe 10wer-{\"l'Ietters (, a' , 'b' , ... , ' z' ) are 
present, they are .tlphabetically ordered (but not 
necessarily conseCUl1 VL'!); and 

(c) ifthe upper-<:ilse letters (' A' , 'B' , ... , 'Z') are 
present, they are alphabetically ordered (but not 
necessarily consecut I vc!). 



Pascal Report ISS 

6.1.3. Subrange types. The set of values determined by a subrange 
type is a subset of the values of another ordinal type that is called the 
host type of the subrange type. The subrange type specifies the smallest 
and the largest value, and includes every value between them. 

SuhrangeType = Constant ...... Constant . 

Both constants must possess the host type. The first constant 
specifies the smallest value, and must be less than or equal to the second 
constant which specifies the largest value. 

Examples of suhrange types: 

l. .N 

-10 .. +10 
Monday .. Friday 

6.2 Structured Types 

A structured type is characterized by the type(s) of its components and 
by its structuring method. Moreover, a structured type may contain an 
indication of the preferred data representation. If a structured type is 
prefixed with the symbol packed, this has no effect on the meaning of a 
program (with two exceptions); rather it is a hint to the compiler that 
storage of values of that type should be economized even at the price of 
some loss in efficiency of access, and even if this may expand the code 
necessary for expressing access to components of the structure. The 
two exceptions are that string types (see Section 6.2.1) are always 
packed, and that an actual variable parameter (see Section 11.3) must 
not be a component of a packed structured variable. If a component of a 
packed structured type also possesses a structured type, the 
component's type is packed only if the symbol packed is explicitly 
given in the component's type representation. 

StructuredType = [ "packed" 1 UnpackedStructuredType I 

StructuredTypeldentifier. 

UnpackedStructuredType = ArrayType I RecordType I SetType I FileType. 

StructuredTypeldentiJier = Typeldentifier. 

A structured type identifier is a type identifier that denotes a structured 
type. 



156 Pascal Report 

6.2.1 Array types. An array t) I)e is a structure consisting of a fixed 
number of components which ,ilre all of the same type, called the 
component type. The component', are in a one-to-{me correspondence 
with the values of the index type 

ArrayType = "array" "[" lnde,\/\'pe I ","lndexType I"]" 

"of" ComponentType 

IndexType = OrdinalType , 

ComponentType = Type, 

More than one index type may b(' specified, as in 

packed array [TI, T2, , .. , Tn] of c, 
and this is simply an abbreviatioll for the notation 

packed array [T1] of picked array [T2, ... ,Tn] of c. 

These two notations would also b~ equivalent if neither were prefixed 
with packed. 

Examples of array types: 

array [1 .. 100] of Real 
array [1 .. 10, 1 .. 20] oj 0.99 
array [Boolean] of Colc r 

array [Size] of packed Jrray ['a' .. 'z'] of Boolean 

Each value of an array type is a functional (many-to--one) mapping 
from the entire set of index values to the set of values of the component 
type. 

An array type is called a sfl ing type if it is packed, has as its 
component type the predefined t) pe Char and has as its index type a 
subrange of Integer from 1 to n, for n greater than 1. The character 
strings (see Section 4) are constm IS of string types. 

Examples: 

packed array [1.. Strine ,>[qth] of Char 
packed array [1 .. 2] of ",It 

6.2.2. Record types. A record typ;' has a fixed number of components, 
possibly of different types. The sl"l'cific components and their types, 
and the values of the record type, ,: I'e determined by the field list of the 
record type. 

RecordType = "record" Fie/dList "end" , 

Fie/dList = [ ( FixedPart [ ";" Varial/tPart 1 VariantPart) [ ";" 11 ' 



FixedPart = RecordSection { ";" RecordSection I . 

RecordSection = IdentifierList ":" Type. 

Fieldldentifier = Identifier. 

Pascal Report 157 

A field list may contain afixed part, which specifies a fixed number 
of components called fields. A record section introduces each of the 
identifiers in its list to be a field identifier possessing the type given in 
the record section. The scope of a field identifier extends over its record 
type, as well as the field designators and with statements where it may 
be used (see Sections 7.2.2, 9.2.4, and 10.2). Thus each field identifier 
spelling must be unique within a record type. 

Examples of record types with only fixed parts: 

packed record 
Year: 1900 .. 2100; 
Month: 1 .. 12; 
Day: 1. .31 

end 
record 

Firstname, 
Lastname: packed array [1 .. 32] of Char; 
Age: 0 •. 99; 
Married: Boolean 

end 

A field list may also contain a variant part, which specifies one or 
more variants. The structure and values of a variant are specified by its 
field list. 

VariantPart = "case" VariantSelector "of" Variant { ";" Variant I . 

Variant = Constant [ "," Constant] ",''' "(" Fie/dList ") " . 

VariantSelector = { TagField ":" I TagType. 

TagType = OrdinalTypeldentifier . 

TagField = Identifier. 

A constant that prefixes a variant must denote a value of the tag type. 
Each such value must appear once and only once for a given variant 
part. If a tag field occurs in a variant selector, then it introduces its 
identifier as a field identifier to denote a field possessing the tag type. 

Only one variant of a given variant part can be active at a given time. 
If there is a tag field, the variant that is prefixed by the value of the tag 
field is the active variant. Ifthere is no tag field, then the active variant 



158 Pascal Report 

is the one possessing the most re 'cntly accessed component. 
A value of a field list determl lies a value of each field specified in 

the fixed part and a value of the ariant part. A value of a variant part 
consists of an indication of whic 1 variant is active, a value of the tag 
field (if any), and a value of the; clive variant. 

Examples of record types with variant parts: 

record 
case NameKnown: Boole 0 of 

false: ( ); 
true: (Name: packe array [l .. NameMax] of Char) 

end 
record 

X, Y: Real; 
Area: Real; 

case S: Shape of 
Triangle: ( Side: R, tl; 

Rectangle: 

Circle: 
end 

Inclina' ito, Angle1, Angle2: Angle); 
Side1, ;ide2: Real; 
Skew, 111e3: Angle ); 
Diamet, t: Real ) 

6.2.3. Set types. A set type deten I ines as its set of values the powerset 
of the set of values of the base typ, . That is, each value of a set type is a 
set that contains zero or more elem ~nts (components), and each element 
is a value of the base type. 

SetType = "set" "of" BaseType 

BaseType = OrdinalType . 

Examples of set types: 

set of Char 
packed set of 0 .. 11 

6.2.4. File types. A file type is stl lclured as a sequence of components 
having a single type (the compon 'Ill Iype), together with a position in 
the sequence and a mode that Ildicates whether the file is being 
generated or inspected. The nurn )1.'1 of components in the sequence, 
called the length of the file, is not'ixl.!d by the file type. A file is called 
empty if its length is zero. 

FileType = "file" "of" Comp(}f, 'IlfType, 



Pascal Report 159 

The component type of a file type must be an assignable type (see 
Section 6.5). A file that is in inspection mode may be positioned at any 
component of the sequence or at the end-oJ-Jile position. A file that is 
in generation mode is always positioned at end-of-file. File values are 
manipulated by predeclared file-handling procedures and functions 
(see Section 11). 

The predefined structured type identifier Text represents a special 
file type in which the sequence is structured as zero or more lines. A line 
consists of zero or more characters (values oftype Char) followed by a 
special end-oj-line marker. A variable of type Text is called a textfile. If 
a nonempty textfile is in inspection mode then there is always an 
end-of-line immediately preceding the end-of-file position. There are 
several additional predeclared procedures and functions for 
manipulating textfiles (see Sections 11.5 and 12). An implementation
defined set of characters may be prohibited from textfiles, and writing 
any of these characters to a textfile is implementation-dependent. 

6.3. Pointer Types 

A pointer type is distinguished from the structured and simple types in 
that its set of values is dynamic; i.e., values of a pointer type are created 
and destroyed during program execution. The set of values of a pointer 
type always contains a special value, represented by nil. Every other 
value in the set must be created by a program using the predeclared 
procedure New (see Section 11.4.2); such values are called identifying 
values because each one identifies a variable, the so-called identified 
variahle (see Section 7.3). An identified variable possesses the domain 
type of the pointer type. An identifying value and its identified variable 
can be destroyed using the predeclared procedure Dispose (see 
Section 11.4.2). All identifying values created by a program cease to 
exist when the program terminates. 

PointerType = "i" DomainType I PointerTypeldentiJier . 

DomainType = Typeldent~fler . 

PointerTypeldentiJier = TypeldentifJer . 

6.4. Example of a Type Definition Part 

type 
Natural = o .. Maxint; 
Color = (Red, Yellow, Green, Blue); 



160 Pascal Report 

Hue = set of Color; 
Shape = (Triangle, F ,,:t.angle, Circle); 
Year = 1900 .. 2100; 
Card = array [1. .80) )f Char; 
String18 = packed ar lj [1 .. 18) of Char; 
Complex = record Re, IT: Real end; 
PersonPointer = "Per 1r~; 

Relationship = (Marr .d, Coupled, Single); 
Person = record 

Name, Firstname: 3tring18; 
BirthYear: Year; 
Sex: (Male, Femal,,); 
Father, Mother: F'rsonPointer; 
Friends, Childrer.: file of PersonPointer; 
ExRelationshipCou .t: Natural; 

case Status: Relati nship of 
Married, Coupled: 

(SignificantOth· :-: PersonPointer); 
Single: ( ) 

end; 
Matrixlndex 1 .. N; 
SquareMatrix = array [I it rixlndex, Matrixlndex) 

of Rei I; 

6.5. Type Compatibility 

Two types are said to be compufihle if any of the following four 
conditions is true. 

(a) They are the same type. 
(b) One is a subrange of the other. or both are subranges of the 

same host type. 
(c) Both are set types, their rase types are compatible, and 

either both are packed or Ilcither is packed. 
(d) Both are string types with Ihe same number of elements. 

A type is called assignable if it "neither a file type nor a structured 
type with a component type that is 1101 assignable. 

A value possessing type T 2 is C,' lied assignment-compatible with a 
type T 1 if any of the following fOll" conditions is true. 

(a) T1 and T2 are the same as, ignable type. 
(b) T1 is Real and T2 is Integ,r. 
(c) T1 and T2 are compatible (rdinal types or compatible set 

types, and the value is a I nember of the set of values 
determined by T 1. 

(d) T1 and T2 are compatible ~,Iring types. 



Pascal Report 161 

Wherever assignment-compatibility is required, and Tl and T2 are 
either compatible ordinal types or compatible set types, it is an error if 
the value is not a member of the set of values determined by T 1. 

7. Variables 

A variable possesses a type that is determined by its declaration, and 
may take on values only of that type. 

A variable is undefined if it does not have a value of its type. A 
variable is totally undefined if it is undefined and further if every 
component of the (structured) variable is totally undefined. When a 
variable is created it is totally undefined. A variable declared in a block 
is created when the block is activated and destroyed when the activation 
is terminated (see Section 10). An identified variable is created or 
destroyed, respectively, by the predeclared procedure New or Dispose 

(see Sections 6.3 and 11.4). 
A variable declaration introduces one or more variable identifiers 

and the type that each one possesses. Variable declarations are collected 
into variable declaration parts. 

VariahleDeclarationPart = [ "var" VariahleDeclaration "; " 

{ VariahleDeclaration "; " } 1 . 

VariahleDeclaration = IdentifierList .. : " Type. 

Variahleldentifier = Identifier. 

Example of a variable declaration part: 

var 
W, X, Y: Real; 
Z: Complex; 
I, J: Integer; 
K: 0 .. 9; 
P, Q: Boolean; 
Operator: (Plus, Minus, Times); 
GrayScale: array [0 .. 63] of Real; 
VideoPotential: 

array [Color, Boolean] of Complex; 
Light: Color; 
F: file of Char; 
Huel, Hue2: set of Hue; 
PI, P2: PersonPointer; 



162 Pascal Report 

A, B, C: SquareMa1' i :.;; 

Minneapolis, Zuer I.: packed record 
Area: Real; 
Population: Natural; 
Capital: Boolean 

end; 

An access to a variable is rel,resented by the EBNF meta-identifier 
Variable. 

Variahle == EntireVariahle I Comp"llclltVariahle Ildent!liedVariahle I 

BufferVariahlc 

7.1. Entire Variables 

An entire variable represents the,'ariable that is denoted by the variable 
identifier. 

EntireVariahle == Variahleldellfijil 

Examples of entire variables: 

Input 
PI 
VideoPotential 

7.2. Component Variables 

A component of a structured vanlble is also a variable; a component 
variable represents an access to a component of a structured variable. 
The syntax of the component v.triable depends on the type of the 
structured variable. 

ComponentVariable == IndexedVarit.hle.' FieldDesignator. 

An access or reference to a lomponent of a structured variable 
implies an access or reference to lilt' structured variable. 

7.2.1. Indexed variables. P 11 indexed variable represents a 
component of an array variable .. \n array variable is a variable that 
possesses an array type. 

IndexedVariable == ArrayVariahle '" IlIde.l' "." Index] "]" . 

Index == OrdinalExpression . 

ArrayVariahle == Variable. 

The component accessed is the one I hat corresponds to the value of the 
index expression, which must be a~.,ignment-compatible (see Section 
6.5) with the index type when tlk' access occurs. When there are 



Pascal Report 163 

multiple index expressions, the order of their evaluation is 
implementation-dependent. 

Examples: 

GrayScale[12] 
GrayScale [I +J] 

VideoPotential[Red, True] 

When more than one index appears, as in 

VideoPotential[Red, True], 

it is simply an abbreviation for the notation 

VideoPotential [Red] [True] . 

7.2.2. Field designators. A field designator denotes a field of a record 
variable. A record variable is a variable that possesses a record type. 

FieldDesignator = [RecordVariahle "." 1 Fieldldentifier. 

RecordVariahle = Variahle . 

The field that is denoted is the one corresponding to the field identifier; 
only the field identifiers belonging to the record type of the record 
variable may appear. The record variable and the "." may be omitted 
inside of a with statement (see Section 9.2.4) that lists the record 
variable. 

Examples offield designators: 

Z.Re 
VideoPotential[Red,True] .lm 
P2i.Mother 

When a variant of a record variable becomes inactive, all of the 
components of the variant become totally undefined. If there is no tag 
field in a variant part, then an access to a component of a variant makes 
that variant active and the other variants inactive. It is an error if a 
variant is or becomes inactive while there is an access or reference to 
any of its components. When a tag field is undefined, no variants of that 
variant part are active. A tag field must not be an actual variable 
parameter. 

7.3. Identified Variables 

An identified variable denotes the variable that is identified by the value 
of a pointer variable. A pointer variable is a variable that possesses a 
pointer type. 



164 Pascal Report 

IdentifiedVariable = PointerVariable 'j" . 

PointerVariable = Variable. 

An access to an identified varia )Ie implies an access to the pointer 
variable, at which time it is an errol if the pointer variable is undefined 
or has the value nil. It is an errol if an identifying pointer value is 
destroyed when a reference to the variable that the value identifies 
exists. 

Examples of identified variables: 

pl1 
pll.Fatherj 
pll.Friends1'1' 

7.4. Buffer Variables 

A file variable is a variable that poss,_~sses a file type. Every file variable 
is associated with a so-called buffer variable. 

BufferVariable = FileVariable "I" . 
FileVariable = Variable. 

If the file variable possesses the type Text, then the buffer variable 
possesses the type Char; otherwise the buffer variable possesses the 
component type of the file type p( Issessed by the file variable. The 
buffer variable is used to access the current component of the file 
variable. It is an error to perform an) operation that alters the sequence, 
position, or mode of a file variabl: when a reference to the buffer 
variable exists. An access or refere, Ice to a buffer variable implies an 
access or reference to the associatel! file variable. 

Predeclared procedures and fum! ions that manipulate file variables 
are described in Sections 11.4, 11.5 aud 12. 

When eoln (F) becomes true j )f textfile F (Section 11.5.2), the 
buffer variable FI becomes the char value space (, '). Thus eoln (F) 

is the only way to detect an end-of line marker on F. 

Examples of buffer variables: 

Inputl 
PlI.Friendsl 
Pll.Friendsll.Childrenl 



Pascal Report 165 

8. Expressions 

An expression denotes a rule of computation that yields a value when 
the expression is evaluated, except when the expression activates a 
function and that activation is terminated by a goto statement (see 
Sections 9.1.3 and 10). The value that is yielded depends upon the 
values of the constants, bounds, and variables in the expression and also 
upon the operators and functions that the expression invokes. 

Expression= SimpleExpression [RelationalOperator SimpleExpressionl 

SimpleExpression = [ Sign] Term! AddingOperator Term I . 

Term = Factor! MultiplyingOperator Factor I . 

Factor = UnsignedConstant' Boundldentifier' Variable' 

SetConstructor , FunctionDesignator' 

"not" Factor' "C' Expression ")" . 

UnsignedConstant = UnsignedNumber' CharacterString' 

Constantldentifier' "ni 1" . 

SetConstructor = "[" [ElementDescription ! 

ElementDescription I ] "]" . 

ElementDescription = OrdinalExpression [ .... " OrdinalExpression] . 

FunctionDesignator = Functionldentifier [ ActualParameterList] . 

RelationalOperator = "=" , "<>" , "<" , "<=" , ">" , ">=" / "in" . 

AddingOperator = "+" , "-" , "or" . 

MultiplyingOperator= "*"'''j'' / "div" '''mod'' / "and". 

An ordinal expression is an expression that possesses an ordinal 
type. A Boolean expression or integer expression is an ordinal 
expression that possesses the type Boolean or Integer, respectively. 

OrdinalExpression = Expression. 

BooleanExpression = OrdinalE\pression . 

IntegerEJ.pression = OrdinalExpression . 

8.1. Operands 

A mUltiplying operator in a term has two operands: the part ofthe term 
that precedes the operator, and the factor that immediately follows the 
operator. An adding operator in a simple expression has two operands: 



166 Pascal Report 

the part of the simple expressio'l that precedes the operator, and the 
term that immediately follows he operator. The two operands of a 
relational operator are the simple 1'.\ pressions that immediately precede 
and follow the operator. The opel ;tnd of a sign in a simple expression is 
the term that immediately follov ~ the sign. The operand of not in a 
factor is the factor following not 

The order of evaluation 01 the operands of an operator is 
implementation-dependent. A Sl ill1dard program must not make any 
assumption about this order. The I,' It operand might be evaluated before 
or after the right operand, or they III ight be evaluated in parallel. In fact, 
sometimes one operand might not 'Ie evaluated at all for some values of 
the other operand. For example, I'valuating the expression (j * (i 

di v j)) when j is zero mighl vidd zero on one implementation, 
where on another implementati( 'II It might be an error due to the 
division by zero. 

The type of a factor is derived I to III the type of its constituent (e.g., 
variable or function). Ifthe const 11ucnt's type is a subrange, then the 
type of the factor is the host type 111" the subrange; if the constituent's 
type is a set type with a subrange .. IS its base type, then the type of the 
factor is a set type with the host type of that subrange type as its base 
type; otherwise, the type of the f;lCtor is the same as the type of the 
constituent. 

The symbol nil possesses every pointer type and represents the nil 
value. 

A set constructor denotes a ~et value. If there are no element 
descriptions in the set constructor, 1 hen it denotes the empty set that is a 
value of every set type. Otherwisl, the elements of the set value are 
described by the element descriptions in the set constructor. All 
expressions in the element descripl H)JlS of a set constructor must have 
the same type, which is the base tYlle (If the type of the set constructor. 
The type of a set constructor is tpth packed and unpacked, and is 
compatible with any other set type I hat has a compatible base type. 

An element description consistlllg of a single expression describes 
the element that has the value den(lled hy the expression. An element 
description of the form a .. b dest ribes an element for each value x 

that satisfies a <= x <= b. If a > '. then a .. b denotes no elements. 
The order of evaluation of the expre~i.;ions in an element description and 



Pascal Report 167 

the order of evaluation of the element descriptions in a set constructor 
are implementation-dependent. 

The evaluation of a factor consisting of a variable specifies an 
access to the variable and denotes the value of the variable; it is an error 
if the variable is undefined. 

The evaluation of a factor consisting of a function designator 
specifies an activation of the function that is denoted by the function 
identifier (see Section 10.3). Any actual parameters are substituted for 
their corresponding formal parameters (see Section 11.3). Upon 
completion of the activation's algorithm, the factor denotes the value of 
the result of the activation; it is an error if the result is undefined. 

8.2 Operators 

The rules of composition specify operator precedences according to 
four classes of operators. The operator not has the highest precedence, 
followed by the so-called mUltiplying operators, then the so-called 
adding operators, and finally, with the lowest precedence, the relational 
operators. Sequences of operators of the same precedence are executed 
from left to right. The rules of precedence are reflected in the EBNF 
rules for Expression, Simple-Expression, Term, and Factor (above). 

Operators are also classified as arithmetic, Boolean, set, and 
relational operators according to their operand and result types. 

8.2.1. Arithmetic operators. An arithmetic operator takes integer or 
real operands and yields an integer or real results. This table 
summarizes operators that take one operand (the signs). 

Operator 
+ 

Operation 
identity 
sign inversion 

Type of Operand 
Integer or Real 
Integer or Real 

Type of Result 
same as operand 
same as operand 

This table summarizes the operators that take two operands. 

Operator Operation Type of Operands Type of Result 
+ addition Integer or Real Integer or Real 

subtraction Integer or Real Integer or Real 

* multiplication Integer or Real Integer or Real 

/ division Integer or Real Real 
div division Integer Integer 
mod modulo Integer Integer 



168 Pascal Report 

The result type of addition, subtl action and multiplication is Integer if 
both operands are Integer, other vise it is Real. 

Evaluating a term of the fon 1 i / y is an error if y is zero. 
Evaluating a term of the for 11 :~ di v y is an error if y is zero; 

otherwise the term yields the va l.1e satisfying the two rules: 
(a) abs(x)-abs(y) < ab I (x div y) * y) <= abs(x) 

(b) x div y = 0 if abs (> abs (y), otherwise x div y 

is positive if x and y hive the same sign and is negative 
if x and y have diffen 111 signs. 

Evaluation of a term of the' \)rl11 x mod y is an error if y is less 
than or equal to zero; otherwise I 'Iere is an integer k such that x mod y 

satisfies the following relation: 

o <= x mod y = x k * Y < y. 

For any integer operators, if both operands are 10 the range 
-Maxint .. Maxint and if the ( nrrect result is in that range, then a 
standard implementation must y eld the correct result. However, if the 
operands or result is not in the range -Maxint .. Maxint, an 
implementation may choose eithl T to perform the operation correctly or 
to treat the operation as an error 

Any operator or predeclared function (see Section 11.5) that yields 
a real result must always be comidered to be approximate, not exact. 
The accurancy of real opera I ions and predeclared functions is 
implementation-defined. 

8.2.2. Boolean Operators. The Boolean operators are summarized by 
the following table. 

Operator Operation T\,fJl' (~lOpl'rands Type of Result 
or logical "or" Boolean Boolean 
and logical "and" Boolean Boolean 
not logical "not" Boolean Boolean 

8.2.3. Set Operators. The ~ -t operators are summarized by the 
following table. The two opera Ids must always possess compatible 
types (see Section 6.5). The resll t type is packed if both operand types 
are packed, and is non-packed if both operand types are non-packed. 

Operator Operation Type of Operands Type of Result 
+ set union set ofT set ofT 

set difference set ofT set ofT 

* set intersection set ofT set ofT 



Pascal Report 169 

8.2.4. Relational Operators. The relational operators are summarized 
by the following table. With the exception of the operator in, the types 
possessed by the operands either must be compatible, or one must be 
Real and the other must be Integer. For in, the first (left) operand must 
possess an ordinal type that is compatible with the base type of the set 
type possessed by the second operand. 

The expression x <= y where x and yare sets yields true if every 
member of x is a member of y, i.e., if x is a subset of y. 

The ordering of compatible strings is according to the ordering of 
the values of type Char (see Section 6.1.2). 

Operator Operation 
= equality 

<> inequality 

<= less than 
or equal 

<= set inclusion 
>= greater than 

or equal 
>= set inclusion 
< less than 
> greater than 
in set membership 

Examples offactors: 
x 
(W + x + Y) 

[Red, Light, Green] 
not P 

Examples of terms: 

x * Y 
Q and not P 

Examples of simple expressions: 

x + GrayScale[2 * I] 
P or Q 
I*J + 1 

Examples of expressions: 

x = l. 5 
(I < J) = (J < K) 

Type of Operands 
simple, pointer, 

set, or string 
simple, pointer, 

set, or string 
simple or string 

set 
simple or string 

set 
simple or string 
simple or string 
ordinal and set 

15 
sin(X+Y) 

Type of Result 
Boolean 

Boolean 

Boolean 

Boolean 
Boolean 

Boolean 
Boolean 
Boolean 
Boolean 

[1, 5, 10 .. 19, 60] 

II (1-1) 

(X <= Y) and (Y < W) 

-x 
Hue1 + Hue2 

P <= Q 
Light in Hue1 



170 Pascal Report 

9. Statements 

Statements denote algorithmic actio IllS, and are said to be executable. A 
statement may be prefixed by alai d which can be referred to by goto 
statements. Statements are collecll d into statement parts. 

Statement = [ Label" : " 1 (Simple,~ I/ll'ment I StructuredStatement ) . 

StatementPart = CompoundStateml l . 

9.1. Simple Statements 

A simple statement is a statement \ f which no part constitutes another 
statement. The empty statement consists of no symbols and denotes no 
action. 

SimpleStatement = EmptyStatement I \.\signmentStatement I 

ProcedureSta, '1II1'1It I GotoStatement . 

EmptyStatement = . 

9.1.1. Assignment statements. "I he assignment statement serves to 
access the variable or function-a:tivation result and to replace its 
current value by the value obtained by evaluating the expression. 

AssignmentStatement = ( Variable I J IIl1ctionldentijier) ":=" Expression. 

The value of the expression mllst be assignment-compatible (see 
Section 6.5) with the type of the \ariable or function identifier. The 
order of accessing the variable or re ,ult and evaluating the expression is 
implementation--dependent. The a .:cess to the variable establishes a 
reference to the variable that exist, until the value is assigned. 

Examples of assignment statemenT 

x .- y + GrayScale[3l] 
P .- (l <= I) and (I < 'I)) 

I := sqr(K) - (I*J) 
Hue2 := [Blue, succ(C) 

9.1.2. Procedure statements. .\ procedure statement serves to 
activate the procedure denoted ly the procedure identifier. The 
procedure statement may contain a list of actual parameters which are 
substituted in place of their corresp,)flding formal parameters defined 
in the procedure declaration (see 11.1). 



Pascal Report 171 

ProcedureStatement = Procedureldentifier [ AcfualParameterLisf I 

WriteParameferLisf 1 . 

If the procedure identifier denotes the standard procedure Write or 
Writeln, then the actual parameters must follow the syntax specified 
for a WriteParameterList. If the procedure identifier denotes any other 
predeclared procedure, then the actual parameters must satisfy the rules 
stated in Sections 11.4 and 12. 

Examples o/procedure statements: 

Next 
Transpose(A,N,N) 
Bisect (Fct, -1.0, +1.0, X) 
Writeln(Output, ' Title') 

9.1.3. Goto statements. A goto statement serves to indicate that 
further processing should continue at another part of the program, 
namely at the program-point denoted by the label (see Sections 10.1 
and 10.3). 

GOfoSfafement = "goto" Label. 

The statement that is prefixed by a label and each goto statement 
that refers to that label must satisfy one of the following two rules. 

(a) The statement either must contain the goto statement or 
else must be one of the statements in a statement sequence 
(see Section 9.2) that contains the goto statement. 

(b) The statement must be one of the statements in the 
statement sequence of the compound statement of the 
statement part of the block where the label is declared, 
and the goto statement must be contained in the procedure 
and function declaration part of that block (see Section 
10.1). 

The effect of these rules is to prevent goto statements transferring 
control into a structured statement or a procedure or function from 
outside. The first rule also disallows a goto transferring control between 
"branches" of a conditional statement. 

If the label and the goto statement are not in the same statement part, 
then every activation that does not satisfy one of the following two 
conditions is terminated (see Section 10.3). 



172 Pascal Report 

(a) The activation contains t'IC program-point. 
(b) The activation contains Ihl' activation-point of another 

activation that is not teflilinated (i.e., that satisfies one of 
these two conditions). 

9.2. Structured Statements 

Structured statements are const! ucts composed of other statements 
which have to be executed eithe! in sequence (compound statement), 
conditionally (conditional st.ltements), repeatedly (repetitive 
statements), or within an expand,.·d scope (with statement). 

StructuredStatement = Compound.' ',III'ment I ConditionalStatement I 

RepetitiveStatemel1l WithStatement. 

A statement sequence is a Sl quence of statements that are to be 
executed in the sequence that th:'y are written, except where a goto 
statement indicates otherwise. 

StatementSequence = Statement 1 . ,. Statement l ' 

Statement sequences are used in l om pound statements (Section 9.2.1), 
and repeat statements (Section 9.2,3.2). 

9.2.1. Compound statements. A compound statement specifies the 
execution of the statement sequence. The symbols begin and end act 
as statement brackets. 

CompoundStatement = "begin" \lalcmenlScqllence "end" . 

Examples of compound statemell '.": 

begin 
begin 

end 
W := X; X:= ; Y := Wend 

9.2.2. Conditional statements. A conditional statement selects for 
execution one of its component· tatcments. 

ConditionalSlalement = IjStateme I I ( 'l/.leSlalement . 

9.2.2.1. If statements. The if ~ :atcment specifies that the statement 
following the symbol then be ex,:cutcd only if the Boolean expression 
yields true. If it is false, then the ~tatcment following the symbol else, 

if any, is to be executed. 

IjStatement = "i f" BooleanExpl'l 1.lioll "then" Statement 

[ "else" Stateme If I . 



Pascal Report 173 

Note: The syntactic ambiguity arising from the construct 

if e1 then if e2 then sl else s2 

is resolved by interpreting the construct as equivalent to 

if e1 then 
begin if e2 then sl else s2 end 

Examples of if statements: 
if x < 1.5 then W := X + Y else W := 1.5 

if P1 <> nil then PI := P1t.Father 

9.2.2.2. Case statements. The case statement consists of an ordinal 
expression (the case index) and a list of statements, each being prefixed 
by one or more constants of the type of the case index. It specifies that 
the one statement be executed that is prefixed by the value of the case 
index; it is an error if no constant denoting that value prefixes any 
statement. Each value must be specified by at most one case constant. 

CaseStatement = "case" Caselndex "of" 

Case I ";" Case I [ ";" 1 "end" . 

Caselndex = OrdinalExpression . 

Case = Constant I "," Constant I ":" Statement. 

Examples of case statements: 
case Operator of 

Plus: W.- X + Y; 
Minus: W:= X - Y; 
Times: W:= X * Y 

end 
case I of 

1 : Y .- sin (X) ; 
2 : Y cos (X) ; 
3 : Y exp (X) ; 
4 : Y .- In(X) 

end 

case P1t.Status of 

Married, Coupled: P2.- P1t.SignificantOther; 
Single: P2:= nil; 

end 

9.2.3. Repetitive statements. Repetitive statements specify that 
certain statements are to be executed repeatedly. If the number of 
repetitions is known beforehand, i.e., before the repetitions are started, 
the for statement is often the appropriate construct; otherwise the while 
or repeat statement should be used. 



174 Pascal Report 

Repetitil'eStatement = WhileStaten 'lit I RepeatStatement I ForStatement . 

9.2.3.1. While statement. 

WhileStatement = "while" Booft IIIFxpression "do" Statement. 

The statement is repeatedly e.\ecuted until the expression becomes 
false, If its value is false at the be~ inning, the statement is not executed 
at all. The while statement 

while B do S 

is equivalent to (unless S contain~ u labelled statement): 

if B then begin S; w: i le B do Send 

Examples of while statements: 

while GrayScale[1] < 

while I > 0 do 
begin 

10 I ,- succ(1) 

if odd (I) then Y: Y * X; 
I ,- I di v 2; 

X := sqr(X) 
end 

while not eof(F) do bE Jin 

p(Fi); Get(F) 

end 

9.2.3.2. Repeat statements. 

RepeatStatement = "repeat" Stal, '111£'lltSequence 

"unt i I" B{)(,ic(/llE.rpression. 

The statement sequence is rep,'utcdly executed (and at least once) 
until the expression becomes true The repeat statement 

repeat S until B 

is equivalent to 

begin S; if not B tl r repeat S until Bend 

unless S contains a labelled state \lent. 

Examples of repeat statements: 

repeat K ,- I mod J; 

repeat 

P (Fi); 
Get(F) 

until eof (F) 

,- J; J ,- K until J o 



Pascal Report 175 

9.2.3.3. For statements. The for statement indicates that a statement is 
to be repeatedly executed while a progression of values is assigned to a 
variable that is called the control variable of the for statement. 

ForStatement = "for" ControlVariable ":=" InitialValue 

( "to" I "downto" ) FinalValue "do" Statement . 

ControlVariable = Variableldentifier. 

InitialValue = OrdinalExpression . 

FinalValue = OrdinalExpression . 

The control variable must be local to the block (see Section 10.2) 
whose statement part contains the for statement, and must possess an 
ordinal type that is compatible with the types of the initial value and 
final value. 

A statement s is said to threaten a variable v if any of the 
following conditions are true. 

(a) s is an assignment statement that assigns to v. 
(b) s contains v occurring as an actual variable parameter 

(see section 11.3.2.2). 
(c) s is a procedure statement that activates the predeclared 

procedure read or readln and v is one of its actual 
parameters. 

(d) s is a for statement and v is its control variable. 

No statement inside the for statement must threaten the control 
variable. also, no procedure or function declared local to the block in 
which the control variable is declared may contain a statement that 
threatens the control variable. these rules ensure that the repeated 
statement cannot alter the value of the control variable. 

Let tl and t2 be new variables (not otherwise accessible) 
possessing the same type as v, and let p be a new variable possessing 
type Boolean. then with the exceptions noted in comments, the 
following equivalences hold. 

for v := el to e2 do s 

is equivalent to 

begin 
Tl .= el; T2 := e2; 
if Tl <= T2 then begin 



176 Pascal Report 

{T2 must be assignment-co uatible with the type of V} 
V := Tl; P:= false 
repeat 

S; 
if V 

until P 
end 

T2 then P .- ~rue else V .= succlV) 

V becomes undefined } 
end 

and 

for V := el downto e2 do 

is equivalent to 

begin 
Tl := el; T2:= e2; 
if Tl >= T2 then begin 

{T2 must be assignment-co ~atible with the type of V} 
V := Tl; P:= false; 
repeat 

S; 
if V 
else V 

until P 

T2 then P := 
.- predlV) 

true 

end 
{ V becomes undefined 

end 

Examples offor statements: 

for I := 1 to 63 do 
if GrayScale[I] > C.5 then write 1'*') 
else write I' ') 

for I := 1 to n do 
for J := 1 to n do 

begin 

end 

X : = 0; 

for K := 1 tc n do 
X := X + AI ,J\] * B[K,J]; 

C[I,J] := X 

for Light : = Red to pI ·d I Light) do 
if Light in Hue2 tt~n QILight) 

9.2.4. With statements. A with ~tatement accesses and establishes a 
reference to each record variabk in its list, and then executes the 
component statement. The reference exists during the execution of the 
component statement. 



Pascal Report 177 

WithStatement = "w i t h" RecordVariableList "do" Statement. 

RecordVariableList = RecordVariable { "," RecordVariable I . 

The scope (see Section 10.2) of each of the field identifiers of the type of 
a (single) record variable listed in a with statement is extended to 
include the component statement. Within this extended scope, the field 
identifier can occur in a field designator without respecifying the record 
variable, and will denote the appropriate field of the referenced 
variable. 

The notation 

with r1, r2, ... , rn do S 

is an abbreviation for the notation 

with r1 do 
with r1 do 

with rn do S 

Example of with statement: 

with Date do 
if Month = 12 then 

begin Month := 1; Year'= succ(Year) end 
else Month succ(Month) 

This is equivalent to 

if Date.Month = 12 then begin 
Date.Month := 1; Date.Year:= succ(Date.Year) 

end else Date.Month := succ(Date.Month) 

10. Blocks, Scope, and Activations 

Blocks are the basis for constructing programs (see Section 13) and 
procedures and functions (see Section 11). The scope rules determine 
where an identifier spelling that is introduced in a particular place can 
be used, based on the static (textual) program structure. The activation 
rules determine what entity (e.g., variable) is denoted by a particular 
identifier or label, based on the dynamic (execution) program structure. 

10.1. Blocks 

A block consists of several definition and declaration parts, any of 
which may be empty, and a statement part. 



178 Pascal Report 

Block = LabelDeclarationPart Com 1I11fDejinitionPart TypeDefinitionPart 

VariableDeclarationP art P ,If 'edureAndFunctionDeclarationP art 

StatementPart , 

The label declaration part intr, )duces zero or more labels, each of 
which must prefix one statement i I the statement part. 

LabelDeclarationPart = [ "label' f)igitSequence ["," DigitSequence] ";"] . 

Label = DigitSequence . 

The spelling of a label is the, pparent integral value that its digit 
sequence describes in the usual d, 'cimal notation; the value must not 
exceed 9999. 

10.2. Scope 

A definition or declaration introd Ices a spelling of an identifier or a 
label and associates the spellin~ with a specific meaning (e.g., a 
variable identifier). The parts of a program in which every occurrence 
of that spelling must take on that meaning are collectively called the 
scope of the introduction (definitit n or declaration). The occurrence of 
a spelling in its introduction must precede every other occurrence of 
that spelling within the scope of the introduction, with one exception. 
The exception is that a type-identi fier spelling may occur as the domain 
type of a pointer type (see Section 6.3) anywhere in the type definition 
part that contains the spelling's introduction. 

Each introduction is effective for some region of the program, as 
described below. The scope of thl introduction is that region less any 
enclosed region for which anothe introduction of the same spelling is 
effective. 

The following introductions ar '.~ effective for the block in which the 
introduction occurs: a label in. lahel declaration part; a constant 
identifier in a constant definition 'art or in an enumerated type; a type 
identifier in a type definition pal ;; a variable identifier in a variable 
declaration part; a procedure iden ificr in a procedure declaration (see 
Section 11.1); and a function ide!ltifier in a function declaration (see 
Section 11.2). These labels and identifiers are said to be local to the 
block. 

The implicit introduction of ~ andard predefined and predeclared 



Pascal Report 179 

identifiers is effective for a region that surrounds every program. 
The introduction of a field identifier in a record type is effective for 

each of the following regions: 
(a) the record type itself; 
(b) the component statement of a with statement where the 

record variable of the with statement possesses that 
record type; and 

(c) the field-identifier part of a field designator where the 
record-variable part of the field designator possesses that 
record type. 

In the case of (c), the field-identifier part is excluded from all other 
enclosing scopes. 

The introduction of a parameter identifier in a parameter list (see 
Section 11.3.1) is effective for the parameter list. Furthermore, if the 
parameter list is in the procedure heading of a procedure declaration or 
in the function heading of a function declaration, then a variable 
identifier, bound identifier, procedure identifier, or function identifier 
that has the same spelling as the parameter identifier is introduced 
effective for the block of that procedure declaration or function 
declaration. 

10.3. Activations 

An activation of a program (see Section 13), or a procedure or function 
(see Section 11) is an activation of the block ofthe program, procedure, 
or function. 

An activation of a block is said to contain the following entities, 
which exist until the activation terminates. 

(a) An algorithm that is specified by the statement part of the 
block; the algorithm commences when the block is 
activated, and completion of the algorithm terminates the 
activation. (The activation might instead terminate due to 
a goto statement - see Section 9.1.3.) 

(b) A program-point in the algorithm corresponding to each 
label that prefixes a statement in the statement part of the 
block. Each appearance of that label in a goto statement 
within the activation denotes that program-point. 

(c) A variable for each variable identifier that is local to the 
block; when the algorithm commences, the variable is 



180 Pascal Report 

totally undefined unles~ the variable identifier is a 
program parameter. Eac I appearance of that variable 
identifier within the acti, ation denotes that variable. 

(d) A procedure for each prol edure identifier that is local to 
the block; the procedwe has the block and formal 
parameters of the proced -Ire declaration that introduced 
the procedure identifie r. Each occurrence of that 
procedure identifier within the activation denotes that 
procedure. 

(e) Afunction for each functi')fi identifier that is local to the 
block; the function has thl~ block, formal parameters, and 
result type of the function declaration that introduced the 
function identifier. EacJ I occurrence of that function 
identifier within the acti, ation denotes that function. 

(f) A variable for each variabh' identifier that is a formal value 
parameter identifier for i he block; when the algorithm 
commences, the varia )Ie has the value of the 
corresponding actual parameter in the procedure 
statement or function ,lesignator that activated the 
procedure or function. Each occurrence of that variable 
identifier within the acti\ ation denotes that variable. 

(g) A reference for each van able identifier that is a formal 
variable parameter identi fier for the block; the reference 
is to the variable that is denoted by the corresponding 
actual parameter when the algorithm commences. Each 
occurrence of that variabl : identifier within the activation 
denotes the referenced v Iriable. 

(h) A reference to a procedl. re or function for each formal 
procedural or functioml parameter identifier for the 
block; the reference is to he procedure or function that is 
denoted by the correspor ling actual parameter when the 
algorithm commences. Each occurrence of that 
procedure identifier or function identifier within the 
activation denotes that p nccdure or function. 

(i) If the activated block is. function block, a result that is 
undefined when the algo'ithm commences. 

An activation of the block of .1 procedure or function is said to be 
within the activation that contaills the procedure or function. If an 
activation A is within an activati(11l B, then A is also said to be within 



Pascal Report 181 

any other activation that B is within. 
A procedure statement or function designator that is contained in an 

algorithm and that specifies the activation of a block is called the 
activation-point of that activation. 

11. Procedures and Functions 

Procedures and functions are named program parts that are activated by 
procedure statements (Section 9.1.2) and function designators (Section 
8.1), respectively. The programmer can declare new procedures and 
functions as needed. Procedure declarations and function declarations 
are collected into procedure and function declaration parts. 

ProcedureAndFunctionDeclarationPart = 

[ (ProcedureDeclaration I FunctionDeclaration ) ";" ] . 

In addition, each implementation is required to provide numerous 
"predeclared" procedures and functions. Since these, as all such 
entities, are assumed to be declared in a scope surrounding the program, 
no conflict arises from a declaration redefining the same identifier 
within the program. 

11.1. Procedure Declarations 

A procedure declaration serves to introduce a procedure identifier, and 
to associate the identifier with a block and possibly with a fonnal 
parameter list. The procedure heading of a procedure declaration 
introduces the procedure identifier and the fonnal parameter list. 

A procedure may be declared by a single procedure declaration 
consisting of the procedure heading and the block. This is the most 
common fonn. 

Alternatively, it may be declared with a "forward declaration": one 
procedure declaration consists of the procedure heading and the 
directive forward, and a second declaration in the same procedure and 
function declaration part consists of a procedure identification and the 
block. The procedure identifier in the procedure identification must be 
the identifier introduced by the first declaration. Note that the fonnal 
parameter list, if any, is not specified in the second declaration. 



182 Pascal Report 

ProcedureDeclaration = ProcedureHeading ";" Block I 

ProcedureHeading ";" Di -('cfive I Procedureldentification ";" Block. 

ProcedureHeading = "procedurE - Identifier [FormalParameterList 1. 
Procedureldentification = "procel I. re" Procedureldentifier. 

Procedureldentifier = Identifier. 

The use of the procedure identifier in a procedure statement within 
the block of its declaration implies recursive execution of the 
procedure. 

Example o/procedure declaratiolls: 

procedure ReadInteger (va· F: Text; var X: Integer); 
var S: Natural; 

begin 
while Fi <> ' , do Get (} I; 

S := 0; 

while Fi in [' 0' .. ' 9' 1 ,(> begin 
S:= 10 * S + (ord(FJI-ord('O')); 
Get (F) 

end; 
X := S 

end { ReadInteger } ; 

procedure Bisect (function F(X: Real): Real; 
A, B: Real; var Z: Real); 

var M: Real; 
begin { assume F(A) < 0 ~~d F(B) > 0 

while abs(A-N) > 1e-10 • abs(A) do begin 
M := (A + B) / 2.0; 
if F(M) < 0 then A· M else B:= M 

end; 
Z .- M 

end { Bisect } ; 

procedure GCD (M, N: Inte, 
{ Greatest Cornmon Div 

M >= 0 and N > 0; E 
var A1, A2, B1, B2, C, 

begin 
A1 := 0; A2:= 1; B1 
C := M; D:= N; 
while D <> 0 do begin 

t'l; var X, Y, Z: Integer); 
i. r X of M and N, assuming 
fnded Euclid's Algorithm. 

Q, R: Integer; 

1; B2: = 0; 

Al*M+B1*N = D, A2*M+B2*N = C 
and GCD(C,D) = GCD(M,N)} 



Q := C div R; R:= C mod D; 
A2 := A2 - Q*AI; B2 B2 - Q*BI; 
C .= D; D:= R; 
R := AI; AI.- A2; A2 R; 
R := BI; BI:= B2; B2:= R 

end; 
X := C; Y:= A2; Z:= B2 
{ X = GCD(M,N) = Y*M + Z*N 

end { GCD }; 

11.2 Function Declarations 

Pascal Report 183 

A function declaration serves to introduce a function identifier, and to 
associate the identifier with a result type, with a block, and possibly 
with a fonnal parameter list. The function heading of a function 
declaration introduces the function identifier, the result type, and the 
fonnal parameter list. 

A function may be declared by a single function declaration 
consisting of the function heading and the block. This is the most 
common fonn. 

Alternatively, it may be declared with a "forward declaration": one 
function declaration consists of the function heading and the directive 
forward, and a second declaration in the same procedure and function 
declaration part consists of a function identification and the block. The 
function identifier in the function identification must be the identifier 
introduced by the first declaration. Note that the fonnal parameter list, 
if any, and the result type are not specified in the second declaration. 

FunctionDeclaration = FunctionHeading ";" Block I 

FunctionHeading ";" Directive I Functionldentification ";" Block. 

FunctionHeading = "function" Identifier [FormaIParameterList] 

":" ResultType . 

ResultType = OrdinalTypeldentifier I RealTypeldentifier I 

PointerTypeldentifier. 

Functionldentification = "function" Functonldentifier. 

Functionldentifier = Identifier. 

The block of a function declaration must contain at least one 
assignment to the function identifier. The use of the function identifier 
in a function designator within the block of its declaration 
impliesrecursive execution of the function. 



184 Pascal Report 

Example offunction declarations. 

function sqrt(X: Real): P '.31; 
{ Newton's method} 
var XO, Xl: Real; 

begin 
Xl := X; X > 1, Newt :1' S method} 
repeat XO := Xl; Xl: (XO + X/XO)*O.5 
until abs(X1 - XO) < Ep * Xl; 
sqrt := XO 

end { sqrt } ; 

function Max(A: Vector; N: Integer): Real; 
{Return the maximum value of elements All], .. . ,AIN].} 

var X: Real; I: Intege 
begin 

X := A[l]; 
for I := 2 to N do begi: 

{ X = Max ( A I 1], ... , ,\ l 1-1) ) } 
if X < A[I) then X .- ~[I) 

end; 
{ X = Max ( A I 1), ... , A :; J ) 

Max := X 
end { Max } ; 

function GCD(M, N: Naturao): Natural; 
begin 

if N = 0 then GCD := M ELse GCD := GCD(N, M mod N) 
end; 

function Power(X: Real; 1: Natural): Real; 
var W, Z: Real; I: Natlal; 

begin 
W := X; Z:= 1; 1:= 1· 

while I > 0 do begin { (W ** I) 
if odd (I) then Z := Z . W; 
I : = I di v 2; 

W := sqr(W) 
end; 
{ Z = X ** Y } 
Power := Z 

end { Power } 

11.3 Parameters 

X ** y } 

Parameters allow each activation of a procedure or function to operate 
on entities (values, variables, procedures, functions) that are specified 



Pascal Report 185 

at the activation point (see Section 10.3) by an actual parameter list. The 
formal parameter list in the procedure or function heading determines 
the identifiers by which those entities are known in the block of the 
procedure or function, and the nature and type required of the actual 
parameters. 

The actual parameters for predeclared procedures and functions do 
not always conform to the rules for ordinary procedures and functions 
(see Sections 11.4, 11.5 and 12). 

11.3.1. Formal parameter lists. 

FormalParameterList = "(" FormalParameterSection 

{ ";" FormalParameterSection } ")" . 

FormalParameterSection = ValueParameterSpecification I 

VariableParameterSpecification 

ProceduralParameterSpecification I FunctionalParameterSpecification. 

The parameters specified by a formal parameter section are either 
value, variable, procedural, or functional parameters. 

11.3.1.1. Formal value and variable parameters. A value or variable 
parameter specification introduces each of the identifiers in its 
identifier list as a variable identifier. If a type identifier occurs, it 
denotes the type possessed by each variable identifier. If a 
conform ant-array schema occurs, each of the variable identifiers is 
called a conform ant-array parameter, and the type that it possesses 
depends on the type of the actual parameter. Within a given activation, 
all formal parameters defined in the same formal parameter section 
possess the same type. 

Note: Conform ant-array schemas are not supported by all 
implementations of Pascal. In particular, Level 0 implementations do 
not support them, whereas Level 1 implementations do. 

ValueParameterSpecification = IdentifierList ":" ( Typeldentifier 

ConformantArraySchema ). 

VariableParameterSpecification = "var" IdentifierList ":" 

(Typeldentifier I ConformantArraySchema). 

ConformantArraySchema = PackedConformantArraySchema I 

U npackedC onformantArraySchema . 



186 Pascal Report 

PackedConformantArraySchema = '(lacked" "array" 

"[" IndexTypeSpeciJicati' ll "J" "of" Typeldentifier. 

UnpackedConformantArraySchemo :: "array" 

"[" IndexTypeSpe( :,imtion {";" IndexTypeSpecification} "]" 

"of" (Type/dellt '!cr I ConformantArraySchema) , 

IndexTypeSpecification = Identifier ..... Identifier ":" OrdinalType/dentiJier . 

BoundldentiJier = Identifier. 

An index type specification int roduces the two identifiers as bound 
identifiers possessing the type denoted by the ordinal type identifier. 
The confonnant-array schema 

array[Lowl .. Highl: TI; Lo) .. High2: T2] of T 

is simply an abbreviation for 

array[Lowl .. Highl: TI] of Irray[Low2 .. High2: T2] of T 

Example of a conformant-array p.trameter: 

function Max (A: array [L .H: Integer] of Real; 
N: Integer): Real; 

{Return the maximum value·)f elements A [L] , ... , A [N] . } 

{Program derived from fun ion Max shown in 11.2.} 
var X: Real; I: Intege 

begin 
X:= A[L]; 
for I := succ(L) to N d, oegin 

X = Max ( A [L] , ... ,A [,1] ) 

if X < A[I] then X := ~I [] 
end; 
{ X = Max ( A [ L] , ... , A [N I ) 

Max := X 
end { Max } ; 

11.3.1.2. Formal procedural .md functional parameters. A 
procedural parameter specification IIltroduces the procedure identifier 
with any associated fonnal param··ter list defined by the procedure 
heading. 

ProceduralParameterSpecification = l'n'('cilllreHeading . 

A functional parameter specification introduces the function 
identifier with the result type and any associated fonnal parameter list 
defined by the function heading. 

FunctionalParameterSpecification = FlIllctionHeading . 



Pascal Report 187 

11.3.2. Actual parameter lists. An actual parameter list at an 
activation point, i.e., at a procedure statement or a function designator, 
specifies the actual parameters that are to be substituted for the formal 

parameters of the procedure or function for that activation. If the 
procedure or function has no formal parameter list, then there must be 
no actual parameter list. The correspondence between actual 
parameters and formal parameters is established by positions of the 
parameters in their respective lists. The order of substitution of actual 
parameters in a list is implementation-dependent. 

ActualParameterList = "(" Actual Parameter I "," ActualParameter ) ")" . 

ActualParameter = Expression I Variable I Procedureldentifier I 

Functionldentifier . 

All actual parameters at a given activation point that correspond to 
formal conform ant-array parameters defined in the same formal 
parameter section must possess the same type, which must be 
conformable (Section 11.3.4) with the conform ant-array schema of the 
formal parameter section. All of the corresponding formal parameters 
within a given activation have the same type, which is derived through 
the conform ant-array schema from the type of the actual parameter(s) 
(see Section 11.3.4). 

11.3.2.1. Actual value parameters. An actual value parameter is an 
expression. The formal parameter denotes a variable that is assigned the 
value of the actual parameter when the variable is created (see Section 
10.3). 

If the formal parameter is not a conform ant-array parameter, then 
the value of the actual parameter must be assignment-compatible (see 
Section 6.5) with the type of the formal parameter. 

If the formal parameter is a conform ant-array parameter, then the 
type of the actual parameter must not be a conform ant type (see Section 
11.3.4). 

11.3.2.2. Actual variable parameters. An actual variable parameter 
is a variable. Throughout the activation the formal parameter denotes 
the variable that is denoted by the actual parameter when the activation 



188 Pascal Report 

commences (see Section 10.3). The actual parameter must denote 
neither a component of a packed arm y or record variable nor a tag field. 
If the formal parameter is not a con formant-array parameter, then the 
actual parameter and the formal par,! meter must possess the same type. 

11.3.2.3. Actual procedural par ameters. An actual procedural 
parameter is a procedure identifier. fhe formal parameter denotes the 
procedure that is denoted by the ac ual parameter (see Section 10.3). 
The formal parameter lists, if any, 0" the formal and actual parameters 
must be congruent (Section 11.3.3) 

11.3.2.4. Actual functional Parameters. An actual functional 
parameter is a function identifier. The formal parameter denotes the 
function that is denoted by the actual parameter (see Section 10.3). The 
result types of the formal and actual parameters must denote the same 
type. The formal parameter lists, if any, of the formal and actual 
parameters must be congruent (Sec! ion 11.3.3). 

11.3.3. Parameter-list congruity Two formal parameter lists are 
congruent if they have the same number of parameter sections, and if 
corresponding formal parameter se(tions satisfy one of the following 
conditions. 

(a) Both are value parameter ~pecifications with the same 
number of identifiers in their identifier lists, and either 
they both contain type identifiers that denote the same 
type or else they both cOlltain equivalent conform ant
array schemas. 

(b) Both are variable parameter specifications with the same 
number of identifiers in tl eir identifier lists, and either 
they both contain type idi nti fiers that denote the same 
type or else they both cOlllain equivalent conform ant
array schemas. 

(c) Both are procedural p,i 'ameter specifications with 
congruent formal paramet, , lists. 

(d) Both are functional paameter specifications with 
congruent formal paramel.:-r lists and with result types 
that denote the same type. 



Pascal Report 189 

Two conform ant array schemas (each with a single index type 
specification) are equivalent if all three of the following conditions are 
true. 

(a) The ordinal type identifiers in the index type specifications 
denote the same type. 

(b) Either each contains a component conformant-array 
schema and the component schemas are equivalent, or 
else each contains a component type identifier and the 
component type identifiers denote the same type. 

(c) Both schemas are packed conform ant-array schemas or 
else both are non-packed conform ant-array schemas. 

Example of two equivalent conformant array schemas: 

array [LI .. HI: Integer; L2 .. H2: Color) of 
packed array [L3 .. H3: T2) of T 

array [Lowl .. Highl: Integer) of 
array [Low2 .. High2: Color) of 

packed array [Low3 .. High3: T2) of T 

11.3.4. Conformability and conform ant types. An array type T 

(with a single index type) is said to be conformable with a conformant 
array schema s (with a single index type specification) if all of the 
following conditions are true. Let I represent the ordinal type 
identifier of the index type specification of s. 

(a) The index type of T is compatible with the type denoted by 
I. 

(b) Every value of the index type of T is a member of the set of 
values of the type denoted by I. 

(c) If s does not contain a conform ant-array schema, then the 
component type of T is the same as the type denoted by 
the type identifier in s; otherwise, the component type of 
T is conformable with the component schema of s. 

(d) T is packed if and only if s is a packed conform ant-array 
schema. 

Wherever conformability is required, it is an error if condition (b) 
does not hold. 

A type that is called a conformant type derived through s from T is 
an array type that has the same index type as T, is packed if and only if T 



190 Pascal Report 

is packed, and has a component tyr'~ that either is the same type as the 
component type of T or else, i I ,; contains another component 
conformant array schema, is a COI' formant type derived through the 
component schema from the component type of T. The bound 
identifiers introduced in the ind,'x type specification denote the 
smallest and largest values of the index type of the conform ant type. 

11.4. Predeclared Procedures 

11.4.1. File handling procedures. There are several predeclared 
procedures that are specifically defi ned for use with textfiles. These are 
described in detail in Section 12. The following procedures operate on 
any file variable f (see Sections 6A.2 and 7.4). 

Rewr it e ( f) causes f to ha\ e an empty sequence and to be in 
generation mode. 

Put (f) is an error if f i:-. undefined or is not in generation 
mode, or ifthe buffel variable fi is undefined. Appends 
the value of ff to th,,' end of the sequence of f. 

Reset (f) causes f to be pl.lced in inspection mode, and the 

Get(f) 

position in its sequen,:e becomes the first position. If the 
sequence is empty. ' (' f ( f) becomes true and ff 

becomes totally undefined; otherwise, eaf (f) 

becomes false and . i takes on the value of the first 
component of the sequence. 

is an error if f i-; undefined or if eaf (f) is true. 
Causes the position I n the sequence to be advanced to 
the next component, r any, and ff to take on its value; if 
no next component e ·,ists, eaf (f) becomes true and fi 
becomes totally undl'l'incd. 

In each of the following definiti< lIS. all occurrences of f denote the 
same file non-text file variable, the ~ymbols v, vl, ... , vn represent 
variables, and e, e 1, ... , en rep' 'sent expressions. Note that the 
variables v, vl, ... , and vn are n· It actual variable parameters, and 
thus they may be components of pal k.ed arrays or records. Read and 
Write oftextfiles are defined in Sel:tion 12. 



Pascal Report 191 

Read (f, vI, ... ,vn) is equivalent to the statement 
begin Read(f,vl); ... ;Read(f,vn) end 

Read (f, v) is equivalent to the statement 
begin v:= fi; Get(f) end 

Wr it e (f , e I, ... , en) is equivalent to the statement 
begin Write(f,el); ... ;Write(f,en) end 

Wr i te (f, e) is equivalent to the statement 
begin fi:= e; Put (f) end 

11.4.2. Dynamic allocation procedures. Dynamic allocation 
procedures are the means by which new pointer values and their 
identified variables are created (New) and destroyed (Dispose). In these 
descriptions, p is a pointer variable, q is a pointer expression, and 
cl, ... , en, kl, ... , kn are constants. Note that p is not an actual 
variable parameter, and thus it may be a component of a packed array or 
record. 

New(p) creates a new identifying pointer value having the type 
that is possessed by p and assigns it to p. The identified 
variable pi is totally undefined. 

New(p,cl, ... ,cn) creates a new identifying pointer value 
having the type that is possessed by p and assigns it to p. 

The identified variable pi is totally undefined. The 
domain type of that pointer type must be a record type 
with variant part. The first constant (c 1) selects a variant 
from the variant part; the next constant, if any, selects a 
variant from the next (nested) variant part, and so on. It 
is an error if any other variants in those variant parts 
except the selected ones are made active in the 
identified variable. It is an error if the identified variable 
pi is used as a factor, as an actual variable parameter, or 
as the variable in an assignment statement (although 
components of pi may occur in those contexts). 

Dispose (q) destroys the identifying value q. It is an error if q is 
nil. The value q must have been created by the first 
(short) form of New, otherwise it is an error. 



192 Pascal Report 

Dispose (q, kl, ... , kn) d,~stroys the identifying value q.1t is an 
error if q is nil. "he value q must have been created by 
the second (Ion:!) form of New and the constants 
k1, ... ,kn mu· t select the same variants that were 
selected when th value was created, otherwise it is an 
error. 

11.4.3. Data transfer procedures, Let U denote a non-packed array 
variable having type 31 as its index type and T as its component type. 
Let P denote a packed array variable having 32 as its index type and T 

as its component type. Let Band c denote the smallest and largest 
values of type 32. Let K denote a new variable (not otherwise 
accessible) possessing type 31 and let J denote a new variable 
possessing type 32. Let I be an e\ pression that is compatible with 31. 

Pack (U, I, P) is equivalent to; he statement: 

begin 
K := I; 

for J := B to C do 
prJ] .- U[K]; 

if J <> C then K 
end 

end 

'ILn 

,ucc (K) 

Unpack (P , U, I) is equivalent 11) the statement: 

begin 
K := I; 

for J := B to C do b gin 
U[K] .- prJ]; 

if J <> C then K 
end; 

:cucc(K) 

end 

In each equivalence, P denotes me variable and U denotes one 
variable during all iterations of the for statement. 

11.5. Predeclared Functions 

11.5.1. Arithmetic functions. Let be any real or integer expression. 
The result type of abs and sqr is tllt~ same as the type of x. The result 
type of the other arithmetic functio 1" isreal. 

abs (x) 

sqr(x) 

yields the absolute \ due of x. 

yields the square of)o It is an error if the square does not 
exist in the implemelltation. 



Pascal Report 193 

sin (x) yields the sine of x, where x is in radians. 

cos (x) yields the cosine of x, where x is in radians. 

exp (x) yields the value of the base of natural logarithms raised 
to the power x. 

ln (x) yields the natural logarithm of x. It is an error if x is less 
than or equal to zero. 

sqrt (x) yields the square root of x. It is an error if x is negative. 

arctan (x) yields the principal value, in radians, ofthe arctangent 
ofx. 

11.5.2. Boolean functions. Let i be any integer expression, and let f 
denote any file variable. The result type of each Boolean function is 
Boolean. 

odd (i) is equivalent to the expression i mod 2 = 1. 

eo f ( f) is an error if f is undefined; otherwise, eo f ( f) yields 
true if f is in generation mode or if f is positioned past 
the last component in its sequence. If the parameter list 
is omitted, eof is applied to the program parameter 
Input. 

eoln (f) is an error if f is undefined or if eof (f) is true. f must 
be a textfile. Eoln (f) yields true if the current 
component of the sequence of f is an end-of-line 
marker. If the parameter list is omitted, eoln is applied 
to the program parameter Input. 

11.5.3. Transfer functions. Let r denote a real expression. The result 
type of these functions is Integer. 

t rune (r) yields a value such that if r >= 0 then 0 <= r -

trune(r) < 1, and if r < 0 then -1 < r -

t rune (r) <= o. It is an error if no such value exists. 

round (r) yields a value such that if r >= 0 then round (r) = 

trune(r + 0.5), and if r < 0 then round(r) = 

t rune (r - 0.5). It is an error if no such value exists. 

11.5.4 Ordinal functions. Let i be an integer expression, and let x be 
any ordinal expression. 



194 Pascal Report 

ord (x) yields the ordinal I umber of x. ehr (i) yields the 
value of type Char h wing ordinal number i. It is an error 
if no such value ex :,ts. If e denotes a character value 
then ehr (ord (e) ) c is always true. 

suee (x) yields the success('· of x, if any exists, in which case 
ord(suee(x)):d(x) + 1. It is an error if no 
successor exists. 

pred (x) yields the predeces~ or of x, if any exists, in which case 
ord (pred (x) ) ,rd (x) - 1. It is an error if no 
predecessor exists. 

12. Textfile Input and Output 

The basis for legible input and out lut are textfiles (see Section 6.2.4) 
that are passed as program paramders (see Section 13) to a Pascal 
program and that in the program \ environment may represent some 
input or output devices such as a ke ,I board, display, a magnetic tape, or 
a line printer. In order to facilita I,' the handling of textfiles, three 
predeclared procedures (Readln, VI it eln, and Page) are introduced, 
and two predeclared procedures (d d and w r i t e - see Section 
11.4.1) are extended. The textfiles hat these procedures apply to need 
not represent input or output devic~s, but can also be local files. The 
actual parameter lists for these procedures do not conform to the usual 
rules (Section 11.3), allowing amon 2. other things for a variable number 
of parameters. Moreover, the paran ,ders need not be of type Char, but 
also may be of certain other types in which case the data transfer is 
accompanied by an implicit data \.:ol1version operation. If the first 
parameter is a file variable, then tl i" is the file to be read or written. 
Otherwise, the program parameter ~ ,lput and Output (see Section 
13) are assumed for reading and w iting, respectively. 

12.1 Read 

When using Read on a textfile, the: ollowing rules apply. Let f denote 
a textfile, and let vI, ... ,vn deno\< variables possessing type Char or 
Integer (or subrange of either) or R ,~al. 



Pascal Report 195 

(a) Read(vI, ... ,vn) isequivalenttoRead(g,vl, ... ,vn), 
where g denotes the textfile program parameter Input. 

(b) Read (f, vI, ... , vn) is equivalent to the statement 
begin Read(f,vI); ... ;Read(f,vn) end 

where all occurrences of f denote a single variable. 
(c) Read ( f, v) is an error if f is undefined or if f in not in 

inspection mode or if eof (f) is true. The effect of 
Read (f, v) depends on the type of v. 

12.1.1. Char Read. Read (f, v), where v denotes a variable 
possessing a type that is compatible with type Char, is equivalent to 
assignment of a value to v followed by Get (f). The value assigned 
is either the character at the current position of f or the value of ft, the 
choice being implementation-dependent. (These two values are the 
same except following explicit assignments to ft.) If eoln (f) is true 
before Read ( f, v) , then the character at the current file position is' , 
(blank) . 

12.1.2. Integer Read Read (f, v), where v denotes a variable 
possessing a type compatible with type Integer, implies the reading 
from f of a sequence of characters which form a Signedlnteger (see 
Section 4) and the assignment of the denoted integer value to v. The 
value must be assignment-compatible with the type of v. Preceding 
spaces and end-of-line markers are skipped. It is an error if the signed 
integer is not found. 

12.1.3. Real Read. Read (f, v) , where v denotes a variable possess
ing the type Real, implies the reading from f of a sequence of charac
ters which form a SignedNumber (see Section 4) and the assignment of 
the denoted real value to v. Preceding spaces and end-of-line markers 
are skipped. It is an error if the signed number is not found. 

12.2 Readln 

Let f denote a textfile, and let vI, ... , vn denote variables of type 
Char or Integer (or subrange of either), or Real. 

ReadIn(vI, ... ,vn) is equivalent to ReadIn(g,vI, ... ,vn), 
and 

ReadIn is equivalent to ReadIn (g), where g denotes the textfile 
program parameter Input. 

ReadIn (f, vI, ... , vn) is equivalent to the statement 

begin Read(f,vI, ... ,vn); ReadIn(f) end 



196 Pascal Report 

where all occurrences of f denote a single variable. 
Readln (f) is equivalent to thl statement 

begin 
while not eoln(f) do ct(f); 
Get (f) 

end 

where all occurrences of f denote a single variable. 

12.3. Write 

When using Write on a textfile. the following rules apply. Let f 

denote a textfile, p, p1, ... , pn dellote WriteParameters, e denote an 
expression, and m and n denok integer expressions. The actual 
parameter list for write must have t he following syntax. 

WriteParameterList = "(" ( FileVariall/e I WriteParameter) 

{ "," Write? Irameter } ")" . 

WriteParameter = Expression [":" Int. ~I'rExpression [":" IntegerExpression]]. 

(a) Write (p1, ... ,pn) is equ,valent to 
Write (g,p1, ... ,pn). 

where g denotes the textfil: program parameter Output. 

(b) Write (f, p1, ... , pn) is quivalent to the statement 
begin Write (f, p1) .... ; Write (f, pn) end 

where all occurrences of 1 denote a single variable. 
(c) Write (f, p) is an error if! is undefined or not in 

generation mode. 
(d) Each write parameter has one of the following forms: 

e e:m e:n : n 

e represents the value to h' "written" on f, and m and n 

are so-called field-width parameters. It is an error if 
either m or n is less than I r equal to zero. The type of e 

must be either Integer, Rr II. Char, Boolean, or a string 
type. The expression n IT I Y occur only if e is of type 
Real (see Section 12.3.3). f fI is omitted, a default value 
is assumed. The default val Ie is implementation-defined 
if e is oftype Integer, Real. or Boolean. The default value 
for type Char is 1, and the d ~ fault value for a string type is 
the number of component~ in the string. 

If the representation of the value of e requires fewer 
than m characters, then il is preceded by an adequate 
number of spaces so that ex .lCtIy m characters are written. 



Pascal Report 197 

The representation of the value of e depends on the type 
of e. 

12.3.1. Char Write. If e is of type Char, then Wr ite (f ,e: m) IS 

equivalent to the statement 

begin 
for J := 1 to m - 1 do Write (f , I '); 

fi := e; Put (f) 

end 

where all occurrences of f denote a single variable, and where J 

denotes a new (not otherwise accessible) integer variable. 

12.3.2. Integer Write. If e is of type Integer, then Write(f/e:m) 
writes a I _I if e < 0, followed by the decimal representation of 
abs (e) . Preceding spaces are written if needed to write m characters. 

12.3.3. Real Write. If e is of type Real, Wr i te (f ,e: m: n) writes a 
fixed-point representation with n digits after the decimal point; and 
Wr i te (f ,e: m) writes a floating-point representation. The operator 
"* *" means "raised to the power." 

12.3.3.1. Fixed-point representation. Let w be zero if e is zero, 
otherwise let w be the absolute value of e rounded and then truncated 
to n decimal places. Let d be 1 if w < 1, otherwise let 10 * * (d -1) <= 

w < 10* * d. d is the number of digits to the left of the decimal point. 
Lets = ord((e < 0) and (w <> 0)). Therepresentationis 
negative if s = 1. Let k = (s + d + 1 + n); k is the number of 
non-blank characters written. 

If k < m, then m-k preceding spaces are written. The fixed-point 
representation of e consists of k characters: 

(a) I - I if s = 1 I 

(b) the d decimal digits of the integer part of w, 
(c) I • I , 

(d) the n most significant decimal digits of the fractional part 
ofw. 

12.3.3.2. Floating-point representation. The number of digits that 
are to occur in the scale factor ("E part") of the floating-point 
representation is implementation-defined; let x denote this number. 
Let k be the larger of m and x+6. The number of significant digits to be 
written is k-x-4, with one digit before the decimal point and d digits 
after (thus d = k-x-S). Let wand s be zero if e is zero. If e is non-



198 Pascal Report 

zero, thenlets besuchthatlC ,()'*s <= abs(e) < 10.0**(s+1), 
and let w be (abs(e)/lO.O** .1 + 0.5 * 10.0**(-d). Ifw >= 

10.0 thenw ands mustbead.llistedbys := s + 1 andw := w / 
10 . o. Finally, w is truncated to decimal places. 

The floating-point representat lun of e consists of: 
(a) either '-' if ((e < 0) ,nj (w <> 0)) or else ' , 
(b) the most significant deCimal digit of w, 
(c) , . ' , 
(d) the d next-most-signifk'ant decimal digits of w, 
(e) either ' e' or' E' (the choice being 

implementation-defined), 
(f) '-' if s < 0, otherwise' +', 
(g) x decimal digits of s with leading zeros if needed. 

12.3.4. Boolean Write. If e is of type Boolean, then a representation 
of one of the words true or alse is written by the statement 
Wr i te (f, e: m) , which is equivaknt to the statement 

if e then Write (f, 'tr ,,' :m) else 
Write(f,'false' :m) 

ith the exception that the case of the letters written is 
implementation-defined. 

12.3.5. String Write. If e possesses a string type of length k, then 
Wr i te (f, e: m) writes m - k spaces if m > k, followed by the 
components of e having successi\ e indices starting at 1 and ascending 
to either k or m, whichever is les'" 

12.4. Writeln 

Let f denote a textfile, and let p , ... , pn denote write parameters. 
Writeln (p1, ... ,pn) is eqUIvalent to writeln (g,p1, ... ,pn), 

and Writeln is equivalent to .. it eln (g), where g denotes the 
textfile program parameter Outpl , 

Writeln (f,p1, ... ,pn) is E'lluivalent to the statement 

begin Write (f,p1, ... ,f :; Writeln (f) end 

where all occurrences of f denoh' a single variable. 
Writeln (f) appends an end ,·of-line marker to the sequence of 

file f. It is an error if f is undefin.:d or if f is not in generaton mode. 



Pascal Report 199 

12.5. Page 

Page ( f) implies an implementation-defined effect on the textfile f, 

such that any text subsequently written to f will appear at the top of a 
new page when f is printed. If f is not empty, and the last component 
of its sequence is not an end-of -line marker, then Page (f) perfonns 
an implicit Writeln (f). If the parameter list is omitted, the textfile 
program parameter Output is assumed. It is an error if f is undefined 
or if f is not in generation mode. 

The effect of reading a file variable to which Page was previously 
applied is implementation-dependent. 

13. Programs 

A Pascal program consists of a program heading and a block. 

Program = ProgramHeading ";" Block "." . 

ProgramHeading = "program" Identifier [ ProgramParameterList 1 . 

ProgramParameterList = "(" IdentifierList ")" . 

The identifier following the symbol program is the program name; 
it has no further significance inside the program. Each identifier in the 
program parameter list is called a program parameter, and denotes an 
entity that exists outside the program and that, therefore, is called 
external. It is through its program parameters that the program 
communicates with its environment. 

When a program is activated, each program parameter is bound to 
the external entity that it represents. For those program parameters that 
are file variables, the binding is implementation-defined; for all other 
program parameters, the binding is implementation-dependent. 

Each program parameter, with the exception of Input and Output, 

must be declared in the variable declaration part of the program's block. 
In the case of Input or Output, the occurrence of the identifier in the 
program parameter list has the effect of implicitly declaring the 
identifier in the program block to be a textfile, and implicitly 
perfonning a Reset (Input) or Rewrite (Output) at the 
commencement of each activation of the program. 



200 Pascal Report 

The effect of applying Res~· or Rewrite to either Input or 
Output is implementation-defilled. 

Examples of programs: 

program CopyReals(F,G 
var F, G: file of R il; R: Real; 

begin 
Reset(F); Rewrite(G 
while not eof(F) do begin 

Read(F,R); Write( ,R) 
end 

end { CopyReals } . 

program CopyText(Inpu' ,Output); 
begin 

while not eof(Inputl do begin 
while not eo In (In] It.) do begin 

Inputi:= Output'; Put(Output); Get (Input) 
end; 
Readln(Input); Wr: eln(Output) 

end 
end { CopyText } . 

14. Compliance with ISO 7185 

A program complies with the ISO Pascal standard [see Reference 11] if 
it uses only the features ofthe language that are defined by the standard 
and it does not rely on ;II1Y particular interpretation of 
implementation-dependent featun~s. The program is said to comply at 
level 0 if it does not make use of I.· om formant array parameters, or at 
level 1 if it does. 

A processor is defined by . he standard to be "a system or 
mechanism that accepts a progran as input, prepares it for execution, 
and executes the process so definld with data to produce results." A 
processor complies with the stand; I rd if it satisfies all of the following 
conditions. 

(a) It accepts all features of the hlllguage as they are defined by the 
standard. It is said to comply at lewl 0 if it does not accept conformant 
array parameters, or at level 1 if it does. 

(b) It does not require the use 01 substitute or additional language 
elements in order to accomplish a feature of the language. 



Pascal Report 201 

(c) It is able to recognize violations of the standard that are not 
specifically called errors, reports such violations to the user, and 
prevents execution of the program. 

(d) It handles each violation that is specifically called an error in one of 
the following ways. 

1. It states in its documentation that the error is not reported. 
2. It reports during program preparation that the error is 

possible or inevitable; in the presence of such a report, the 
processor is able to continue further processing and is 
able to refuse execution, at the user's option. 

3. It reports during program preparation that the error 
occurred; in the presence of such an error, the processor 
terminates execution. When an error occurs within a 
statement, the statement does not complete execution. 

(e) It is able to process as an error any use of an extension or of an 
implementation-dependent feature. 

(D It is accompanied by a document that contains the following. 
1. A definition of all implementation-defined features. 
2. A section that describes all errors that are not reported (see 

d.1, above). If an extension makes use of a condition that 
is specified by the standard to be an error and thus the 
error is not reported, then the document must state that the 
error is not reported. 

3. A section that describes all extensions supported by the 
implementation. 



References 

1. N. Wirth, "The Programmin~ Language Pascal," Acta Informatica, 
1,35-63, 1971. 

2. N. Wirth, "Program Deve opment by Stepwise Refinement," 
Communications of the ACM, P, 221-227, April 1971. 

3. N. Wirth, Systematic Programming, Prentice-Hall, Inc., 1973. 

4. O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare, Structured Programming, 
Academic Press Inc., 1972. 

5. c.A.R. Hoare and N. Wirth. "An Axiomatic Definition of the 
Programming Language Pascal," Acta Informatica, 2, 335-355,1973. 

6. D.E. Knuth, The Art oj Computer Programming, Vol 1, 
Fundamental Algorithms, Addi~ 1.1I1-Wesley, 1968. 

7. N. Wirth, "An Assessment 0 the Programming Language Pascal," 
SIGPLAN Notices, 10,23-30, Jill!.? 1975. 

202 



References 203 

8. N. Wirth, "The Design of a Pascal Compiler," SOFTWARE 
Practice and Experience, 1,309-333,1971. 

9. N. Wirth, Algorithms + Data Structures = Programs, Prentice Hall, 
Inc., 1976. 

10. D. Barron, "A Perspective on Pascal" and J. Welsh, W. Sneeringer, 
and c.A.R. Hoare, "Ambiguities and Insecurities in Pascal," Pascal
The Language and its Implementation, John Wiley, 1981. 

11. International Organization for Standardization, Specification for 
Computer Programming Language Pascal, ISO 7185-1983, 1983. 

12. A.H.J. Sale and B. Wichmann "The Pascal Validation Suite," 
Pascal News 16, 5-153, 1979. 

13. N. Wirth, "What Can We Do About the Unnecessary Diversity of 
Notation for Syntactic Definitions?," Communications of the ACM, 20, 
822-823, November, 1977. 

14. B. Wichmann and Z.J. Ciechanowicz, Pascal Compiler Validation, 
John Wiley, 1983. 



APPENDIX A 

Predeclared Procedures and Functions 
Abs (x) 

an arithmetic function that computes I ~Ie real absolute value of a real parameter x 
or the integer absolute value of an integel parameter x. 

ArcTan (x) 
an arithmetic function that computes the real arctangent (principal value) in ra

dians of a real or integer parameter x. 

Chr(i) 
a transfer function that returns the chi' racter whose ordinal number is the integer 

parameter i. Ch r ( i ) is an error if such a character value does not exist. 

Dispose (q) 

a dynamic-allocation procedure that d .:allocates an identified variable q i and de
stroystheidentifyingvalueq. Dispose (1) isanerrorifq isnil orundefmed. 
The value q must have been created by II K~ short form of New. 

Dispose(q,kl, ... ,kn) 
a dynamic-allocation procedure that aeallocates an identified record variable q i 

and destroys the identifying value q. DisF ose (q, kl, ... , kn) is an error if q is 
nil or undefined. The value q must have been created by the long form of New and 
kl, ... , kn must select the same variants selected when q was created. 

Eof (f) 
a Boolean function that returns t ru ~ if the file variable f is in generation 

mode, or if f is positioned past the last COl Iponent in its sequence and f is in inspec
tion mode. eof (f) is anerrorif f is un! cfined. Otherwise eof (f) returns false. 
If f is omitted, program parameter Inpl t. is assumed. 

Eoln (f) 
a Boolean function that returns true 1 f the textfile f, when in inspection mode, 

is positioned at an end-of-line marker. e( .. n (f) is an error if f is undefined or if 
eof (f) is true. Otherwise eoln (f) I .:tums false. If f is omitted, program pa
rameter Input is assumed. 

2114 



Predeclared Procedures and Functions 205 

Exp(x) 
an arithmetic function that computes the real value of e (the base of naturalloga

rithms) raised to the real or integer parameter x. 

Get (f) 

a file-handling procedure that causes the position in the sequence f to be ad
vanced to the next component, if any, and f" to take on its value; if no next component 
exists eo f ( f) becomes true and f" becomes totally undefmed. Ge t (f) is an error 
if f is undefined or eof (f) is true. If f is omitted, program parameter Input is 
assumed. 

Ln(x) 

an arithmetic function that computes the real natural logarithm (to the base e) of 
the real or integer parameter x, where x > O. Ln (x) is an error if x<=o. 

New(p) 

a dynamic-allocation procedure that allocates a new identified (dynamic) vari

able pi having the domain type of p and creates a new identifying pointer value hav
ing the type possessed by p and assigns it to p. If p" is a variant record, New (p) 
allocates enough space to accommodate all variants. 

New (p, el, ... , en) 

a dynamic-allocation procedure that allocates a new identified (dynamic) vari

able pi having the variant record type of p with tagfield values e I, . . . , en for n 
nested variant parts, and creates a new identifying pointer value having the type pos
sessed by p and assigns it to p. 

Odd(i) 

a Boolean function that returns t rue if the integer parameter i is not evenly 
divisible by 2; returns fa 1 s e otherwise. 

Ord(x) 

a transfer function that returns the ordinal number (an integer) of the ordinal pa
rameter x in the set of values defined by the type of x. 

Paek(u,i,p) 

a data-transfer procedure that packs the contents of the non-packed array u start
ing at component i into the packed array p. 

Page (f) 

a file-handling procedure that causes an implementation-defined effect on the 
textfile parameter f such that the next line subsequently written to f will appear at 
the top of a new page when f is printed. If f is not empty, and the last component of 
its sequence is not an end-of-line marker, then Page (f) performs an implicit Wr i
tel n (f). If the parameter list is omit 



206 Appendix A 

ted,thetextfileprogramparameterOutr .. t. isassumed. Page (f) isanerroriff 
is undefined or if f is not in generation: node. 

Pred(x) 
a ordinal function that returns the pre IOUS ordinal value (predecessor) before the 

ordinalparameterx,ifapredecessorexi.ls: ord(pred(x)) = ord(x) - 1. 
P red (x) is an error if x is the smalle' I value of its type. 

Put (f) 
a file-handling procedure that appends the value of f" to the end of the sequence 

of f. Put (f) is an error if f is undefined or is not in generation mode or if the buffer 
variable f" is undefined. Following Put f), f" is totally undefined. 

Read(f,v) 
See User Manual, Chapters 9 and 12. and Report Sections 11.4 and 12.1. 

Read(f,vl, ... ,vn) 
See User Manual, Chapters 9 and 12 and Report Sections 11.4 and 12.1. 

Readln 
See User Manual, Chapters 9 and 12. and Report Section 12.2. 

Readln(f,vl, ... ,vn) 
See User Manuaf, Chapters 9 and 12. and Report Section 12.2. 

Reset (f) 
a file-handling procedure that places f in inspection mode and causes the posi

tion of f to become the first position. If f is empty, eo f (f) becomes true and f" 
becomes totally undefined. Otherwise eo:: (f) becomes false and f" becomes the 
value of the first component of the sequence. 

Rewrite (f) 
a file-handling procedure that replact; f with the empty sequence and places f 

in generation mode. Eo f ( f) becomes tI' Ie. 

Round(r) 
a transfer function that computes t r1 'I c' (r + O. 5 ) for the real parameter r 

>= 0.0, or trunc (r - 0.5) for the real parameter r < 0.0, if such a value 
exists in the type Integer. Otherwise it I~ an error. 

Sin(x) 
an arithmetic function that computes t i:lt~ real sine of a real or integer parameter x 

where x is in radians. 



Predeclared Procedures and Functions 207 

Sqr(x) 

an arithmetic function that computes the real value x * x if x is real or the 
integer value x * x if x is integer. It is an error if that value does not exist. 

Sqrt(x) 
an arithmetic function that computes the real, non-negative square root of the in

tegerorrealparameterx wherex >= o. Sqrt (x) isanerrorifx < o. 

Succ(x) 
an ordinal function that returns the next ordinal value (successor) after the ordinal 

parameter x, if such a successor exists: ord (succ (x)) = ord (x) + l. 
Sue c (x) is an error if x is the largest value of its type. 

Trunc(r) 
a transfer function that computes the greatest integer less than or equal to the real 

parameter r for r >= 0.0, or the least integer greater than or equal to the real 
parameter r, for r < o. 0 if such a value exists in the type Integer. Otherwise it is an 
error. 

Unpack(p,u,i) 
a data-transfer function that unpacks the packed array p into the non-packed 

array u starting at element i in the non-packed array. 

Write(f,v) 
See User Manual, Chapters 9 and 12, and Report Sections 11.4 and 12.3. 

Write(f,vl, .. ,vn) 
See User Manual, Chapters 9 and 12, and Report Sections 11.4 and 12.3. 

Writeln 
See User Manual, Chapters 9 and 12, and Report Section 12.4. 

Writeln(f,el, ... ,en) 
See User Manual, Chapters 9 and 12, and Report Section 12.4. 



APPENDIXB 

Summary of Operators 

Arithmetic 

Operator Operation Type of Operands Type of Result 
(unary) + identity Integer or Real same as operand 
(unary) - sign inversion Integer or Real same as operand 

+ addition Integer or Real Integer or Real 
subtraction Integer or Real Integer or Real 

* multiplication Integer or Real Integer or Real 

/ real division Integer or Real Real 
div integer division Integer Integer 
mod modulus Integer Integer 

Relational 

Operator Operation Tvpe of Operands Type of Result 
equality simple, pointer, Boolean 

set, or string 
<> inequality simple, pointer, Boolean 

set, or string 
<= less than simple or string Boolean 

or equal 
<= set inclusion set Boolean 
>= greater than simple or string Boolean 

or equal 
>= set inclusion set Boolean 
< less than simple or string Boolean 
> greater than simple or string Boolean 
in set membership ordinal and set Boolean 

208 



Summary of Operators 209 

Boolean 

Operator Operation Type of Operands Type of Result 
not negation Boolean Boolean 
and conjunction Boolean Boolean 
or disjunction Boolean Boolean 

Set 

Operator Operation Type of Operands Type of Result 
+ set union set ofT set ofT 

set difference set ofT set ofT 

* set intersection set ofT set ofT 

Operator Precedence in Expressions 
Operator 
not 
* / div mod and 
+ - or 
= <> > < >= <= in 

Other Operations 
Notation Operation 

Assignment 

assignment 

Variable Accessing 

L] array indexing 
field selection 

t identification 

t buffer accessing 

Construction 

[,] set construction 
, , string construction 

Classification 
logical negation 
multiplying operators 
adding operators 
relational operators 

Type of Operand 

any assignable type 

array 
record 

pointer 

file 

base type 
char 

Result Type 

none 

component type 
field type 

domain type 

component type 

set 
string 



APPENDIXC 

Tables 

Real 

[ 

-----------
Data Types I 

~ -----------Simple Data Types Struc :ured Data Types Pointer Data Types 

Ii'! \~ Array Record 
Data Type; Data Types 

Fil Set 
Data ') 'pes Data Types 

Ordinal Data Types 

Enumerated Predefined Subrange 
Data Types Ordinal Dat.1 Types 

Data Types 

/~~ 
Boolean Integer ( ar 

Figure C.a. Complete Type Taxonomy of Data Types 

210 



Tables 211 

Table of Standard Identifiers 

Constants: 

False, MaxInt, True 

Types: 

Boolean, Char, Integer, Real, Text 

Variables: 

Input, Output 

Functions: 

Abs, ArcTan, Chr, Cos, Eof, Eoln, Exp, Ln, Odd, 
Ord, Pred, Round, Sin, Sqr, Sqrt, Succ, Trunc 

Procedures: 

Dispose, Get, New, Pack, Page, Put, Read, Readln, 
Reset, Rewrite, Unpack, Write, Writeln 

Alphabetical List: 

Abs False Pack Sin 
ArcTan Get Page Sqr 
Boolean Input Pred Sqrt 
Char Integer Put Succ 
Chr Ln Read Text 
Cos Maxlnt Readln True 
Dispose New Real Trunc 
Eof Odd Reset Unpack 
Eoln Ord Rewrite Write 
Exp Output Round Writeln 



212 Appendix C 

Table of Symbols 

Special Symbols: 

+ 
< > 

* 
<= 

/ 
>= <> 

.-
i 

Word Symbols (reserved words) 

and end 
array file 
begin for 
case function 
const goto 
div if 

do in 
downto label 
else mod 

Alternative representations: 

(. for [ 
.) for 1 
@ orA fori 

Directives 

forward 

r.il 
riot 

(:f 

I,acked 
I·rocedure 
I rogram 
lecord 
1 E~peat 

set 
then 
to 

type 
until 
var 
while 
with 



APPENDIXD 

Syntax 

An Extended Backus-Naur Form (EBNF) specification of the syntax of a program
ming language consists of a collection of rules or productions collectively called a 
"grammar" that describe the formation of sentences in the language. Each production 
consists of a non-terminal symbol and an EBNF expression separated by an equal sign 
and terminated with a period. The non-terminal symbol is a "meta-identifier" (a syn
tactic constant denoted by an English word), and the EBNF expression is its definition. 

The EBNF expression is composed of zero or more terminal symbols, non-terminal 
symbols, and other metasymbols summarized in this table: 

MetaSymbol Meaning 

[X] 
{X} 
(XI Y) 
"XYZ" 

Meta-Identifier 

is defined to be 
alternatively 
end of production 
o or 1 instance of X 
o or more instances of X 
a grouping: either X or Y 
the terminal symbol XY Z 

the non-terminal symbol Metaldentifier 

As an example, EBNF can be used to define its own syntax. 

Syntax 

Production 

Expression 

Term 

Factor 

Terminal 

NonTerminal 

= { Production } . 

= NonTerminal "=" Expression H." . 

= Term [ HI" Term] . 

= Factor { Factor} . 

= NonTerminal1 Terminal I H(" Expression H)" 

H[" Expression HJ" H {" Expression H}" . 

= HHH" Character { Character} '''''''' . 

= Letter { Letter I Digit} . 

213 



214 Appendix D 

Notes: 
1. A terminal symbol (literal) is always enl Insed in quotation marks (""); if a " itself is 
enclosed, it is written twice. Thus in the P,,,.:al EBNF below "["and '']'' represent left 
and right brackets in a Pascal program, wh .' reas [ and] are meta-symbols in an EBNF 
expression that specify zero or one occun I'nce of whatever they enclose. 
2. Every syntax has a start symbol, a met· identifier from which all the sentences in 
the language are generated and which is 11111 used in any EBNF expression. The start 
symbol for the Pascal syntax is Program. 
3. Several meta-identifiers are "orphans" ,~.g. SignedNumber) that are used in EBNF 
and do not appear in this Appendix. 



Syntax 215 

Collected EBNF, Hierarchical 

1 Program 
2 ProgramHeading 
3 ProgramParameterList 
4 

= ProgramHeading ";" Block "0" 0 

= "program" Identifier (ProgramParameterList 1 0 

= "(" IdentifierList ")" 0 

5------------------
6 
7 Block 
8 
9 
10 

11 
12 
13 LabelDeclarationPart = 
14 
15 ConstantDefinitionPart = 
16 
17 TypeDefinitionPart = 
18 

Labe !Dec larationP art 
C onstantDefinitionP art 
TypeDefinitionPart 
VariableDeclarationPart 
ProcedureAndFunctionDeclarationPart 
StatementPart 0 

["label" DigitSequence 
{ "," DigitSequence I ";" 1 
["canst" ConstantDefinition ";" 

{ ConstantDefinition ";" I 1 0 

["type" TypeDefinition ";" 
{ TypeDefinition ";" I 1 0 

19 VariableDeclarationPart ["var" VariableDeclaration ";" 
20 ( VariableDeclaration ";" ) 1 0 

21 ProcedureAndFunctionDeclarationPart = { (ProcedureDeclaration I 
22 FunctionDeclaration) ";" I 
23 StatementPart = CompoundStatement 0 

24 
25 
26 ConstantDefinition 
27 TypeDefinition 
28 VariableDeclaration 
29 ProcedureDeclaration 
30 
31 
32 FunctionDeclaration 
33 
34 

35 
36 
37 

Identifier "=" Constant 0 

= Identifier "=" Type 0 

IdentifierList ":" Type 0 

= ProcedureHeading ";" Block I 
ProcedureHeading ";" Directive 
Procedureldentification ";" Block 0 

= FunctionHeading ";" Block I 
FunctionHeading ";" Directive I 
FunctionIdentification ";" Block 0 



216 Appendix D 

38 ProcedureHeading 
39 Procedureldentification 
40 FunctionHeading 

" = proce 

= "pro{ 

"fun( 

. ['"" Identifier [FormaIParameterList] . 
·jllre" Procedureldentifier. 

= 
41 

>n" Identifier [FormaIParameterList] 
":" j.. ·.llIltType . 

42 Functionldentification 
43 FormalParameterList 
44 

= 
= 

"func . '"" Functionldentifier. 
"(" FI 'mwlParameterSection 
{ ";" h'lrl1lalParameterSection I 
Valuei'arameterSpecification I 

")" . 
45 FormalParameterSection = 
46 
47 
48 

VarilliJleParameterSpecification I 
Prot "dllraIParameterSpecification I 
Funt 'iollalParameterSpecification . 

49 
50------------------
51 
52 ValueParameterSpecification = 
53 Identi/ierList ":" (Typeldentifier I 
54 COl/formantArraySchema) . 
55 VariableParameterSpecification = 
56 "var" IdentifierList ":" (Typeldentifier I 

57 Cl·.!/(JrmantArraySchema) . 
58 ProceduralParameterSpecification = 
59 Proce Il/reHeading . 
60 FunctionalParameterSpecification = 
61 Funcr ",rHeading . 
62 ConformantArraySchema = PackciCtlnformantArraySchema I 
63 Unpul·kedConformantArraySchema. 
64 PackedConformantArraySchema = 
65 "packed' ",lfray" "[" IndexTypeSpecification "]" 
66 "of" Typeldentifier . 
67 UnpackedConformantArraySchema = 
68 "arra .... [" IndexTypeSpecification { ";" 

69 
70 
71lndexTypeSpecification = 
72 
73-----------------
74 

Ind, \'1~'peSpecification I "]" "of" 

( TYi ddent~fier I ConformantArraySchema) . 
Ident/ i(',. .... " Identifier ":" 

OrdinalTypeldentifier. 

75 CompoundStatement 
76 

= "beg;" 

77 
78 StatementSequence 
79 Statement 
80 
81 SimpleStatement 
82 

Stat, II/I'll/Sequence 
"end" 

= StateflicllI {";" Statement I 
= [Lab(/":" I 

( SimpleStatement I StructuredStatement ) . 
= Empt.' 'itatement I AssignmentStatement 

I ProcedureStatement I GotoStatement. 



83 StructuredStatement 
84 
85 ConditionalStatement 

Syntax 217 

CompoundStatement I ConditionalStatement 
I RepetitiveStatement I WithStalement. 

IjStatement I CaseStatement. 
86 RepetitiveStatement 
87 

= WhileStatement I RepeatStatement I 

88 
89 EmptyStatement 
90 AssignmentStatement 
91 
92 ProcedureStatement 
93 
94 GotoStatement 
95 IjStatement 
96 
97 CaseStatement 
98 
99 
100 RepeatStatement 
101 
102 
103 WhileStatement 
104 
105 ForStatement 
106 
107 WithStatement 
108 

ForStatement. 

( Variable I Functionldentifier ) 
":=" Expression. 

Procedureldentifier [ActualParameterList 
I WriteParameterList 1 . 
"goto" Label. 
"if" BooleanExpression "then" Statement 
[ "else" Statement 1 . 
"case" Caselndex"of" 

Case { ";" Case I [";" 1 
"end" . 
-, " repeat 

StatementSequence 
"until" BooleanExpression . 
"whil e" BooleanExpression "do" 

Statement. 
"for" ControLVariable ":=" InitiaLValue 

("to" I "downto") FinalValue "do" Statement. 
"w i t h" R ecordVariableList "do" 

Statement. 
109 RecordVariableList 
110 CaseIndex 

= RecordVariable { "," RecordVariable I 
OrdinalExpression . 

III Case 
112 ControLVariable 
113 InitiaLValue 
114 FinaLValue 
115 
116-------------------
117 
118 Type 
119 Simple Type 
120 StructuredType 
121 
122 PointerType 
123 OrdinalType 
124 

= 

125 UnpackedStructuredType = 
126 
127 DomainType 
128 EnumeratedType 

Constant { "," Constant I ":" Statement. 
Variableldentifier . 
OrdinalExpression . 
OrdinalExpression. 

SimpleType I StructuredType I PointerType . 
OrdinalType I RealTypeldentifier. 
[ "packed" 1 UnpackedStructuredType I 

StructuredTypeldentifier . 
"i" DomainType I PointerTypeIdentifier. 
EnumeratedType I SubrangeType I 

OrdinalTypeIdentifier . 
ArrayType I RecordType I SetType I 

FileType. 
Typeldentifier. 
"(" IdentifierList ")" . 



218 Appendix D 

129 SubrangeType 
130 
131 ArrayType 
132 
133 RecoraType 
134 
135 
136 SetType 
137 FileType 
138lndexType 
139 ComponentType 
140 BaseType 
141 ResultType 
142 
143 FieldList 
144 
145 FixedPart 
146 VariantPart 
147 
148 
149 RecordSection 
150 VariantSelector 
151 Variant 
152 TagType 
153 TagField 

= Consl lilt .... " Constant. 

= "arr<" "'" IndexType {"," IndexType } "]" 
"of' ('omponentType . 

= "rec( i 

Fie/lUst 

"set ,- '_!" BaseType . 
= "filE - .. f" ComponentType. 
= Ordin dT\'pe . 
= Type. 
= Ordin"dType . 
= Ordin..llTypeldentifier I RealTypeIdentifier 

I Poi"lerTypeldentijier . 
[ ( FLI ,dPart [";" VariantPart] I VariantPart) 

[ '," , ] . 
Recor,/Section {";" RecordSection } 
"case VariantSelector "of" 

Vanf/lf 
{ ";' \cwiant}. 

ldent!i aList ":" Type. 
[ Tag! 'I'hl ":"] Tag Type . 
Const"lIt { "," Constant} ":" "(" FieldList ")" . 

= Ordin" iT\'peidentifier . 
= ldentij IT . 

154 
155-------------------
156 
157 Constant 
158 

[Sign I ( UnsignedNumber I Constantldentijier) 
ClwracterString . 

159 
160----------
161 
162 Expression 
163 
164 SimpleExpression 
165 Term 
166 Factor 
167 
168 
169 RelationalOperator 
170 AddingOperator 
171 MultiplyingOperator 
172 UnsignedConstant 
173 
174 FunctionDesignator 

= Simple I \f'I"cssion [RelationalOperator 
Simi '1'1: 'pression I . 

= [ Sign 'I/Tm {AddingOperator Term} 
FactOl I MultiplyingOperator Factor} . 
Unsigl 'cd< 'onstant I Boundldentifier I Variable 

I,' ,('(Constructor I FunctionDesignator I 
" ." Factor I "(" Expression ")" . 

= "=" I ,. :">" I "~<~. I "<=" I ">" I ">=" I "in" . 

= "+" I -" I Hor"'. 

= "*,, I . /" I Hdiv" I "mod" I "and" . 

= Uns(f?I'cdNumber I CharacterString I 
Con."ill/tldentifier I "nil". 

= Functi"l/ldentifier [ActualParameterList] . 



175 
176 Variahle 
177 
178 EntireVariahle 
179 ComponentVariahle 
180ldentifiedVariahie 
181 BufferVariahle 
1821ndexedVariahie 
183 FieldDesignator 
184 SetConstructor 
185 
186 ElementDescription 
187 ActualParameterList 
188 
189 ActualParametcr 
190 
191 WriteParameterList 
192 
193 WriteParameter 
194 
195 ArrayVariahle 
196 RecordVariahle 
197 FileVariahle 
198 PointerVariahle 
1991ntegerExpression 
200 BooleanExpression 
201 Index 
202 OrdinalExprcssion 
203 
204 
205 PointerTypeldentifier 
206 StructuredTypeldentifier = 
2070rdinalTypeidentifier 
208 RealTypeldentifier 
209 Constantldentifier 
210 Typeldentifier 
211 Variahleldentifier 
212 Fieldldentifier 
213 Procedureldentifier 
214 Functionldentifier 
215 Boundldentifier 
216 
217 
218 UnsignedNumhcr 
2191dentifierList 

Syntax 219 

EntireVariahle I ComponentVariable I 
IdentifiedVariahle I BufferVariahle, 

Variahleldentifier , 
= IndexedVariahle I FieldDesignator, 

PointerVariahle "j" , 
FileVariahle "j" , 
ArravVariahle "[" Index { "," Index 1 "]", 
[RecordVariahle "," I Fieldldentifier, 
"[" [ ElementDescription 

{ "," ElementDescription 1 I "]" , 
OrdinalE\pression [ " .. " OrdinalExpression ] , 
"(" ActualParameter 

{ "," ActualParameter 1 ")" , 
Expression I Variahle I Procedureldentifier 

I Functionldentifier , 
"(" (FileVariahle I WriteParameter) 

"," WriteParameter 1 ")", 
Expression [":" IntegerE\pression 

[ ":" IntegerExpression J ] , 

Varia hie , 
Variahle , 
Variahle, 
Variahle, 
Ordinal Expression , 
OrdinalExpression, 
Ordinal Expression , 
Expression, 

Typeldentifier, 
Typeldentifier, 
Typeldentifier, 
Tvpeldentifier, 
Identifier, 
Identifier , 
Identifier , 
Identifier, 
Identifier, 
Identifier, 
Identifier, 

Unsignedlnteger I UnsignedReal, 
Identifier { "," Identifier 1 ' 



220 Appendix D 

220 
221 
222 
223 Identifier 
224 Directive 
225 Label 
226 UnsignedInteger 
227 UnsignedReal 
228 
229 ScaleF actor 
230 Sign 
231 CharacterString 
232 DigitSequence 
233 
234 Letter 
235 
236 
237 
238 Digit 
239 
240 StringElement 

Lettel I Letter I Digit I 
Leffci {Letter I Digit I 
Digit.' ,'4I1cnce . 

= Digit.' (illence . 
Digit.'quence "." DigitSequence ["e" 

Scale I ill '(or 1 I DigitSequence "e" ScaleFactor. 
= [Sign IlJigitSequence. 
= "+" I "-". 

"I" SI"ingElement { StringElement J "I" 

Digit I Digit J • 

" " 'b" " " "d" " " "f" " " a c e g 

"h" ., "j" "k" "1" " " " " m n 

" " " " " " " " " "t" " " 0 p q r s u 

" " .. " " " " " " " V 'N X Y z 

"0" "2" u 3" "4" I "5" I "6" 

"7" ".<," "9" 
"I I" AnyCharacterExceptApostrophe. 



Cross Reference of EBNF 
Indexed to Report 

Report Meta-Identifier 

11.3.2. ActualParameter 
11.3.2. ActualParameterList 
8. AddingOperator 

Syntax 221 

EBNF Cross Reference 

187 188 189 
92 174 187 
164 170 

4. AnyC haracterExceptApostrophe 240 
6.2.1. ArrayType 125 131 
7.2.1. Array Variable 182 195 
9.1.1. AssignmentStatement 81 90 
6.2.3. BaseType 136 140 
10.1. Block 1 7 29 31 32 34 
8. BooleanExpression 95 102 103 200 
11.3.1.1. Boundldentifier 166 215 
7.4. BufferVariable 177 181 
9.2.2.2. Case 98 98 111 
9.2.2.2. Caselndex 97 110 
9.2.2.2. CaseStatement 85 97 
4. CharacterString 158 172 231 
6.2.1. ComponentType 132 137 139 
7.2. C omponentVariable 176 179 
9.2.1. CompoundStatement 23 75 83 
9.2.2. ConditionalStatement 83 85 
11.3.1.1. ConformantArraySchema 54 57 62 70 
5. Constant 26111111129129151151157 
5. ConstantDefinition 15 16 26 
5. ConstantDefinitionPart 8 15 
5. Constantldentifier 157 173 209 
9.2.3.3. ControLVariable 105 112 
4. Digit 223 224 232 232 238 
4. DigitSequence 13 14225226227228229232 
4. Directive 30 33 224 
6.3. DomainType 122 127 
8. ElementDescription 184 185 186 
9.1. EmptyStatement 81 89 
7.1. EntireVariable 176 178 
6.1.1. EnumeratedType 123 128 
8. Expression 91 162 168 189 193 201 
8. Factor 165 165 166 168 
7.2.2. FieldDesignator 179 183 
6.2.2. Fieldldentifier 183 212 
6.2.2. FieldList 134 143 151 



222 Appendix D 

6.2.4. FileType 126 137 
7.4. FileVariable 181 191 197 
9.2.3.3. FinalValue 106 114 
6.2.2. FixedPart 143 145 
9.2.3.3. ForStatement '11.7 105 
11.3.1. F ormalParameterList 38 40 43 
11.3.1. F ormalParameterSection 43 44 45 
11.2. FunctionDeclaration 22 32 
8. FunctionDesignator 167 174 
11.2. FunctionHeading 32 33 40 61 
11.2. FunctionIdentification 34 42 
11.2. FunctionIdentifier 42 90 174 190 214 
11.3.1.2. FunctionParameterSpecificulion 48 60 
9.1.3. GotoStatement 82 94 
7.3. IdentifiedVariable 177 180 
4. Identifier 2 26 27 38 40 71 71 153 

209 210 211 212 213 
214 215 219 219 223 

6.1.1. IdentifierList 3 28 53 56 128 149 219 
9.2.2.1. IjStatement '11.5 95 
7.2.1. Index 182 182 201 
6.2.1. IndexType 131 131 138 
11.3.1.1. Index Type Specification 65 68 69 71 
7.2.1. I ndexedVariable 179 182 
9.2.3.3. InitialValue 105 113 
8. IntegerExpression 193 194 199 
10.1.1. Label 79 94 225 
10.1.1. LabelDeclarationPart 7 13 
4. Letter 223 223 224 224 234 
8. MultiplyingOperator 165 171 
8. OrdinalExpression 110 II 3 114 186 186 199 

200 20\ 202 
6.1. OrdinalType 119 123 138 140 
6.1. OrdinalTypeldentifier 72 124 141 152 207 
11.3.1.1. PackedConformantArrayScfl, 11111 62 64 

6.3. Pointe/Type 11'11. 122 
6.3. PointerTypeldentifier 1~2 142 205 
7.3. PointerVariable 1 SO 198 
11.3.1.2. ProceduralParameterSpecifi, ill'l/l 47 58 
11. ProcedureAndFunctionDec/a ,/1 i, I/lPart 11 21 
11.1. ProcedureDeclaration ..'1 29 
11.1. ProcedureHeading ~l) 30 38 59 
11.1. Procedureldentification 31 39 
1\.1 Procedureldentifier III 92 189 213 
9.1.2. ProcedureStatement '11.2 92 
13. Program I 



13. 
13. 
6.1. 
6.2.2. 
6.2.2. 
7.2.2. 
9.2.4. 
8. 
9.2.3.2. 
9.2.3. 
11.2 
4. 
8. 
6.2.3. 
4. 
8. 
9.1. 
6.1. 
9. 

9. 
9.2. 
4. 
9.2. 
6.2 
6.2. 
6.1.3. 
6.2.2. 
8. 
6. 
6. 
6. 
6. 

11.3.1.1. 
6.2. 
8. 
4. 
4. 
4. 
11.2.1.1. 
7. 

7. 
7. 
7. 

ProgramHeading 
ProgramPm·ameterList 
RealTypeldentifier 
RecordSection 
RecordType 
RecordVariable 
RecordVariableList 
RelationalOperator 
RepeatStatement 
RepetitiveStatement 
ResultType 
ScaleFactor 
SetC onstructor 
SetType 
Sign 
SimpleExpression 
SimpleStatement 
SimpleType 
Statement 

StatementPart 
StatementSequence 
StringElement 
StructuredStatement 
StructuredType 
StructuredTypeldentifier 
SubrangeType 
TagField 
Term 
Type 
TypeDefinition 
TypeDefinitionPart 
Typeldentifier 

1 2 
2 3 
119 141 208 
145 145 149 
125 133 
109 109 183 196 
107 109 
162 169 
86 100 
84 86 
41 141 
228 228 229 
167 184 
125 136 
157 164 229 230 
162 163 164 
80 81 
118 119 
78 78 79 95 96 104 
106 108 111 
12 23 
76 78 101 
231 231 240 
80 83 
118 120 
121 206 
123 129 
150 153 
164 164 165 
27 28 118 139 149 
17 18 27 
9 17 
53 56 66 70 127 205 
206 207 208 210 

UnpackedConformantArraySchema 63 67 
UnpackedStructuredType 120 125 
UnsignedConstant 166 172 
Unsignedlnteger 218 226 
UnsignedNumber 157 172 218 
UnsignedReal 218 227 
ValueParameterSpecification 45 52 

Syntax 223 

Variable 90 166 176 189 195 196 
197 198 

VariableDeclaration 
VariableDeclarationPart 
Variableldentlfier 

19 20 28 
10 19 
112 178 211 



224 Appendix D 

11.3.1.1. VariableParameterSpecijicl' ';011 46 55 
6.2.2. Variant 147 148 151 
6.2.2. VariantPart 143 143 146 
6.2.2. VariantSelector 146 150 
9.2.3.1. WhileStatement 116 103 
9.2.4. WithStatement 114 107 
12.3. WriteParameter 191 192 193 
12.3. WriteParameterList 93 191 

Word Symbol EBNF Cross Reference 

and 171 
array 65 68 131 
begin 75 
case 97 146 
const 15 
div 171 
do 103 106 107 
downto 106 
else 96 
end 77 99 135 
file 137 
for 105 
function 40 42 
goto 94 
if 94 
in 169 
label \3 
mod 171 
nil 173 
not 168 
of 66 69 97 132 136 137 146 
or 170 
packed 65 120 
procedure ~x 39 
program ) 

-
record I.B 
repeat 100 
set 1'6 
then 95 
to 1()6 
type 17 
until 102 
var 19 56 
while 103 
with I07 



Syntax 225 

Collected EBNF, Alphabetical 

ActualParameter 

ActualParameterList 
AddingOperator 
ArrayType 

Array Variable 
AssignmentStatement 
BaseType 
Block 

BooleanExpression 
Boundldentifier 
BufferVariable 
Case 
Caselndex 
CaseStatement 

CharacterString 
ComponentType 
ComponentVariable 
CompoundStatement 

ConditionalStatement 
C onformantArraySchema 

Constant 

ConstantDefinition 
ConstantDefinitionPart 

Expression I Variable I Procedureldentifier 
I Functionldentifier. 

"(" ActualParameter { "," ActualParameter I ")". 
"+" I "-" I "or". 

"array" "[" IndexType { "," IndexType I "]" "Of" 

ComponentType . 
= Variable. 

= 
= 

= 
= 

( Variable I Functionldentifier) ":=" Expression. 
OrdinalType . 
LabelDeclarationPart 
C onstantDefinitionP art 
TypeDefinitionPart 
VariahleDeclarationPart 
StatementPart . 

OrdinalExpression. 
Identifier. 
FileVariahle "i" . 
Constant { "," Constant I ":" Statement. 
OrdinalExpression . 
"case" Caselndex "of" 

Case { ";" Case I [";"] 
"end" . 

"f" StringElement { StringElement I 
Type. 
IndexedVariahle I FieldDesignator. 
"begin" 

StatementSequence 
"end" . 

I/Statement I CaseStatement. 
PackedConformantArraySchema I 
U npackedC onformantArraySchema . 

"I" 

[Sign]( UnsignedNumher I Constantldentifier) 
/ CharacterString . 

Identifier "=" Constant . 
[ "const" ConstantDefinition ";" 

{ ConstantDefinition ";" I ] . 



226 Appendix D 

Constantfdentifier 
C ontrolVariable 
Digit 

DigitSequence 
Directive 
DomainType 
ElementDescription 
EmptyStatement 
Entire Variable 
EnumeratedType 
Expression 

Factor 

FieldDesignator 
Fieldfdentijier 
FieldList 

FileType 
FileVariable 
FinalValue 
FixedPart 
ForStatement 

F ormalP arameterList 

F ormalParameterSection 

FunctionDeclaration 

FunctionDesignator 
FunctionHeading 

= 

= 

Functionfdentification 
Functionfdentifier 
FunctionalParameterSpecification 

GotoStatement 

fdentifiedVariable 

fdell'i/ier. 
Vari, I /JIc/dent(f/er . 
.. o~' "," I "'2" I "3" I "4" I '''5'' I "6" I 

Dig/ I Digit I 
Lett, I Letter I Digit I 
Typcldl'ntifier. 
Ordi ,."Expression [ " .. " OrdinalExpression] . 

Vari, , /,Ieldentifier . 
"(" 1<ll'lItijierList ")" . 
Simp 'cE.\pression [RelationalOperator 

Sin',nleK\pression] . 
Unsi':lIcdConstant I Boundldentifier I Variable 
I Se/Constructor I FunctionDesignator I 

"not" ractor I "(" Expression ")" . 

[Rec ,rdVariable "." 1 Fieldldentifier. 
fdelll Ii('/" . 
r (Fi ('(/Part r ";" VariantPart J I VariantPart) 
r ";' J. 

"fil· ... ,t" ComponentType . 
Varia I,ll' . 
Ordi/"i/i:'.rpression. 
Reco/II'Scction I ";" RecordSection I 
"for' ('ullfroIVariable ":=" InitialValue 
("tc' I "downto") FinalValue "do" Statement. 

"(" F, '1'I1I<lIParameterSection 
I ";" / .lmwlParameterSection I ")" . 
Valuci',/ri/mcterSpecijication I 

Van ,i/,lcParamererSpecijieation I 
Pro, ,dllralParameterSpecification 
FUll ,'!f /Iii/I ParameterSpecijication . 

Func/ '1il/cllding ";" Block I 
rUII ,/, IIII/eading ";" Directive I 
FUll Ii, ,"Ie/ellfitication ";" Block. 

Func/ ,,/!d('l/tijier [ ActualParameterList I . 
"func "Identijierl FormalParameterList J 
";" I< \/tlr1\pe. 

"func " FlInctionldentifier . 
Identi;, , r 

Funer/"IIf/eailing. 
"goto' I_IIhel. 

Pointe' \ (/riable "I" . 



Identifier 
IdentiJierList 
IjStatement 

Index 
IndexType 
I ndexTypeSpeciJication 

IndexedVariahle 
InitialValue 
IntegerExpression 
Lahel 
LahelDeclarationPart 

Letter 

MultiplyingOperator 
OrdinalExpression 
OrdinalType 

Syntax 227 

= Letter { Letter I Digit I . 
IdentiJier { "," IdentiJier I 
"if" BooleanExpression "then" Statement 
[ "else" Statement] 
OrdinalExpression . 
OrdinalType . 
IdentiJier " .. " IdentiJier ":" 

OrdinalTypeldentiJier. 
ArrayVariahle "[" Index { "," Index I "]". 
OrdinalExpression . 

= OrdinalExpression . 
= DigitSequence . 

["label" DigitSequence 
{ "," DigitSequence I ";"] . 

= "a" I "b" I "e" I "d" I "e" I 
"h" "i" I "j" I "k" I "1" 

"0" "p" I "q" I "r" I "s" 

"v" "w" I "x" I "y" I "z" . 

"f" 

" " m 

"t" 

"*,, I "I" I "di v" I "mod" I "and" . 

Expression. 
= EnumeratedType I SuhrangeType I 

OrdinalTypeldentiJier . 

" " g 

" " n 

" " u 

OrdinalTypeldentiJier = TypeldentiJier. 
PackedConformantArraySchema = 

PointerType 
PointerTypeldentifier 
PointerVariahle 

"packed" "array" "[" IndexTypeSpeciJication "]" 
"of" TypeldentiJier . 

"i" DomainType I PointerTypeldentiJier. 
Typeldentifier. 
Variahle. 

ProceduralParameterSpeciJication = ProcedureHeading . 
ProcedureAndFunctionDeclarationPart = { (ProcedureDeclaration I 

ProcedureDeclaration 

ProcedureH eading 
ProcedureldentiJication 
Procedureldentifier 
ProcedureStatement 

Program 
ProgramHeading 
ProgramParameterList 
RealTypeldentiJier 
RecordSection 

FunctionDeclaration ) ";" I 
ProcedureHeading ";" Block I 

ProcedureHeading ";" Directive I 
ProcedureldentiJication ";" Block. 

"procedure" IdentiJier [FormaIParameterList] . 
"procedure" ProcedureldentiJier . 
IdentiJier. 
ProcedureldentiJier [ActualParameterList 
/ WriteParameterList] . 

ProgramHeading ";" Block "." . 
= "program" IdentiJier [ProgramParameterList] . 
= "(" IdentiJierList ")" . 

TypeldentiJier. 
IdentiJierList ":" Type. 



228 Appendix D 

RecordType 

RecordVariable 
R ecordVariableList 
RelationalOperator 
RepeatStatement 

RepetitiveStatement 

ResultType 

ScaleF actor 
SetConstructor 

SetType 
Sign 
SimpleExpression 
SimpleStatement 

SimpleType 
Statement 

StatementPart 
StatementSequence 
StringElement 
StructuredStatement 

StructuredType 

StructuredTypeldentifier 
SubrangeType 
TagField 
TagType 
Term 
Type 
TypeDefinition 
TypeDefinitionPart 

"end 

Vari(,I,Ii' . 
Rec() ,/1 (Jriable { "," RecordVariable} . 
H=" I "<>" I H<" I "<=" I ">" I ">=" I "in" . 

" rep' It 

Stat, 'mentSequence 
"unt i" BooleanExpression . 
While'ltatement I RepeatStatement I 

FO/ )tatement . 
OrdilililTvpeldentifier I RealTypeldentifier 
I Poilli'crTypeldentifier . 
r Sigll I DigitSequence . 
"[" [ FlementDescription 

I "," ElementDescription } 1 "]" . 
"set" "nf" BaseType. 
"+" I "-"'. 

[Sign I Term {AddingOperator Term} 
Empt' \'tatement I AssignmentStatement 

Prot l'ill/reStatement I GotoStatement. 
Ordill.l/'I\'pe I RealTypeldentifier. 
[Lab, /":" I 

( Sf ".I/,/eStatement I StructuredStatement ) . 
CompulIlldStatemenf. 
Stateml'l1t { ";" Statement} . 
"I I" AnyCharacterExceptApostrophe. 
Comp,'fmdStatement I ConditionalStatement 

I Rel" 'titil'eStatement I WithStatement. 
["pac, . I" I UnpackedStructuredType I 

Stru IlIlcdTypeldentifier. 
Tvpel, "'Iltifier. 
Const, lilT ...... COl/stant. 
ldenti, , I . 

Ordin, I i /lpcldentifier . 
Facto, I, MllltiplvingOperator Factor} 
Simp I, I I/'e I StructuredType I PointerType . 
ldenti/II'[' "=" Type. 
["tYr .. /vpeDefinition ";" 

{ TYI I ,-f)e/inition ";"} I . 
Typeldentifier ldent(fll'l' . 
U npackedC onformantArraySchema = 

"arra .. 'r IndexTJPeSpecification {";" 
Inde.llrpcSpecijication } '']'' "of" 

( Typ, ' fd('flti/ier I ConformantArraySchema) . 



UnpackedStructuredType = 
UnsignedConstant = 

UnsignedInteger 
Unsigned Number = 
UnsignedReal 

ValueParameterSpecification 

Variable = 

VariableDeclaration = 
VariableDec larationP art = 

VariableIdentifier 
VariableParameterSpecification = 

Variant 
VariantPart 

VariantSelector 
WhileStatement 

WithStatement 

WriteParameter 

WriteParameterList 

Syntax 229 

ArrayType 1 RecordType 1 SetType 1 FileType . 
UnsignedNumber 1 CharacterString I 

ConstantIdentifier 1 "nil". 

DigitSequence . 
UnsignedInteger 1 UnsignedReal. 
DigitSequence "." DigitSequence ["e" 

ScaleF actor] 1 DigitSequence" e" ScaleF actor. 
IdentifierList ":" (TypeIdentifier I 

ConformantArraySchema) . 
EntireVariable I ComponentVariable 

IdentifiedVariable I BufferVariable. 
IdentifierList ":" Type. 
[ "var" VariableDeclaration ";" 

{ VariableDeclaration ";"} ] . 
Identifier. 
"var" IdentifierList ":" (Typeldentifier I 

ConformantArraySchema) . 
Constant { "," Constant} ":" "(" FieIdList ")" . 
"case" VariantSelector "of" 

Variant 
{ ";" Variant} . 

[ TagField ":"] TagType. 
"while" BooleanExpression "do" 

Statement. 
"with" RecordVariableList "do" 

Statement. 
Expression [":" IntegerExpression 

[ ":" IntegerExpression] ] . 
"(" (File Variable I WriteParameter) 

{ "," WriteParameter} ")". 



230 Appendix D 

Syntax Diagrams 

The diagrams for Letter, Digit, Identifier. Directive, UnsignedInteger, 
UnsignedNumber, and CharacterString d\:'scribe the formation of lexical 
symbols from characters. The other diagrams described the formation of 
syntactic constructions from symbols. 

Letter 

Digit 



Syntax 231 

Identifier and Directive 

Letter 

Unsignedlnteger and DigitSequence 

( __ "_'_D_ig_it _J .. 

Unsigned Number 

DigitSequence 

DigitSequence 

CharacterString 

Constantldentifier, Variableldentifier, Fieldldentifier. Boundldentifier. 
Typeldentifier. Procedureldentifier and Functionldentifier 

--------------------------~ .. 'Identi~erlr-------------------------~ .. 



232 Appendix D 

UnsignedConstant 

Constant 

,I Constantldentifier 

UnsignedNumber 

'----------~ CharacterSt 'ing r------------./ 

Variable 

-----.-1 Fieldldentifier 



Syntax 233 

Factor 

UnsignedConstant 

'----------+-1 Boundldentifier f------------"I 

Variable 

Functionldentifierf------~,__~ ActualParameterList 

( Expression f------.{ ) 

not ~-------------.~ 

] 

Term 

Simple Expression 



234 Appendix D 

Expression 

Simple Expression 1----..----..,.....-....,---

"'-_""-_-"--_....3....~ Simple Expression 

ActualParameterList 

( 

Procedur, ' ldt'ntifier 

'----I~ Functiotli Ii t'tz ti fier '---./ 

WriteParameterList 

\.--------. FileVariablt . ---.......,.-------;;;r~ ) 

Expression 

Expression I------.;~"I 

Expression 1---./ 



Syntax 235 

IndexTypeSpecijication 

--1 Identifier 1-1 ----..~Io--Ildentifier r--cD-----1 Typeldentifier r---. 

C onformantArraySchema 

,;--~ Typeldentifier 

F ormalParameterList 

)---::;'--"-7--t Identifierl-"""'--t~ 

I'-----t~ Type Identifier f-----.,. 

ConformantArraySchema 

'-----+lProcedureOrFunctionHeadingl----~-_< 



236 Appendix D 

ProcedureOrFunctionHeading 

",I----+jFormalParameterListt-
1
--J7----, ... 

'- . . 

procedure 

FormalP II'.JmeterList 

OrdinalType 

'----i~ Constant f-------.{ }-------.{ Constant f----./ 

Type 

t f--"""7"--~ Typeldentifier )----'1'1 

record I--------.. [fu, Ill~;st end 



Syntax 237 

Fie/dList 

)-------+1 Type I--~~ 

Typeldentifier 



238 Appendix D 

Statement 

Unsignedlnteger 1------.,- ... ~ 

I.-------------------~----- -~ 

Varia ble f-----::r- -----1~ • - }----+j Expression 

Functionldentifier 

I'-------.l Procedure Identifier f--........t.~ Actua lParameterList f---::.--I 

WriteParameterList 

1-----+1 Expression do I----il~ Statement 

}---"7"-+l Statement )------1~ Expression 

Variable Identifier Expression )-""---.{ 



Syntax 239 

Block 

r-------------~--------~flUUn;sriig;n~e~d[In~t~e;ge~r~----------~ 

= r------+i Constant 

r-----------~-Ildentifier f----+{ 

r-----::..-----...,,--t Identifier r-----.::-t~ 

1'----------+1 ProcedureOrFunctionHeading 1------------" 

end 

Program 



APPENDIXE 

Summary of Changes to 

Pascal User Manual and Report 

Necessitated by the ISO 7185 Standard 
This appendix merely gives a non-exhaust I ve overview of the technical changes made 
to this book as it was being revised for the third (ISO Standard) edition. The summary 
should be useful to owners of previous ed Itions. 

Report 3: Notation and Terminology 
Use of EBNF instead of BNF. 
Definitions of error, implementation-deji1Ied. implementation-dependent, 

extension, and Standard Pascal provided and used throughout Report. 

Report 4: Symbols and Symbol Separators 
Change in formulation of syntax from delimiters to separators. 
Inclusion of symbol" .. ". 

Alternative representations for special symbols "[", "J", and "j". 
Change in comment syntax; nested comn lents not allowed. 
Identifier spelling now significant over \\ hole length. 
New symbol category: directives. 

Report 5: Constants 
Maxlnt now included in Report 

Report 6: Types 
Scalar types are replaced by ordinal and real types; 

definitions of succ, pred, and ord, army indexing case selection, 
subranges, and set base types thereb) simplified. 

Type compatibility now defined as "namt compatibility." 
Concepts of assignment compatibility anll assignable types introduced. 
Specific semantic implications for packell structured types. 
Consecutive ";" not permitted. 
Case labels in record variants now called .: ase constants. 
Full specification of variant parts require. I in record types. 
Inspection and generation modes specifie, I for file types. 
Type text no longer equivalent to (packer'l file of char. 
File types or types containing file types (I e .. non-assignable types) 

not allowed as component types of file types. 
Domain types introduced for pointer type~. 

240 



Summary of Changes 241 

Report 7: Variables 
Concept of undefined and totally undefined variables introduced. 
Input and Output now implicitly declared, textfile, program parameters if used. 

Report 8: Expressions 
Factor now includes conform ant-array parameter bound identifier. 
Order of evaluation of expressions specified as implementation-dependent. 
Definition of mod operator changed. 
Type of a set constructor now both packed and non-packed. 

Report 9: Statements 
Rules enforced regarding the accessibility of labels by gotos. 
Case statement labels now called case constants. 
The control variable of a for statement now a local variable only. 
Several restrictions added to the for statement and its actions 

rigorously defined. 

Report 10: Blocks, Scope, and Activations 
The concepts of a program-point. activation-point. scope of the definition 

or declaration (introduction) of labels and identifiers defined. 
Scope rules defined precisely to eliminate ambiguity. 
The apparent integral value of labels greater than 9999 not allowed. 
Activation rules defined; binding of identifiers to variables, procedures. and functions 
defined. 

Report 11: Procedures and Functions 
Procedure and function directives are introduced; 

forward now a standard directive. 
Conform ant-array parameters added; the concept of conformability 

and conformant type introduced. 
Full specification of the parameter lists now required of formal 

procedural and functional parameters (procedures and functions 
as parameters); the concept of parameter-list congruency introduced. 

Use of tag fields as actual variable parameters disallowed. 
Specification of the array parameters to pack and unpack changed. 
File-handling procedures and functions and the state of the file variable 

and buffer variable now rigorously defined. 

Report 12: Textfile Input and Output 
Procedure page standard; its file parameter optional; its actions changed. 
Special WriteParameterList syntax added as actual parameter lists to 

write and writeln. 
Field widths in formatted write and writeln procedures now precisely 

defined. 

Report 13: Programs 
Program parameters now optional and their nature specified. 

Report 14: Compliance with ISO 7185 
Definitions of complying program and complying processor given. 
Requirements for compliance with the ISO Pascal Standard explained. 



APPENDIXF 

Programming Examples 

Two examples are presented: a program is dt, veloped as an illustration of the method of 
stepwise refinement [see Reference 2] folloNcd by a procedure serving as a model of 
portable software. 

Example 1: Program IsItAPalin !'Clme 

A program is developed to find all integ r~ from 1 to 100 whose squares expressed 
in decimal are palindromes. For example: I sl\uared is 121 which is a palindrome. 

A palindrome is a string of symbols fr 1m an alphabet which reads the same in 
forward or reverse order. Well-known eXaJ Iplcs in English include (ignoring blanks 
and punctuation): 

"radar" 
"a man, a plan, a canal, Panama" 
"Doc, note, I dissent! A fast never pre\cnts a fatness; I diet on cod." 

Example 1 Step 1 : 

program IsItAPalindrome(Outp"); 
begin 

FindAIIlntegersFroml To100W: 11:'eSquaresArePalindromes 
end { IsItAPalindrome } 

Example 1 Step 2: 

program IsItAPalindrome (Outp ! I ; 

Find all integers from 1 ! 

palindromes. } 

const 
Maximum 100; 

24': 

100 w~ose squares are 



type 
IntRange = 1 .. Maximum; 

var 
N: IntRange; 

begin 
for N := 1 to Maximum do 

if Palindrome(Sqr(N)) then 

Programming Examples 243 

Writeln(N, , squared is a palindrome.') 
end { IsItAPalindrome } . 

Example 1 Step 3: 

program IsItAPalindrome(Output); 
{ Find all integers from 1 to 100 whose squares are 

palindromes. } 
const 

Maximum = 100; 
type 

IntRange 
Positive 

var 

1 .. Maximum; 
1 .. Maxlnt; 

N: IntRange; 
function Palindrome (Square: Positive): Boolean; 

var 
NPlaces: 1 .. S {S = Trunc(Log10(Sqr(Maximum))+1)}; 

begin { Palindrome } 
CrackDigits; 
Palindrome := CheckSymmetry(l, NP1aces) 

end { Palindrome }; 
begin 

for N := 1 to Maximum do 
if Pa1indrome(Sqr(N)) then 

Writeln(N, , squared is a palindrome.') 
end { IsItAPalindrome } . 

Example 1 Step 4: 

program IsItAPalindrome(Output); 

{ Find all integers from 1 to 100 whose squares are 
palindromes. } 

const 
Maximum = 100; 



244 Appendix F 

type 
IntRange 
Positive 

var 

1 . . Maximum; 
1 . . MaxInt; 

N: IntRange; 

function Palindrome (Squar' : Positive): Boolean; 
const 

Places = 5 { = Trunc( ~glO(Sqr(Maximum))) + 1 }; 
type 

NPlaces = 1 . . Places; 
SingleDigit = O .. 9; 
DigitVec = array [NPI ~es] of SingleDigit; 

var 
Digits: DigitVec; 
Size: NPlaces; 

procedure CrackDigits; 
begin 

Size := 1; 
while Square > 9 do b, 'ft n 

Digits[Size] := Squ :e mod 10; 
Square := Square di LO; 
Size := Size + 1 

end; 
Digits [Size] : = Squan 

end { CrackDigits }; 
function CheckSymmetry( ,~ft,Right:NPlaces) :Boolean; 
begin 

if Left >= Right then t:heckSymmetry := true 
else 

if Digits [Left] = D 'flts[Right] then 
CheckSymmetry:=ChkSymmetry(Left+l, Right-I) 

else CheckSymmetry 
end { CheckSymmetry }; 

begin { Palindrome } 
CrackDigits; 

false 

Palindrome := CheckSymm :y(l, S~ze) 

end { Palindrome }; 

begin 
for N := 1 to Maximum do 

if Palindrome (Sqr(N) ) t'I'11 
Writeln(N, , squared; a palindrome.') 

end { IsItAPalindrome } . 



Programming Examples 245 

Example 2: Procedure ReadRadixRepresentation 

A generalized procedure to read integers expressed in any radix from 2 to 16 is 
presented. 

type Radix 2 .. 16; 

procedure ReadRadixRepresentation 
(var F: Text; {contains the representation } 
var E: Boolean; 
var X: Integer; 

R: Radix 

{ indicates presence of errors } 
{set to result if no errors occur} 
{ radix of representation } 

) ; 

ReadRadixRepresentation assumes that text file F is 
positioned to read a sequence of extended digits as 
a radix-R representation of an integer. 
The extended digits, in ascending order, are: 

'0' ,'1' ,'2' ,'3' ,'4' ,'5' ,'6' ,'7', 
'8' ,'9' ,'a' ,'b' ,'c' ,'d' ,'e' ,'f' 

Upper-case letters corresponding to the lower-case 
letters may be used. 

The parameter E indicates whether one of the 
following errors occurred: 
(1) The textfile F was not positioned to a 

sequence of extended digits. 
(2) The sequence of digits represents an 

integer greater than Maxint. 
(3) The sequence of extended digits contains a 

digit that is not a radix-R digit. } 

type 
DigitRange 0 .. 15; 

var 
0: DigitRange; 
V: Boolean; 
s: 0 .. Maxint; 



246 Appendix F 

procedure ConvertExtended 19it(C: Char; 
var V: Iloolean;var 0: OigitRange); 

ConvertExtendedOigit 'termines whether C is an 
extended digit, setti 
validity, and if V is 
numerical value of th 

I V to indicate its 
!.!ue sets 0 to the 
extended digit. 

'lit } begin { ConvertExtendedO 
V : = C in [ '0' .. ' 9' , ' ','b' ,'e' I'd' ,'e' ,'f', 

, ','B','C','D','E','F' ]; 
if V then 

case C of 
, 0' : 0 .- 0; , l' : :) .- 1; 
, 3' : 0 .- 3; , 4' : D .- 4; 
, 6' : 0 .- 6; , 7' : D .- 7; 
, 8' : 0 .= 8; , 9' : D .= 9; 
'A' ,'a' : 0 10; 'B', 'b' 
'C' , ' c' : 0 12; , 0' , 'd' 

'E' , 'e' : 0 14' , F' , ' f' 
end 

end ConvertExtendedOigi ' } ; 

begin ReadRadixRepresenta' .on 
E := true; 
ConvertExtendedOigit (Fl, V, I I) ; 

if V then 
begin 

E := false; S:= 0; 
repeat 

if 0 < R then 

, 2' : 
, 5' : 

: 0 .= 
: 0 .= 
: 0 

if (Maxint - 0) d R >= S then 
begin 

S := S * R + : 
Get(F); 

0 .= 
0 .-

11; 
13; 
15; 

ConvertExtend· l:'igit (Fl,v,d); 
end 

else E := true 
else E := true 

until E or not V; 
if not E then X := S 

end 
end { ReadRadixRepresentati, I. 

2; 
5; 



APPENDIXG 

The ASCII Character Set 

ASCII (American Standard Code for Information Interchange) is the American 
variant of an officially-recognized, standard, international character set called the ISO 
(International Organization for Standardization) set. It specifies an encoding for 128 
characters. Within the ISO character code there may exist national variants for 12 
symbols (such as the currency symbol $). The 128 characters consist of95 which print 
as single graphics and 33 which are used for device control. The backspace control 
character is specifically used to allow overprinting of characters such as accents on 
letters in some languages. 

the 33 device-control characters: 

ACK Acknowledge FF Form Feed 
BEL Bell FS File Separator 
BS Backspace GS Group Separator 
CAN Cancel HT Horizontal Tab 
CR Carriage Return LF Line Feed 
DCl Device Control 1 NAK Negative Acknowledge 
DC2 Device Control 2 NUL Null 
DC3 Device Control 3 RS Record Separator 
DC4 Device Control 4 S1 Shift In 
DEL Delete SO Shift Out 
DLE Data Link Escape SOH Start of Heading 
EM End of Medium STX Start of Text 
ENQ Enquiry SUB Substitute 
EOT End of Transmission SYN Synchronous Idle 
ESC Escape US Unit Separator 
ETB End of Transmission Block VT Vertical Tab 
ETX End of Text 

247 



248 Appendix G 

the full 128-character set: 

00 16 32 4 ~ 64 80 96 112 

0 NUL OLE @ P P 
1 SOH DC1 A Q a q 

2 STX OC2 B R b r 

3 ETX OC3 # C S c s 
4 EOT OC4 $ f, 0 T d t 

5 ENQ NAK % E U e u 

6 ACK SYN & F V f v 

7 BEL ETB G W g w 

8 BS CAN f H X h x 
9 HT EM I Y i Y 

10 LF SUB * J Z j z 

11 VT ESC + K k 

12 FF FS L \ 1 
13 CR GS M 1 m 

14 SO RS N n 

15 SI US / 0 0 DEL 

The 7-bit code for a character is the sum of1' Ie column and row numbers. Forexample, 
the code for the letter G is 7 + 64 = 71. 



Index to Programs, 

Program Fragments, 

and Program Schemata 

Page 

132 (12.2) 

44 (4.9) 

34 (4.1) 

182 

68 (7.1) 

98 

79 (8.1) 

93 

200 

200 

39 (4.6) 

Program 

Addln-
Add line numbers to a textfile. 

ArabicToRoman -
Write a table of powers of 2 in Arabic and Roman 
numerals; illustrate if statement. 

BeginEndExample -
Illustrate compound statement; write sum of 2 numbers. 

Bisect - (procedure); 
Find zeros of a polynomial. 

ComplexArithmetic -
Illustrate operations on complex numbers. 

Construct a list - (schema); 
Illustrate use of pointers. 

Convert-
Read digit sequence from Input and convert to integer. 

Copying a textfile - (schema). 

CopyReals-
Copy a file of real numbers. 

CopyText
Copy a textfile. 

Cosine-
Compute cosine(X) using power-series expansion; 
Illustrate for statement. 

249 



250 Index to Programs 

52 (5.1) 

36 (4.3) 

123 (11.8) 

38 (4.5) 

126 

182 

184 

48 

40 (4.7) 

59 (6.2) 

2 

243 

129 (12.1) 

62 (6.3) 

114(11.4) 

184 

DayTime-
Illustrate enumerated \' pes and case statement. 

Exponentiation -
Compute power(X,YJ real X raised to natural Y. 

Exponentiation2 -
Refine Exponentiatior hy introducing a function. 

ForExample -
Compute Nth partial ~ lin of harmonic series. 

ForwardDeclarations - (fragment). 

GCD - (procedure); 
Find greatest common divisor. 

GCD - (function); 
Find greatest common divisor using recursion. 

GotoExample - (fragl"~~nt); 

Illustrate goto stateme 11. 

Graphl-
Generate plot of f(X); Ilustrate for statement. 

Graph2-
Modify Graphl to plo' axis by using an array. 

Inflation -
Find factors that units If currency will be devalued. 

IsItAPalindrome -
Find all integers from I to 100 whose squares are 
palindromes. 

LetterFrequencies -
Perform a frequency ( .unt of letters in the Input file; 
Illustrate textfiles. 

MatrixMul-
Multiply 2 matrices rf .resented as arrays. 

MatrixMul2 -
Refine MatrixMul usil !! a procedure with 
conformant-array par; lIleters. 

Max - (function); 
Find maximum value ,n a vector of real numbers. 



186 

91 (9.2) 

58 (6.1) 

103 (1Ll) 

107 (11.2) 

90 (9.1) 

111 (11.3) 

72 

116 (11.5) 

123 

184 

82 (8.3) 

82 (8.4) 

83 (8.5) 

133 

134 

Index to Programs 251 

Max - (function); 
Refine Max using conformant-array parameters. 

MergeFi1es -
Merge files of records. 

MinMax-
Find the largest and smallest number in a list. 

MinMax2-
Refine MinMax by introducing a procedure declaration. 

MinMax3-
Refine MinMax2 to process 2 lists of numbers. 

Normalize -
Normalize a file of real numbers. 

Parameters -
Illustrate value and var parameters. 

Person - (fragment); 
Illustrate variant record type. 

Postfix-
Convert an infix expression to Polish postfix form; 
Illustrate nested, mutually recursive procedures. 

Power - (function); 
Compute power(X,Y), real X raised to natural Y. 

Power - (function); 
Compute real X raised to natural Y. 

Primel-
Find primes by using sets to represent Erastosthenes 
Sieve. 

Prime2-
Refine Prime 1 by using sets to represent odd numbers 
only. 

Prime3-
Refine Prime2 by using an array of sets. 

PromptExample - (fragment); 
Enter input from interactive terminal. 

Read and process a sequence of numbers - (schema). 



252 Index to Programs 

135 Read and process single lumbers - (schema); 
Use SkipBlanks. 

135 Read and process n-tupl " of numbers - (schema); 
Use SkipBlanks. 

93 Reading a textfile - (Sf ll:ma). 

129 Reading characters from file Input - (schema). 

182 Readlnteger - (procedll re ): 
Read a sequence of digits and convert to integer value. 

245 ReadRadixRepresentati(11l - (procedure); 

37 (4.4) 

99 

80 (8.2) 

135 

125 (11.10) 

184 

41 (4.8) 

124 (11.9) 

25 (3.1) 

118(11.6) 

120 (11.7) 

Generalized ReadInteg\ r for any radix from 2 to 16. 

RepeatExample -
Compute Nth partial Sll 11 of harmonic series. 

Search a list - (schema 
Illustrate use of pointer 

SetOperations -
Illustrate set operation~ 

SkipBlanks - (procedw ,~ ): 
Skip blanks between nli rnhers on textfile. 

SideEffect -
Illustrate function side l'ffects. 

Sqrt - (function); 
Compute square root b~ Newton's method. 

SummingTerms -
Compute sum of terms 11' a series 4 ways. 

SumSeries-
Write a table of a serie~ ,lllll progression; 
Illustrate functional pal IlIlders. 

TemperatureConversion 
Write table of Ce1cius iI Id Fahrenheit temperatures. 

Traversal-
Illustrate binary-tree tr; vl~rsal using recursive procedures. 

Traversal2 -
Refine Traversal by inti )ducing procedural parameters. 



96 (10.1) 

36 (4.2) 

73 

74 

75 

92 

129 

WaitingList -
Simulate clients waiting; 
Illustrate pointers. 

WhileExample -

Index to Programs 253 

Compute Nth partial sum of harmonic series. 

WithExample - (fragment); 
Illustrate with statement. 

WithExample2 - (fragment); 
Illustrate with statement. 

WithExample3 - (fragment); 
Illustrate with statement. 

Writing a textfile - (schema). 

Writing characters on file Output - (schema). 



Index 

Abs, 18,20, 192,204,211 
Absolute value, see Abs 
Abstraction, 14 
Action, concept of, 1,28, 143 
Activation 

and formal parameters, 185 
point, 172, 181, 187 

Activations, 172, 177, 179-180 
Active variant, of record, 70, 100, 

158,191 
Actual 

functional parameter, 122, 124, 
188 

parameter, 107-109, 111-113, 
147, 175, 180, 185, 186-187 

EBNF for, 187,219,225 
lists, 106, 107, 170, 186-188 

EBNF for, 187,219,225 
syntax diagram for, 107, 234 

procedural parameter, 117, 121, 
188 

value conformant-array parameter, 
113, 187 

value parameter, 110, 187 
variable parameter, 110, 154, 

175,187 

\dding operators, 
EBNF for, 165,218,225 
operands of, 165 
and precedence, 32,166 

(see also Arithmetic operators) 
\ddresses, for pointer types, 94 
\lgoI60, vii, 6, 7, 8,142-143 

Algol-W, vii 
\lgorithm, 1, 179 
I\ltemative representations, 
of symbols, 10, 148,212 

\nd. 16, 168,208,212 
(see also Boolean operators) 

\postrophe, how to represent, 18, 
150 

Irahic to Roman, program for, 
-+4--46 

'rL'Tan, 20, 193,204,211 
. ,rL'langent, see ArcTan 
\rgument. see Parameter 

. ,rithmetic 
funL'tions. predeclared, 192-193 
IJperations. on Boolean values, 8 
llperators, 17, 146, 167, 208 

: ~ rray 
,'llmponents of, 144, 156 

254 



Array (continued) 
confonnant, see Confonnant array 
data types, 55, 210 
declaration, 57 
index type, 56, 112, 156 
indexing, 20, 209 
multidimensional, 60 
not dynamic, 7 
parameters, confonnant, 63, 

112-113,185-187 
sample programs of, 58--60 
types, 56--65, 156 

EBNF for, 156,218,225 
syntax diagram for, 61 

variable, EBNF for, 162,219, 
225 

ASCII character set, 247-248 
Assignable types, 160 
Assignment 

compatibility, 33, 53, 160 
examples of, 33, 170 
multiple, 7 
operator, 209 
statement, 28-33,145,170 

EBNF for, 169 
syntax diagram for, 29 

to array variable, 57 
to file, 87 
to set, 76, 77 

Base type, of set, 76, 77, 144, 158, 
160, 165-166 

EBNF for, 158,218,225 
Begin, and compound statement, 

34, 172 
Binary tree, 117,118 
Blanks, as symbol separators, 9 

(see also Space) 
Block 

EBNFfor, 1, 177,215,225 
of procedure, 105 
structure, 5, 6, 8 
syntax diagram for, 4, 21, 239 

Blocks, 145, 146, 177-180 
anonymous, 8 
order of parts in, 1 

Boolean 
expression 

EBNFfor, 165,219,225 
evaluation of, 32 

Index 255 

functions, predeclared, 193 
negation, and precedence, 32 
operators, 146, 168,208 
type, 15, 16-17,51,143, 

154,210 
write, 135, 137, 196--198 

Bound identifier, 112, 179, 186, 189 
EBNF for, 186,219,225 
syntax diagram for, 231 

Braces, 212 
(see also Comment) 

Brackets, 212 (see also Array 
and Set constructor) 

Buffer 
accessing, 209 
variable, 28, 87, 88, 89, 132, 164 

EBNF for, 163,219,225 
syntax diagram for, 87 

Call by name, 7 
Carriage~ontrol character, 128 
Case 

EBNFfor, 173,217,225 
index, EBNF for, 173, 217, 225 
statement, 7,20,46--47,146,173 

EBNF for, 173, 217, 225 
syntax diagram for, 46 

in variant record, 70 
Char type, 18-19,143,154,210 
Character 

read, 134, 195 
strings, 12-13, 149-150 

EBNF for, 151, 220, 225 
syntax diagram for, 13,231 

(see also Strings) 
type, see Char type 
write, 136--137, 197 

Chr, 19, 194,204,211 
Cobol,7 
Comment 

EBNF for, 150 
as separator, 9, 150 



256 Index 

Compiler, 8 (see also Implementation) 
Complex arithmetic, sample program 

for, 68--69 
Component 

of array, 56, 144, 156, 162 
of file, 86, 87,144,158,163 
ofrecord,65, 67,69-70, 144, 156, 

162-163 
(see also Fields) 

of set, 145 
of structured types, 144-145, 

155, 161 
type,55,56,87, 156, 157-158 

EBNF for, 156,218,225 
variables, 28, 162, 162-164 

EBNFfor, 161,219,225 
syntax diagram for, 57 

Compound statement, 34, 146, 
171-172 

EBNF for, 172, 217, 225 
syntax diagram for, 34 

Computer program, 1, 143 
Concatenation of strings, 8 
Conditional 

expressions, 7 
statement, 43-47, 145, 172-173 

EBNFfor, 172,217,225 
Conditions, mutually exclusive, 44 
Conformant 

array 
and implementation levels, 185, 

201 
parameters, 185, 186, 187 

and ISO standard, 201 
schemas, 185-186, 188-189 

EBNF for, 185,216,225 
syntax diagram for, 112, 235 

type, derivation of, 189 
Conjunction, 208 
Constant 

definition, 23, 25-26 
EBNF for, 152,215,225 
part 

EBNF for, 152,215,225 
syntax diagram for, 23 

EBNF for, 152,218,225 
identifier 

EBNF for, 152,219,226 
predefined, 16, 17, 153,211 

syntax diagram for, 23 
synonyms, scope of, 5 
syntax diagram for, 23, 232 

Constants, 151-152 
predefined, 211 

Constructor, set 
(see Set constructor) 

Control variable, of for statement, 
7,37,38,39,175 

EBNFfor, 175,217,226 
~'onversion from Char to Integer, 

sample program for, 79, 245-
246 

I :'opying, textfile, 93 
1.'os,20,193,211 
I. ~osine 

program for, 39-40 
(see also Cos) 

Data 
base, using pointer types, 97 
of computer program, 1, 143 
transfer procedures, predeclared, 

192, 194 
type, 7,14,194,210 

(see also Type) 
I late, implemented as record, 67 
I leclarations, 1, 7, 143 

(see also specific kind of 
declaration, e.g., Function 
declaration) 

].'t'finitions, 1, 143 
(see also specific kind of 
definition, e.g., 
Type definition) 

)Iclayed evaluation of buffer 
variable, 132-133 

) i·('~ignator 
lidd, 162-163 
function, 29, 122 



Difference, see Set difference 
Digit 

EBNF for, 149,220,226 
ordering in type char, 18, 153 
Sequence 

EBNF for, 150,220,226 
syntax diagram for, 11, 230 

Directives, 13,149, 181, 183,212 
EBNF for, 148 
syntax diagram for, 13,230 

(see also Forward declaration) 
Disjunction, 208 
Dispose, 94, 101, 160, 191-192, 

204,211 
Div, 17,31,32,165-167,208 

definition of, 167 
precedence of, 32, 167 
(see also Arithmetic operators) 

Division by zero, 168 
Do, see Repetitive statements, With 

statement 
Domain type, of pointer, 145, 159 

EBNFfor, 159,217,226 
Downto, see For statement 
Dynamic 

allocation procedures, predeclared, 
191 

arrays, 7, 8 
set of values of pointer type, 15 
variables, 94, 145 

EBNF 
alphabetical, for Pascal, 225-229 
cross reference of, 221-224 
hierarchical, for Pascal, 215-220 
of Polish notation, 113 
(see also Extended Backus-Naur 

Form; also particular language 
construct, EBNF for, e.g. 
Array type, EBNF for) 

ElementDescription, EBNF for, 
165,219,226 

Else, see If statement 
Empty 

parts of block, 1 
file, 86, 158 

set, 76-77,166 
statement, 34, 44, 169 
EBNF for, 169,218,226 

Index 257 

End, and compound statements, 
34, 172 

End--{)f-file, 87, 159 (see also Eof) 
End--{)f-line, 9, 92, 93,134,150, 

159, (see also Eoln) 
Entire Variable, 28 

EBNF for, 162, 219, 226 
Enumerated types, 15,50--53,143, 

144,154, 153,210 
EBNF for, 154, 217, 226 
syntax diagram for, 50 

Eof 
and buffer variable, 87, 88, 132, 

190 
and file handling, 190 
as predefined Boolean function, 

17, 193,204,211 
and write, 135 

Eoln 
and buffer variable, 92, 132, 164 
and file handling, 92-93 
as predefined Boolean function, 

17,193,204,211 
Equality, see Set equality, 

Relational operators 
Equivalence 17 

(see also Set operations) 
Eratosthenes' sieve, 81 
Error, and standards, 148,201 
Evaluation 

of buffer variables, 132, 133 
order of, 30--32, 166 

Exclusive or, 17 
(see also Boolean operators) 

Exp,20,193,205,211 
Exponential function, see Exp 
Exponentiation 

operator, 8 
program for, 36, 123 

Expressions, 28-32, 165-169 
EBNF for, 165, 218, 226 
evaluation of, 30--32 
in assignment statement, 145 
syntax diagram for, 32, 234 



258 Index 

Extended Backus-Naur Fonn, 3, 147, 
213-214 (see also specific 
example, e.g., ProgramHeading. 
EBNF for, and EBNF) 

Extension, 148,201 
External files, 89, 199 

Factor 
EBNF for, 165,219,226 
evaluation of, 167 
syntax diagram, 30, 233 
type of, 166 

False, as predefined constant 
identifier, 16, 152, 154,211 

Field 
designators, 163 

EBNF for, 163,219,226 
identifier, scope of, 65, 178-179 

EBNF for, 157,219,226 
syntax diagram for, 231 

list, 156, 157-158 
EBNF for, 157,218,226 

syntax diagram for, 66, 237 
of variant record, 72 
width, of write, 136-137, 196-199 

File 
data types, in type taxonomy, 55, 

210 
declarations, 89,90 
handling procedures, predeclared, 

190 (see also Get, Put, Read, 
Reset, Rewrite, Write) 

length, 86, 158 
parameter, 1, 110, 128 
structure, 145 
types, 86-93, 158-159 
EBNF for, 158,218,226 
not assignable, 33, 160 
syntax diagram for, 87 
(see also Text) 

variable, 87, 164, 
EBNF for, 164,219,226 

(see also Textfile) 
FinalValue, EBNF for, 175,217, 

226 
Fixed 

part, of field list, 157, 158 

EBNF for, 157,218,226 
syntax diagram for, 66 
point notation and write, 137, 

197-198 
records, 65-69 

Floating point notation, of write, 
137-138,197 

For statements, 7,37-39, 146, 
174,175-176 

EBNFfor, 175,217,226 
examples of, 38, 39,41,42,176 
and real type, 20 
syntax diagram for, 38 

Fonnal parameter, 107, Ill, 147, 
170 
list, 181, 183, 185-186 

EBNF for, 185,216,226 
syntax diagram for, 107, 235 
section, EBNF for, 185,216,226 

Formatted writes, 135-139, 196-
199 

Fortran, 6, 7 
Forward 

declaration, 126 
of function, 8,123,183 
of procedure, 8,122,181 
sample program using, 125 
directive, 212 
(see Forward declaration) 

Fraction length, of write, 136-137 
Function. 122-125, 181-194 

activation of, 167, 180 
concept of. 102 
declarations, 27, 122, 183-184 

EBNF for, 183,215,226 
examples of, 183-184 
and scope, 5,178-179 

designator. 30, 122, 166 
EBNF for, 165,218,226 

forward declaration, 8, 123, 125, 
183 

heading, 
EBNF for, 183,216,226 
syntax diagram for, 122 

identifier, 
EBNF for, 183,219,226 
syntax diagram for, 231 



Function (continued) 
identification, EBNF for, 183, 

216,226 
predeclared, 16,17,18,19, 

20, 122, 192-194,211 
recursive, 8, 122, 183 
sample program using, 123, 

124--125,126 
Functional parameters, 107, 110, 

122, 124, 146, 186, 188 
sample program using, 124--125 
specification, EBNF for, 186, 

216,226 

Generation mode, for file, 159 
Get, 88, 128, 190, 205, 211 
Global scope, 5, 27, 105 
Goto statement, 47-49,171-172 

and activations, 172, 179 
caution about, 49 
EBNF for, 171,217,226 
and expressions, 164 
and statement sequences, 171 
syntax diagram for, 47 

Graph, program for, 40-41, 
59-60 

Harmonic series, Nth partial sum, 
program for, 36, 37, 38 

Heading, see Program headings, 
Procedures, Functions 

Hoare, C.A.R., 81, 82, 202, 203 
Host type, of subrange type, 53, 

154 

Identified variable, 28, 94, 159, 
164, 194 

EBNF for, 163,219,226 
syntax diagram for, 95 

Identifier 
definition of, 10, 148 
EBNF for, 149,220,227 
examples of, 11, 149 
list, EBNF for, 3, 154, 219, 227 
scope of, 5, 6, 27, 149, 178-179 
standard, 12, 211 
syntax diagram for, II, 230 

Index 259 

Identifying values, of pointer type, 
95,159,164,194 

If statement, 43-46, 146, 172 
EBNF for, 172, 217, 227 
syntax diagram for, 43 

Implementation 
of Boolean expressions, 32 
defined, 148 
definition, of Char type, 18 
dependent, 148 

features, and ISO standard, 20 I 
operand evaluation, 166 
order of accessing variable or 
result, 170 

reset or rewrite of input or 
output, 200 
of end-of-line markers, 93 
of files, 87 
of pointers, 94 
of sets, 83 
of subrange variables, 54 

Implication, operation, 17 
In, operator, 32, 78,169,208 
Inclusion, see Set inclusion 
Index 

EBNFfor, 162,219,227 
type 

of array, 56, 112, 144, 156, 189 
EBNF for, 156,218,227 
specification 

EBNFfor, 186,216,227 
syntax diagram for, 112,235 

Indexed variables, 162 
EBNF for, 162, 219, 227 

Inequality, see Set inequality, 
Relational operators 

Infix notation, sample program to 
convert, 116-117 

Inflation, sample program for, 2 
InitialValue, EBNF for, 175,217,227 
Inorder, 117, 119, 120 
Input 

devices, 127-128, 194 
file, 25, 92, 128, 193, 194, 211 
in program parameter list, 199 

Inspection mode, for file, 159 



260 Index 

Integer 
read, 133-134, 195 
type, 17, 143, 153,210 
write, 135-137, 197 

IntegerExpression, EBNF for, 165, 
219,227 

Intersection, see Set intersection 
Introduction, scope of, 178-179 
I/O handling, 127 
ISO Standard, 112, 185, 

200-201,203 

Jump, see Goto statement 

Label, 13, 146 
and cases, 47 
declaration part, 22, 178 

part 
EBNFfor, 178,215,227 
syntax diagram for, 22 

EBNF for, 178, 220, 227 
and goto, 47-48, 170 
as program-points in activations, 

179 
scope of, 5, 27 
in statements, 169 

Letter 
EBNF for, 149,220,222 
syntax diagram for, 11, 230 

LetterFrequencies, sample 
program for, 129-131 

List 
linked,98, 100, 101 
sample program using, 96-97 

Ln,20, 193,205,211 
Local 

files, 194 
scope, 5, 27,178 
variable, 105, 122, 146, 179 

as for statement 
control variable, 175 

initial value of, 160 
Logarithm, see Ln 
Logical, see Boolean 
Loop, see Repetitive statements 
Lower--case letters, 10, 19, 

148, 153 

Matrix 
as multidimensional array, 61 
multiplication, sample program for, 

62-63,114-115 
sample program using, 62 

Maxlnt, 17, 149,151,153,168, 
211,246 

Membership, see Set membership 
Memory space, saving by using 

subrange type, 54 
\1erge files, sample program to, 91 
\1eta-identifier, 147, 151, 161,213, 

214 
MinMax, sample program for, 58, 

103-104,108-109 
Mod, 17,31,165,167,208 
Modularity, of program, 23 
\1ultiple assignments, 7 
Multiplying operators 

EBNF for, 165,218,227 
and precedence, 31, 32, 166 
(see also Arithmetic operators) 

'iaturallogarithms, see Ln 
\lcgation, 208 
.\lested 

record,69 
variant parts, of record, 72 
with statements, 74-75 

\lcw, 94,95,99, 158, 160, 191, 
206,211 

\IiI. 31, 95,145,159,166 
\lot. 16, 165, 166, 168 

(see also Boolean operators) 
\lumbers, representation of, 12, 149 

)dd, 17, 26, 193, 205, 211 
)pcrands, 166-167 
)perations, on sets, 78, 168 
)perators, 14-20,63,167-169 
precedence of, 30--32, 167,209 

')r. 16, 165, 168 
(.ll'e also Boolean operators) 

>rd, 16,19,51,153,194,205, 
211 



Ordinal 
data types, in type taxonomy, 15, 

210 
expression, 165 

and case statement, 146 
EBNF for, 165,219,227 

functions, predeclared, 193-194 
(see also Ord, Chr, Pred, Succ) 

numbers, 15, 152 
types, 15,50, 143, 153 

EBNF for, 153,217,227 
identifier, EBNF for, 152, 

219,227 
syntax diagram for, 16,236 

Output devices, 127, 194 
Output file, 25, 92, 128, 196, 

199,200,211 
Own attribute, 8 

Pack, 64, 192,205,211, 
Packed, 155, 166 

array, 63, 113, 155 
conformant array schema, 

EBNF for, 185,216,227 
file, 92 
set constructor, 33, 77, 166 
and structured data type, 56 

Page procedure, 128, 140, 199, 
205-206,211 

Palindrome, sample program for, 
242-245 

Parameter 
conformant array, 112-113, 117, 

185-187 
sample program using, 114--115 

external files as, 89 
kinds of, 107, 110, 146, 185 
list, 1, 106-107, 179, 185-188 

congruity, 188 
passed by reference and by value, 

8, (see also Variable 
parameters, Value parameters) 

to Read procedure, 133-134 
to Write procedure, 135-138 

(see also Identifiers) 
Parentheses, 3 

Pascal 
aims oflanguage, 142 
Blaise, vi 
News, v, 203 
Revised Report, vii 
User's Group, v 

Pattern recognition, 127 
Peripherals, 87 

Index 261 

(see also Input devices, 
Output devices) 

PL/l, v, 6, 7, 8 
Pointer 

data types, in type taxonomy, 14, 
210 

type, 7, 94--99,158 
EBNF for, 159,217,227 

and function result, 122, 146, 
183 

identifier, EBNF for, 159,219, 
227 

sample program using, 96-97 
syntax diagram for, 95 
and variable, 29 

variables, 94, 145, 163 
EBNF for, 163,219,227 

Polish notation, 113, 116-117 
Portability, of programs, 23,147 
Position, in parameter lists, 187 
Postfix, sample program for 116-117 
Postorder, 117, 119, 120 
Power, function for, 184 
Powerset, 144, 158 
Precedence,see Operator precedence 
Pred, 16, 18, 19,51, 153,206,211 
Predecessor, of ordinal value, 15 

(see also Pred) 
Predeclared 

functions, 181, 192-194,204--207 
identifiers, 11, 211 
procedures, 181, 190-193,204--207 

Predefined 
constant identifiers, 16, 17, 151, 

211 
type identifiers, 15,89, 153, 158, 

211 
Preorder, 117, 119, 120 



262 Index 

Prime numbers, sample 
program for, 82-85 

Procedural parameters, 107, 110, 
117,147,185-188 

sample program using, 120-121 
ProceduralParameterSpecification, 

EBNF for, 186,216,227 
Procedures, 180, 181-182, 190-192 

activation of, 33, 111, 170, 
179-180 

as actual parameters, 187-188 
block,147 
concept of, 102 
declaration, 27, 102, 103, 178, 

179,181 
EBNF for, 182,215,227 
examples of, 182 

forward declaration of, 122, 
125,181 

heading, 105, 107, 181 
EBNF for, 182,216,227 
syntax diagram for, 103 

identification, EBNF for, 182, 
216,227 

identifier, 105, 181 
EBNF for, 182,219,227 
predeclared, 190-193,204-207 
syntax diagram for, 231 

recursive 8, 113, 182 
sample program using, 80, 96-97, 

103-104,107-108,111,114-
115,116-117,118-119,120 

statements, 33,106,146,170-171 
EBNF for, 171,217,227 
syntax diagram for, 206 

ProcedureAndFunctionDeclarationPart 
EBNF for, 181,215,227 
syntax diagram for, 102 

ProcedureOrFunctionHeading, 
syntax diagram for, 102, 236 

Processor, and ISO standard, 200 
Productions, in EBNF, 3, 213 
Program-point, 179 
Program, 199-200 

as EBNF start symbol, 214 
block, 1, 146 
development, 80-81, 106 

EBNF for, 3, 199,215,227 
heading, 1,3,21, 199-200 

EBNF for, 3,199,215,227 
syntax diagram, 4, 22 
parameter list, EBNFfor, 199,215, 

227 
parameters, 199 
syntax diagram for, 4, 21, 239 

Programming 
examples, 242-248 

(see also Language feature, 
sample program using, e.g., 

Procedures, sample program using) 
style, 8 

Prompt interactive user, 
sample program to, 133 

Put, 88,128,190,206,211 

Radix read, sample program for, 
245-246 

Random-access 
of array, 57, 144 
of record, 65, 144 
of set, 76, 144 

Read,206,211 
and buffer variable evaluation, 

87,88,132 
and default file, 128 
and packed variable, 190 
procedure, 133-135, 191, 194-195 
from text file, 92, 93 
sample program using 92, 134 

Readability, of program, 106 
Readln, 206, 211 

,lIld buffer variable evaluation, 132 
.lIld default file, 128 
\)fpacked variable, 190 
procedure, 133-134, 195-196 
110111 text file, 92-93 

Read-only variable, 
hmmd identifier similar to, 112 

Keal 
number, 7 
read, 134, 195 
and subrange type, 53 
type, 15, 19-20,143,153,210 



Real (continued) 
identifier, EBNF for, 153,219, 

228 
write, 135-138, 197-198 

Record 
data types, in type taxonomy, 55, 

210 
accessing component of, 72-73, 

162-163 
sample program using, 68-69 
structure, 144 
types, 65-75,156-158 

EBNFfor,157,218,228 
syntax diagram for, 66 

(see als{) Fixed records, 
Variant records) 

section 
EBNF for, 157, 218, 228 
syntax diagram for, 66 

variable 
EBNFfor, 163,219,228 
list, EBNF for, 177,217,228 

Recursion, sample program using, 
116-117,118-119 

Recursive 
data structures, 95 
functions, 123, 183 
procedures, 7, 113, 182 

Reference to a variable, 161, 163, 
164,170,176,180 

Refinement steps, 102, 242-245 
Relational operators, 31, 146, 

169,208 
EBNF for, 165,218,228 
on enumerated types, 51 
and ordinal types, 16 
and precedence, 32, 166 
and sets, 78 
and string types, 63 

Repeat statement, 35, 37, 146, 174 
EBNF for, 174, 217, 228 
examples of, 37, 174 
syntax diagram, 35 

Repetitive statements, 35-43, 173-176 
EBNFfor, 174,217,228 
(see also Repeat, For, While) 

Index 263 

Reserved words, 7 
(see als{) Word symbols) 

Reset, 87,129,132,190,199,206, 
211 

Result type, 
EBNF for, 183,218,228 
of function, 122, 146, 183 
of operators, 208 
of relational operators, 145 

Rewrite, 88, 129, 190, 199,206,211 
Round, 18, 193,206,211 
Run-time validity check, 

of subrange types, 54 

ScaleFactor,EBNF for, 150,220, 228 
Scope, 5-6, 177-179 

offield identifier, 65, 75, 156, 
176,178-179 

of function variables, 122 
of identifier, 5, 6,105,146,149 
of constant identifiers. 

introduced by enumerated type 
in record type, 72 

and spelling, 149. 178 
in with statement, 73, 75, 177 

Search, of linked list, 99 
Secondary storage, 87 
Selection 

from linked list, 98 
(see also Component) 

Selector type, and case statement, 46 
Semicolon 

and else, 44 
rules for, 34 

Separators, of symbols, 9, 150 
Sequential-access, of file, 86-87 
Sequential file, as file type, 86. 

145.157-158 
Set 

assignment, example of, 79 
base type, and real type, 20 
constructors, 77. 165-166. 209 

EBNF for. 164,219,229 
syntax diagram, 77 

data structure. 7, 144 



264 Index 

Set (continued) 
data types, in type taxonomy, 55, 

210 
declaration, example of, 78 
difference, 78, 145, 168,209 
equality, 78 
implementation of, 83 
inclusion, 78, 208 
inequality, 78 
intersection, 78, 145, 168,209 
membership, 76, 78, 208 
operators, 78-80, 146, 168-169 
sample program using, 79-80, 

82-85, 129-131 
types 

definition of, 76, 158 
EBNF for, 158,218,228 
syntax diagram for, 76 

union, 78, 146, 169,209 
Side effects, 125-126, 146 
Sign 

EBNF for, 150, 220, 228 
(see also Arithmetic operators) 

SignedInteger, EBNF for, 150 
SignedNumber, EBNF for, 150 
SignedReal, EBNF for, 150 
Simple 

data types, in type taxonomy, 14, 
15,210 

expressions, 31, 165-167 
EBNF for, 165, 217, 228 
syntax diagrams for, 31, 233 

statements, 170-172 
EBNF for, 170,216,228 

types, 14-20, 143, 153-154 
EBNFfor, 153,217,228 
and function result, 122, 146 
predefined, 15, 154-155 
syntax diagram for, 15 
(see also Ordinal types, Real) 

Sin, 20, 193, 206, 211 
Sine, see Sin 
SkipBlanks, sample procedure for, 

134-135 
Space, as separator, 150 

(see also Blank) 
SpecialSymbol, EBNF for, 149 

Spelling 
of directive, 149 
of identifier, 149 
of label, 178 
and scope, 178 
of word symbol, 149 

Sqr, 18, 20, 36, 192, 206, 211 
Sqrt, 20,193,207,211 
Square root, example function for, 

183 (see also Sqrt) 
Square, see Sqr 
Standard Pascal, 147,200-201,203 
Start symbol, for EBNF for Pascal, 

214 
Statement, 1, 170-177 

compound,22,172 
EBNF for, 170, 216, 228 
empty, 34, 44, 170 
part 

EBNF for, 170,215,228 
syntax diagram for, 22 

'ieparators, 7, 34 
sequence, EBNF for, 172,216,228 
,imple or structured, 28 
syntax diagram for, 29, 238 

Static variables, 94, 145 
Stepwise refinement, for 

programming, 81, 242-245 
String 

constants, 12-13, 150-151 
construction, 209 
element, EBNF for, 151,220,228 
parameters, 117 
types, 63, 155, 156 

and compatibility, 159 
""rite, 135, 137, 198-199 

(see also Character strings) 
'itrllctllred 

programming, 81 
,taternents, 146, 172-177 

EBNFfor, 172,217,228 
t) pe identifier, EBNF for, 155, 

219,228 
t)pes, 14, 1..J-4, 155-159 
EBNFfor, 155,217,228 

syntax diagram for, 56 
taxonomy of, 55, 210 



Subrange 
data types, in type taxonomy, 15, 

210 
types, 53-54, 144, 155 

and compatibility, 159 
declaration of, 54 
definition of, 15,50, 143, 155 
EBNF for, 154, 218, 228 
syntax diagram for, 53 

Succ, 16, 18, 19,51,154,194, 
207,211 

Successor, see Succ 
SummingTerms, program for, 41 
SumSeries, sample program for, 

124-125 
Symbols 

kinds of, 148-149 
lexical, 148 
separators. 150 

(see also Separators) 
special 

list of, 10,212 
EBNF for, 148 

table of, 212 
Syntax diagrams, 3 

collected, 230-239 

Tag 
field 

EBNF for, 157, 218, 228 
not allowed as actual 

variable parameter, 163, 187 
of variant record, 71, 144, 

156-157 
type, of variant record, 70 

EBNF for, 157,218,228 
Teaching, Pascal as language for, 142 
Temperature conversion, 

program for, 25-26 
Term, 31. 165-167 

EBNF for, 165,218,228 
syntax diagram for, 31, 233 

Terms, evaluation of, 31 
Text, type, 127, 159, 164 
Textfile input and output, 

127-140,194-199 

Index 265 

Textfiles, 25. 92-93, 128, 164 
definition, 158 
sample program using, 129-131 
standard, 92 

Then, see If statement 
Threaten, and For statement, 175 
To, see For statement 
Transfer functions. predeclared, 193 
Traversals, of tree, 117. 118-119, 

120-l2I 
True, as predefined constant 

identifier. 16, 152, 154,211 
Trunc.18,193,207.211 
Truncation, see Trunc 
Type 

compatibility, 160 
conversion, automatic, 8 
definition, 24, 143, 152 

EBNF for. 152.215,228 
part 

EBNF for. 152,215,228 
example of, 159-160 
syntax diagram for. 24 

and scope, 5, 178 
example of, 25-26, 159 
EBNF for, 153. 217, 228 
identifier, 24 

EBNF for, 152,219,228 
syntax diagram for, 231 

syntax diagram 24, 236 
taxonomy. 14,210 
values for variable, 143 

Types, 14-20,50-101.152-161 
kinds of. 15, 143-145 
predefined. 211 

(see also Structured types, 
Pointer types, Simple types) 

Unary operators, 166 
Undefined variable, 160 
Unpack, 64, 192,207,211 
Unpacked 

conformant array schema, 
EBNF for, 186, 216, 229 
set constructor, 33, 77, 166 
structured type, EBNF for, 155, 

217,229 



266 Index 

Unsigned 
constant 

EBNF for, 165,218,229 
syntax diagram for, 31, 231 

integer 
ERNF for, 150, 220, 229 
syntax diagram for, 12,230 

number 
EBNF for, 150,219,229 
syntax diagram for, 12, 231 

real, EBNF for, 150, 220, 229 
Until, see Repeat statement 
Up-arrow, see Alternative symbols 
Upper--case, letters, 10, 19, 

148, 153 

Value parameters, 107, 110, 113, 146 
actual, 110, 187-188 
formal, 110, 185 
sample program using, III 
specification, EBNF for, 185, 

216,228 
Var 

parameters, 107, 11 0, 185-186 
(see also Variable parameters) 
see Variable declaration 

Variable 
accessing operations, 209 
declaration, 7, 25,143,145,160 

EBNF for, 161,215,229 
part 

EBNF for, 161,215,229 
syntax diagram for, 25 

and scope, 105, 178-179 
example of, 162,219,229 
EBNF for, 162,219,229 
identifier 

EBNF for, 161,219,229 
syntax diagram for, 231 

parameters, 107, 110, 185-187 
specification, EBNF for, 185, 

216,229 
sample program using, 111 
read-only, 112 
syntax diagram for, 30, 232 
totally undefined, 161 
undefined, 161 
within activations, 179-180 

Variables, 161-164 
buffer, 87-89,163-164 
component, 57, 65,161-163 
entire, 161 
global to procedure, 105 
identified, 94-95, 163 
kinds of, 28,161-164 
local to procedure, 105 
to represent data, 143 
~tandard, 128,211 

Variant 
EBNF for, 157,218,229 
part 

EBNF for, 157, 218, 229 
of record, 70, 72,157,163 
syntax diagram, 70 

rl~cords, 69-73,144 
and dynamic allocation, 99, 101, 

191 
examples of, 71-72,158 

~clector, EBNF for, 157,218,229 
syntax diagram, 70 

While statements, 35,146,173-174 
EBNFfor, 173,217,229 
example of 36, 174 
syntax diagram for, 35 

, ,'hole number, 7 
\~'ith statements, 47, 73-75, 176-177 

EBNF for, 176, 217, 229 
syntax diagram for, 73 

Word symbols. 9,148,212 
EBNF for, 148 

(see also Reserved words) 
\\ rite. 92, 135-139, 196,207,211 

.tnd buffer variable evaluation, 87, 
88,133,191 

tnt! default file, 128, 194 
'xamples, 138-139 
.mllatted, 136-137,190,196-199 

: lara meter 
EBNF for. 196,219,229 
li,t 

EBNF for. 196,219,229 
,yntax diagram for, 136,234 

\\'ltdn,92.135-139,198 
oITid default file, 128 
. IIlI equivalent writes, 136, 198 


	Pascal: User Manual & Report (cover)
	Copyright © 1974, 1985, 1991 Springer-Verlag Inc.
	Forward
	Preface
	Table of Contents
	--------------------
	U S E R    M A N U A L
	Chapter 0: Introduction
	Chapter 1: Notation - Symbols & Separators
	Chapter 2: Concept of Data - Simple Data Types
	Chapter 3: Program Heading & Declaration Part
	Chapter 4: Concept of Action
	Chapter 5: Enumerated & Subrange Types
	Chapter 6: Structured Types in General - Array Type in Particular
	Chapter 7: Record Types
	Chapter 8: Set Types
	Chapter 9: File Types
	Chapter 10: Pointer Types
	Chapter 11: Procedures & Functions
	Chapter 12: Textfile Input & Output
	--------------------
	R E P O R T
	1. Introduction
	2. Summary of the Language
	3. Notation & Terminology
	4. Symbols & Symbol Separators
	5. Constants
	6. Types
	7. Variables
	8. Expressions
	9. Statements
	10. Blocks, Scope, & Activations
	11. Procedures & Functions
	12. Textfile Input & Output
	13. Programs
	14. Compliance with ISO 7185
	--------------------
	References
	Appendix A: Predeclared Procedures & Functions
	Appendix B: Summary of Operators
	Appendix C: Tables
	Appendix D: Syntax
	Appendix E: Summary of Changes to User Manual & Report Necessitated by ISO 7185 Standard
	Appendix F: Programming Examples
	Appendix G: ASCII Character Set
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




